|
import cv2 |
|
import numpy as np |
|
from PIL import Image |
|
import mediapipe as mp |
|
import time |
|
import gradio as gr |
|
|
|
DOMINANT_HAND = "Right" |
|
|
|
width, height = 1280, 720 |
|
width_, height_, = 256, 144 |
|
|
|
|
|
def find_hands(brain, img): |
|
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) |
|
results = brain.process(img_rgb) |
|
all_hands = [] |
|
h, w, _ = img.shape |
|
if results.multi_hand_landmarks: |
|
for hand_type, hand_lms in zip(results.multi_handedness, results.multi_hand_landmarks): |
|
hand = {} |
|
lm_list = [] |
|
for lm in hand_lms.landmark: |
|
px, py, pz = int(lm.x * w), int(lm.y * h), int(lm.z * w) |
|
lm_list.append([px, py, pz]) |
|
|
|
hand["lm_list"] = lm_list |
|
hand["type"] = hand_type.classification[0].label |
|
all_hands.append(hand) |
|
return all_hands |
|
|
|
|
|
def is_drawing(index, thumb): |
|
npindex = np.array((index[0], index[1])) |
|
npthumb = np.array((thumb[0], thumb[1])) |
|
if np.linalg.norm(npindex - npthumb) < 30: |
|
return True |
|
else: |
|
return False |
|
|
|
|
|
def save(landmarks): |
|
if landmarks[8][1] < landmarks[6][1]: |
|
if landmarks[12][1] < landmarks[10][1]: |
|
if landmarks[16][1] < landmarks[14][1]: |
|
if landmarks[20][1] < landmarks[18][1]: |
|
return True |
|
else: |
|
return False |
|
|
|
def clear(landmarks): |
|
if landmarks[4][1] < landmarks[3][1] < landmarks[2][1] < landmarks[8][1]: |
|
return True |
|
else: |
|
return False |
|
|
|
drawing_flag = False |
|
sleepy_time = time.time() |
|
|
|
if __name__ == '__main__': |
|
cam = cv2.VideoCapture(0) |
|
cam.set(3, width) |
|
cam.set(4, height) |
|
|
|
detector = mp.solutions.hands.Hands(min_detection_confidence=0.8) |
|
|
|
paper = np.zeros((height, width, 3), dtype=np.uint8) |
|
paper.fill(255) |
|
|
|
past_holder = () |
|
palette = cv2.imread('palette.jpg') |
|
|
|
output_frames = [] |
|
page_num = 0 |
|
|
|
color = (0, 0, 0) |
|
while True: |
|
|
|
x, rgb_image = cam.read() |
|
rgb_image_f = cv2.flip(np.asanyarray(rgb_image), 1) |
|
|
|
hands = find_hands(detector, rgb_image_f) |
|
|
|
try: |
|
if hands: |
|
hand1 = hands[0] if hands[0]["type"] == DOMINANT_HAND else hands[1] |
|
lm_list1 = hand1["lm_list"] |
|
handedness = hand1["type"] |
|
|
|
if handedness == DOMINANT_HAND: |
|
idx_coords = lm_list1[8][0], lm_list1[8][1] |
|
|
|
cv2.circle(rgb_image_f, idx_coords, 5, color, cv2.FILLED) |
|
|
|
if idx_coords[1] < 72: |
|
if idx_coords[0] < 142: |
|
color = (0, 0, 255) |
|
if 142 < idx_coords[0] < 285: |
|
color = (0, 115, 255) |
|
if 285 < idx_coords[0] < 426: |
|
color = (0, 229, 255) |
|
if 426 < idx_coords[0] < 569: |
|
color = (0, 195, 88) |
|
if 569 < idx_coords[0] < 711: |
|
color = (195, 85, 0) |
|
if 711 < idx_coords[0] < 853: |
|
color = (195, 0, 68) |
|
if 853 < idx_coords[0] < 996: |
|
color = (195, 0, 143) |
|
if 996 < idx_coords[0] < 1137: |
|
color = (0, 0, 0) |
|
if 1137 < idx_coords[0]: |
|
color = (255, 255, 255) |
|
|
|
if len(past_holder) and drawing_flag: |
|
cv2.line(paper, past_holder, idx_coords, color, 5) |
|
cv2.line(rgb_image_f, past_holder, idx_coords, color, 5) |
|
|
|
|
|
cv2.circle(rgb_image_f, idx_coords, 5, color, cv2.FILLED) |
|
|
|
if save(lm_list1) and time.time() - sleepy_time > 3: |
|
paper[0:height_, w - width_: w] = 255 |
|
paper = cv2.cvtColor(paper, cv2.COLOR_BGR2RGB) |
|
im = Image.fromarray(paper) |
|
im.save("paper%s.png" % page_num) |
|
print("saved") |
|
sleepy_time = time.time() |
|
paper = cv2.cvtColor(paper, cv2.COLOR_RGB2BGR) |
|
page_num += 1 |
|
|
|
if clear(lm_list1) and time.time() - sleepy_time > 3: |
|
paper = np.zeros((height, width, 3), dtype=np.uint8) |
|
paper.fill(255) |
|
print("page cleared") |
|
sleepy_time = time.time() |
|
|
|
past_holder = idx_coords |
|
|
|
if is_drawing(idx_coords, lm_list1[4]): |
|
drawing_flag = True |
|
else: |
|
drawing_flag = False |
|
|
|
except: |
|
pass |
|
|
|
finally: |
|
rgb_image_f[0:72, ] = palette |
|
presenter = cv2.resize(rgb_image_f, (width_, height_)) |
|
h, w, _ = rgb_image_f.shape |
|
paper[0:height_, w - width_: w] = presenter |
|
cv2.imshow("Image", rgb_image_f) |
|
cv2.imshow("paper", paper) |
|
key = cv2.waitKey(1) |
|
if key & 0xFF == ord('q') or key == 27: |
|
break |
|
output_frames.append(paper) |
|
|
|
|
|
print("output: ", type(output_frames)) |