import pandas as pd
from datetime import date
from plotly import graph_objs as go
import pybase64 as base64
import numpy as np
import investpy
import streamlit as st
import datetime as dt
import io
def get_table_excel_link(df, selected_stocks):
towrite = io.BytesIO()
downloaded_file = df.to_excel(towrite, encoding='utf-8', index=False,
header=True)
towrite.seek(0) # reset pointer
file_name = 'Data'+ selected_stocks + '.xlsx'
style = 'style="color:black;text-decoration: none; font-size:18px;"'
name_mark = "Descargar " + selected_stocks + ".xlsx"
b64 = base64.b64encode(towrite.read()).decode() # some strings
linko= f'
'
return linko
@st.cache
def tabla_commodity(stocks, TODAY):
tabla = pd.DataFrame()
year_ago = date.today() - dt.timedelta(days=365)
year_ago = year_ago.strftime("%d/%m/%Y")
for stock in stocks:
precios = investpy.commodities.get_commodity_historical_data(
commodity=stock,
from_date=year_ago,
to_date=TODAY)
precios = precios["Close"]
last_price = precios.iloc[-1]
oned = precios.iloc[-2]
onew = precios.iloc[-7]
onem = precios.iloc[-30]
oney = precios.iloc[0]
return1m = str(round((last_price/onem-1)*100, 2))+"%"
return1d = str(round((last_price/oned-1)*100, 2))+"%"
return1w = str(round((last_price/onew-1)*100, 2))+"%"
return1y = str(round((last_price/oney-1)*100, 2))+"%"
tabla = tabla.append([[return1d, return1w, return1m, return1y]])
tabla.columns = ["1d", "1w", "1m", "1y"]
tabla.index = stocks
return tabla
@st.cache
def tabla_indices(index, countries, TODAY):
tabla = pd.DataFrame()
year_ago = date.today() - dt.timedelta(days=365)
year_ago = year_ago.strftime("%d/%m/%Y")
for i in range(len(index)):
precios = investpy.get_index_historical_data(index=index[i],
country=countries[i],
from_date=year_ago,
to_date=TODAY)
precios = precios["Close"]
last_price = precios.iloc[-1]
oned = precios.iloc[-2]
onew = precios.iloc[-7]
onem = precios.iloc[-30]
oney = precios.iloc[0]
return1m = str(round((last_price/onem-1)*100, 2))+"%"
return1d = str(round((last_price/oned-1)*100, 2))+"%"
return1w = str(round((last_price/onew-1)*100, 2))+"%"
return1y = str(round((last_price/oney-1)*100, 2))+"%"
tabla = tabla.append([[return1d, return1w, return1m, return1y]])
tabla.columns = ["1d", "1w", "1m", "1y"]
tabla.index = index
return tabla
@st.cache
def tabla_bonos(stocks, TODAY):
tabla = pd.DataFrame()
year_ago = date.today() - dt.timedelta(days=365)
year_ago = year_ago.strftime("%d/%m/%Y")
for stock in stocks:
precios = investpy.get_bond_historical_data(bond=stock,
from_date=year_ago,
to_date=TODAY)
precios = precios["Close"]
last_price = precios.iloc[-1]
oned = precios.iloc[-2]
onew = precios.iloc[-7]
onem = precios.iloc[-30]
oney = precios.iloc[0]
return1m = str(round((last_price-onem)*100, 2))+"%"
return1d = str(round((last_price -oned)*100, 2))+"%"
return1w = str(round((last_price -onew)*100, 2))+"%"
return1y = str(round((last_price - oney)*100, 2))+"%"
tabla = tabla.append([[return1d, return1w, return1m, return1y]])
tabla.columns = ["1d", "1w", "1m", "1y"]
tabla.index = stocks
return tabla
def highlight_max(s):
if s.dtype == np.object:
is_neg = [False for _ in range(s.shape[0])]
else:
is_neg = s < 0
return ['color: red;' if cell else 'color:black' for cell in is_neg]
def button_style():
style_button = """
"""
st.markdown(style_button, unsafe_allow_html=True)
def style_table():
# tr:hover {background-color: #E8E8E8;
# color:#BB1114;}
style_table = """
"""
st.markdown(style_table, unsafe_allow_html=True)
def seleccionar_fecha(fecha_select):
if fecha_select == "1 week":
fec_in = date.today() - dt.timedelta(days=7)
elif fecha_select == "1 month":
fec_in = date.today() - dt.timedelta(days=30)
elif fecha_select == "3 month":
fec_in = date.today() - dt.timedelta(days=90)
elif fecha_select == "6 month":
fec_in = date.today() - dt.timedelta(days=180)
elif fecha_select == "1 year":
fec_in = date.today() - dt.timedelta(days=365)
elif fecha_select == "5 year":
fec_in = date.today() - dt.timedelta(days=365*5)
fec_in = fec_in.strftime("%d/%m/%Y")
return fec_in
def stock_price():
style_table()
button_style()
TODAY = date.today().strftime("%d/%m/%Y")
YDAY = date.today() - dt.timedelta(days=1)
YDAY = YDAY.strftime("%d/%m/%Y")
commodity = ["Copper", "Silver", "Gold", "Platinum", 'Brent Oil',
'Heating Oil']
# bonos = ["Brazil 10Y", "Mexico 10Y" , "Chile 10Y", "Colombia 10Y"
# , "Peru 10Y"]
bonds10y = ["Brazil 10Y", "Mexico 10Y", "Chile 10Y", "Colombia 10Y",
"Peru 10Y", "China 10Y"]
index = ["S&P CLX IPSA", "S&P Merval", "Bovespa", "S&P 500"]
countries = ["chile", "argentina", "brazil", "united states"]
col1, col2, col3 = st.beta_columns(3)
cols = st.beta_columns((3, 2, 3, 2, 3, 2))
col1.markdown('Principales bonos 10Y
', unsafe_allow_html=True)
col2.markdown('Principales commodities
', unsafe_allow_html=True)
col3.markdown('Principales indices
', unsafe_allow_html=True)
selected_com = cols[2].selectbox(" ", commodity)
selected_index = cols[4].selectbox(" ", index)
selected_bonds = cols[0].selectbox(" ", bonds10y)
fecha_select = cols[3].selectbox(" ", ["1 year", "6 month", "3 month",
"1 month", "1 week"])
fecha_select2 = cols[5].selectbox(" ", ["1 year", "6 month", "3 month",
"1 month", "1 week"])
fecha_select3 = cols[1].selectbox(" ", ["1 year", "6 month", "3 month",
"1 month", "1 week"])
# fecha_select =cols[2].button("hola")
fec_in = seleccionar_fecha(fecha_select)
fec_in2 = seleccionar_fecha(fecha_select2)
fec_in3 = seleccionar_fecha(fecha_select3)
selected_country = countries[index.index(selected_index)]
data_bonds = investpy.get_bond_historical_data(bond=selected_bonds,
from_date=fec_in3,
to_date=TODAY)
data_com = investpy.commodities.get_commodity_historical_data(
commodity=selected_com,
from_date=fec_in,
to_date=TODAY)
data_index = investpy.get_index_historical_data(index=selected_index,
country=selected_country,
from_date=fec_in2,
to_date=TODAY)
def plot_raw_data(col, data, color, prefijo):
fig = go.Figure()
close_ = go.Scatter(x=data.index, y=data['Close'], name="stock_close",
line=dict(color=color), fill='tonexty')
fig.add_trace(close_)
fig.layout.update(title_text="", xaxis_rangeslider_visible=True,
width=300, height=200, margin_b=0, margin_t=0,
margin_r=0, margin_l=0)
fig.update_yaxes(range=[min(data['Close'])/1.05,
max(data['Close'])*1.05], tickprefix=prefijo)
col.plotly_chart(fig)
plot_raw_data(cols[0], data_bonds, 'seagreen', "")
plot_raw_data(cols[2], data_com, 'midnightblue', "$")
plot_raw_data(cols[4], data_index, 'dimgrey', "$")
col1, col2, col3 = st.beta_columns(3)
cols = st.beta_columns((3, 2, 3, 2, 3, 2))
last_price = data_bonds.iloc[-1]["Close"]
first_price = data_bonds.iloc[0]["Close"]
returns = round((last_price/first_price-1)*100, 2)
cols[0].markdown(''+"Precio"+"
", unsafe_allow_html=True)
cols[0].markdown(''+"{:,}".format(last_price)+"%
", unsafe_allow_html=True)
if returns > 0:
cols[1].markdown('▲ '+str(returns)+" %
", unsafe_allow_html=True)
else:
cols[1].markdown('▼ '+str(returns)+" %
", unsafe_allow_html=True)
last_price2 = data_com.iloc[-1]["Close"]
first_price2 = data_com.iloc[0]["Close"]
returns2 = round((last_price2/first_price2-1)*100, 2)
cols[2].markdown(''+"Precio"+"
", unsafe_allow_html=True)
cols[2].markdown('$'+"{:,}".format(last_price2)+"
", unsafe_allow_html=True)
if returns2 > 0:
cols[3].markdown('▲ '+str(returns2)+" %
", unsafe_allow_html=True)
else:
cols[3].markdown('▼ '+str(returns2)+" %
", unsafe_allow_html=True)
last_price3 = data_index.iloc[-1]["Close"]
first_price3 = data_index.iloc[0]["Close"]
returns3 = round((last_price3/first_price3-1)*100, 2)
cols[4].markdown(''+"Precio"+"
", unsafe_allow_html=True)
cols[4].markdown('$'+"{:,}".format(last_price3)+"
", unsafe_allow_html=True)
if returns3 > 0:
cols[5].markdown('▲ '+str(returns3)+" %
", unsafe_allow_html=True)
else:
cols[5].markdown('▼ '+str(returns3)+" %
", unsafe_allow_html=True)
col1, col2, col3 = st.beta_columns(3)
col1.table(tabla_bonos(bonds10y, TODAY))
col2.table(tabla_commodity(commodity, TODAY))
col3.table(tabla_indices(index, countries, TODAY))
col1, col2, col3 = st.beta_columns(3)
col2.markdown(get_table_excel_link(data_com, selected_com),
unsafe_allow_html=True)
col3.markdown(get_table_excel_link(data_index, selected_index),
unsafe_allow_html=True)
col1.markdown(get_table_excel_link(data_bonds, selected_bonds),
unsafe_allow_html=True)
get_table_excel_link