import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer # it is a 46.7B params llm model. model_id = "mistralai/Mixtral-8x7B-v0.1" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) text = "Hello my name is" inputs = tokenizer(text, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=20) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) def greet(name): # it is a 46.7B params llm model. model_id = "mistralai/Mixtral-8x7B-v0.1" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) text = name #"Hello my name is" inputs = tokenizer(text, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=20) #print(tokenizer.decode(outputs[0], skip_special_tokens=True)) return tokenizer.decode(outputs[0], skip_special_tokens) #="Hello " + name + "!!" iface = gr.Interface(fn=greet, inputs="text", outputs="text") iface.launch()