# -*- coding: utf-8 -*- import gradio as gr import numpy as np import tensorflow_hub as hub from tensorflow.keras.models import load_model import cv2 # Define a dictionary to map the custom layer to its implementation custom_objects = {'KerasLayer': hub.KerasLayer} # Load your model (ensure the path is correct) model = load_model('bird_model4.h5', custom_objects=custom_objects) # Define your class labels or categories for predictions train_info = [] # Replace with your actual class labels # Read image names from the text file with open('labelwithspace.txt', 'r') as file: train_info = [line.strip() for line in file.read().splitlines()] def predict_image(image): img = cv2.resize(image, (224, 224)) img = img / 255.0 predictions = model.predict(img[np.newaxis, ...])[0] top_classes = np.argsort(predictions)[-3:][::-1] top_class = top_classes[0] # Get the index of the top prediction label = train_info[top_class] # Use the index to retrieve the label return label # Define Gradio interface input_image = gr.inputs.Image(shape=(224, 224)) output_label = gr.outputs.Label() gr.Interface(fn=predict_image, inputs=input_image, outputs=output_label, capture_session=True).launch()