Spaces:
Sleeping
Sleeping
| # build_rag.py | |
| import json | |
| import os | |
| import pandas as pd | |
| import torch | |
| from transformers import AutoTokenizer, AutoModel | |
| import chromadb | |
| import sys | |
| from tqdm import tqdm | |
| from huggingface_hub import HfApi, create_repo | |
| import traceback | |
| # --- Configuration --- | |
| CHROMA_PATH = "chroma_db" | |
| COLLECTION_NAME = "bible_verses" | |
| MODEL_NAME = "sentence-transformers/multi-qa-mpnet-base-dot-v1" | |
| DATASET_REPO = "broadfield-dev/bible-chromadb-multi-qa-mpnet" # This can remain the same | |
| STATUS_FILE = "build_status.log" | |
| JSON_DIRECTORY = 'bible_json' | |
| CHUNK_SIZE = 3 | |
| EMBEDDING_BATCH_SIZE = 16 | |
| # (BOOK_ID_TO_NAME dictionary remains the same) | |
| BOOK_ID_TO_NAME = { | |
| 1: "Genesis", 2: "Exodus", 3: "Leviticus", 4: "Numbers", 5: "Deuteronomy", | |
| 6: "Joshua", 7: "Judges", 8: "Ruth", 9: "1 Samuel", 10: "2 Samuel", | |
| 11: "1 Kings", 12: "2 Kings", 13: "1 Chronicles", 14: "2 Chronicles", | |
| 15: "Ezra", 16: "Nehemiah", 17: "Esther", 18: "Job", 19: "Psalms", | |
| 20: "Proverbs", 21: "Ecclesiastes", 22: "Song of Solomon", 23: "Isaiah", | |
| 24: "Jeremiah", 25: "Lamentations", 26: "Ezekiel", 27: "Daniel", 28: "Hosea", | |
| 29: "Joel", 30: "Amos", 31: "Obadiah", 32: "Jonah", 33: "Micah", 34: "Nahum", | |
| 35: "Habakkuk", 36: "Zephaniah", 37: "Haggai", 38: "Zechariah", 39: "Malachi", | |
| 40: "Matthew", 41: "Mark", 42: "Luke", 43: "John", 44: "Acts", | |
| 45: "Romans", 46: "1 Corinthians", 47: "2 Corinthians", 48: "Galatians", | |
| 49: "Ephesians", 50: "Philippians", 51: "Colossians", 52: "1 Thessalonians", | |
| 53: "2 Thessalonians", 54: "1 Timothy", 55: "2 Timothy", 56: "Titus", | |
| 57: "Philemon", 58: "Hebrews", 59: "James", 60: "1 Peter", 61: "2 Peter", | |
| 62: "1 John", 63: "2 John", 64: "3 John", 65: "Jude", 66: "Revelation" | |
| } | |
| def update_status(message): | |
| print(message) | |
| with open(STATUS_FILE, "w") as f: | |
| f.write(message) | |
| # Mean Pooling Function | |
| def mean_pooling(model_output, attention_mask): | |
| token_embeddings = model_output[0] | |
| input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() | |
| return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) | |
| def process_bible_json_files(directory_path: str, chunk_size: int) -> pd.DataFrame: | |
| all_verses = [] | |
| if not os.path.exists(directory_path) or not os.listdir(directory_path): | |
| raise FileNotFoundError(f"Directory '{directory_path}' is empty or does not exist.") | |
| for filename in os.listdir(directory_path): | |
| if filename.endswith('.json'): | |
| version_name = os.path.splitext(filename)[0].split('_')[-1].upper() | |
| file_path = os.path.join(directory_path, filename) | |
| with open(file_path, 'r') as f: data = json.load(f) | |
| rows = data.get("resultset", {}).get("row", []) | |
| for row in rows: | |
| field = row.get("field", []) | |
| if len(field) == 5: | |
| _id, book_id, chapter, verse, text = field | |
| book_name = BOOK_ID_TO_NAME.get(book_id, "Unknown Book") | |
| all_verses.append({'version': version_name, 'book_name': book_name, 'chapter': chapter, 'verse': verse, 'text': text.strip()}) | |
| if not all_verses: raise ValueError("No verses were processed.") | |
| df = pd.DataFrame(all_verses) | |
| all_chunks = [] | |
| for (version, book_name, chapter), group in df.groupby(['version', 'book_name', 'chapter']): | |
| group = group.sort_values('verse').reset_index(drop=True) | |
| for i in range(0, len(group), chunk_size): | |
| chunk_df = group.iloc[i:i+chunk_size] | |
| combined_text = " ".join(chunk_df['text']) | |
| start_verse, end_verse = chunk_df.iloc[0]['verse'], chunk_df.iloc[-1]['verse'] | |
| reference = f"{book_name} {chapter}:{start_verse}" if start_verse == end_verse else f"{book_name} {chapter}:{start_verse}-{end_verse}" | |
| # *** CHANGE 1: ADD MORE METADATA TO EACH CHUNK *** | |
| all_chunks.append({ | |
| 'text': combined_text, | |
| 'reference': reference, | |
| 'version': version, | |
| 'book_name': book_name, | |
| 'chapter': chapter | |
| }) | |
| return pd.DataFrame(all_chunks) | |
| def main(): | |
| update_status("IN_PROGRESS: Step 1/5 - Processing JSON files...") | |
| bible_chunks_df = process_bible_json_files(JSON_DIRECTORY, chunk_size=CHUNK_SIZE) | |
| update_status("IN_PROGRESS: Step 2/5 - Setting up local ChromaDB...") | |
| if os.path.exists(CHROMA_PATH): | |
| import shutil | |
| shutil.rmtree(CHROMA_PATH) | |
| client = chromadb.PersistentClient(path=CHROMA_PATH) | |
| collection = client.create_collection(name=COLLECTION_NAME, metadata={"hnsw:space": "cosine"}) | |
| update_status(f"IN_PROGRESS: Step 3/5 - Loading embedding model '{MODEL_NAME}'...") | |
| tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) | |
| model = AutoModel.from_pretrained(MODEL_NAME, device_map="auto") | |
| update_status("IN_PROGRESS: Step 4/5 - Generating embeddings...") | |
| for i in tqdm(range(0, len(bible_chunks_df), EMBEDDING_BATCH_SIZE), desc="Embedding Chunks"): | |
| batch_df = bible_chunks_df.iloc[i:i+EMBEDDING_BATCH_SIZE] | |
| texts = batch_df['text'].tolist() | |
| encoded_input = tokenizer(texts, padding=True, truncation=True, return_tensors='pt').to(model.device) | |
| with torch.no_grad(): | |
| model_output = model(**encoded_input) | |
| embeddings = mean_pooling(model_output, encoded_input['attention_mask']) | |
| collection.add( | |
| ids=[str(j) for j in range(i, i + len(batch_df))], | |
| embeddings=embeddings.cpu().tolist(), | |
| documents=texts, | |
| # *** CHANGE 2: SAVE THE NEW METADATA FIELDS TO THE DATABASE *** | |
| metadatas=batch_df[['reference', 'version', 'book_name', 'chapter']].to_dict('records') | |
| ) | |
| update_status(f"IN_PROGRESS: Step 5/5 - Pushing database to Hugging Face Hub '{DATASET_REPO}'...") | |
| create_repo(repo_id=DATASET_REPO, repo_type="dataset", exist_ok=True) | |
| api = HfApi() | |
| api.upload_folder(folder_path=CHROMA_PATH, repo_id=DATASET_REPO, repo_type="dataset") | |
| update_status("SUCCESS: Build complete! The application is ready.") | |
| if __name__ == "__main__": | |
| try: | |
| main() | |
| except Exception as e: | |
| error_message = traceback.format_exc() | |
| if "401" in str(e) or "Unauthorized" in str(e): | |
| update_status("FAILED: Hugging Face authentication error. Ensure your HF_TOKEN secret has WRITE permissions.") | |
| else: | |
| update_status(f"FAILED: An unexpected error occurred. Check Space logs. Error: {e}") | |
| print(error_message, file=sys.stderr) |