import datasets import gradio as gr from transformers import AutoFeatureExtractor, AutoModelForImageClassification dataset = datasets.load_dataset("beans") extractor = AutoFeatureExtractor.from_pretrained("saved_model_files") model = AutoModelForImageClassification.from_pretrained("saved_model_files") labels = dataset['train'].features['labels'].names def classify(im): features = feature_extractor(im, return_tensors='pt') logits = model(features["pixel_values"])[-1] probability = torch.nn.functional.softmax(logits, dim=-1) probs = probability[0].detach().numpy() confidences = {label: float(probs[i]) for i, label in enumerate(labels)} return confidences interface = gr.Interface(fn = classify, inputs="image", outputs = "label", title = "Plant Leaf Disease Classifier", description = """Below is a simple app to detect Angular Leaf Spot and Bean Rust diseases on leaves. Data was annotated by experts from the National Crops Resources Research Institute (NaCRRI) in Uganda and collected by the Makerere AI research lab.""", examples = example_imgs) interface.launch(debug=True)