# -*- coding: utf-8 -*- """ Created on Tue Jan 10 13:32:52 2023 @author: Bonn_arts """ import numpy as np import pickle import streamlit as st loaded_model = pickle.load(open('trained_model.sav', 'rb')) def malaria_prediction(input_data): input_data_as_numpy_array = np.asarray(input_data) input_data_reshaped = input_data_as_numpy_array.reshape(1,-1) prediction = loaded_model.predict(input_data_reshaped) print(prediction) if (prediction[0]==1): return'outbreak; control measures: vector control, case management and vaccines' else: return 'medium threat; control measures: antimalaria, IRS, ITN' def main(): st.title('Malaria prediction web app') r = st.number_input('value of Rainfall',) m = st.number_input('value of Min-Temperature') mt = st.number_input('value of Max-temprature') rel1 = st.number_input('value of Relative humidity 1(0800hrs)' ) rel2 = st.number_input('value of Relative humidity 2(1400hrs)' ) mosqp = st.number_input('value of Mosquito population') case = st.number_input('number of cases') diagnosis = "" if st.button('test result'): diagnosis = malaria_prediction([r,m,mt,rel1 ,rel2,mosqp,case]) st.success(diagnosis) if __name__=='__main__': main()