import tensorflow as tf from tensorflow import keras def img_scaler(image, max_dim = 512): #Casts tensor to a new data type original_shape = tf.cast(tf.shape(image)[:-1], tf.float32) #Creates scale constant for the image based on imput max_dim scale_ratio = max_dim / max(original_shape) #Casts tensor to a new data type new_shape = tf.cast(original_shape * scale_ratio, tf.int32) #Resizes image return tf.image.resize(image, new_shape) def load_img(image_path, content=True, max_dim = 512): if content: img = image_path print("image_path:") print(image_path) #Read contents of the input filename ####img = tf.keras.preprocessing.image.array_to_img(image_path) print("img") print(img) #img = tf.io.read_file(image_path) #print(img) #Detect whether an image is a BMP, GIF, JPEG, or PNG, #performs the appropriate operation #convert the input bytes string into a Tensor of type dtype ##img = tf.image.decode_image(img, channels=3) #Convert image to dtype img = tf.image.convert_image_dtype(img, tf.float32) #Scale the image using the created scaler function img = img_scaler(img, max_dim) #Adds a fourth dimension to the Tensor because the model requires a 4-dimensional Tensor return img[tf.newaxis, :] else: #Read contents of the input filename img = tf.io.read_file(image_path) #Detect whether an image is a BMP, GIF, JPEG, or PNG, #performs the appropriate operation #convert the input bytes string into a Tensor of type dtype img = tf.image.decode_image(img, channels=3) #Convert image to dtype img = tf.image.convert_image_dtype(img, tf.float32) #Scale the image using the created scaler function img = img_scaler(img, max_dim) #Adds a fourth dimension to the Tensor because the model requires a 4-dimensional Tensor return img[tf.newaxis, :]