import streamlit as st import pandas as pd from sklearn.preprocessing import StandardScaler from sklearn.metrics.pairwise import cosine_similarity # Load your dataset df1 = pd.read_csv('your_dataset.csv') # Replace 'your_dataset.csv' with your actual dataset filename # Copy the content-based recommendation code audio_features = df1[['danceability', 'energy', 'key', 'loudness', 'mode', 'speechiness', 'acousticness', 'instrumentalness', 'liveness', 'valence', 'tempo', 'duration_ms', 'time_signature']] mood_cats = df1[['mood_cats']] # Normalize audio features scaler = StandardScaler() audio_features_scaled = scaler.fit_transform(audio_features) # Combine mood and audio features combined_features = pd.concat([mood_cats, pd.DataFrame(audio_features_scaled)], axis=1) # Calculate similarity matrix similarity_matrix = cosine_similarity(combined_features) def recommend_cont(song_index, num_recommendations=5): song_similarity = similarity_matrix[song_index] # Get indices and similarity scores of top similar songs similar_songs = sorted(list(enumerate(song_similarity)), key=lambda x: x[1], reverse=True)[1:num_recommendations+1] recommended_song_indices = [idx for idx, similarity in similar_songs] recommended_songs = df1.iloc[recommended_song_indices].copy() recommended_songs['score'] = [similarity for idx, similarity in similar_songs] return recommended_songs # Streamlit app st.title('Content-Based Recommender System') # Select a song index selected_index = st.slider('Select a song index', 0, len(df1)-1, 0) # Get recommendations recommended_songs = recommend_cont(selected_index) # Display recommended songs using st.write st.subheader('Recommended Songs:') for index in recommended_songs.index: st.write(f"Song Index: {index}, Title: {recommended_songs.loc[index, 'track_name']}, Artist: {recommended_songs.loc[index, 'track_artist']}, Score: {recommended_songs.loc[index, 'score']}")