## Setup # Import the necessary Libraries import json import gradio as gr import uuid import os import pandas as pd from openai import OpenAI from langchain_community.embeddings.sentence_transformer import ( SentenceTransformerEmbeddings ) from langchain_community.vectorstores import Chroma from huggingface_hub import CommitScheduler from dotenv import load_dotenv from pathlib import Path # Create Client load_dotenv() os.environ["anyscale_api_key"]=os.getenv("anyscale_api_key") client = OpenAI( base_url="https://api.endpoints.anyscale.com/v1", api_key=os.environ['anyscale_api_key'] ) # Define the embedding model and the vectorstore embedding_model = SentenceTransformerEmbeddings(model_name='thenlper/gte-large') # Load the persisted vectorDB collection_name = 'Dataset-10k' dataset_db = Chroma( collection_name=collection_name, persist_directory='./dataset_db', embedding_function=embedding_model ) # Prepare the logging functionality log_file = Path("logs/") / f"data_{uuid.uuid4()}.json" log_folder = log_file.parent scheduler = CommitScheduler( repo_id="RAG-10K-log", repo_type="dataset", folder_path=log_folder, path_in_repo="data", every=2 ) # Define the Q&A system message qna_system_message = """ You are an assistant to a financial services firm who answers user queries on annual reports. User input will have the context required by you to answer user questions. This context will begin with the token: ###Context. The context contains references to specific portions of a document relevant to the user query. User questions will begin with the token: ###Question. Please answer only using the context provided in the input. Do not mention anything about the context in your final answer. If the answer is not found in the context, respond "I don't know". """ # Define the user message template qna_user_message_template = """ ###Context Here are some documents that are relevant to the question mentioned below. {context} ###Question {question} """ # Define the predict function that runs when 'Submit' is clicked or when a API request is made def predict(user_input,company): sample = { 'user_input':user_input, 'company':company_input } filter = "dataset/"+company+"-10-k-2023.pdf" # Create context_for_query relevant_document_chunks = reportsdb.similarity_search(user_question, k=5, filter = {"source":filter}) context_list = [d.page_content for d in relevant_document_chunks] context_for_query = ". ".join(context_list) prompt = [ {'role':'system', 'content': qna_system_message}, {'role': 'user', 'content': qna_user_message_template.format( context=context_for_query, question=user_question ) } ] # Create messages try: model_name = "mistralai/Mixtral-8x7B-Instruct-v0.1" response = client.chat.completions.create( model=model_name, messages=prompt, temperature=0 ) prediction = response.choices[0].message.content.strip() except Exception as e: prediction = f'Sorry, I encountered the following error: \n {e}' # Get response from the LLM # While the prediction is made, log both the inputs and outputs to a local log file # While writing to the log file, ensure that the commit scheduler is locked to avoid parallel # access with scheduler.lock: with log_file.open("a") as f: f.write(json.dumps( { 'user_input': user_input, 'company': company_input, 'retrieved_context': context_for_query, 'model_response': prediction } )) f.write("\n") return prediction [0] # Set-up the Gradio UI user_input = gr.Textbox (label = 'Query') company_input = gr.Radio( ['aws','google','IBM','Meta','msft'], label = 'company' ) model_output = gr.Textbox (label = 'Response') # Add text box and radio button to the interface # The radio button is used to select the company 10k report in which the context needs to be retrieved. # Create the interface # For the inputs parameter of Interface provide [textbox,company] demo = gr.Interface( fn=predict, inputs=[user_input,company_input], outputs=[model_output], title="RAG on 10k-reports", description="This API allows you to query on annaul reports", concurrency_limit=16 ) demo.queue() demo.launch()