import gradio as gr import logging, os, sys, threading from dotenv import load_dotenv, find_dotenv from document_model import Listing from openai_ import handle_user_prompt lock = threading.Lock() _ = load_dotenv(find_dotenv()) RAG_INGESTION = False # load, split, embed, and store documents RAG_OFF = "Off" RAG_NAIVE = "Naive RAG" RAG_ADVANCED = "Advanced RAG" logging.basicConfig(stream = sys.stdout, level = logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream = sys.stdout)) def invoke(openai_api_key, prompt, rag_option): if not openai_api_key: raise gr.Error("OpenAI API Key is required.") if not prompt: raise gr.Error("Prompt is required.") if not rag_option: raise gr.Error("Retrieval-Augmented Generation is required.") with lock: os.environ["OPENAI_API_KEY"] = openai_api_key ### prompt = """ I want to stay in a place that's warm and friendly, and not too far from resturants, can you recommend a place? Include a reason as to why you've chosen your selection. """ result = handle_user_prompt(prompt, db, collection) ### del os.environ["OPENAI_API_KEY"] """ if (RAG_INGESTION): if (rag_option == RAG_LANGCHAIN): #rag = LangChainRAG() #rag.ingestion(config) elif (rag_option == RAG_LLAMAINDEX): #rag = LlamaIndexRAG() #rag.ingestion(config) try: #rag = LangChainRAG() #completion, callback = rag.rag_chain(config, prompt) #result = completion["result"] elif (rag_option == RAG_LLAMAINDEX): #rag = LlamaIndexRAG() #result, callback = rag.retrieval(config, prompt) else: #rag = LangChainRAG() #completion, callback = rag.llm_chain(config, prompt) #result = completion.generations[0][0].text except Exception as e: err_msg = e raise gr.Error(e) finally: del os.environ["OPENAI_API_KEY"] """ return result gr.close_all() demo = gr.Interface( fn = invoke, inputs = [gr.Textbox(label = "OpenAI API Key", type = "password", lines = 1), gr.Textbox(label = "Prompt", value = "TODO", lines = 1), gr.Radio([RAG_OFF, RAG_NAIVE, RAG_ADVANCED], label = "Retrieval-Augmented Generation", value = RAG_ADVANCED)], outputs = [gr.Textbox(label = "Completion")], title = "Context-Aware Reasoning Application", description = os.environ["DESCRIPTION"] ) demo.launch()