import gradio as gr from transformers import pipeline get_completion = pipeline("summarization",model="sshleifer/distilbart-cnn-12-6") get_ner = pipeline("ner", model="dslim/bert-base-NER") get_caption = pipeline("image-to-text") def summarize_text(input): output = get_completion(input) return output[0]['summary_text'] def merge_tokens(tokens): merged_tokens = [] for token in tokens: if merged_tokens and token['entity'].startswith('I-') and merged_tokens[-1]['entity'].endswith(token['entity'][2:]): # If current token continues the entity of the last one, merge them last_token = merged_tokens[-1] last_token['word'] += token['word'].replace('##', '') last_token['end'] = token['end'] last_token['score'] = (last_token['score'] + token['score']) / 2 else: # Otherwise, add the token to the list merged_tokens.append(token) return merged_tokens def named_entity_recognition(input): output = get_ner(input) merged_output = merge_tokens(output) return {"text": input, "entities": output} interface_summarise = gr.Interface(fn=summarize_text, inputs=[gr.Textbox(label="Text to summarise", lines=5)], outputs=[gr.Textbox(label="Summary")], title="Text Summarizer", description="Summary of text via `distillBART-CNN` model!") interface_ner = gr.Interface(fn=named_entity_recognition, inputs=[gr.Textbox(label="Text to find entities", lines=2)], outputs=[gr.HighlightedText(label="Text with entities")], title="NER with dslim/bert-base-NER", description="Find entities using the `dslim/bert-base-NER` model under the hood!", allow_flagging="never", examples=[ "Tim Cook is the CEO of Apple, stays in California and makes iPhones ", "My name is Bose and I am a physicist living in Delhi" ]) demo = gr.TabbedInterface([ interface_summarise, interface_ner], ["Text Summary ", "Named Entity Recognition" ]) if __name__ == "__main__": demo.launch(enable_queue=True)