Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,71 +1,39 @@
|
|
| 1 |
# app.py
|
| 2 |
# This is the updated main script. Copy-paste this over your existing app.py.
|
| 3 |
# Changes:
|
| 4 |
-
# -
|
| 5 |
-
# -
|
| 6 |
-
# -
|
| 7 |
-
# -
|
| 8 |
-
# -
|
| 9 |
-
# -
|
| 10 |
-
# -
|
| 11 |
-
# - If the task is document_creation, routes directly to the fine-tuned GPT model.
|
| 12 |
-
# - Retained all other logic, including RAG (semantic_search for CAP + municipal_search for municipal; now hybrid with BM25 for municipal).
|
| 13 |
-
# - Note: Add 'bm25s' to your requirements.txt for hybrid search (pip install bm25s).
|
| 14 |
-
# - Note: The SaulLM endpoint is kept as-is (likely 7B; if you want 141B, update SAUL_ENDPOINT to a new HF cloud endpoint for SaulLM-141B).
|
| 15 |
-
# - Note: For full chat history, the frontend JS handles appending messages client-side (stateless backend).
|
| 16 |
-
# - Updated route_model to use retrieve_context(prompt, task_type) instead of separate semantic_search/municipal_search.
|
| 17 |
-
# - For document_creation/summaries, skip RAG (no retrieve_context call) to avoid slowdown.
|
| 18 |
|
| 19 |
-
|
| 20 |
-
from
|
| 21 |
-
import requests
|
| 22 |
import os
|
| 23 |
import logging
|
| 24 |
from datetime import datetime
|
| 25 |
import pdfplumber
|
| 26 |
-
from docx import Document
|
| 27 |
from googleapiclient.discovery import build
|
| 28 |
import re
|
| 29 |
-
from
|
| 30 |
-
from sentence_transformers import SentenceTransformer
|
| 31 |
-
import torch
|
| 32 |
-
import numpy as np
|
| 33 |
-
import shutil
|
| 34 |
-
import pyarrow.parquet as pq
|
| 35 |
-
from huggingface_hub import hf_hub_download
|
| 36 |
-
import pickle
|
| 37 |
-
import faiss
|
| 38 |
-
import threading
|
| 39 |
-
import subprocess
|
| 40 |
from task_processing import process_task_response
|
| 41 |
from gpt_helpers import ask_gpt41_mini
|
|
|
|
|
|
|
| 42 |
|
| 43 |
-
|
| 44 |
-
from retrieval import *
|
| 45 |
-
from prompt_builder import *
|
| 46 |
-
from post_processing import *
|
| 47 |
-
|
| 48 |
-
# Flask imports
|
| 49 |
-
from flask import Flask, request, jsonify, send_from_directory
|
| 50 |
-
from werkzeug.utils import secure_filename
|
| 51 |
-
|
| 52 |
-
# BM25 for hybrid search (add 'bm25s' to requirements.txt)
|
| 53 |
-
from bm25s import BM25
|
| 54 |
-
|
| 55 |
-
app_flask = Flask(__name__) # Renamed to avoid conflict with 'app' variable
|
| 56 |
-
|
| 57 |
os.environ["HF_HOME"] = "/data/.huggingface"
|
| 58 |
-
# Add or update this section in script.py
|
| 59 |
-
# Ensure this is placed after imports but before any dataset loading or function definitions
|
| 60 |
|
| 61 |
-
|
|
|
|
|
|
|
| 62 |
|
| 63 |
-
#
|
|
|
|
| 64 |
hf_token = os.environ.get("HF_TOKEN", "")
|
| 65 |
-
if not hf_token:
|
| 66 |
-
logger.warning("HF_TOKEN not set; SaulLM endpoint may require authentication and gated repos may not be accessible.")
|
| 67 |
-
|
| 68 |
-
# Authenticate for gated Hugging Face repos (e.g., for centroids download)
|
| 69 |
if hf_token:
|
| 70 |
login(hf_token)
|
| 71 |
logger.info("Authenticated with Hugging Face token for gated repos.")
|
|
@@ -75,158 +43,75 @@ else:
|
|
| 75 |
# Check environment variables
|
| 76 |
try:
|
| 77 |
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY", "Missing")
|
| 78 |
-
GOOGLE_SEARCH_API = os.environ.get("GOOGLE_SEARCH_API", "Missing")
|
| 79 |
-
GOOGLE_CUSTOM_SEARCH_API_KEY = os.environ.get("GOOGLE_CUSTOM_SEARCH_API_KEY", "Missing")
|
| 80 |
if OPENAI_API_KEY == "Missing" or GOOGLE_CUSTOM_SEARCH_API_KEY == "Missing" or GOOGLE_SEARCH_API == "Missing":
|
| 81 |
raise KeyError("API keys not set")
|
| 82 |
logger.info(f"OpenAI API Key starts with: {OPENAI_API_KEY[:10]}...")
|
| 83 |
-
logger.info("API keys loaded successfully")
|
| 84 |
except KeyError as e:
|
| 85 |
logger.error(f"Missing environment variable: {str(e)}")
|
| 86 |
raise EnvironmentError(f"Required secrets OPENAI_API_KEY, GOOGLE_CUSTOM_SEARCH_API_KEY, and GOOGLE_SEARCH_API must be set in Hugging Face Space Secrets")
|
| 87 |
|
| 88 |
-
# Load HF token for SaulLM endpoint
|
| 89 |
-
hf_token = os.environ.get("HF_TOKEN", "")
|
| 90 |
-
if not hf_token:
|
| 91 |
-
logger.warning("HF_TOKEN not set; SaulLM endpoint may require authentication")
|
| 92 |
-
|
| 93 |
-
import requests
|
| 94 |
-
|
| 95 |
-
|
| 96 |
# Initialize OpenAI client
|
| 97 |
openai_client = OpenAI(api_key=OPENAI_API_KEY)
|
| 98 |
|
| 99 |
# SaulLM endpoint
|
| 100 |
SAUL_ENDPOINT = "https://l4tuv4j9bu616t5x.us-east-1.aws.endpoints.huggingface.cloud"
|
| 101 |
|
| 102 |
-
# Persistent storage path for dataset
|
| 103 |
-
LOCAL_PATH = "/data/cap_dataset"
|
| 104 |
-
dataset_info_path = os.path.join(LOCAL_PATH, 'dataset_info.json')
|
| 105 |
-
if os.path.exists(dataset_info_path):
|
| 106 |
-
cap_dataset = load_from_disk(LOCAL_PATH)
|
| 107 |
-
else:
|
| 108 |
-
try:
|
| 109 |
-
cap_dataset = load_dataset("TeraflopAI/Caselaw-Access-Project", split="train")
|
| 110 |
-
cap_dataset.save_to_disk(LOCAL_PATH)
|
| 111 |
-
except Exception as e:
|
| 112 |
-
logger.error(f"Dataset download/save failed: {str(e)}")
|
| 113 |
-
if os.path.exists(LOCAL_PATH):
|
| 114 |
-
shutil.rmtree(LOCAL_PATH) # Clean up partial save
|
| 115 |
-
raise
|
| 116 |
-
|
| 117 |
-
# Precompute CID to index mapping for CAP dataset
|
| 118 |
-
cap_id_to_index = {doc['cid']: i for i, doc in enumerate(cap_dataset) if 'cid' in doc}
|
| 119 |
-
|
| 120 |
-
# Preload some clusters in background (e.g., clusters 0-9)
|
| 121 |
-
def preload_clusters():
|
| 122 |
-
for cluster_id in range(10): # Adjust range as needed
|
| 123 |
-
try:
|
| 124 |
-
load_cluster_vectors(cluster_id, model="gte-Qwen2-1.5B-instruct")
|
| 125 |
-
logger.info(f"Preloaded cluster {cluster_id}")
|
| 126 |
-
except Exception as e:
|
| 127 |
-
logger.error(f"Preload failed for cluster {cluster_id}: {e}")
|
| 128 |
-
|
| 129 |
-
threading.Thread(target=preload_clusters).start()
|
| 130 |
-
|
| 131 |
# State dictionary for jurisdiction
|
| 132 |
STATES = {
|
| 133 |
-
"AL": "Alabama",
|
| 134 |
-
"
|
| 135 |
-
"
|
| 136 |
-
"
|
| 137 |
-
"
|
| 138 |
-
"
|
| 139 |
-
"
|
| 140 |
-
"
|
| 141 |
-
"
|
| 142 |
-
"
|
| 143 |
-
"
|
| 144 |
-
"ID": "Idaho",
|
| 145 |
-
"IL": "Illinois",
|
| 146 |
-
"IN": "Indiana",
|
| 147 |
-
"IA": "Iowa",
|
| 148 |
-
"KS": "Kansas",
|
| 149 |
-
"KY": "Kentucky",
|
| 150 |
-
"LA": "Louisiana",
|
| 151 |
-
"ME": "Maine",
|
| 152 |
-
"MD": "Maryland",
|
| 153 |
-
"MA": "Massachusetts",
|
| 154 |
-
"MI": "Michigan",
|
| 155 |
-
"MN": "Minnesota",
|
| 156 |
-
"MS": "Mississippi",
|
| 157 |
-
"MO": "Missouri",
|
| 158 |
-
"MT": "Montana",
|
| 159 |
-
"NE": "Nebraska",
|
| 160 |
-
"NV": "Nevada",
|
| 161 |
-
"NH": "New Hampshire",
|
| 162 |
-
"NJ": "New Jersey",
|
| 163 |
-
"NM": "New Mexico",
|
| 164 |
-
"NY": "New York",
|
| 165 |
-
"NC": "North Carolina",
|
| 166 |
-
"ND": "North Dakota",
|
| 167 |
-
"OH": "Ohio",
|
| 168 |
-
"OK": "Oklahoma",
|
| 169 |
-
"OR": "Oregon",
|
| 170 |
-
"PA": "Pennsylvania",
|
| 171 |
-
"RI": "Rhode Island",
|
| 172 |
-
"SC": "South Carolina",
|
| 173 |
-
"SD": "South Dakota",
|
| 174 |
-
"TN": "Tennessee",
|
| 175 |
-
"TX": "Texas",
|
| 176 |
-
"UT": "Utah",
|
| 177 |
-
"VT": "Vermont",
|
| 178 |
-
"VA": "Virginia",
|
| 179 |
-
"WA": "Washington",
|
| 180 |
-
"WV": "West Virginia",
|
| 181 |
-
"WI": "Wisconsin",
|
| 182 |
-
"WY": "Wyoming",
|
| 183 |
-
"Federal": "Federal",
|
| 184 |
-
"All States": "All States",
|
| 185 |
-
"Other": "Other States"
|
| 186 |
}
|
| 187 |
|
| 188 |
def route_model(prompt, task_type, files=None, search_web=False, jurisdiction="KY"):
|
| 189 |
logger.info(f"Routing prompt: {prompt}, Task: {task_type}, Web Search: {search_web}, Jurisdiction: {jurisdiction}")
|
| 190 |
-
|
| 191 |
rag_context = ""
|
| 192 |
-
if task_type in ["case_law", "irac", "statute"]
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
|
|
|
|
|
|
| 205 |
|
| 206 |
if task_type == "document_creation":
|
| 207 |
# Route directly to fine-tuned GPT for document creation
|
| 208 |
saul_response = ask_gpt41_mini(prompt, jurisdiction)
|
| 209 |
else:
|
| 210 |
try:
|
| 211 |
-
messages = build_saul_prompt(prompt, task_type, jurisdiction, rag_context)
|
| 212 |
saul_response = ask_saul(messages, task_type, jurisdiction)
|
| 213 |
except Exception as e:
|
| 214 |
logger.error(f"SaulLM failed: {e}. Falling back to GPT-4o.")
|
| 215 |
-
saul_response = ask_gpt4o(prompt)
|
| 216 |
-
|
| 217 |
-
# Task-specific processing
|
| 218 |
saul_response = process_task_response(task_type, saul_response, prompt, jurisdiction)
|
| 219 |
-
|
| 220 |
if search_web:
|
| 221 |
web_data = google_search(prompt, GOOGLE_CUSTOM_SEARCH_API_KEY, GOOGLE_SEARCH_API)
|
| 222 |
saul_response = f"Google Search results: {web_data}\n{saul_response}"
|
| 223 |
|
| 224 |
editor_prompt = build_editor_prompt(prompt, task_type, jurisdiction, saul_response, rag_context)
|
| 225 |
-
|
| 226 |
final_response = ask_gpt4o(editor_prompt)
|
| 227 |
-
|
| 228 |
final_response = ground_statutes(final_response, jurisdiction, GOOGLE_CUSTOM_SEARCH_API_KEY, GOOGLE_SEARCH_API, ask_gpt4o)
|
| 229 |
-
|
| 230 |
return final_response
|
| 231 |
|
| 232 |
def ask_saul(messages, task_type, jurisdiction):
|
|
@@ -234,10 +119,7 @@ def ask_saul(messages, task_type, jurisdiction):
|
|
| 234 |
headers = {"Authorization": f"Bearer {hf_token}"} if hf_token else {}
|
| 235 |
payload = {
|
| 236 |
"messages": messages,
|
| 237 |
-
"parameters": {
|
| 238 |
-
"max_length": 32768,
|
| 239 |
-
"temperature": 0.3
|
| 240 |
-
}
|
| 241 |
}
|
| 242 |
logger.info(f"SaulLM payload: messages length={len(messages)}, max_length={payload['parameters']['max_length']}")
|
| 243 |
response = requests.post(SAUL_ENDPOINT, headers=headers, json=payload)
|
|
@@ -249,10 +131,9 @@ def ask_saul(messages, task_type, jurisdiction):
|
|
| 249 |
return result[0].get("generated_text", "[No response from SaulLM]")
|
| 250 |
else:
|
| 251 |
return result.get("generated_text", "[No response from SaulLM]")
|
| 252 |
-
|
| 253 |
except Exception as e:
|
| 254 |
logger.error(f"SaulLM error: {str(e)}")
|
| 255 |
-
raise
|
| 256 |
|
| 257 |
def ask_gpt4o(prompt):
|
| 258 |
try:
|
|
@@ -260,11 +141,9 @@ def ask_gpt4o(prompt):
|
|
| 260 |
response = openai_client.chat.completions.create(
|
| 261 |
model="gpt-4o",
|
| 262 |
messages=[
|
| 263 |
-
{"role": "system", "content":
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
"Maintain accurate citations. Do not paraphrase legal holdings when direct quotes are available."
|
| 267 |
-
)},
|
| 268 |
{"role": "user", "content": prompt}
|
| 269 |
],
|
| 270 |
temperature=0.3,
|
|
@@ -297,7 +176,7 @@ def extract_text_from_file(file_path):
|
|
| 297 |
def classify_prompt(prompt):
|
| 298 |
prompt_lower = prompt.lower()
|
| 299 |
if "summarize" in prompt_lower:
|
| 300 |
-
return "document_analysis"
|
| 301 |
if any(k in prompt_lower for k in ["irac", "issue", "rule", "analysis", "conclusion", "brief", "memorandum", "memo"]):
|
| 302 |
return "irac"
|
| 303 |
elif any(k in prompt_lower for k in ["case", "precedent", "law"]):
|
|
@@ -335,10 +214,9 @@ def summarize_document(files):
|
|
| 335 |
file = files[0]
|
| 336 |
text = extract_text_from_file(file)
|
| 337 |
if text:
|
| 338 |
-
summary = ask_gpt4o(f"Summarize the following document: {text[:10000]}")
|
| 339 |
return f"Summary: {summary}"
|
| 340 |
-
|
| 341 |
-
return "Please upload a file to summarize."
|
| 342 |
|
| 343 |
def analyze_document(files):
|
| 344 |
if files:
|
|
@@ -346,8 +224,7 @@ def analyze_document(files):
|
|
| 346 |
if text:
|
| 347 |
analysis = ask_gpt4o(f"Analyze the following document for legal issues, risks, or key clauses: {text[:10000]}")
|
| 348 |
return f"Analysis: {analysis}"
|
| 349 |
-
|
| 350 |
-
return "No file uploaded for analysis."
|
| 351 |
|
| 352 |
def check_issues(files):
|
| 353 |
if files:
|
|
@@ -355,8 +232,7 @@ def check_issues(files):
|
|
| 355 |
if text:
|
| 356 |
issues = ask_gpt4o(f"Check for red flags, unusual clauses, or potential issues in this legal document and highlight them: {text[:10000]}")
|
| 357 |
return f"Highlighted Issues: {issues}"
|
| 358 |
-
|
| 359 |
-
return "No file uploaded to check."
|
| 360 |
|
| 361 |
# Flask routes
|
| 362 |
@app_flask.route('/')
|
|
@@ -370,7 +246,6 @@ def api_chat():
|
|
| 370 |
irac_mode = request.form.get('irac_mode', 'false') == 'true'
|
| 371 |
search_web = request.form.get('web_search', 'false') == 'true'
|
| 372 |
file = request.files.get('file')
|
| 373 |
-
|
| 374 |
file_text = ""
|
| 375 |
files = None
|
| 376 |
if file:
|
|
@@ -378,7 +253,7 @@ def api_chat():
|
|
| 378 |
temp_path = os.path.join('/tmp', filename)
|
| 379 |
file.save(temp_path)
|
| 380 |
file_text = extract_text_from_file(temp_path)
|
| 381 |
-
files = [temp_path]
|
| 382 |
os.remove(temp_path)
|
| 383 |
|
| 384 |
task_type = classify_prompt(prompt)
|
|
|
|
| 1 |
# app.py
|
| 2 |
# This is the updated main script. Copy-paste this over your existing app.py.
|
| 3 |
# Changes:
|
| 4 |
+
# - Removed unused 'bm25s' import (replaced with rank_bm25 in retrieval.py).
|
| 5 |
+
# - Integrated retrieve_context from retrieval.py, which now uses hybrid_cap_search with lazy loading.
|
| 6 |
+
# - Added handling for missing CAP components, logging warnings and skipping RAG if caches are absent.
|
| 7 |
+
# - Retained Flask for serving the custom HTML+CSS+JS frontend and API endpoint /api/chat.
|
| 8 |
+
# - Kept file handling, IRAC mode, web search toggle, and task classification logic.
|
| 9 |
+
# - Updated route_model to use retrieve_context only if CAP components are available.
|
| 10 |
+
# - Note: Precompute CAP components with precompute_cap_embeddings.py before deployment.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
+
from flask import Flask, request, jsonify, send_from_directory
|
| 13 |
+
from werkzeug.utils import secure_filename
|
|
|
|
| 14 |
import os
|
| 15 |
import logging
|
| 16 |
from datetime import datetime
|
| 17 |
import pdfplumber
|
| 18 |
+
from docx import Document
|
| 19 |
from googleapiclient.discovery import build
|
| 20 |
import re
|
| 21 |
+
from retrieval import retrieve_context, municipal_search # Updated import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
from task_processing import process_task_response
|
| 23 |
from gpt_helpers import ask_gpt41_mini
|
| 24 |
+
from prompt_builder import build_saul_prompt, build_editor_prompt
|
| 25 |
+
from post_processing import ground_statutes
|
| 26 |
|
| 27 |
+
app_flask = Flask(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
os.environ["HF_HOME"] = "/data/.huggingface"
|
|
|
|
|
|
|
| 29 |
|
| 30 |
+
# Logging setup
|
| 31 |
+
logger = logging.getLogger("app")
|
| 32 |
+
logging.basicConfig(level=logging.INFO)
|
| 33 |
|
| 34 |
+
# Hugging Face authentication
|
| 35 |
+
from huggingface_hub import login
|
| 36 |
hf_token = os.environ.get("HF_TOKEN", "")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
if hf_token:
|
| 38 |
login(hf_token)
|
| 39 |
logger.info("Authenticated with Hugging Face token for gated repos.")
|
|
|
|
| 43 |
# Check environment variables
|
| 44 |
try:
|
| 45 |
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY", "Missing")
|
| 46 |
+
GOOGLE_SEARCH_API = os.environ.get("GOOGLE_SEARCH_API", "Missing")
|
| 47 |
+
GOOGLE_CUSTOM_SEARCH_API_KEY = os.environ.get("GOOGLE_CUSTOM_SEARCH_API_KEY", "Missing")
|
| 48 |
if OPENAI_API_KEY == "Missing" or GOOGLE_CUSTOM_SEARCH_API_KEY == "Missing" or GOOGLE_SEARCH_API == "Missing":
|
| 49 |
raise KeyError("API keys not set")
|
| 50 |
logger.info(f"OpenAI API Key starts with: {OPENAI_API_KEY[:10]}...")
|
|
|
|
| 51 |
except KeyError as e:
|
| 52 |
logger.error(f"Missing environment variable: {str(e)}")
|
| 53 |
raise EnvironmentError(f"Required secrets OPENAI_API_KEY, GOOGLE_CUSTOM_SEARCH_API_KEY, and GOOGLE_SEARCH_API must be set in Hugging Face Space Secrets")
|
| 54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
# Initialize OpenAI client
|
| 56 |
openai_client = OpenAI(api_key=OPENAI_API_KEY)
|
| 57 |
|
| 58 |
# SaulLM endpoint
|
| 59 |
SAUL_ENDPOINT = "https://l4tuv4j9bu616t5x.us-east-1.aws.endpoints.huggingface.cloud"
|
| 60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
# State dictionary for jurisdiction
|
| 62 |
STATES = {
|
| 63 |
+
"AL": "Alabama", "AK": "Alaska", "AZ": "Arizona", "AR": "Arkansas", "CA": "California",
|
| 64 |
+
"CO": "Colorado", "CT": "Connecticut", "DE": "Delaware", "FL": "Florida", "GA": "Georgia",
|
| 65 |
+
"HI": "Hawaii", "ID": "Idaho", "IL": "Illinois", "IN": "Indiana", "IA": "Iowa",
|
| 66 |
+
"KS": "Kansas", "KY": "Kentucky", "LA": "Louisiana", "ME": "Maine", "MD": "Maryland",
|
| 67 |
+
"MA": "Massachusetts", "MI": "Michigan", "MN": "Minnesota", "MS": "Mississippi", "MO": "Missouri",
|
| 68 |
+
"MT": "Montana", "NE": "Nebraska", "NV": "Nevada", "NH": "New Hampshire", "NJ": "New Jersey",
|
| 69 |
+
"NM": "New Mexico", "NY": "New York", "NC": "North Carolina", "ND": "North Dakota", "OH": "Ohio",
|
| 70 |
+
"OK": "Oklahoma", "OR": "Oregon", "PA": "Pennsylvania", "RI": "Rhode Island", "SC": "South Carolina",
|
| 71 |
+
"SD": "South Dakota", "TN": "Tennessee", "TX": "Texas", "UT": "Utah", "VT": "Vermont",
|
| 72 |
+
"VA": "Virginia", "WA": "Washington", "WV": "West Virginia", "WI": "Wisconsin", "WY": "Wyoming",
|
| 73 |
+
"Federal": "Federal", "All States": "All States", "Other": "Other States"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
}
|
| 75 |
|
| 76 |
def route_model(prompt, task_type, files=None, search_web=False, jurisdiction="KY"):
|
| 77 |
logger.info(f"Routing prompt: {prompt}, Task: {task_type}, Web Search: {search_web}, Jurisdiction: {jurisdiction}")
|
|
|
|
| 78 |
rag_context = ""
|
| 79 |
+
if task_type in ["case_law", "irac", "statute"] and not os.getenv("SKIP_CAP_INIT", "false").lower() == "true":
|
| 80 |
+
# Check if CAP components are available
|
| 81 |
+
if all(os.path.exists(f"/data/cap_{ext}") for ext in ["tfidf.pkl", "tfidf_matrix.npz", "gte.npy", "openai.npy"]):
|
| 82 |
+
combined_results = retrieve_context(prompt, task_type)
|
| 83 |
+
# Filter by jurisdiction if specified
|
| 84 |
+
if jurisdiction and jurisdiction != "All States":
|
| 85 |
+
state_name = STATES.get(jurisdiction, "")
|
| 86 |
+
state_code = jurisdiction
|
| 87 |
+
combined_results = [r for r in combined_results if any(s in (r.get('citation', '') + r.get('name', '')) for s in [state_code, state_name])]
|
| 88 |
+
if combined_results:
|
| 89 |
+
rag_context = "Retrieved legal authorities (case law and statutes):\n" + "\n".join(
|
| 90 |
+
[f"{i+1}. [{auth.get('source', 'Unknown')}] {auth['name']}, {auth['citation']}: \"{auth['snippet']}\"" for i, auth in enumerate(combined_results)])
|
| 91 |
+
prompt = f"User prompt: {prompt}\n\n{rag_context}"
|
| 92 |
+
else:
|
| 93 |
+
logger.warning("CAP hybrid components missing. Precompute them with precompute_cap_embeddings.py. Skipping RAG.")
|
| 94 |
|
| 95 |
if task_type == "document_creation":
|
| 96 |
# Route directly to fine-tuned GPT for document creation
|
| 97 |
saul_response = ask_gpt41_mini(prompt, jurisdiction)
|
| 98 |
else:
|
| 99 |
try:
|
| 100 |
+
messages = build_saul_prompt(prompt, task_type, jurisdiction, rag_context)
|
| 101 |
saul_response = ask_saul(messages, task_type, jurisdiction)
|
| 102 |
except Exception as e:
|
| 103 |
logger.error(f"SaulLM failed: {e}. Falling back to GPT-4o.")
|
| 104 |
+
saul_response = ask_gpt4o(prompt)
|
| 105 |
+
|
| 106 |
+
# Task-specific processing
|
| 107 |
saul_response = process_task_response(task_type, saul_response, prompt, jurisdiction)
|
|
|
|
| 108 |
if search_web:
|
| 109 |
web_data = google_search(prompt, GOOGLE_CUSTOM_SEARCH_API_KEY, GOOGLE_SEARCH_API)
|
| 110 |
saul_response = f"Google Search results: {web_data}\n{saul_response}"
|
| 111 |
|
| 112 |
editor_prompt = build_editor_prompt(prompt, task_type, jurisdiction, saul_response, rag_context)
|
|
|
|
| 113 |
final_response = ask_gpt4o(editor_prompt)
|
|
|
|
| 114 |
final_response = ground_statutes(final_response, jurisdiction, GOOGLE_CUSTOM_SEARCH_API_KEY, GOOGLE_SEARCH_API, ask_gpt4o)
|
|
|
|
| 115 |
return final_response
|
| 116 |
|
| 117 |
def ask_saul(messages, task_type, jurisdiction):
|
|
|
|
| 119 |
headers = {"Authorization": f"Bearer {hf_token}"} if hf_token else {}
|
| 120 |
payload = {
|
| 121 |
"messages": messages,
|
| 122 |
+
"parameters": {"max_length": 32768, "temperature": 0.3}
|
|
|
|
|
|
|
|
|
|
| 123 |
}
|
| 124 |
logger.info(f"SaulLM payload: messages length={len(messages)}, max_length={payload['parameters']['max_length']}")
|
| 125 |
response = requests.post(SAUL_ENDPOINT, headers=headers, json=payload)
|
|
|
|
| 131 |
return result[0].get("generated_text", "[No response from SaulLM]")
|
| 132 |
else:
|
| 133 |
return result.get("generated_text", "[No response from SaulLM]")
|
|
|
|
| 134 |
except Exception as e:
|
| 135 |
logger.error(f"SaulLM error: {str(e)}")
|
| 136 |
+
raise
|
| 137 |
|
| 138 |
def ask_gpt4o(prompt):
|
| 139 |
try:
|
|
|
|
| 141 |
response = openai_client.chat.completions.create(
|
| 142 |
model="gpt-4o",
|
| 143 |
messages=[
|
| 144 |
+
{"role": "system", "content": f"You are the final editor for a legal research assistant. {irac_system} "
|
| 145 |
+
"Ensure high quote density from retrieved authorities and include relevant facts from the cited cases. "
|
| 146 |
+
"Maintain accurate citations. Do not paraphrase legal holdings when direct quotes are available."},
|
|
|
|
|
|
|
| 147 |
{"role": "user", "content": prompt}
|
| 148 |
],
|
| 149 |
temperature=0.3,
|
|
|
|
| 176 |
def classify_prompt(prompt):
|
| 177 |
prompt_lower = prompt.lower()
|
| 178 |
if "summarize" in prompt_lower:
|
| 179 |
+
return "document_analysis"
|
| 180 |
if any(k in prompt_lower for k in ["irac", "issue", "rule", "analysis", "conclusion", "brief", "memorandum", "memo"]):
|
| 181 |
return "irac"
|
| 182 |
elif any(k in prompt_lower for k in ["case", "precedent", "law"]):
|
|
|
|
| 214 |
file = files[0]
|
| 215 |
text = extract_text_from_file(file)
|
| 216 |
if text:
|
| 217 |
+
summary = ask_gpt4o(f"Summarize the following document: {text[:10000]}")
|
| 218 |
return f"Summary: {summary}"
|
| 219 |
+
return "No text extracted from file." if files else "Please upload a file to summarize."
|
|
|
|
| 220 |
|
| 221 |
def analyze_document(files):
|
| 222 |
if files:
|
|
|
|
| 224 |
if text:
|
| 225 |
analysis = ask_gpt4o(f"Analyze the following document for legal issues, risks, or key clauses: {text[:10000]}")
|
| 226 |
return f"Analysis: {analysis}"
|
| 227 |
+
return "No text extracted from file." if files else "No file uploaded for analysis."
|
|
|
|
| 228 |
|
| 229 |
def check_issues(files):
|
| 230 |
if files:
|
|
|
|
| 232 |
if text:
|
| 233 |
issues = ask_gpt4o(f"Check for red flags, unusual clauses, or potential issues in this legal document and highlight them: {text[:10000]}")
|
| 234 |
return f"Highlighted Issues: {issues}"
|
| 235 |
+
return "No text extracted from file." if files else "No file uploaded to check."
|
|
|
|
| 236 |
|
| 237 |
# Flask routes
|
| 238 |
@app_flask.route('/')
|
|
|
|
| 246 |
irac_mode = request.form.get('irac_mode', 'false') == 'true'
|
| 247 |
search_web = request.form.get('web_search', 'false') == 'true'
|
| 248 |
file = request.files.get('file')
|
|
|
|
| 249 |
file_text = ""
|
| 250 |
files = None
|
| 251 |
if file:
|
|
|
|
| 253 |
temp_path = os.path.join('/tmp', filename)
|
| 254 |
file.save(temp_path)
|
| 255 |
file_text = extract_text_from_file(temp_path)
|
| 256 |
+
files = [temp_path]
|
| 257 |
os.remove(temp_path)
|
| 258 |
|
| 259 |
task_type = classify_prompt(prompt)
|