import requests import streamlit as st import time from transformers import pipeline import os from .utils import query def write(): st.markdown( """

TURNA

""", unsafe_allow_html=True, ) st.write("#") col = st.columns(2) col[0].image("images/turna-logo.png", width=100) st.markdown( """

TURNA is a Turkish encoder-decoder language model.

Use the generation parameters on the sidebar to adjust generation quality.

""", unsafe_allow_html=True, ) #st.title('Turkish Language Generation') #st.write('...with Turna') # Sidebar # Taken from https://huggingface.co/spaces/flax-community/spanish-gpt2/blob/main/app.py st.sidebar.subheader("Configurable parameters") max_new_tokens = st.sidebar.number_input( "Maximum length", min_value=0, max_value=512, value=128, help="The maximum length of the sequence to be generated.", ) length_penalty = st.sidebar.number_input( "Length penalty", value=1.0, help=" length_penalty > 0.0 promotes longer sequences, while length_penalty < 0.0 encourages shorter sequences. ", ) do_sample = st.sidebar.selectbox( "Sampling?", (True, False), help="Whether or not to use sampling; use greedy decoding otherwise.", ) num_beams = st.sidebar.number_input( "Number of beams", min_value=1, max_value=10, value=3, help="The number of beams to use for beam search.", ) repetition_penalty = st.sidebar.number_input( "Repetition Penalty", min_value=0.0, value=3.0, step=0.1, help="The parameter for repetition penalty. 1.0 means no penalty", ) no_repeat_ngram_size = st.sidebar.number_input( "No Repeat N-Gram Size", min_value=0, value=3, help="If set to int > 0, all ngrams of that size can only occur once.", ) temp = st.sidebar.slider( "Temperature", value=1.0, min_value=0.1, max_value=100.0, help="The value used to module the next token probabilities.", ) top_k = st.sidebar.number_input( "Top k", value=10, help="The number of highest probability vocabulary tokens to keep for top-k-filtering.", ) top_p = st.sidebar.number_input( "Top p", value=0.95, help=" If set to float < 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation.", ) input_text = st.text_area(label='Enter a text: ', height=100, value="Türkiye'nin başkenti neresidir?") url = "https://api-inference.huggingface.co/models/boun-tabi-LMG/TURNA" params = {"length_penalty": length_penalty, "no_repeat_ngram_size": no_repeat_ngram_size, "max_new_tokens": max_new_tokens, "do_sample":do_sample, "num_beams":num_beams, "repetition_penalty":repetition_penalty, "top_p":top_p, "top_k":top_k, "temperature":temp, "early_stopping": True, "max_length": 256} if st.button("Generate"): with st.spinner('Generating...'): output = query(f'[S2S] {input_text}', url, params) st.success(output)