import ast import json import logging import math import os import random # import h5py from dataclasses import dataclass from audioldm.clap.training.params import parse_args # import braceexpand import numpy as np import pandas as pd import torch import torch.nn as nn import torch.nn.functional as F import torchvision.datasets as datasets import torchvision.transforms # import webdataset as wds from PIL import Image from torch.utils.data import Dataset, DataLoader, SubsetRandomSampler from torch.utils.data.distributed import DistributedSampler from functools import partial import soundfile as sf import io from pathlib import Path # import wget from audioldm.clap.open_clip.utils import ( get_tar_path_from_dataset_name, dataset_split, ) from audioldm.clap.open_clip.utils import load_p, load_class_label import copy try: import horovod.torch as hvd except ImportError: hvd = None try: import torchaudio except ImportError: torchaudio = None from audioldm.clap.open_clip import tokenize def tokenizer(text): return tokenize(text).squeeze(0) from transformers import RobertaTokenizer tokenize = RobertaTokenizer.from_pretrained("roberta-base") def tokenizer(text): result = tokenize( text, padding="max_length", truncation=True, max_length=77, return_tensors="pt", ) return {k: v.squeeze(0) for k, v in result.items()} # initizlied the audioset map _AUDIOSET_MAP_PATH = os.path.join(Path(__file__).parent, "audioset_textmap.npy") _AUDIOSET_MAP = np.load(_AUDIOSET_MAP_PATH, allow_pickle=True) def int16_to_float32(x): return (x / 32767.0).astype(np.float32) def float32_to_int16(x): x = np.clip(x, a_min=-1.0, a_max=1.0) return (x * 32767.0).astype(np.int16) # For Toy Dataset # class ToyDataset(Dataset): # def __init__(self, index_path, ipc, config, eval_mode=False): # """Toy Dataset for testing the audioset input with text labels # Parameters # ---------- # index_path: str # the link to the h5 file of each audio # idc: str # the link to the npy file, the number of samples in each class # config: dict # the audio cfg file # eval_model (bool): to indicate if the dataset is a testing dataset # """ # self.audio_cfg = config["audio_cfg"] # self.text_cfg = config["text_cfg"] # self.fp = h5py.File(index_path, "r") # self.ipc = np.load(ipc, allow_pickle=True) # self.total_size = len(self.fp["audio_name"]) # self.classes_num = self.audio_cfg["class_num"] # self.eval_mode = eval_mode # if not eval_mode: # self.generate_queue() # else: # self.queue = [] # for i in range(self.total_size): # target = self.fp["target"][i] # if np.sum(target) > 0: # self.queue.append(i) # self.total_size = len(self.queue) # logging.info("total dataset size: %d" % (self.total_size)) # logging.info("class num: %d" % (self.classes_num)) # def time_shifting(self, x): # frame_num = len(x) # shift_len = random.randint(0, frame_num - 1) # new_sample = np.concatenate([x[shift_len:], x[:shift_len]], axis=0) # return new_sample # def generate_queue(self): # self.queue = [] # while len(self.queue) < self.total_size: # class_set = [*range(self.classes_num)] # random.shuffle(class_set) # self.queue += [ # self.ipc[d][random.randint(0, len(self.ipc[d]) - 1)] for d in class_set # ] # self.queue = self.queue[: self.total_size] # logging.info("queue regenerated:%s" % (self.queue[-5:])) # def crop_wav(self, x): # crop_size = self.audio_cfg["crop_size"] # crop_pos = random.randint(0, len(x) - crop_size - 1) # return x[crop_pos : crop_pos + crop_size] # def prompt_text(self, target): # events = _AUDIOSET_MAP[np.where(target > 0)] # event_text = "The sounds of " + ", ".join(events[:-1]) + " and " + events[-1] # text = tokenize(event_text)[0] # return text # def __getitem__(self, index): # """Load waveform, text, and target of an audio clip # Parameters # ---------- # index: int # the index number # Return # ------ # output: dict { # "hdf5_path": str, # "index_in_hdf5": int, # "audio_name": str, # "waveform": list (audio_length,), # "target": list (class_num, ), # "text": torch.tensor (context_length,) # } # the output dictionary # """ # s_index = self.queue[index] # audio_name = self.fp["audio_name"][s_index].decode() # # Hardcode here CHANGE # hdf5_path = ( # self.fp["hdf5_path"][s_index] # .decode() # .replace( # "../workspace", # "/home/la/kechen/Research/ke_zsasp/workspace", # ) # ) # r_idx = self.fp["index_in_hdf5"][s_index] # target = self.fp["target"][s_index].astype(np.float32) # text = self.prompt_text(target) # with h5py.File(hdf5_path, "r") as f: # waveform = int16_to_float32(f["waveform"][r_idx])[ # : self.audio_cfg["clip_samples"] # ] # assert ( # len(waveform) == self.audio_cfg["clip_samples"] # ), "The sample length is not match" # # Time shift # # if (self.config.enable_time_shift) and (not self.eval_mode): # # waveform = self.time_shifting(waveform) # # # Label Enhance # # if (self.config.crop_size is not None) and (not self.eval_mode): # # waveform = self.crop_wav(waveform) # # # the label enhance rate is fixed 0.5 # # if (self.config.enable_label_enhance) and (not self.eval_mode) and random.random() < 0.5: # # kidx = np.where(target)[0] # # for k in kidx: # # for add_key in self.class_map[k][1]: # # target[add_key] = 1.0 # # if len(self.class_map[k][2]) > 0: # # add_key = random.choice(self.class_map[k][2]) # # target[add_key] = 1.0 # # missing the text input # mel_spec = get_mel(torch.from_numpy(waveform), self.audio_cfg)[None, :, :] # mel_spec = ( # torch.cat( # [mel_spec, mel_spec.clone(), mel_spec.clone(), mel_spec.clone()], dim=0 # ) # .cpu() # .numpy() # ) # longer = random.choice([True, False]) # if longer == False: # mel_spec[1:, :, :] = 0.0 # data_dict = { # "hdf5_path": hdf5_path, # "index_in_hdf5": r_idx, # "audio_name": audio_name, # "waveform": waveform, # "class_label": target, # "text": text, # "longer": longer, # "mel_fusion": mel_spec, # } # return data_dict # def __len__(self): # return self.total_size class CsvDataset(Dataset): def __init__(self, input_filename, transforms, img_key, caption_key, sep="\t"): logging.debug(f"Loading csv data from {input_filename}.") df = pd.read_csv(input_filename, sep=sep) self.images = df[img_key].tolist() self.captions = df[caption_key].tolist() self.transforms = transforms logging.debug("Done loading data.") def __len__(self): return len(self.captions) def __getitem__(self, idx): images = self.transforms(Image.open(str(self.images[idx]))) texts = tokenize([str(self.captions[idx])])[0] return images, texts @dataclass class DataInfo: dataloader: DataLoader sampler: DistributedSampler def preprocess_txt(text): return tokenize([str(text)])[0] def get_dataset_size(shards, sizefilepath_=None, is_local=True): if isinstance(shards, list): size_list = [] for s in shards: size_list.append( get_dataset_size(s, sizefilepath_=sizefilepath_, is_local=is_local)[0] ) else: if not is_local: for n in dataset_split.keys(): if n in shards.split("/"): break for s in dataset_split[n]: if s in shards.split("/"): break sizefilepath_ = f"./json_files/{n}/{s}/sizes.json" shards_list = list(braceexpand.braceexpand(shards)) dir_path = os.path.dirname(shards) if sizefilepath_ is not None: sizes = json.load(open(sizefilepath_, "r")) total_size = sum( [ int(sizes[os.path.basename(shard.replace(".tar -", ".tar"))]) for shard in shards_list ] ) else: sizes_filename = os.path.join(dir_path, "sizes.json") len_filename = os.path.join(dir_path, "__len__") if os.path.exists(sizes_filename): sizes = json.load(open(sizes_filename, "r")) total_size = sum( [int(sizes[os.path.basename(shard)]) for shard in shards_list] ) elif os.path.exists(len_filename): # FIXME this used to be eval(open(...)) but that seemed rather unsafe total_size = ast.literal_eval(open(len_filename, "r").read()) else: raise Exception( "Cannot find sizes file for dataset. Please specify the path to the file." ) # total_size = None # num samples undefined # some common dataset sizes (at time of authors last download) # cc3m-train: 2905954 # cc12m: 10968539 # LAION-400m: 407332084 num_shards = len(shards_list) if isinstance(shards, list): return sum(size_list), len(shards) else: return total_size, num_shards def get_imagenet(args, preprocess_fns, split): assert split in ["train", "val", "v2"] is_train = split == "train" preprocess_train, preprocess_val = preprocess_fns if split == "v2": from imagenetv2_pytorch import ImageNetV2Dataset dataset = ImageNetV2Dataset(location=args.imagenet_v2, transform=preprocess_val) else: if is_train: data_path = args.imagenet_train preprocess_fn = preprocess_train else: data_path = args.imagenet_val preprocess_fn = preprocess_val assert data_path dataset = datasets.ImageFolder(data_path, transform=preprocess_fn) if is_train: idxs = np.zeros(len(dataset.targets)) target_array = np.array(dataset.targets) k = 50 for c in range(1000): m = target_array == c n = len(idxs[m]) arr = np.zeros(n) arr[:k] = 1 np.random.shuffle(arr) idxs[m] = arr idxs = idxs.astype("int") sampler = SubsetRandomSampler(np.where(idxs)[0]) else: sampler = None dataloader = torch.utils.data.DataLoader( dataset, batch_size=args.batch_size, num_workers=args.workers, sampler=sampler, ) return DataInfo(dataloader, sampler) def count_samples(dataloader): os.environ["WDS_EPOCH"] = "0" n_elements, n_batches = 0, 0 for images, texts in dataloader: n_batches += 1 n_elements += len(images) assert len(images) == len(texts) return n_elements, n_batches def filter_no_caption(sample): return "txt" in sample def log_and_continue(exn): """Call in an exception handler to ignore any exception, isssue a warning, and continue.""" logging.warning(f"Handling webdataset error ({repr(exn)}). Ignoring.") return True _SHARD_SHUFFLE_SIZE = 2000 _SHARD_SHUFFLE_INITIAL = 500 _SAMPLE_SHUFFLE_SIZE = 5000 _SAMPLE_SHUFFLE_INITIAL = 1000 def sample_prop(sizefile, inputs, proportion, is_local=True): """ Sample a proportion of the data. """ file_path_dict = { os.path.split(inputs[i])[1]: os.path.split(inputs[i])[0] for i in range(len(inputs)) } sampled_filepath_dict = {} sampled_size_dict = {} if not is_local: if os.path.exists("sizes.json"): os.remove("sizes.json") wget.download(sizefile, "sizes.json") sizefile = "sizes.json" with open(sizefile, "r", encoding="UTF-8") as f: load_dict = json.load(f) L = int(len(file_path_dict) * proportion) subkeys = random.sample(file_path_dict.keys(), L) for k in subkeys: sampled_size_dict[k] = load_dict[k] sampled_filepath_dict[k] = file_path_dict[k] return ( sum(sampled_size_dict.values()), L, [os.path.join(v, k) for k, v in sampled_filepath_dict.items()], sampled_size_dict, ) def get_mel(audio_data, audio_cfg): # mel shape: (n_mels, T) mel = torchaudio.transforms.MelSpectrogram( sample_rate=audio_cfg["sample_rate"], n_fft=audio_cfg["window_size"], win_length=audio_cfg["window_size"], hop_length=audio_cfg["hop_size"], center=True, pad_mode="reflect", power=2.0, norm=None, onesided=True, n_mels=64, f_min=audio_cfg["fmin"], f_max=audio_cfg["fmax"], ).to(audio_data.device) mel = mel(audio_data) # Align to librosa: # librosa_melspec = librosa.feature.melspectrogram( # waveform, # sr=audio_cfg['sample_rate'], # n_fft=audio_cfg['window_size'], # hop_length=audio_cfg['hop_size'], # win_length=audio_cfg['window_size'], # center=True, # pad_mode="reflect", # power=2.0, # n_mels=64, # norm=None, # htk=True, # f_min=audio_cfg['fmin'], # f_max=audio_cfg['fmax'] # ) # we use log mel spectrogram as input mel = torchaudio.transforms.AmplitudeToDB(top_db=None)(mel) return mel.T # (T, n_mels) def get_audio_features( sample, audio_data, max_len, data_truncating, data_filling, audio_cfg ): """ Calculate and add audio features to sample. Sample: a dict containing all the data of current sample. audio_data: a tensor of shape (T) containing audio data. max_len: the maximum length of audio data. data_truncating: the method of truncating data. data_filling: the method of filling data. audio_cfg: a dict containing audio configuration. Comes from model_cfg['audio_cfg']. """ with torch.no_grad(): if len(audio_data) > max_len: if data_truncating == "rand_trunc": longer = torch.tensor([True]) elif data_truncating == "fusion": # fusion mel = get_mel(audio_data, audio_cfg) # split to three parts chunk_frames = ( max_len // audio_cfg["hop_size"] + 1 ) # the +1 related to how the spectrogram is computed total_frames = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is # larger than max_len but smaller than max_len+hop_size. # In this case, we just use the whole audio. mel_fusion = torch.stack([mel, mel, mel, mel], dim=0) sample["mel_fusion"] = mel_fusion longer = torch.tensor([False]) else: ranges = np.array_split( list(range(0, total_frames - chunk_frames + 1)), 3 ) # print('total_frames-chunk_frames:', total_frames-chunk_frames, # 'len(audio_data):', len(audio_data), # 'chunk_frames:', chunk_frames, # 'total_frames:', total_frames) if len(ranges[1]) == 0: # if the audio is too short, we just use the first chunk ranges[1] = [0] if len(ranges[2]) == 0: # if the audio is too short, we just use the first chunk ranges[2] = [0] # randomly choose index for each part idx_front = np.random.choice(ranges[0]) idx_middle = np.random.choice(ranges[1]) idx_back = np.random.choice(ranges[2]) # select mel mel_chunk_front = mel[idx_front : idx_front + chunk_frames, :] mel_chunk_middle = mel[idx_middle : idx_middle + chunk_frames, :] mel_chunk_back = mel[idx_back : idx_back + chunk_frames, :] # shrink the mel mel_shrink = torchvision.transforms.Resize(size=[chunk_frames, 64])( mel[None] )[0] # logging.info(f"mel_shrink.shape: {mel_shrink.shape}") # stack mel_fusion = torch.stack( [mel_chunk_front, mel_chunk_middle, mel_chunk_back, mel_shrink], dim=0, ) sample["mel_fusion"] = mel_fusion longer = torch.tensor([True]) else: raise NotImplementedError( f"data_truncating {data_truncating} not implemented" ) # random crop to max_len (for compatibility) overflow = len(audio_data) - max_len idx = np.random.randint(0, overflow + 1) audio_data = audio_data[idx : idx + max_len] else: # padding if too short if len(audio_data) < max_len: # do nothing if equal if data_filling == "repeatpad": n_repeat = int(max_len / len(audio_data)) audio_data = audio_data.repeat(n_repeat) # audio_data = audio_data.unsqueeze(0).unsqueeze(0).unsqueeze(0) # audio_data = F.interpolate(audio_data,size=max_len,mode="bicubic")[0,0,0] audio_data = F.pad( audio_data, (0, max_len - len(audio_data)), mode="constant", value=0, ) elif data_filling == "pad": audio_data = F.pad( audio_data, (0, max_len - len(audio_data)), mode="constant", value=0, ) elif data_filling == "repeat": n_repeat = int(max_len / len(audio_data)) audio_data = audio_data.repeat(n_repeat + 1)[:max_len] else: raise NotImplementedError( f"data_filling {data_filling} not implemented" ) if data_truncating == "fusion": mel = get_mel(audio_data, audio_cfg) mel_fusion = torch.stack([mel, mel, mel, mel], dim=0) sample["mel_fusion"] = mel_fusion longer = torch.tensor([False]) sample["longer"] = longer sample["waveform"] = audio_data return sample def preprocess( sample, audio_ext, text_ext, max_len, audio_cfg, class_index_dict=None, data_filling="pad", data_truncating="rand_trunc", text_augment_selection=None, ): """ Preprocess a single sample for wdsdataloader. """ audio_data, orig_sr = sf.read(io.BytesIO(sample[audio_ext])) audio_data = int16_to_float32(float32_to_int16(audio_data)) audio_data = torch.tensor(audio_data).float() # TODO: (yusong) to be include in the future # # if torchaudio not installed, use soundfile to load audio # if torchaudio is None: # audio_data, orig_sr = sf.read(io.BytesIO(sample[audio_ext])) # audio_data = torch.tensor(audio_data).float() # else: # # https://github.com/webdataset/webdataset/blob/main/webdataset/autodecode.py # with tempfile.TemporaryDirectory() as dirname: # os.makedirs(dirname, exist_ok=True) # fname = os.path.join(dirname, f"file.flac") # with open(fname, "wb") as stream: # stream.write(sample[audio_ext]) # audio_data, orig_sr = torchaudio.load(fname) # audio_data = audio_data[0, :].float() sample = get_audio_features( sample, audio_data, max_len, data_truncating, data_filling, audio_cfg ) del sample[audio_ext] try: json_dict_raw = json.loads(sample[text_ext].decode("utf-8")) except: print("sample[__url__]:", sample["__url__"]) # For selecting augmented text from dataset if text_augment_selection is None or text_augment_selection == "none": texts = json_dict_raw["text"] elif text_augment_selection == "all": if "text_augment_all" in json_dict_raw.keys(): texts = json_dict_raw["text_augment_all"] else: texts = json_dict_raw["text"] elif text_augment_selection == "augment_only": if "text_augment_all" in json_dict_raw.keys(): if json_dict_raw["text_augment_t5"] is None: texts = json_dict_raw["text"] else: texts = json_dict_raw["text_augment_t5"] else: texts = json_dict_raw["text"] else: raise NotImplementedError( f"text_augment_selection {text_augment_selection} not implemented" ) sample["full_text"] = texts if isinstance(texts, list) and isinstance(texts[0], str) and len(texts) > 1: texts = random.choice(texts) sample["raw_text"] = texts sample["text"] = tokenizer(texts) # text shape: [num_token] if class_index_dict is not None: # https://stackoverflow.com/questions/48004243/how-to-share-large-read-only-dictionary-list-across-processes-in-multiprocessing # https://stackoverflow.com/questions/45693949/storing-strings-in-a-multiprocessing-sharedctypes-array # key, val = class_index_dict # key = key[:].split('\n') # _dict = {k: v for k, v in zip(key, val)} sample["class_label"] = np.zeros(len(class_index_dict.keys())) for x in json_dict_raw["tag"]: sample["class_label"][class_index_dict[x]] = 1 sample["class_label"] = torch.tensor(sample["class_label"]).float() del sample[text_ext] sample["audio_name"] = sample["__key__"].split("/")[-1] + "." + audio_ext sample["text_name"] = sample["__key__"].split("/")[-1] + "." + text_ext sample["audio_orig_sr"] = orig_sr return sample def collate_fn(batch): """ Collate function for wdsdataloader. batch: a list of dict, each dict is a sample """ # concatenate values in each dictionary. if it is a tensor, concatenate. if it is a list, extend. batch_dict = {} for k in batch[0].keys(): if isinstance(batch[0][k], dict): # dealwith bert tokenizer output batch_dict[k] = {} for kk in batch[0][k].keys(): tmp = [] for i in range(len(batch)): tmp.append(batch[i][k][kk]) batch_dict[k][kk] = torch.vstack(tmp) elif isinstance(batch[0][k], torch.Tensor): batch_dict[k] = torch.stack([sample[k] for sample in batch]) elif isinstance(batch[0][k], np.ndarray): batch_dict[k] = torch.tensor(np.stack([sample[k] for sample in batch])) else: batch_dict[k] = [sample[k] for sample in batch] return batch_dict def get_wds_dataset( args, model_cfg, is_train, audio_ext="flac", text_ext="json", max_len=480000, proportion=1.0, sizefilepath_=None, is_local=None, ): """ Get a dataset for wdsdataloader. """ if is_local is None and (not args.remotedata is None): is_local = not args.remotedata input_shards = args.train_data if is_train else args.val_data assert input_shards is not None if not sizefilepath_ is None: sizefilepath = sizefilepath_ else: sizefilepath = os.path.join(os.path.dirname(input_shards[0]), "sizes.json") if proportion != 1.0: num_samples, num_shards, input_shards, _ = sample_prop( sizefilepath, input_shards, proportion, is_local=is_local ) else: num_samples, num_shards = get_dataset_size( input_shards, sizefilepath_=sizefilepath_, is_local=is_local ) if not num_samples: if is_train: num_samples = args.train_num_samples if not num_samples: raise RuntimeError( "Currently, number of dataset samples must be specified for training dataset. " "Please specify via `--train-num-samples` if no dataset length info present." ) else: num_samples = ( args.val_num_samples or 0 ) # eval will just exhaust the iterator if not specified pipeline = [wds.SimpleShardList(input_shards)] # at this point we have an iterator over all the shards # TODO: (yusong): add a if statement of distributed. If not, we don't need to split_by_node if is_train or args.parallel_eval: pipeline.extend( [ wds.detshuffle( bufsize=_SHARD_SHUFFLE_SIZE, initial=_SHARD_SHUFFLE_INITIAL, seed=args.seed, ), wds.split_by_node, wds.split_by_worker, # at this point, we have an iterator over the shards assigned to each worker at each node wds.tarfile_to_samples(handler=log_and_continue), wds.shuffle( bufsize=_SAMPLE_SHUFFLE_SIZE, initial=_SAMPLE_SHUFFLE_INITIAL, rng=random.Random(args.seed), ), # wds.repeatedly, # FIXME determine if this is beneficial ] ) else: pipeline.extend( [ wds.split_by_worker, # at this point, we have an iterator over the shards assigned to each worker wds.tarfile_to_samples(handler=log_and_continue), ] ) pipeline.append( wds.map( partial( preprocess, audio_ext=audio_ext, text_ext=text_ext, max_len=max_len, audio_cfg=model_cfg["audio_cfg"], class_index_dict=copy.deepcopy(args.class_index_dict), data_filling=args.data_filling, data_truncating=args.data_truncating, text_augment_selection=args.text_augment_selection, ) ), ) pipeline.append( wds.batched( args.batch_size, partial=not (is_train or args.parallel_eval), collation_fn=collate_fn, ) ) dataset = wds.DataPipeline(*pipeline) if is_train or args.parallel_eval: # (yusong): Currently parallel evaluation will be not precise as we are repeat the last few samples. # (yusong): See comments below. # roll over and repeat a few samples to get same number of full batches on each node global_batch_size = args.batch_size * args.world_size num_batches = math.ceil(num_samples / global_batch_size) num_workers = max(1, args.workers) num_worker_batches = math.ceil( num_batches / num_workers ) # per dataloader worker num_batches = num_worker_batches * num_workers num_samples = num_batches * global_batch_size dataset = dataset.with_epoch( num_worker_batches ) # each worker is iterating over this else: # last batches are partial, eval is done on single (master) node num_batches = math.ceil(num_samples / args.batch_size) kwargs = {} if args.horovod: # multi-node training on summit kwargs["multiprocessing_context"] = "forkserver" dataloader = wds.WebLoader( dataset, batch_size=None, shuffle=False, num_workers=args.workers, **kwargs ) # FIXME not clear which approach is better, with_epoch before vs after dataloader? # hoping to resolve via https://github.com/webdataset/webdataset/issues/169 # if is_train: # # roll over and repeat a few samples to get same number of full batches on each node # global_batch_size = args.batch_size * args.world_size # num_batches = math.ceil(num_samples / global_batch_size) # num_workers = max(1, args.workers) # num_batches = math.ceil(num_batches / num_workers) * num_workers # num_samples = num_batches * global_batch_size # dataloader = dataloader.with_epoch(num_batches) # else: # # last batches are partial, eval is done on single (master) node # num_batches = math.ceil(num_samples / args.batch_size) # add meta-data to dataloader instance for convenience dataloader.num_batches = num_batches dataloader.num_samples = num_samples return DataInfo(dataloader, None) def wds_batch_list2dict( batch, keys=[ "__url__", "__key__", "waveform", "text", "raw_text", "audio_name", "text_name", "audio_orig_sr", ], ): """ Return a dictionary of the batch, with keys as the names of the fields. """ assert len(keys) == len( batch ), "batch must have same number of keys as keys argument" return {keys[i]: batch[i] for i in range(len(batch))} def get_csv_dataset(args, preprocess_fn, is_train): input_filename = args.train_data if is_train else args.val_data assert input_filename dataset = CsvDataset( input_filename, preprocess_fn, img_key=args.csv_img_key, caption_key=args.csv_caption_key, sep=args.csv_separator, ) num_samples = len(dataset) sampler = DistributedSampler(dataset) if args.distributed and is_train else None shuffle = is_train and sampler is None dataloader = DataLoader( dataset, batch_size=args.batch_size, shuffle=shuffle, num_workers=args.workers, pin_memory=True, sampler=sampler, drop_last=is_train, ) dataloader.num_samples = num_samples dataloader.num_batches = len(dataloader) return DataInfo(dataloader, sampler) def get_toy_dataset(args, model_cfg, is_train): index_path = args.train_data if is_train else args.val_data ipc_path = args.train_ipc if is_train else args.val_ipc assert index_path and ipc_path eval_mode = not is_train dataset = ToyDataset(index_path, ipc_path, model_cfg, eval_mode=eval_mode) num_samples = len(dataset) sampler = ( DistributedSampler(dataset, shuffle=False) if args.distributed and is_train else None ) dataloader = DataLoader( dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.workers, sampler=sampler, drop_last=is_train, ) dataloader.num_samples = num_samples dataloader.num_batches = len(dataloader) return DataInfo(dataloader, sampler) def get_dataset_fn(data_path, dataset_type): if dataset_type == "webdataset": return get_wds_dataset elif dataset_type == "csv": return get_csv_dataset elif dataset_type == "auto": ext = data_path.split(".")[-1] if ext in ["csv", "tsv"]: return get_csv_dataset elif ext in ["tar"]: return get_wds_dataset else: raise ValueError( f"Tried to figure out dataset type, but failed for extention {ext}." ) elif dataset_type == "toy": return get_toy_dataset else: raise ValueError(f"Unsupported dataset type: {dataset_type}") def get_data(args, model_cfg): data = {} args.class_index_dict = load_class_label(args.class_label_path) if args.datasetinfos is None: args.datasetinfos = ["train", "unbalanced_train", "balanced_train"] if args.dataset_type == "webdataset": args.train_data = get_tar_path_from_dataset_name( args.datasetnames, args.datasetinfos, islocal=not args.remotedata, proportion=args.dataset_proportion, dataset_path=args.datasetpath, full_dataset=args.full_train_dataset, ) if args.full_train_dataset is None: args.full_train_dataset = [] if args.exclude_eval_dataset is None: args.exclude_eval_dataset = [] excluded_eval_datasets = args.full_train_dataset + args.exclude_eval_dataset val_dataset_names = ( [n for n in args.datasetnames if n not in excluded_eval_datasets] if excluded_eval_datasets else args.datasetnames ) args.val_dataset_names = val_dataset_names args.val_data = get_tar_path_from_dataset_name( val_dataset_names, ["valid", "test", "eval"], islocal=not args.remotedata, proportion=1, dataset_path=args.datasetpath, full_dataset=None, ) if args.train_data: data["train"] = get_dataset_fn(args.train_data, args.dataset_type)( args, model_cfg, is_train=True ) if args.val_data: data["val"] = get_dataset_fn(args.val_data, args.dataset_type)( args, model_cfg, is_train=False ) return data