import os #os.environ['CUDA_VISIBLE_DEVICES'] = '-1' os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0' #Imports import tensorflow as tf from tensorflow import keras import matplotlib.pyplot as plt import tensorflow_hub as hub from PIL import Image import gradio as gr from helper_functions import * def style_transfer(input_image, artist): style_path_van_gogh = keras.utils.get_file('Starry-Night-canvas-Vincent-van-Gogh-New-1889.jpg', 'https://cdn.britannica.com/78/43678-050-F4DC8D93/Starry-Night-canvas-Vincent-van-Gogh-New-1889.jpg') style_path_davinci = keras.utils.get_file('Leonardo_da_Vinci_-_Mona_Lisa_%28La_Gioconda%29_-_WGA12711.jpg', 'https://upload.wikimedia.org/wikipedia/commons/f/f2/Leonardo_da_Vinci_-_Mona_Lisa_%28La_Gioconda%29_-_WGA12711.jpg') style_path_dali = keras.utils.get_file('The_Persistence_of_Memory.jpg', 'https://upload.wikimedia.org/wikipedia/en/d/dd/The_Persistence_of_Memory.jpg') style_path_monet = keras.utils.get_file('Claude_Monet_-_Water_Lilies_-_Google_Art_Project_%28462013%29.jpg', 'https://upload.wikimedia.org/wikipedia/commons/a/af/Claude_Monet_-_Water_Lilies_-_Google_Art_Project_%28462013%29.jpg') style_path_picasso = keras.utils.get_file('Picasso_The_Weeping_Woman_Tate_identifier_T05010_10.jpg', 'https://upload.wikimedia.org/wikipedia/en/1/14/Picasso_The_Weeping_Woman_Tate_identifier_T05010_10.jpg') style_path_rembrandt = keras.utils.get_file('1259px-The_Nightwatch_by_Rembrandt_-_Rijksmuseum.jpg', 'https://upload.wikimedia.org/wikipedia/commons/thumb/9/94/The_Nightwatch_by_Rembrandt_-_Rijksmuseum.jpg/1259px-The_Nightwatch_by_Rembrandt_-_Rijksmuseum.jpg') #set dimensions of input image oc_max_dim = 1080 #set parameters for each choice of artist if artist == "Vincent van Gogh": style_max_dim = 442 style_path = style_path_van_gogh elif artist == "Claude Monet": style_max_dim = 256 style_path = style_path_monet elif artist == "Leonardo da Vinci": style_max_dim = 442 style_path = style_path_davinci elif artist == "Rembrandt": style_max_dim = 256 style_path = style_path_rembrandt elif artist == "Pablo Picasso": style_max_dim = 256 style_path = style_path_picasso elif artist == "Salvador Dali": style_max_dim = 512 style_path = style_path_dali #load content and style images content_image = load_img(input_image, content=True, max_dim=oc_max_dim) style_image = load_img(style_path, content=False, max_dim=style_max_dim) #Load Magenta Arbitrary Image Stylization network hub_module = hub.load('https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/1') #Pass content and style images as arguments in TensorFlow Constant object format stylized_image = hub_module(tf.constant(content_image), tf.constant(style_image))[0] print("stylized_image:") print(stylized_image[0]) print(stylized_image) return tf.keras.preprocessing.image.img_to_array(stylized_image[0]) app = gr.Interface( style_transfer, [gr.Image(type='pil'), gr.Radio(["Vincent van Gogh", "Claude Monet", "Leonardo da Vinci", "Rembrandt", "Pablo Picasso", "Salvador Dali"])], gr.Image(type='pil'), title="Artist Style Transfer Tool", description=""" Fast style transfer using the Magenta model lets you make your own art in the style of six famous artists using a pretrained neural network and deep learning! Simply upload an image and select an artist's style to have transferred to your picture. Each artist's styles are based on a single one of their most famous paintings, shown below for reference: Starry Night (van Gogh), Water Lilies (Monet), Mona Lisa (da Vinci), The Night Watch (Rembrandt), The Weeping Woman (Picasso), and The Persistence of Memory (Dali). Note that some input images may be rotated 90 degrees in the output to facilitate the style transfer. """, article = """
van Gogh | Monet | da Vinci | Rembrandt | Picasso | Dali |