import cProfile import pstats import io import gc import random import time import gradio as gr import spaces import imageio from huggingface_hub import HfApi import torch from PIL import Image from diffusers import ( ControlNetModel, DPMSolverMultistepScheduler, StableDiffusionControlNetPipeline, ) from preprocess_anime import Preprocessor, conditionally_manage_memory from settings import API_KEY, MAX_NUM_IMAGES, MAX_SEED preprocessor = None controlnet = None scheduler = None pipe = None compiled = False api = HfApi() def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: if randomize_seed: seed = random.randint(0, MAX_SEED) return seed def get_additional_prompt(): prompt = "hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed" top = ["tank top", "blouse", "button up shirt", "sweater", "corset top"] bottom = ["short skirt", "athletic shorts", "jean shorts", "pleated skirt", "short skirt", "leggings", "high-waisted shorts"] accessory = ["knee-high boots", "gloves", "Thigh-high stockings", "Garter belt", "choker", "necklace", "headband", "headphones"] return f"{prompt}, {random.choice(top)}, {random.choice(bottom)}, {random.choice(accessory)}, score_9" # outfit = ["schoolgirl outfit", "playboy outfit", "red dress", "gala dress", "cheerleader outfit", "nurse outfit", "Kimono"] def get_prompt(prompt, additional_prompt): default = "hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed" randomize = get_additional_prompt() nude = "NSFW,((nude)),medium bare breasts,hyperrealistic photography,extremely detailed,(intricate details),unity 8k wallpaper,ultra detailed" bodypaint = "((fully naked with no clothes)),nude naked seethroughxray,invisiblebodypaint,rating_newd,NSFW" lab_girl = "hyperrealistic photography, extremely detailed, shy assistant wearing minidress boots and gloves, laboratory background, score_9, 1girl" pet_play = "hyperrealistic photography, extremely detailed, playful, blush, glasses, collar, score_9, HDA_pet_play" bondage = "hyperrealistic photography, extremely detailed, submissive, glasses, score_9, HDA_Bondage" ahegao = "((invisible clothing)), hyperrealistic photography,exposed vagina,sexy,nsfw,HDA_Ahegao" ahegao2 = "(invisiblebodypaint),rating_newd,HDA_Ahegao" athleisure = "hyperrealistic photography, extremely detailed, 1girl athlete, exhausted embarrassed sweaty,outdoors, ((athleisure clothing)), score_9" atompunk = "((atompunk world)), hyperrealistic photography, extremely detailed, short hair, bodysuit, glasses, neon cyberpunk background, score_9" maid = "hyperrealistic photography, extremely detailed, shy, blushing, score_9, pastel background, HDA_unconventional_maid" nundress = "hyperrealistic photography, extremely detailed, shy, blushing, fantasy background, score_9, HDA_NunDress" naked_hoodie = "hyperrealistic photography, extremely detailed, medium hair, cityscape, (neon lights), score_9, HDA_NakedHoodie" abg = "(1girl, asian body covered in words, words on body, tattoos of (words) on body),(masterpiece, best quality),medium breasts,(intricate details),unity 8k wallpaper,ultra detailed,(pastel colors),beautiful and aesthetic,see-through (clothes),detailed,solo" shibari = "extremely detailed, hyperrealistic photography, earrings, blushing, lace choker, tattoo, medium hair, score_9, HDA_Shibari" if prompt == "": prompts = [randomize, nude, bodypaint, pet_play, bondage, ahegao2, lab_girl, athleisure, atompunk, maid, nundress, naked_hoodie, abg, shibari] prompts_nsfw = [nude, bodypaint, abg, ahegao2, shibari] preset = random.choice(prompts) prompt = f"{preset}" # print(f"-------------{preset}-------------") else: # prompt = f"{prompt}, {randomize}" prompt = f"{default},{prompt}" print(f"{prompt}") return prompt def initialize_models(): global preprocessor, controlnet, scheduler, pipe if preprocessor is None: preprocessor = Preprocessor() if controlnet is None: model_id = "lllyasviel/control_v11p_sd15_normalbae" print("initializing controlnet") controlnet = ControlNetModel.from_pretrained( model_id, torch_dtype=torch.float16, attn_implementation="flash_attention_2", ).to("cuda") if scheduler is None: scheduler = DPMSolverMultistepScheduler.from_pretrained( "runwayml/stable-diffusion-v1-5", solver_order=2, subfolder="scheduler", use_karras_sigmas=True, final_sigmas_type="sigma_min", algorithm_type="sde-dpmsolver++", prediction_type="epsilon", thresholding=False, denoise_final=True, device_map="cuda", ) if pipe is None: base_model_url = "https://huggingface.co/broyang/hentaidigitalart_v20/blob/main/realcartoon3d_v15.safetensors" pipe = StableDiffusionControlNetPipeline.from_single_file( base_model_url, safety_checker=None, controlnet=controlnet, scheduler=scheduler, torch_dtype=torch.float16, ) pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="EasyNegativeV2.safetensors", token="EasyNegativeV2") pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="badhandv4.pt", token="badhandv4") pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_Ahegao.pt", token="HDA_Ahegao") pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_Bondage.pt", token="HDA_Bondage") pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_pet_play.pt", token="HDA_pet_play") pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="fcNeg-neg.pt", token="fcNeg-neg") pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_unconventional maid.pt", token="HDA_unconventional_maid") pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_NakedHoodie.pt", token="HDA_NakedHoodie") pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_NunDress.pt", token="HDA_NunDress") pipe.load_textual_inversion("broyang/hentaidigitalart_v20", weight_name="HDA_Shibari.pt", token="HDA_Shibari") pipe.to("cuda") print("---------------Loaded controlnet pipeline---------------") @spaces.GPU(duration=11) @torch.inference_mode() def process_image( image, prompt, a_prompt, n_prompt, num_images, image_resolution, preprocess_resolution, num_steps, guidance_scale, seed, ): initialize_models() preprocessor.load("NormalBae") control_image = preprocessor( image=image, image_resolution=image_resolution, detect_resolution=preprocess_resolution, ) custom_prompt = str(get_prompt(prompt, a_prompt)) negative_prompt = str(n_prompt) global compiled generator = torch.cuda.manual_seed(seed) if not compiled: print("-----------------------------------Not Compiled-----------------------------------") compiled = True start = time.time() results = pipe( prompt=custom_prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_images_per_prompt=num_images, num_inference_steps=num_steps, generator=generator, image=control_image, ).images[0] print(f"Inference done in: {time.time() - start:.2f} seconds") timestamp = int(time.time()) img_path = f"{timestamp}.jpg" results_path = f"{timestamp}_out.jpg" imageio.imsave(img_path, image) results.save(results_path) api.upload_file( path_or_fileobj=img_path, path_in_repo=img_path, repo_id="broyang/anime-ai-outputs", repo_type="dataset", token=API_KEY, run_as_future=True, ) api.upload_file( path_or_fileobj=results_path, path_in_repo=results_path, repo_id="broyang/anime-ai-outputs", repo_type="dataset", token=API_KEY, run_as_future=True, ) conditionally_manage_memory() results.save("temp_image.png") return results def main(): prod = True show_options = True if prod: show_options = False print("CUDA version:", torch.version.cuda) print("loading pipe") css = """ h1 { text-align: center; display:block; } h2 { text-align: center; display:block; } h3 { text-align: center; display:block; } footer {visibility: hidden} """ with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo: with gr.Row(): with gr.Accordion("Advanced options", open=show_options, visible=show_options): num_images = gr.Slider( label="Images", minimum=1, maximum=MAX_NUM_IMAGES, value=1, step=1 ) image_resolution = gr.Slider( label="Image resolution", minimum=256, maximum=1024, value=768, step=256, ) preprocess_resolution = gr.Slider( label="Preprocess resolution", minimum=128, maximum=1024, value=768, step=1, ) num_steps = gr.Slider( label="Number of steps", minimum=1, maximum=100, value=12, step=1 ) guidance_scale = gr.Slider( label="Guidance scale", minimum=0.1, maximum=30.0, value=5.5, step=0.1 ) seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) a_prompt = gr.Textbox( label="Additional prompt", value = "" ) n_prompt = gr.Textbox( label="Negative prompt", value="EasyNegativeV2, fcNeg, (badhandv4:1.4), (worst quality, low quality, bad quality, normal quality:2.0), (bad hands, missing fingers, extra fingers:2.0)", ) with gr.Column(): prompt = gr.Textbox( label="Description", placeholder="Leave empty for something spicy 👀", ) with gr.Row(): with gr.Column(): image = gr.Image( label="Input", sources=["upload"], show_label=True, format="webp", ) with gr.Column(): run_button = gr.Button(value="Use this one", size=["lg"], visible=False) with gr.Column(): result = gr.Image( label="Anime AI", interactive=False, format="webp", visible = True, show_share_button= False, ) with gr.Column(): use_ai_button = gr.Button(value="Use this one", size=["lg"], visible=False) config = [ image, prompt, a_prompt, n_prompt, num_images, image_resolution, preprocess_resolution, num_steps, guidance_scale, seed, ] @spaces.GPU(duration=11) @torch.inference_mode() @gr.on(triggers=[image.upload], inputs=config, outputs=[result]) def auto_process_image(image, prompt, a_prompt, n_prompt, num_images, image_resolution, preprocess_resolution, num_steps, guidance_scale, seed): return process_image(image, prompt, a_prompt, n_prompt, num_images, image_resolution, preprocess_resolution, num_steps, guidance_scale, seed) @gr.on(triggers=[image.upload], inputs=None, outputs=[use_ai_button, run_button]) def turn_buttons_off(): return gr.update(visible=False), gr.update(visible=False) @gr.on(triggers=[use_ai_button.click], inputs=None, outputs=[use_ai_button, run_button]) def turn_buttons_off(): return gr.update(visible=False), gr.update(visible=False) @gr.on(triggers=[run_button.click], inputs=None, outputs=[use_ai_button, run_button]) def turn_buttons_off(): return gr.update(visible=False), gr.update(visible=False) @gr.on(triggers=[result.change], inputs=None, outputs=[use_ai_button, run_button]) def turn_buttons_on(): return gr.update(visible=True), gr.update(visible=True) with gr.Row(): helper_text = gr.Markdown("## Tap and hold (on mobile) to save the image.", visible=True) prompt.submit( fn=randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, api_name=False, show_progress="none", ).then( fn=auto_process_image, inputs=config, outputs=result, api_name=False, show_progress="minimal", ) run_button.click( fn=randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, api_name=False, show_progress="none", ).then( fn=auto_process_image, inputs=config, outputs=result, show_progress="minimal", ) def update_config(): try: print("Updating image to AI Temp Image") ai_temp_image = Image.open("temp_image.png") return ai_temp_image except FileNotFoundError: print("No AI Image Available") return None use_ai_button.click( fn=randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, api_name=False, show_progress="none", ).then( fn=lambda _: update_config(), inputs=[image], outputs=image, show_progress="minimal", ).then( fn=auto_process_image, inputs=[image, prompt, a_prompt, n_prompt, num_images, image_resolution, preprocess_resolution, num_steps, guidance_scale, seed], outputs=result, show_progress="minimal", ) demo.launch() if __name__ == "__main__": pr = cProfile.Profile() pr.enable() main() pr.disable() s = io.StringIO() sortby = 'cumulative' ps = pstats.Stats(pr, stream=s).sort_stats(sortby) ps.print_stats() print(s.getvalue())