from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL from diffusers.utils import load_image from PIL import Image import torch import numpy as np import cv2 import gradio as gr from torchvision import transforms controlnet = ControlNetModel.from_pretrained( "briaai/ControlNet-Canny", torch_dtype=torch.float16 ) # force_zeros_for_empty_prompt=False pipe = StableDiffusionXLControlNetPipeline.from_pretrained( "briaai/BRIA-2.0", controlnet=controlnet, torch_dtype=torch.float16, )#.cuda() pipe.enable_xformers_memory_efficient_attention() low_threshold = 100 high_threshold = 200 def resize_image(image): image = image.convert('RGB') current_size = image.size if current_size[0] > current_size[1]: center_cropped_image = transforms.functional.center_crop(image, (current_size[1], current_size[1])) else: center_cropped_image = transforms.functional.center_crop(image, (current_size[0], current_size[0])) resized_image = transforms.functional.resize(center_cropped_image, (1024, 1024)) return resized_image def get_canny_filter(image): if not isinstance(image, np.ndarray): image = np.array(image) image = cv2.Canny(image, low_threshold, high_threshold) image = image[:, :, None] image = np.concatenate([image, image, image], axis=2) canny_image = Image.fromarray(image) return canny_image def process(input_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed): generator = torch.manual_seed(seed) # resize input_image to 1024x1024 input_image = resize_image(input_image) canny_image = get_canny_filter(input_image) pipe.enable_freeu(b1=1.1, b2=1.1, s1=0.5, s2=0.7) images = pipe( prompt, negative_prompt=negative_prompt, image=canny_image, num_inference_steps=num_steps, controlnet_conditioning_scale=float(controlnet_conditioning_scale), generator=generator, ).images return [canny_image,images[0]] block = gr.Blocks().queue() with block: gr.Markdown("## BRIA 2.0 ControlNet Canny") gr.HTML('''

This is a demo for ControlNet Canny that using BRIA 2.0 text-to-image model as backbone. Trained on licensed data, BRIA 2.0 provide full legal liability coverage for copyright and privacy infringement.

''') with gr.Row(): with gr.Column(): input_image = gr.Image(sources=None, type="pil") # None for upload, ctrl+v and webcam prompt = gr.Textbox(label="Prompt") negative_prompt = gr.Textbox(label="Negative prompt", value="Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers") num_steps = gr.Slider(label="Number of steps", minimum=25, maximum=100, value=50, step=1) controlnet_conditioning_scale = gr.Slider(label="ControlNet conditioning scale", minimum=0.1, maximum=2.0, value=1.0, step=0.05) seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True,) run_button = gr.Button(value="Run") with gr.Column(): result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", columns=[2], height='auto') ips = [input_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed] run_button.click(fn=process, inputs=ips, outputs=[result_gallery]) block.launch(debug = True)