{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Calculate Intrinsic Value of a Stock" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Import Packages to Extract and Present Data" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "# Importing required modules\n", "import pandas as pd\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", "# Settings to produce nice plots in a Jupyter notebook\n", "plt.style.use('fivethirtyeight')\n", "%matplotlib inline\n", "plt.rcParams['figure.figsize'] = [12, 6]\n", "import seaborn as sns\n", "import plotly.express as px\n", "\n", "# To extract and parse fundamental data like beta and growth estimates from finviz website\n", "import requests\n", "from bs4 import BeautifulSoup as bs\n", "\n", "# For parsing financial statements data from financialmodelingprep api\n", "from urllib.request import urlopen\n", "import json\n", "def get_jsonparsed_data(url):\n", " response = urlopen(url)\n", " data = response.read().decode(\"utf-8\")\n", " return json.loads(data)\n", "\n", "# Financialmodelingprep api url\n", "base_url = \"https://financialmodelingprep.com/api/v3/\"" ] }, { "attachments": { "image.png": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABvIAAALxCAYAAACO1jFgAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAP+lSURBVHhe7H0HoCVFtW1NghkyDDkj2QwoIFkMBBWQJIgRA+EhBnIUJSflC08wkEzAgCI+RXw+lZwMYERylJxhcvp776rVp3p316lOJ9yZXudWr1q1dldVd9Xpc+7t292j5hJMi3ka02YaM2UG5/yhHkWp1R20emRrjZivUbe+sv1rGv1uLwfcPHcjBPiDZKCoD2jdYt4H5gXgzxOfgZBfkPmb2KgCcV0ZIC31ORlFgXg0UxQ6vmmt0XT90JqBqvExH8jEU0bmh0PG16zjndaMFar6pRjVldCAlLc8cpkyMq5aD5LRv7K65eFnysi4ldW9ZG6H2yvqQ49gBorGDxsDtX0q4HEFknGnvMTDdwWJr1j7ZeNTTJbA0xLexQckzmYF/dYadf2yGLb2MgHQw8QtRg4wbkC3ce0XA1q3GDwwTkBI95KBsnqEoz2RN59g9hw+mTfXzJxN85dGPPWFjnyZ17q89Vt/yHyb6fjNamQ65RlfChyxdEjqc9A6H159EdjmYvF1fQ0dX1ZrlPXrxtfVGpF4zB8gpLFaz7TmWLynJQN4OuYLkooUA035QNH4GANV/brxdRkoGh9gzIeyepCM/mutOea3PPyMcY/5g2T0J6ZbHnmMcS6rUww75PeYE5BGP1MMVPXLxgNV48v6sXigKa05hKL1ARW0zAMnfc1hyTyB1qz9slqz8wGUh6DjM4hWQMn3y8bH0HR9/UaB/rHNYSFoH7qfDMT8FsMPjBuQN579ZkDrFsMHjBuQN579ZkDrmohVV9YfFq0ZaMSnAvlaUVb3krkdbi+mNbcn8uYv2Kvz2iFv0WKeA47sRZH6JBgSBor6fQS6EULM1yhbX934fmnNQFEfyMRTRr7QlNXDxNwv9M/nmN/yyGfKyDjHdA1Gg0XjM2xXj+sAA73yy8YDVePL+rF4oCmtGSiksaKjRBNjvAv5TWqHwr6DC0vQlNYcQtH6gEFrjabrz9VcwBlHUR+aODgfeq0dMpqSFx73HQPDojUDvfLLxgNV40v5lJFxjOlBMveD+6N1y8PPlJFxi+l+MrfL7ZfVfWSgKR8YtNaI+hTA45CgaIO9ZKCsHkpgw0KI+WVRtr6a/dMTKKMpsUzY+ZW15hwfgC8ZYH7RmoHi8e2JvPkQuDpvxuz8adFyyyOSKVPqcwR6mBj9jekAA035QNNao6wfiy+LputrBNwh7hhQVQ+SgbK6xQCAgWsIurqMpgI+sAHwg+ziK/sFGBANw5Gvc9G0Xze+bn0addtrSmsGIlrPt5ifzCfN5HFYUGsu63fRknGUaMSFNOD5KQaq+nXjYwxU9YeUMb519SCZ+4H+tDxvM8Y9pgfJ6K/WLfeJgQLxGLdaGtLzu3IkHgj6xFyBju9UrBgI6Vh8XR/oldYMDEDLODkZ9QlsIywZZ10O1n5ZHWAA8UHoFTQyFVKqU185jKKXvWNUPur2vr5O9y83ngs44wgyYe2TTobZMVbQ5Y2xrT6uW26MgaimAh4HIKjdinW1z+2JvPkY02fZE3p2BmBmhND6rT/MfouBg4eHhwkI6WFiQGuNmN9i5AHzAIjo5IsUAN9xty9aVVjXl1s/AN/JDHJ8VAP0S2sGivpA0fgYA1X9gTFleD5ktOaY3yRzO9xeUR+65ZHPlJFxjelBMveD+xPTLY88poyMY0wPkrkf3B+tWx75TBkZV10O1j50hLFCVb9rPKSnARdWm4GmfGDQWqOuXxbJeAJowHHML8t6/uRyCDG/Rf+BcQPyxrOI3yQDMd1i+JA3nv1mQOt5HO2JvPkcc2j0p0y3V+fhg5onhLwPWt3qYdQl2K4Y1rH4jO8Qis9oB1ecIKNVvIaOj6FsfH/APeKeNYWy9cXi6/oKPKA8sIBePeM7jbgMl/W11qx9ZByV0QKtNWLxw6I1A/3SmoGmfKBovGPMl4x2gM4weRxW2I/Fd2G7YkkNeH7LI48xD2J6kIz+xnTLI58x7loPktG/mB5aBorGN81Ar/yy8UCFeMwL+KIhQ75mHV9SA0HtVtB+Bi4uwaC1Rq/ri6FufWX7R2CbwwDoXKZMan5ojvkFGYjp0qhdQYIb/jnN/PHBaeb+p2aZZ1+ZbabNbKbeFsON8eNGmWUXH2PWXmGseeea483WbxzvnMHihn+187EfSI3/G9LjHzu6lPVDWjPQK3+omDLyMaPLwdqH7iejP1q3J/JaMNJX57Vo0WKeh3wC2KwAWjMQ8gfJQFk9AoHNDiHma5Str277sfpqayqQLziU53JoIPEVY4WQXzc+xVjd04IuvuiWRz5TRsa1rh4kcz/QH59j/ghhoGh80wz0yu/KlJFx9LRkHOVpPT+skS0v6pdlIKMpeTKoNQNV/bLxQFWtGajql40HqsZ39alAxtXTCEzNA89PlSdGtjzkR+MdknLKc3HU7xEDTcUDIX++ZsrIuMZ0P5nb5fa11hzzW+49U0bGQZc7vuKW183Vd042a68wzrxr3fFmvRXHmRWWHGMmLDCaXG99xagg5JdiaYkQ8wkkRWsGQjoWX9cHtNYou35ZrRHzp8yYY555eba55z8zze33TTP3PTXT7LrxwmbPzRZxEREU7WBBnnTr6+ZnNB/XWX6c2ZTm4/o0H5fn+TiO5mNoPaCo3yLBVBr/p3n8n6Txv9eN/yY0/u8qOP5lgXEBiuogU0YOFLocHPMpATEtwIpFEYsv69eNr1tfB+2JvBYJ5Oq8GXPlpB5PF0ybllueJ5gyqc+RkNYc8/vJ3A/0x2fta90jBkI6Fh/zgaa1Rlk/Ft8TcIPccAjahx4mBmJ+i3kPGOcQtJ83P/rNQFndF6CjRRGLL1tfDLq+uu2X9WvG44MXSD6IKc/FmdUDfsLar6Al46iIDy0YlNYMVI2P+UBRXZeBqn7BeIy31lFGNVX9Loz+aa055rc88jlvfjDH/F4y+ldWtzx8jHHVepCM/mldgh98eob51rWvmeWXGG322mJhs8ay43LjesNAU/FAyC8bD1SN7+JjHOGLhuyXVuzh4WdnmstvmWyefnmOOXjHxcyay411DgMVAfW0/wy5B5+Z2ZmPm9v5GH8GXjm/vI5tTSw+3+9wfvs6DhCfxkuGTTQxZULDGmevPlf+UGr8FzVr8jgE13fM/eD+aF2b8/dHPxjolw/U1lTA4wAU1qhIcTe/PZHXIoMZfHXeTGPm8Jm9BJg5QKtbPUit0bQfiy+Luv3TaLp/MRRoj20OA6rqQTJQVrcY+cA8CEH70INkgLR80XMyGl8AWA0oqzXK+r3WGvA1A1W1ZiDkl40H8EU/8QMaSPyajAYq+bC11hzzWx4+poyMW1k9SOZ+cH+0bnnkM2VkXLUeJKN/ZXXLCQNV/brxlZkyPK4AtGasUNSvpSkriGmCWy2B1hrwNQNV6wOa1hp1/Tz85eHp5uuTXjKff/9iZscNFnKlFVF2A6GbZKCubpHg2rummO/+9lVz/B5Lmg3XWNCV9gC0///yCM3HK2k+vo/m49tpPvK4ADw+ebqXDJTV8xCuvduN/+49Hv+6wLgBId1PBrSex9CeyGuRC54VuDoveV9Qhr/4Zbj1W39AvjWgkcnG5ccX15oTH4AfgI1HBSHE/LLQ9dVtv2z/ytZXVmv0ur2I5vHlgQ4BfobJ49V6pj0Ww1FevM24ci9e4PkpBqrqGAO98uvGxxio6g+IMT+0HiSjf0V9f3taHtmMcS6rh4n97Wl53uLQuMf8UozqAj4Q9Im5Aq2DDIR0LL6uD1SNB0JaM1DUB/qtNXLiZdydLKO5mmTeQGvWvtaanQ9EfaWTQEDrGGLxdX2NsvExNN2/BsDNcbMAtGYg5DfJQFk9ADz49Exz6A9eNIfvsoR51zpD/Af6fgHjGIL2ofvJQEw3jNvum27OuOZlc9YnljJrLsdXbDYPvhJP5uPOI3Q+YpyAorqXDJTVCjL+v6Dx/7gd/0h4435IawZ65feVKZN8rRkUoz9aa25P5LXohhmzjZkyfa7cdrNFixYjCDjSA1X1IBkoq4cQ2KwQYr6Gjm9KawaK+kDR+BgDGZ8y/AUHSH0BGhRzPygV9qFbnveZMjLuMT1ABpJyynNx1K/IQEjH4uv6QNV4IKQ1A0V9oGo8IBorOor6pDPzQ4w+aoeMpuSFZ3wNxAHDrjWarr/XWiM3ngs446iwJi48fyJaMxBc3yGjKXmyMa0ZaMoHqsYDIa0ZqOo3zYBoKpBx7aIl4yjxPbZGtrwxttXHdctDzwdf+ILZfsMJZocNFrLlZATHvV+M/mndhYFYXFEGmvKBolozUNQHtNYo6/OVedfdNdV8a9+JojFuCbBCgJP4gH/wRTQfN5jQuRIvENeVAa37AnRkWBHrX3efr8yT8f+0Hf/y9UXikwMB5TkswzFfM2VS8cg4KuJDC7TWiMUPi9YMVNdjTiBIrkWLHIwZbcyC4/j+uMbMmmOnDaZPyy0PNVNGf04U0oNk7gf3J6CBjF+RgZCOxcd8oGmtUdcfkeAN4g0DoDUDIb+fDGjdYt4HDnQA5gXgz5OeMGXkwKnLwcg46uYXQixe+2XjNer2r2mtAV8z0GedmY/QLi7oO0C78Oo6xl3ixQCSQMVA1fgYA73ye81A0fg+McZZa80xvw6jPyFdNL7lkc8Y57K6n4z+xnTLAQaKxjfNAGmMK3zRkCG/LOfU5zOgdWdFyzE/YYtJt042M2fNNZ9+92Kk8uLS8dW1ZqCoDwyb1siJl3F0sozmapJ5ENKaC/pAWU1Ye/lx5u5HppsnX5pt3rTyAlSS9rsDHcnHpNswHxd1Jd2hnymn0b21uK/RdHuFNBdwxhHrZJgdF/JzyqvwWsvR+D9sx//Nq4yz5bb6Thx0y40xUNungrxxRWBMa/b99oq8FoUxk6/OmzHXzJ7jClLADAuh9Vu/l36LgYOHh4cJCOlBMlDUbzH/AvMCyJsvXfw6X8yCPmUF0DoO0PEEhAExrQFfM9AvrRmo6teNjzFQND7IlOHxLuxDD5LRv7K65ZHHlJFxjOlBMveD+xPTLY88poyMY1ndT+Z2uf2YbnnkM2VkXLXWHPObZG6H2/O0IOYTpDyHgapaM1DUB4rGx3ygl3qvbz5jTtlnKfOGZTu3SdTxGlGfAnjcEmCFQTKgdYtKePjZmeaon7xoLv/Scq6kGex1zjPm1I8uZdbw5mPXce0XA1rPp+jV+BcCxiUE7Yd0kwyU1fMY2ivyWhQGX5033rs6D18cWMv7pNWtHoT22BrZ8pBfNx7QGnFAxldQ4RldF8Xq4wiOHFbE+td0/3V9NdvnCcATAYhVj3iUZ1j7ZbXmHB+ALxnA0zFfUFZrNF1/Ua0ZqBof84GiWjNQNT7gY36gPKgdoGsz1UVUybdGVmuO+S0PP2PcY3qQjP7GdMsjjzHOZfUgGf3XesQw0FQ8EPLLMtBUPFDUBwrEy7ygrNhFteayfkQDWieBDjE/ozVi8XW1Rt14jVh9ZdvTKNA+xi8XOT5Xh2oz7MV3jSvKlPHnB8qBzPzpHW745zTzytTZZteNF3YlLSoB4wtAD5J7jCUWHm3+9uh0M5rm62rLjHWl9XDDv2g+TpltPjy/zUeMG9BtXCOcHD7q+g4ZTYmljP9j2fGHDzSlNQNV/RHFlJFxKKt7ydwOt+dpRntFXotK6H51XosWLYYO8glgs7nQPnSMgaLxdRiI+S0ywG4Koaw/KK0ZwBceoKiOMRqq6ndlrK615pjf8shnyuTOk5jfT0Z/Y3oeYaCpeCDkl2WgqXhANBXIuHoagal54fmp8sTIlof8aLxDYZ/yXBxioKgPFNWagap+2XiganzTftd4KpBxg2bDAb5kHPnjnoy/GNnypvxMvENSTnkuBgO6PMRAVX/YGSgaP1RMGRnnmB4kcz+4P1q3PDR85i9eNm9aZYHOs/HgUyZ3XGN+TUYDoiE9LSjrewwMm9ao6/cL/Ky8fz4+wxy20xKuxKHsDnAa87HWs/FCDJTVLYLgZ+XJ+H9IjX9dyBuYB8KBxwPj0hemjBxYvHIAvmRCiPkaZeur237d/oX1aFm2aFES48YYs/iEUWb8ODudGC23PNTsMlF/kEyplB/SeUxUyof2mD1fC3PG1x7nxnus/ah2KdGOE+0So0kdS4y8ciRGXnmtRIsymheSD3BZvxGNVEJrRmJU0THmbB2/K1vKas0xfyQyLSrpQTJniugqzNk8Tvy53eN6zp2nVCTllrJ+Lsd8zWXrq9k+bYQuB6zfKbfaxaPc2ynQljta4GnLIa0Zfocl40jKI1oyTMKe73TKp0zKlwxzR2tfM/9ILlXe0dqPxjukfa89gVcuGg50h4GiPpDWZevT5XCUTxuR8hPd8YGU77Ggi9YsKO3LT77PmS4sgdAkUA7Wfm68x+LnlDflZ+IFXjm0Y4tseYgtqvs9ZdrIUn6OFqB8EMyZqky1FNKDZKY8PRKZNqKS7iVzpqtPuZTO8v1PzjTrrch/OFM+rZXLMT/FnCnn07KjmZTu7ruX9hPGK6RRCo0XdFm/Szx10te+yvVFdzjxVXma6dVNIxX1XWIgv96KY839T81M+/LT0baoo7O+KGGua32aj9D8sj9ltOWM7172x9e+yvEzrH2ri/t1mXLU51I+dC5TrqsfZn/8aZH2g5qzns5jG+TpfrNr3y+XpedD5zIjrzzEDJsv5lvd8Tue74cSbUK6TAq6MVFB3Z7Ia1ELCy0wyiw+fpQZO4YfR2phudWttuiP1pzju0ym3C0TP5fL+rH4AFMq5SfatQfdI0aqFE+kWfu5mnhgGklrlXihy/zEyCuvlWhRSQ8TI5XV/UhV+zhIRuIF8pxokeQDmpEqU4mRVx5KjK6aFpV0gLXflE4xUhetGamor3WH7TEeKesr5qzL+1pz1E902c/AHF9UyOcIx5Kx8UiMNHv1uWV+XEGfGu3ua+3iUd641gzfY874flEt3Cut2fmUKaQ5V0rHmHJFfauU1j7n7DKfY37BeGo05Sc64ved5Sff58ywMPWqkB4kM+XpYWDqVCk/pAfJnCnJo5TWXNinXqS0Zu07rZmWXbXmUj6T0toXzbLXmhrtpmU/5fkBjvmFmDLQLLK+S/AR7/Gzr8w2Kyw5JlMeY174Op+RSPPL90XLMu3XYlkW95MXtIpPXspPGK+Q3yUefYFOvXJ80ZrplVse8pVGKuq7xEB+hSXHyhxK+fzjaSnydNbvJK5r+WQ+2iTx/MrTVnS0+LY818/VlmN+h53vXvaHFrLM8Z2T+LWZctSXUj50LlOuqx/mFZbojD8t0n5Qc9bT/WB65epesixL+F6C1lzWDyXZD34ZdAPc3lqzRWOYOmOumTrTnjDmOZYweTzlMuWt3/o1fWtky0N+d41MpzzjS4GjjM+Ghdb58OqLwDYTi6/ra5Str+n+1Y2vqzUi8Zg/QFGNahrTmmPxnpaMozJakFSkGGjKB4rGxxhoygdC8U0zUDQ+wJgPRX3oQTL6p7XmmN/yyOe8+cEc85tk9Keubnn4mMeHx6lsfIphh/wecwLSfn9jfsJAyC8bD1SNL+vH4oGmtGZgAFrmgZPdNK+WYe03pAGUAxmt4jPQK2jEGtCI+RpN19dv9KB/XB2qHRYeAuxw8tPm18cs71SLIDBuQGhcgZDfJAMx3WPscArNoaObmUNN1jVUwLgB/jj6DIT8JhmI6Qh2OJXG7KjOmMVWL+sPi9YM9MSnjHzN0OVg+L1ktFfUh55XT+TxZtkzoBa8lfyHcH5IJDB95mwzbuzoVFmLepg1xz47b9ZsV9CiRYuhwBx6T86ZNZd4lJk7h3iO+zQYyaBj9+hRdKwfQzyGju/Czusz5APVZgshFq/9svEasfqa0pqBoj6QiaeMfIEpq4eJuV/cv7K65ZHPlJFxLatLMBosGh9lW11WBxjolV82HqgaX9aPxQNNac1AIY0VHRXWxJgPfdcOGU3Jk41pzSEUrQ8YtNZouv5Kmgs446jQfOi1dghpF571KUm5YmBYtGagV37ZeKBqfFk/xZSRcdV6kIz+xXTLw8eU4XHa/qSnzHXHrhD0M7qfjP7EdB8ZaMoHBq01oj4F8Dgwtj+Z5tAxK1gBhBqMcFJXwfiuDMT0UAIbEkLML4uy9XXitz+FxuxoNf6x+vwJxNDhGa3jnUZcVGvO8QH4knGU0TbbgecLRqrWDBSPn+durcljf8vdz5jvXP2g+d/bnjRz5sw1k6fOMt/4yb/NqRf901xzw+Pmyt89Zi7+n4fMXkffZq65/gm3pjGTp80yr0+bLbunRTWMpRm12PhRZsICo5L92HLLQ8EuE9XDxJRytWbO5pVTmjVjrpn+uk0zpxkzeyafzMMKIxy0DXPm2G3ibZs+mbaT0izSbvMLJUZeeZnEyCsPJUZeORIjpWnha514kSqDdsyLfugUI3k65iNBJ8zZKnqY2FJ53RfGfd5jcRWZFmmt2oMfZBefKQfH/ALMmURTfV21FHns+XlMmbR2nGjtO825XNY+LSJ+WmvO8S11fFEoz2qgV77WQFEfgEZJrk8bnYrzdkraV9pjAVFax/wumjOe1mx9rW025TOL4fmJjvi06K6JUjoWX6I+gec72JznO7aorjVbZFn7lbTdKM4U86GJy2rN2i+sOZOnHRf2mVnkaVoMTAvC2pbk+AG2GB6t2aKgTxud8u1O6JQXYEEJX5ATl/ic8cuVTvwiTMG5epDMVEQPjDnXze/CtBGlfNGUQ3khplwtXzEly9CaPZ/WwnUTQigHw09pzZwp45fU9CqkWeay9utr++royj5thP9KtLDnO+7ul9W6PsdIiA8mCUi0DU/7tMzXudzxk7qcrsL2x3vBdy/7E35pt3mdLsmP75Qil2bl0zZqlldOeT4TFYoDEyWacsyUUj50HtuVPK19rXW804gjecvN15vTzzjB7LzztmbiMmPMxKVHmw02eoPZYMM3mJ122dacfvoJ5uZbrg+szyW+loAumkt89vw+aqSMLwWeX1hbTrRkumnNc+e9K/JeeGWa+eLZd5v/PDfNjBltzLJLjjN8Zd6zL800C08YbY799HpmrZUXJT3VHHDG38yBu73B7LbtKubux6aYi++YIif+DtxqMbP+Cgu6GltUxWy5Os+YmbN5iuEMcgit3/p1/BYafLJu5lR30m4+BF+ZN27CKDOa/10F00czUFa3mPeAeRGC9qEd8zcp/oczXV6VdX259QPwnYz6BFQD9EtrBor6QFEdY6CqPzCmTOofHIvqQTL3g/sT0y2PPKaMjGNZPUjmfnB/tG555DNlZFy1HiSjfzHd8rzPlAnOE4+xQtH4GKfqg9Rac8zvwkBTPjBorVHUxxV5MUTrowAZT0CtEPQDnMRX9IWBsrpFKeRekVcWbtwyV+QBId1LBsrq+Qz5V+T1D6ef8TVzBiXGqquublZdZXWzCvEqq6xmHn/8USl//LFH7Ek8Asec962LzOZbbJMe76YZ0Hoexzx5Iu/gs+4yTz4/3SwwdpS54uSNzRKLTTBTps40r0yeYVZYemGJe/bFyeacy+4zp/zXBqKv/fvr5qd/nSr5d685xnx0kyXNqNGjzF2PTTFPvzrHjB0z2qy9zFiz+sQF0h+OLaKYNnOunNDDF4HkfdfqVvdCe2yNsI7Fx/yodshoSp7M+Bo6XkP7coWaPZzN9xg7gdI47CHmEOr6GpF4HnAeeAAaq2W4rq+ZMql4ZBwV8aEFWmvE4vutNeBrBvqlNQNN+UDR+ABjfgDJfFEMhHwiW21Il2D0r6gvGvD8lkceY5zL6kEy+q91yyOfMc5aa475TTL6V9SHHhoGisY3zUCv/LLxQIV4jDt80WISQr5m2A1pIPEVB4GKgEFrjabr1zqGWHxZv0A8xhfgcKzms8CLz42L+QUZKKujKL5C+4y8iuDdy7sZKKqbZKCoD2hdE+0z8ioA4wQU1b1kh8zHW8Sv+4y8kNYMQN96yw1ypR1j8823MYcfdjzx1sH1H3v8EXP5ZZeay6/4gXnssUfM3nt/0pz7rYuC8UPNlJFx0HqQjP6N9BN53PmHnplillx4nFlqkXGycU88O9lc8ZuHzHs2XtFssN5EG6jwzZ/cY/Z83ypmpWUWEX3TA1PMD++cbObQ+msuNcdMnTXWrLjoXHPXk3PMLH6WFIHPAX7x3UuYFZcYJ7pFcdir8+aame2z81q06Cn4VprtSbw0xiUn8+ZdyAe6zRZCLF77ZeM1YvU1pROmDH/hAVJfgDwGQn4mnpgbKBqfYqzulafq037HbnmkM2VkXHU5WPshPUjmfnB/yuoRwkDR+KYZ6JXflSkj4+aVA/Al4yiJ9xgr6vKiflkGMpqSJ4O+ZqCqXzYeqKo1A1X9svFA1fiuPhXIuHlaMo7yfIxzMt5iZMtDfjTeobBPeS7uFQNNxQMhf75mysi4ltX9ZG6X24/plgfGwWfkaaYMjxuQGmePsULIL8td6yMLcGFRBprygWHXGnV9H4WuyAt1UHGjz8iLMaB1i1LoyRV5GKcATj/9a+aMM79mr6479yKz+WbbqPGljBwooDvMJ/Quu+wSWv/rsv41P/+9XMWn4xLo8lwfRlHE4sv6dePr1tfBiH5G3qzZc833b3rJnPLbyebYX75snnp5usyjVZZb2Bz6ibfknsTjW2de9btHzW1/e9E899JMV2rMFmtOMF//wOLmxB0XM0ftsJw5/H1LmJenj0pO4jGen2zMfc921mlRHHyb00XHjzILLdDZnzwtW265b+wytfUgmVI33Z7Eywfvk5ldnpvHyCtHYnTTw5B4kSoLace8EI0E7ZgX3XQsPubnai+ldMz3dMKcdXlfa475mjlbJC6XLaXKORv0Lc0fTItCepDMmSI6jzmbVw7mbBGdMO6bH/I1x+IL1GepoLbHW5srwrH4sn75eEBytBEpP6Md22zHR3mGtZ/VAk9b7miBpy13tMDTUsRaOKIpo33O+77WljtafM6l/A7n+1prDvtARntLRsjXDKTLO9pCr9fxNQPd/XC8hfPtRnAm0YhL+ShPfI7gRcCnRVp3WJBTnvic6aK5KNcPcMongXLomK9Z4nPKQ77WmXhBCR+6R2zRXLxF2O/KtNGVdD+ZM0V0HlNUJd1PZiqiRyLTRhTS/WTO5GnNvm+z+XGcgaa1rExrzbTs6ndnzqTLaZkT5zh5QWvmXLocpbocjn1Ba8YrpFEKjRd0F582KuWLxquLduvFtOWOzvc7LD4S4hLt4lyy4Z5PRRmdqsPTwh1tKwv7/LI/Ha3Z/nR00Hcv++Np6UI37as8HYvP9zusfat1HF7i07alfGjN9OrqC1Ouq18wnlIhncf0yi2nhJN4W2y+jfnLnx80m2+2dSc+YT7Z5z8Tr+Ovuspq5vDDv2ru+suDFGXMzrtsax59/OFMHGXSmpjL8n2G86U0nzs+w9edvNUMX3fyVjO66U7eaoanpaCAlkyWu/kj+kTezDlzzUvuj9bTZxlzyW2vmKdfni6aJ99/XpxqHn0+/Vft39z6uPn2Tx82z70y03zrigfkxB6Dn6O3/OILmBWWtM/GW3DcaLPIgtndM8vFt6iG8eOMWWKhUXLbU5zSs9zqVls0ozWT7wqS8pTWfpf4SuzVV8l3TMlqF59oOubNsSesWuRjFu0b3key23i/eSz70VKqPORrPRSJFoW05pjfTw6lmN+PpPsQ0pqRQn5DzIjGlUiMvHIkRjetEyOvHIkXhbTjulozfM0pHymmuSDA2tc6Ft9h+xmAxLDlae74gfiEC34GKeZsvu/aS3QOW+rEiyrg57L2a8ZTo921Y5vt+CjPsPb7oDnDWnhQ2jEZVjs/pDNc1i+rPWbiXFetmXN2Wc0vGE+dKKQ1c1YWobiY34U5U0UPgqkXhfQgmamIHkamTlbSNZn/dlMkTpgzES31obwBDtZHrTInvtOao36T2i1La5ZKa4avWfshjXGG5k7kasd1teZcnzIpH1qzF+9CE51mpJDfhflVxhcty7TflWVZw1eMV6I14xXSsfguPjWa8kXj1UVjvUa0YiTEJTrtM3zNRVW1rax7vPiZPnXY/nR0zC+vLeOV1S7evdKKdb7fYe1brePwEp/6kPKhNdOrqy9Mua5+wXhKhXQJvvXWG5KTeNdc8/uMD95wozWFzzzz6+aggz/DLabj6LXqqmvI1Xh8m81ddnlPUt6NaVHdRyqrRTWsqY1COsDd/DEnEEiNSIwdM8rMmTPHPPnKLLPy4qPNR9+5mPnD/VPNHQ9PMfc9Pd1c+sdp5oYHppuFx801b1hmAVnn+Zemmev/8oKczFxsoTFmzuxZZtZsW8+/Hn7FPPSf18ySiy5oFho/xkyeTmVPz5TbbTKWnDDK7PjmhcziE8bYghaVwPNvgbHGjCaeNVvOKfN0lDFhL8Ot3/oB3xrQyGTj8uMb0IArT6C0jUcFIcT87pg5Bf+10SKEuXS8GZNcFaz3d9NagQcHE8dnICmnPBcPTHssBpAEKnYUjAdCOsZAr/y68TEGqvoDYswDrTXH/H4y+q91yyOfMc5FfX9eDAvn9Zs55rc8/IxxLqtLMVav6ivurBBgIBZXNB4o6gNV44GQ1gwU9YERoGXcneymebVknkBr1r7Wmgv6gNZJIKB1DLH4ur5G2fgYmu5fD8DNczeAorpJBor6A8CPb3rd7LOlfaRPixLAOAJ549tvBrTuMZqcQ/PtfOw2rr1iIKYj+PHNNGZbVB+zWHO+v8GGa8pJvJ///HeupOODzzjja2aHHXc2++/3RbPZ5lvLyb8ddtg5E8dYfPEl5Paal11+qXn88UdScYBebyBMGfkaUlY3yVwv16+14hF5Rd5MPvtD4I3Yau2FzXbrLmC2e+NCZtWJC5p9NlnCfGzTJcy4caPNrDnGzJk7yrw4eZbEMzZ5y7Lma59b3xz5iXXMKQe+xWy0/jLmpVenmW9fdZ859oJ/mq997x4z6bePSOxWay9k/mvrRc2blzVm+/UWoPxiZpUlFzDTqeLnXrVX/g0SN910k3nrW99q3vve95p7773XlY4cLDhulFl8oVFmwbFW82TNZUpTJk82xx99qHnjWiuZ88/7hpk1a1bKF9brBfyXXnrB7LHLDmbpRUebs047qfT6w+hPmzrVHPqlA8zERUabPT+8g3nxxRdKrS/sMtOnTTWHfPEA2T/M06luBvu833n/8zjwePC46PVj9Tfpc7aj3f9AeL5m7dfWSBHNkP55ZdkU88Np9qy5Zk77/MkoeB/NnjnXjo+8mJGa1unEAyV5zS51fFcW0ZzpjbYsmj2XOtpyR1PqEs+mr5GgY4wEnTBVzIwEnWHt0yKlMywhvGyIKRfymSRnl0GWTBe/F0yN5mrNMb+fzJk8PYxMvczVA2SLEj50RbYoGG8b5Uy6HKx90poFXbRmQQ2tWTKsNQf8YHzAr6VZKC2sfZT3QwvCWrNFlm2ux9p2gjPlNLHWmjs+pZS2XNy3nGjOsHac1TZ1dLF4lJeqj4WUddOWU34NrVn7/JPSLmU0yx5om2vId9vWTUtO2GrxvfKO1r7Wmgv6LkHzd03LMR3j/HgkJsok5bnru74m5Yj3WHzRRDl+dSYq4tNrYEydqKSbZEqlfOh+Mu8BYV0e4JjfJNOrkO4h45XxqQ/+C1oz97Wb1lzLR9KaktY60SJT5idaBLWF8pWWl6cTX7HU1MUvxXiV1Y28ZAuKv3Tfe852P6fKU9rzI8mOWSxe+x3NIu1RkjqZnU+vLxz8GWnr3HMvyvXTbP3VVlnD3HLLDaLzfH7tvfenKH1S4m6lpH1oyljtlmmtmdGgloIKWjJ5DF+z9j1Ni1wt3NEj7kTedX9/1Xzlpy+Yfz81Xc5QMiaM4+2xm8LbNmHcaLPRquPNakuONisvMdqsu/x48RijR48ym799WbPdu1Y0Ky27sFljpUXM1hstb97xxmXM7Dlz5eq751+xJ+nGUOxbVhxv3rziAmb7Ny9i1ljansT71u9fNMf+8lXz/GszJK4JnHjiiTIgsbT99tubF154wUybNs1cfvnl5u9//7v53e9+Z372s5+5mkYW+Kq8RRYcZRamRJsncMOa4n/98+/mB5d8zzzz9FPmqkmXmccfeyQ3rgwDReL5hB+fJHv/u99l7r33nqQ8xP/8x9/MuzZ6k6xzJq2L8n4wUDQ+xIBfzvud9z+PA48Hj0to/UEwn8Dkk7S83/PSWqssbfbeYyfzo0svNJMnT07WE3aZgTKlbj4SNOJn9/n/Cn71lynmw2c/LemUn79Ex05neDj7ly8nMX7a7RtPmy9c8ry56d/Tkn1/2/3TEp/zvcRsOmy7XdfXxMgrR2LklYcSLyppx/3SKUbytPa1Rkr5zJx1eV9nWPtaD5ItxdllonHDzLQRaa39gG6MXfuZcnABnzOsNYvvaeEu8cyUydWcy+W6vmYd7wShsC8Kjtaa4XcYSJeHNdCUD0iONgrlIR9IaaKQttzRAk9rFmS0/KTKE58zjjqafMf5vs12tItHIJPTiEv5KE80UUo36AvCWrNFlm0upJEL+f3XlpRfVBMPTHPGK4eWophmUUTToimtWfsZLcjRji2a05otmvMtCsbbjeZMMZ+0ZkFOeVG/NHMmTzsWA5oEynOZg5XWLH5Oed+YaUQz55ymjUr5omN+WaZcGZ9S2lesfc6kWByrKapT7ukUUyblc6aM1hzx6VVIs+yRti9ozZ0XdL6fo2kjbC6t7cvzhT1fac3atzrrCyNl4gO+l3xtoXyl5ZVoL16xOF38fJbobDleZXXk5XoXfFk3HKOdSpr6jPKuvsfySjSR8tMc84kpWS1ZT2uf2fOFtVZMtmXoueayyy6RE278jLs8H7z3Xp8wZ/AtNb/wabPBRm8wm2/Oz9DT8Wl92GHHyy02L7vi0lxftCjO5WnNjOY1Unm/44mWgCzbTFzzj699f8SdyFtk/GizwBhjbnngNXP5H18xf3l0irn54Znm9oenpp5ft/rSC5pD37ekOex9S5i3rNw5kRfCpm+ZaD7y3pXMLlutYPbZYQ1XKrvLzJzDf6UeZW5/aLKZ9KdXzEqLjzXrLDPaLDx+cLfYHD9+vPnIRz5i1l13XXrTbG523XVX54xM8FV5S0zgq/NGyclYhs9vfNNbzT4f39cssuii5sO77WlWWXV1FZe/XoezPhDy8+L//Mc7zIlfPdo89+wzyu+s/zx5p570VXOfO+Gn/XxuzgdCfj5nfcD3eb/z/udx4PF445vekvJtLo977Xe4G1566UXzv7/+pfnif33O7PeZj6XH0WUGypS6+UjQHM/Pfevn1XjTZ841dzzYOdl275MzzRMvdq56joEP00+8MMucc+3L5td3TXGl/QPvq9Cz8pIU08OQaFFJD5KRyupBpKp9dszopjUz6vjCSLxAnpPWorprnRh5rP2gpk6kdSffVTuG1lzcd58hibas/XB95HOGtWbxPS1s45Hifpf6hSM+ZdLasdYJu3jO9URrJt+qQDx8+oyZOtUc8qUDzdKLjzZ33H5LZz1hztllo5o6kS4P+UrTop4O84P332u22WIDs+euO5gX6btLJo4zlNK6ww8+oNZHvIpLc8wvGE+G1c6H1hzzm2SmjKZcV39ATJ2opAfEZ515sll6ydHCSTln+sXUam45WPvQg2SmPD2MTJ0s5UMPkjmTpwfB1IvccrD2oZtkJlXOpUHfLZPyHNa+1pq7+3ixdJzSeEFjrY7WLP8En1NumV6qPK3p5WukxFfx2qeMLev4zgr4HW0ZCX5HZ3xqNeWL1izLEn49ffZZ9JkwcQwx3/nKf7l4vKjgzjtuldg999jRvMR3lJIX4lR85qX9HI2+xbRwTGs25qqrfmK39Wz+/EM52K2PFKpf+4HEyCsPp3C8rSvHR9+0FqZ46Fy/IXYv+xN+0Qqeyr702pU0tYHyrr7H8sopr8yUrOasr7WvdAW+/PJLpZ3DD/tqxufbYvLVeqef+XW5jSYZ5vxv/8BsvtnW8gy88869WNbnODnBR7GdK+9sPXzlHl+Zx1fl+eW1WJYF/BKMpMvBhX3qQx5z34pozb4/4k7kbbH2ImaT1caaj226lNlirQnmmr9NNfc8M8fc+egMc93fXnZRhLmyiWaBMaOFgfsee8V84qu3mYPO+KN5bcpMV2rMckuNN/vturb54t7rmlWWW9iVGvP8qzPNL/8105x87fPmxcmzzZ7vWNy8e71FzDtWW9BMGNf8ibztttvOPP/884bPkuel6667zkycOFFit9pqK/Pvf//b3HzzzXJCb6SD5+XCC9or9PhKPdpcAdNCCy9kTj79m+bRp14xB33pMDN27NiUz8u0Tq+f5wMhPxT/619eY846/WQzdYq95aS/Pt9q8oxTT5QYwPdtznFKN+cDVdeHD/g+73fe/zwOPB4LLbxwcP1Y/Y35HsNjHHns180Lr88xz782J+HHn3nNfPPc78iJSB6jc885y0yfZi9nC9VXSruUaMeJDiQO7Ka7Jb6tZj/x5EuzzCPPdU7cvTp1jrn7kfAlgYtOGG0+t+1i5ss7LiFpny0WNQvRe5xP6P367inmlSk5l/P1GLzPeK/JPvQZSbSLydO5KeJTJWnt5XO1i0d5hrVfVmvO8ZHgV9WSymqd6tZXUvPLL0+09pV2LDnRxtx+2y1m6cVGm6988QAzdeoUFU+JFmedfqKZuOhoc+bpJ+X6UuLpju+xRFnfluRpyyk/pTU7nyoRduVgxMFHSjTWq6wpeVpzN5/3+0Ta75x4/2tmP9Ue1+UYui7H6musPdqKQrohfvHF580eH95BTrbxfiy0HpOn5X1B63M9XB/8x594zPz5j7eLuunG33fWK8PUSK7WHPNL8osv0H7Z1e6XiZQ080m1F158wcbzCv76St/1lz+Zf/zjr+b3v/uNuf/eezp+Qa67fi2mrcjVmgO+zC/ej0u4/RfgO26/OXf9XKalX+/tt6t5y5SnizCtVCgOjPhBMmdy9FQ+kf7l/c1E2keynxVvvcUG5oH7/t1Z31bAC+FUeb841q74lElpzXPNtGlTzFe+fICclJTtdXzWmSd2WS/EnOniM6U0ZzrlV175Y2n/K185QPql/SxrX2vNHX8afS/5ylf2l/a4Xe6U7ydaGFpzWT+iKVXSXDBUWgo8nROf8iXAY8/PZe0HNL20Ly/E0Qvl0PbFQC7NUGmt43J817Zm2ycOtzrfD2vNXetDgu+lXmnbVDxeJ1pkyvxEAUn+ykk/NhMn0nFrKUqKt956A3P//XTsRnwvmV6yvbGXiwdcafeX14a8uvRBXiG/IQZE64S4hlKwnQopWJfuM7TmmE8v/jyZuDT9bsufoV55lPHSWr9ift4r1EYFvv2Om2X79tiTv9vz7zFpvzC7JO8AT+sUHDOXaFFbX3b5D+RqvFVWWS3ln376CeZy8vb6yCek/Oabrzdf+MK+5oAD7VV5O++yrdl5523NLbfeIFfc8fp7U+xBB+9L+mHZVqmPXlzOMbdQHX55ZZZlAb8KUx2F/F4ypTw9Ip+Rhw1ZcYlxZqUl7Mk0Pju56AT7sDW+Mu+av75mzv3DS+bbN7xs/vyIvepjDq132qX3msefnW7++fBk892f3Sfl3TB69Giz7MKjzAfePMHs8ObFzPhxo+UWnGP5TFOLnmABGsbFJ4yifW019rScgGa2VFsDZeMZl//kUvOrX14tc7HjzzU/vPT75qLvfdtpi1B9vdJA3fqAovED0x7DY+TF8YnHvT76CfPRj31ayv5615/lmYmMUH2ltEuJdpzoQOLAbrpbmjubFn3EzfdOM69NnWPGjRklJ+QYtz8wzUyZwcflLMaPHWU2WXtBs9X64yXtvsnC5oMb2H+W4H+OeOaV/j/cb+6sUXZsuiYdE1sn4tNgpbWXz9UuHuUZ1n53zRlfa871keBX1VxQWnfyVlsf5dBIbKQ0LVJa+05LroumZcRP6yzD5xK7THzR8KE6WvuJdst81r7WsfiAT53oGpf4XMILVV6Z5aeaL5kwPrDdlmabLTaUK5+S+EEx9bqSHiADSblVJRnolK+y8qpmo3duKmrLrbZNyksxdSpXa475JVgADoBPqq2zxjLmjjtutaF+PUpvsOE7zJvf/Daz7Xu2M2uvu37HdyyBntas14/Fp3wSKIeO+ZolPqc85Gd0Ieh4rx1oxWnE4gpq2yhnEl+zRSdesyCnPMSCEr7Aj+OM70PbAl7kgk8Ob7rxG81VfMInE+/VG+FUezmc6Y/SmsXPKe/4nAn7V135E7PyCouYSy/+DhekcNopX5WTXMn7lusTePUojZTxA4zU0RYhP8va11qz51Mn4QgSrXxhaM3dfVqo8oimVElzQa81tZqrhbXWrH2tNRf06VVIs0zpGDPyymv41Kkwc1heeVUO1Ecp5UP3kqWpvPKKOof5JwQ5dm/yRnvlm1zl760vK3qaWF4hHy/tp9jmUvH0ytMAtP/KaPTNvRLtOOZrru07iNYJcQ2l3HZibWjf6aQu+D1gwJV2fLy07scr1IeKDLjSwuul2CWpxdM6STs55Ui0KK+9Olnfcsv1ZpVVVvd86/E/WW62+dZmi823MUcccYI54vATzDXX/N7c9eeHzF1/oUTM+rxvXSz+R/f6lNl8i22kz6uuuobUg/r4Dm+Mm2/Ne6Yel/haAqzWHPNzmZFXHvClwNOa4Usmj2O+ZiKtaZGnR9yJvFmz55rp7moKfobdPu9c1Gy/3gJmrw3Gm63WWVROrEz648vmf/4xzdz73Bzz96dmme/e+rqZOmMObTpfebeAGTtmlBk3dpSZPmO2mUYJmDlrjpk+cw6f5Eyw9KJjzQkfWsZsSXXzjnv0henm//3+JfOrf0wxL77euaKvn7j33nvN29/+dhlApFtu4f8stfjxj38sZfw8vQcffNCcd955ZtNNN5Wy9dZbzxxyyCHm8ccfd9FpPPbYY+akk04yG264YVL3NttsY84///zkmWIAP6uP2+CYH/3oR/QLzh1m3333lSsGF1tsMbPDDjvIs/tmzcq/7d5zzz1nTjvttKSt1VdfXW4XylcdzpgxXZ6bt8j4Uebs0+3z6ZD4qoZpU6fKHGAwP/H4Y3KV3Ls33yiJ+9D27zYXfb/Tbz/ehy4PMePNb3mbef8OHzSvv/aaOemEY8ytt9yY+Jw//7xzJL8dxXAsI6++OXPmmDvvuE1u8fj2N64h/d1kg/XNcUcdKs/g43mct95jjz4iMRzL6/D2nnP26bQvn03iAH+9vPb4eX///a2zzfPPP5fE+QxAX3nFj5N9y4mfRcfPpGOfx4PHhcv5mYAP3H+vOfbIQ5K2dqKxuPjCCzLjBtbbxczj+fRTT0p9XJY37nkMhPxxCy5Ic3Rpyb/88kvmtddfk+3As/Wu+MkPzc03/sF8fK9dzWorLC7bzeDjAsd974LzZHs4lp+5d8DnPmluufkGM9s9KA7HD35/oE6u49FHstvImssZWK8UU5pLx8R+YfL0OeZvj9png6630jjz7jdOkPwjz86iNJjjYRXMnWPfX0iMbjqWGHnlSIy88kYTLTJlXuKF5ANc1u+JRuqiNSMxUtrLi9a+0zHmbB0/xZaCGojGDyl/+tP7m+3ft5PZjlJZPv+876bro0WuLsuET+67n3ni6cnm+VfnmOdfoUT8q9/cJN4//v5X85lP7WUeuO/e/PV95kwVXYQ521Xzf9/5ut/s2uecYyDxRXEuj8M+AL3ghAnm7HO+LWO1yaabB9bT9VVvv5ivmDZaa4EjPoF2+5/usfON08uzZQ5+8tP7iT/p8h/KlU8cj/UtQxuz5trrmutvvstM+tmvzVJLLqXiXKAjKVdar5/EC3vxTqd8yqR8yaS19jXzj+RS5R2t/YwmyH78I+1H2n/Pv8z7EcnqTTbdLBXPDN0psUuwhvZ1XHcdjtdsocvpuLkvHTe3o2OhS9sVZE7nf9sdN2mjNQu6aM0CaLf81XU32v39ktv/xEce/XXxJl3xI/Mifc/145klx/Vwxqs/0Y7FYB3zbUBGaxY/p7yIzycl9//8x7lAtk+29yW7vfc9+JycDGd8YPstkys5Lbx6lLbI8QNsoTVyWb83DBSNDzBttNYClA+COZPHMT+Paa1cPUhmKqJHItNGFPIHyZTSOodtNqe8ok6xBMgP48ij6Dj2Ah3HXqDjmPBsc8EFPxTv97//jdnv8x+zVxBhfXHS9XJp0MdL+wkjZ5edF3Q2ihHyOy9o7cfiO9pX4tNG+Bp/g0v+FgdflSe+Q7qcXnW0S4yuWn46WoqSfJ4vynpSmedbkdIc5mv709ExH7CKTeTsy/54OsPat7q4X5dtrpsPJOW8U4JMua5+jClXJI6S1Zz1dB7bINF85RxDno2X+JYPO+w4uU0mPwuPr7zbaZdt5Sq9Rx+ndVwcX2F30MGfFp/j+GrFc791UaoefnH9q666unn88Ue4NONTxtMSYLXmmJ/LDJsv5lvd8Tue73d0Jy+aKaU7eUnQCRMV1CPuRN5P//KKufXRuebh5+yt3BZacLR5/7rjzVZrL2RGjTJmxqy55p/PyBYmmDVnlPntv16Vk0UnfO4t5uhPrWtO3O9NZqsNlzM/vvYh87+3P2lu//tz5vjv/N0ces7d5rtXP2CmTs8/+fSrv082L04dZZ553Zir737NlQ4n+Labu+22m/nCF74gJ9kYfBLwG9/4htljjz3MPffYZ7gBN954o3n/+99vjjvuOHPXXXe5UmNuuOEGc+CBB5p99tnHPPPMM640jf/+7/8273vf+8zFF19sXnzxRfPaa6/JCTlu/+yzz06dzOMJfP3115stt9zSHHXUUUlbjz76qJk0aZKcAOQ+cz38PERcmQfwCVk5Iy1szG233Gh222k7c+qJx5m//bXT71tvvsEc9qX/cs9CezaJBwO6vnxtsexyy5uvfv1Us8MHdzaPP/ao+dpxR5qHH7zf3HfvvyXPZewd//XTJJah65s6ebI55cTjzQ7v2dz86NILZR0Gn/z69rnfMO/fZlNz4Xe/bWa7fcbr8Xv3V7/4mdlph3dLDMcyeHtP/OpRZq/dPmj+fKe9FZVFpz1+3sw3zzzV7LHL9qn2+Hl/xx99mNntQ+83f7zj9iQeDFitSzuAj4hfXvNTs/vO25vzz/tm0haf6Dr0iwdKe7z9iOe5cPMNv89sFzOP5yc+uhv17VYpQ/26Pc1AyJ85fbp54YXnJc9X6I1fkJ+h2VmbT/7u85FdzLW//LmcsLUYZf7+17+Yj+25izny0INlexj8H22TLvuhnNg79aTj5daqfBzieMsW1/3qf8zOO2a3kTWXc32IL8WU5sx1BX0APw8Pt9XcZM3xZrN1xtP7c5SZxs/NeyD/9prT6Jh8x/3TzY33TJN01R2TzS/vsifXl1p4jFlu8f4/a5T3mew+Wsjec5zRSBHNC1/rxMgrbzTRIlPmJ1oMPSPF9CBSrA96WxQzJM/JK/eZkVd+1aQfy60gkbbZfAO5isyP4+P8oV86QPw777jFnHX6Sdn4nLpY8/oMqcsl/gcaP+4Qqpvb8GN0Ounk481/nnyydFpp5RXNAQd9PlUXL3J1gLUP7bKJhr/JuzY39z9i/0DLJ/PO//Y5dvuczwvZV3wbP94HxPy8MX7uGHyJ5eT02WfQPvPiWSOGfR4XLj/0y3yrNNcWJb4qnG+5yB7HcNkD3vPNHnrwPuIdbd3e+tMpHcK3gXPlHM/rSXvcpKuf01nom0synl4fGOg//1E72XaXrpr0kySOfb6qjK8uY8iVjZtvKPuGkdfe0nSc521jSL+pfV6PgavUeP7yrTQRz3wnPyPPtevI9dP6nOQZcPR9ET4zP1uPPW7nH3+/W/qHeG6H/ynIj+dlWkeYOpWrUUjQ/oQJE8yee31Myvi7Ed9m96wzsc9/YrdrCTtvUM46ecadq4f5gQfuk/Fmn+PkylLe/2SyL88s0+uTkcyr3Xa082o3e5vJpZcYI/kXaS5ynLQj7OYnxds4zLP7zNncR9KpK7MyLFnJlNVAyudcSo+y7yvqv/QlmafWl3notu/0U08w67xh2c683Z6vyLXv6Qfut/uTt5Pr4/0p2+mOs9OmTZP3HfYB12f9+1xPqT1hep/z3HP9Ccd14k+i7455x8VYWmklOm4eaI+b3MlG2S2Ztb/VVu/mnAUVBuM5Qwt51uOW9P5bkvbHkrRfiHm+w/fjeZ7uuTvNSRfH6/H44Bl8qfXqMPfTaa7/vG+dxYXmgu/+0Bx2+LEdn5j/OXXSVb82R7kTmDzv5Xjj1YP+od977s5XvPDdPjr1cDu8Pbx9Dz5wf2o7JZ5vuUtx8n4jjROLfIUgXynI7Up9tJT5uiW9/936zIfKLTiniY84sO5f8ixDWvJ8969E5HY5zh6v0/UUZtroXD1I5kwed/HtPzQ35wfjqRfMie+0Zlp21Zpr+W6Z0Sx9HfOb0NSIrzUnfoBjftn4XB8p0Vlm5JYrXda3bJPtoKXE5xdl9thzH3PHnffIP8jwybyLL7rA8/GsOjpOTKTjhOPkGXdeHDOeC4e4PffYgY5h9rgocfRCP/i4bWNtvBzHxaOXiwdefpmOf3vQ9w2vH9wvW6ONBD/I34O2puOg1w/+PoJI+7LxeA5fp17eNnsclP1Er+n8OX8Ifc4vPcbccP1vzaGHHijxvK3iT+/4Ug8xvtcybD2d+mpplxhdNf94Woo8nfU9TyrLiedXUpbWXX162R9PO3R8y6H4K3le0X6dyPuY0tbb8Hc0/v5kX/aHFpR4TCcubceB06GHHGiefOoJs+eeO9J6/N2B77zn1qPEmsv9+rk9+PyS73pUD/tcPwM+zwMuZ/+ll14S3vED7vcYej+ts86y5hAq43kia9E2ZZlyueVFmXJF4ihZzVlPR/jxx+3fbfkkm/ZXW3UNewXeXx4y5557kTni8OPNrbfe2HkGHiW+jSY/L499jnvh+TlyBZ/49PJ51VVWl9+FdHlPWJZpjQStuawf1NRmN819qsoj7kTeO1Yfb9Zd2phlFxsnJzeu+r9Hza5H3Ga+9I2/yNV6o0fzDnLBHpZb2BYuuMAY8+53LG82efPSZou3L2f23Xktip9rjjn/n+b2f7xk/vHQq+by3z5h/t9lfP//9AnBvz0+2Tz6YueE1NrLLOBy/QU/D+/uu++Wq+C6gU+MMX7961/TQWW6mTlzprniiivMaqutJif2LrnkEjNjhr26hg9I55xzjpzo45N5f//7383s2bPNlClTzA9/+ENZ55prrpGr/fR+Ydx+++1mv/32M0888YRc/cVX/H384/aXEL6a7x//+IfkGVw3nxjktvbee2+5apDXeeWVV+TqwUUXXdR873vfS04A8olFfm7g+99v/yPSNm/PcPMVVRf89/+TX7bf/Z73m5vv/Jt59pVZ5j/PTTbnf+8HZpVVV5NnoV15xY+oDdtv3X1XmpT79dtcGsssu7z5wpcOlbr5ZNhJJxxrjj78S5Lf6J2bmONOOMUsu9xyLjpdP2/P975znvnmmaeYRRZZ1Hzt5DPMw0+9bJ5/bbb5+72Pm4O+eKicPDrxhKPNz386idah9Wjtf/3zb+bkrx0nBzz+D/Xf/P5W8/RLM8wzL88wV15znTy7jv8Y2YFtj9e/5OLvmlNOPE46Iu09+bJ57tVZ5s677zW77bG3rHfMkV+WXyxlTdvhBFbONbvTF0Der3x1gw/4WI/r23iTzaR+bueBJ14wXzrkSPGuuPyH5uabrqecjX/4oQdoW4/J366fXydfqn732+tkXdRvudOeo0QDLCUhjpj/A/7yn/zA/ORHF0vZOzZ+l1mWxtNGWvzpztvNdtt/0Pz57w+Y52hceLsfe/Rhc+ShX5Q/DvI8+78b75R59tgzryXzjMf0wu99m8aYr/Lt9I/x859NMosvvoRsE28fJ87zVZu87V879kjZ/7xOXuLuyVxQ5ZzsovfgVm6/f5rcunjJhUebDddY0Ky+7DhK9pbGf3pounlpcvZ5d3wbzu/9/lXzzWtflvTjm18zU6bPlVtz7vmuRcziCw3gY4j2mbx4H1qZo70kml9dNC0SLUlp7UPTolmtWftdNOd9HfOhJUFrbtrXOhYfY6SIz68ifrLPoC0zxFPlPtuYjubnsH7lS/ub/T9rP0sBPsZustH6cqUvr5XUY22z4/u2NKedfLxTnavOdv/w9pm6WMtVx1QJr8//ocvPLDvVW59x6UXfMdu9dzP3fA0Ot/E+r7jiiubEk77K4YWxEq1z4cUXJO2jvpgWpkzK15qZs7LwfC6gxZJLTjSHHH4Mu/KPMI8//pj4vN8P+WL3/c7rcz0cf/9995ptNtsgs89Y877kq7MRzxB2OumPg98/7jifdNh4w/WSkw+MS2gsPr73h81279lMxgXg/n32k3tJf3hlroL/aYX74M8HBv/Rlte/H8+64nhx7JzY/3NqnpC2V6fbfuWB65FnLX3xgEx7jB3fv6WcIER7GnnVcq8Qz8+W45NSej/jRKBcKUPBNtzWxtvJJ2X4llLAJVR2zFFfdlfEdeJrM2dkYRGKA/x43r/YLr88AWmU83M0N33H+qlt4vwmVHYVHxMi6zNkXm2Unlec3/+zH0vNV34W2oc/9N5UnNyei9pKxsHVi/pzmYLKaiDl5/DGm2wuJ2AYfEIG85+fwXjaKbaPfGXZmmuuLXkNvz3ezh2329LbtzTvaH98Yp9dZd74kP3wzvU7z9qjJc/vHbe3f9gBOnE3S2O2Oce0lOPmiRWOmxd1jpuFmFJad/HdkjmJc/6NN/5BHL410kITJlg/EM/7YxPa9s7+tOCTRV/58v5yvEA8H4t23Sk713h9jCOjU79myqR0F5Z+UobSXXfZZ0nyP3VwSvnYHuKdd9nd/gGc+nf//fbOKfLMxd3o+Or1j8Exa7+Bb6HrP8NRMuJt8s7se4+vkOH6XFgGVIMsb7/jFrPpxtl9yvPzEx/b1T6DU6Ln0u/G/zZbb7lBpn+s99id/wECzybNQtqjzogv3CvtmFK+dvHQGS7rF49HgtZsU7g+7SNBJ8xb7fK+1iyvLjoWn++TzPPx0ppeUZ/K/FeiHRf2A1pzIR8J5V00ZdJlKtEiU1YkMXLLc8r8RItMWShx96Udf7u8/JprrmMOOuhQibmDjiX8HZF9frbejjumP7sYp556vPnKIfvLPx6hnjPPOtHsv1/6OyKfyPjwh9/beQYfvRi8/v77q++TpPnZaagPsVzHxnxsJPbB/Uri+UXrsN5kk5zPFqqbn/c5lZ8r6urm2KLbxi/GbrttZy65pPOZz9u13XabpcoYXC+2D+sL9ygl7TSQgnXpbSiqcxiIxfEY8FjouSLfATal37uuSs8X1jiJBlxy6XfMW96yajJ/bCS9aB2O53py5wvPAfccWrwYiXJt8k+qnF4aUqq2TRiprFZJ2vC1l89LtMiU+YkWSksTXOy09i3z8+8222xrSlvJKolP2Gsv+3y9JB7bxJEpzd8jKS7RHV9zbd+9knLoIkzrDB1TYh5xJ/LWXGa8+fL7ljETFxlnJk+daW7+20uGz8/8+9HJ5p8PviB/HObbbE5c2J0PpcW6y44x978w29z1+DR5vp0PPiu69YbL0W5J49+PTjEzZ801Dz071Zz2mxfM9258wTz3+lxz5HZLmv/aahFz8NaLmC3XWcRFN4ff/OY3Zumll5Z+5SU+kVYGfGUb3/5ygQUWkJM9O++8syTGnXfeKSfIGHxS7f/+7/8kf+ihh9IvK2+W5wPyfxDz1XtY57bbbjOvvvqq5H28973vpQ/Or5iVVlpJ+rnyyivTF4WDzAorrCAnFHFFIJ9QvPDCC+VqwHe/+93mzDPPNG94wxtkHb4dJ58MPPzwwyX26quvln4BFCIY6y7gYc23w7rhD7bfB33xELP+G99sxowZbcZTv3fZdQ+zwwdsv/mKs9dft/1GPQAkyjNsKQGX84mqY0842Syy6KLmmquvNH/43f9Kfv//+qJZd731XaQF1uf1/vG3u83F36dfvgmHHnmsOeCgL5vFFl2MvFFmRdp3Rxz9VfOJT39OTub95EeXmGefedrMmT3b/OLnPzX33XuPHPBOOeOb5h0bb2rGjRsrY7rte95vTjrtbLPc8itIvQC3x7es/NmVl4s++MuHU/++JPuZx3bNtdaWE3tbbvVuOQn5m1//jxwUsN2A33+fAe2vs+765iuHHy31cztLLrGkbBOf5OTtuuP2W+UkMR+Mrr5qkrSdu13vfb854aTTZb8ydPsJW8r067STjjdLLzLaLL2ovRUo88rLLGy+/IX9pB985eTBXzrULDh+QbeGBffzmK+eZFZf4w1mtFQ61/zyFz+Tk3h84o37yc+e4Xm28MILmz322sd85bCjZd3/ueZn5j9PPCZ5vz+yfWeeI9vE28eJ8xi3P//J7n9ui9fTiTeS54gu52QXvccLr802d7vbaq674gJm2cXHmIUWGGU2XYuvaDTm2Vdmmweejt9ekx8vutrSY81RuyxhtljPrtt30D6zL8omSWudusfbOjs6E699aFrkac500+F4zdrvojnv65gPzQVOa0aC1ozU0TrO+ZRhRuJFPjvfxceYs93jyvpad8r5pMvKyy3irnIbk+LTTsYfcjvr8a2PL73ou3Lcuf3P95gX+NaQlC74vv2jNZ9w4eOSrZ7WE7a3gEb8fd5VZ/w5xeuinqOOcbdIu+xHyRU/F33vAvmjIq/DV6xxHMcfSbFcx/n//f/kyjXupO1mmnf58IfMgQd+nksK4UTa7rx6CjFnumlmzsrC8z2euPQysr/4lzv+oyYX/ve5tN8v7rLfP0f7nf9DmNbn/9684NvnyPqf4lt4PjM5td95X178/fO5Qdsu53L6kSDRtHDlUu/Ttl7cEvQPv/9f8fn2jdLew26cqR/8nYRNruci+r6RGs9XvPGkWBnPaTSeHC81W3A7L7jbQibz5HKaJy++KP/VjfYY1/7vTeb6W+4ya629rvnrX++Sk2fSHsVIe5Qu+J7dd1wH/8J+9jkXmGvdtnAs13f2OefLM/H+492CEv2aNnWaOeXrxybbwvG4bSX6d8QhB8mVYrId3k5lH7HYfzy+f/vrXyQuFe9pzYIuvoTIwoPn81WAk+RkqDsJstBCqXjeR9zHw4441hx6xHEytnziQMBx9MPzDn+U5/3H8f7+5RNZfOVPaH2/Pd7HMq9ofb59JU5S/P5310kcX/V5/rf/n8yTZJ+/PEeND0GqdPXTwjbRgCZw23wSzL/CLXOlG4XyP1zxLRE5/ugjvyT/GGWvYLJXWW2y6RYSc99DnXn7q+to3t58l1mb5i3aY8i2UtwN5K219nrm9/93newX7C/eB5xwi0n+R0E+DvCt1/l2kwxuE3E4ychjP226u2LKbiRnRO+yCx03D/i8LSqA5B8mqJ5Ufd00UqItS4nni3bLD2y/lXcll008/3gfHXPcSfS7lr0bDuKZRdOC5yquKvP3xx1urvF78LxzvyHxvP/OP9+baw/aucb7+1P+XCMk7TnuaM742nIs/tFH7K2k+ITwUkvx79+sOj40z4Xrb7rLvED92mSTLeS/7k8+6bjOMYn7/BK9Hylhbhxx6BfsM1i5PkkWMpeeorlEsckVMvLe+42ZuJS9AhDzhrefYw897DjZTzzfGLJPXXu4/Wfy/qW2/H3qt3e/F3vRhReYTWm72cN7GvVuStvIG2833/Xf05Lr4msdjnfMZZ5GomVaZ7isb3U2zvO5F355V90lXtjz6zC9KukoM/LKazD1IVdrlmUXv0mmVEk3ybzFueUBXYH5h0EldpkTh+dTPfvs03IFMH+vmzTJHleu/TV9r3iBjiuUbr/DHasv4e9LfMcre1XTL//nZxL7q2vpe6LcupO+hx1lP3+v+flVEmfbt9BxDG7P3knB9gvYdls6lt7/nMRzQvx5553lvt/RZ8ud9NniTvjw7UIz/b30u+a/z+PPllFylWCybV4/7vC27a9/u0vq5XjbHwvE777HPuaaa66S7eN1uB3dP0ayPrOXtNaJFpkyP9Gik0c73RK/CnBSlypvhN0L8MvyXjxePG68f++4nfbv87R/KeF2sDzeuDKT5yDPB8ZRR349ieX1eH0Add+p5ouOT+aL92IkioeAXvyD8oXou883zqbfY37lfo+heXv/fc9J2QT+XsQvf58giaY6UtpLWkvqxDN8jxb8kyrzEy0yZX6iRapNHBv4lpcd39XPuRy9mnuennV43Ue7xsuLmNugAi61ZZxz8YhL4t0L8VgD2qrqflctBcxNa83a19pjWrA/4k7k+Xjkqdfpiz7/AcKYhRccbVZfcTHJv2mlCeaY7ZY0+2023nxpm4XNl7Zd0uz5jiXNf16cbi699QVz+Z0vmmdf7fzBeeyYMWbBceldMXGxMfY5enwy7/nZZr3lFzTbrr+IWXLhcWbDVSeYt60ywe3Q4cXaa69t3vnOdzplseCCC8qJQgZfhce3wGTwM/T4BB2fyOFbZPrw1+F4/zaZALez7LLLOmWx+OKLJ2XPPvus8NNPP23+9Kc/Sf6DH/yg/CeqDz6Bc+yxx0o//vWvf5k3velNzulgLA0VPztvDDGf+HnkqVfMC6/PMVtva/uNk7L+s9Bef/01M9P1W5+0hY4xwJrfPDvvumdyAofB+Z122T03HnzbrTfJFVj8B8LtP7CTGUNzz/f5Vo87fXh30XyC8p5//cO8+tqr5m93/0XK3vO+7c2669t94q+3wUbvNFu/+722wIHL7/nn3+VE2RvWWtts94EPyf7111t+hRXNFltvK/rGG/5gXnnl5cQH/HifAV3+9g3fYVZeZdVU+aKLLSZXpDH4dpQzZ8wwL1Nbf/qjvR1oaLv4pBr/wgldhLuBTwpyW9+56EfmOxf+yCyzbPYk/tvevpFZfvkV+J8dBPy+4BPBjPdut6N5w5rrSB4+H1Q322IrGVPe13/5051S2vHt9m244caSRzmzP27cxms01r7PnYvp0aNcQY/x98dmyJWjDD6Bd8u90+RWmVNmzDUL0LGSr9T7/T+nGveowATLLDrGfH+/ZczVhywv6adfWd6c88mlzQarL0h7bjDgfeZ2nySGr6skRl551cTopnXiRapMaV5I3nGvtOauPpLWXKCZsy6f62vmbAHmbJG4JrgoOJ7/KMwn6Rinn32enCRBNfJHa3fy4iY6bqMc/MGddkvil1pqotlzb3s7Pz6Wbvve7ZO4nXfdQ45b/Mv8iy88L//Jz7eF47JTzjjHLEnrMjj+oIMPkaux/0zHbH7gNcrzeKcPf9C8c+N3OBXGRRd/h+I2suvRIpdtlhb2PZuUZzjg22y23DH/4dZelU2aCviZT6n9vpbb77TgX+ZT+53K+Pm8fBU3/zK4/4FfMuPH2ytUlpKr/fgWbfY2jy96V1oIU0oxkGjOSInZ4yMfk39O4vK3vW3D5A+uyThT+VJLLZXctvHJJ/8jV7rwlUQyntS3U07/plyByOD4g75A40n1yHjSNnBjrjkp53agd/4wzROqg/+xiOeJLYdr64PmK+v55NKkn12bmj/bvtde7cJ12Ftbd9qz8OrzlgzOPfHEo/J9wW7LObK9wH/Jtnxe/shy911/Sq3P8dx/aH//PfaYez6tt2RIjjYK5dBA2lfaxXFf+Ko1vr3lRL7FJaWVl19YTnIy9vzIPjKmqIT7/8EP7SraryeB0zzvGEce/TWzMe1rtPvBD31Ytovb5SuMJN6vAtqrd0+eV26+rrX2OjKfGI88bJ938Vf63sn9lX1+2jdlTnMlC9I6xxx3YvLdzHXYsazKy6S8si4IxMsxivYjn6DY5B32iifZrzvRfk3q0/Xa/eeXH3LYsTK/UM7HW34m39nfPJ/2F/75aK7Zxb0veB5NmTJZTszyP20xwHnrp9vrtL/TLnTcfGeB4+ZFdNx8x4ZOufXtThCOac3atzmnu4FDMvGd+m5yV+7xSa3d9/hoEr8mHVNPP+tc8fi2ZHyc+utf/9yZa6e69zfF863vjz72pM5cI9iu0sJxHT1t2hTz5FP/4QKHLvGCjn78scfk+Gn7TO8POd6RT8uDvvCVzvvxbv6dF+tbyPuf3kdczs+ytHOU3nuPPOQiO/G+5vlz1jfON/zsPv484nJ25PhP72fGI3Jicq58NqF/BxzwxaQ9Pi4fcpi9El32v7uCLw1br88WTtNOSPl2p3AmqDULcspDviAnLvE5U8aHzmOKakQ3yUxVdN+Yc938GkwbldWUQ3khplwtXzFn8nTClGFOfMlxVsVJKTFlUlozZ+I+/7gSu0z8DvPtgvm4ICWk+fgx6cprDT9Hb+ON6XuFrD2Xvv/S94IP2e8F9vsSHz/sd2Zen+uRaml5yKHHyPqHHMrfe+36jE9+ir9PbuA0X9nsvk/y7x0vPuei7NIeS+3x39Yw1/zXQfS5/qn097ubbvq9xB951Ne846Dt7+lnnCeeXG1I37v5eDdpktu2TTaTON7oNWXb7HH3cdo2W4N9MbjujTfmeL6V8b/N//zPT6Wc619rzXVsJNUj/fvk58VjLWsLW19KlBZGQnyivbzotG+l50v1SqOOXO74SV1OV2H709EJuxfgl/kvdnic7rjT/t51xunnytjA32P3j5ojj/yaeDfKuM81V/98kswH3u8HHfSVJJbX4/UBLmPY9WhMqR6uLy+e2+d+oKcMy/7SolNiGUjKaR/4fqITJsotDzFRoinHTCnlQ2vGerrcZ3olmvMEfr93fC724pzmZ+NdfvmlZrPNt078vT7yCXPZZZfkxne0ZW5jlZXx92Lfz4mXJVgC+q6RSvtS4PmJtpxoyXTTmkfgFXkvvTrN/OS6h82F1zxgbv/b8+b0g95m3rvREuawT6xrFlvYPkyNT7IsvtAY8843LGrevNJC8kdmTh946+Jm/NjR5rf3zTaPebfI5BNyn91pVbP4wmPpF+5x5l1vWdIc/ek3ST3rrbiQOXXnJc1ma/HZ9d5ju+22k6vk+M2Tl/g5dUXBv1TySbiimDx5Mr0hL5fbXb7rXe+S7Uc6/vj0bTk0+Mo9PikVw1NPPSW31mQst9xyUncVjKOmFp8wykwYN0qeufazq64wn//UR812224mV2HJFViU+LllAFrSLVpN2ymcjcuPpz6MHWv2/dwB5iMf/YT5zOcONJ/b7yA5UZYfP8rMmDbNPPzgg6L4+Xk4yQgf662yyqryh1TGIw8/ZF6mX7KeeeZp0SussJLsawbimRdeeFG5gswHl//7nn9J/qEH7jdbb/r2ZL+Al150jDyLjvHUf54wzz/XeZYgYHV2/wDa53k3dkxnP8AHkCuyXfyL50orr5LoIgwcdezX5QSvTfRFgfjRp14xk66+1uy+50flajqGXm85GpsF6ZdlTM0XX3jOPPqo/Y/dc8461Sy3xLjkCj/wJhusL1erMHCLUn9qy/Yt5LbPlTPz7VVxuyc+2cwnyX2fOxfVY1xBD8En5267fxodg6zmE3a4Veak216XZ5My7n96pnn2VXuyb5jB+8ztPkmyHz3N+7arHsZEi0J6mBhJ62FMkT4zUuWKGXxl1X/4iq3X6Jj0KiWPcVUR4vk2Y/yHaP4D5jrrrmc9r76ttrbPKeITNfZZPNZjrL7GGjbOJWDV1VY3C8t/Clr4HoNvo8dt8rFs043Wd1cM2rTycgvLFYXs8S/TDN0G8ivzreJOPl5u/xYCX4m38cYbddanRR4j8UZL3pXzIq3zfZftaMUv0S9u/AcFKaICvn1Ost/XWS9dH6Ut1X6/+257W7aNNt5UPrsRx7zpuzaXK/muvPrXZin6vJdytpyfYiAp54y9ulL+kSopd0yQcU40Z6Q40fzHBxlP6t+m73ijfWaaOqkkfxyRPzR3PsNXXHElOcmEdsC6fgAacfIsKO+ZdJzWWaPzbLIkXhTQ0Zn6Kd1915/tfn4n7Wf6xc+P5+8O79rM3mLntltvtleMOrfzXcur3zFgtfKpE6nyRGtfadv5IHhe8ZWKm7xrCxcvxWaFFVe234FIo55UTaT5GVp4HsuWW2+biuMro75xzvlyEpWvmJRyvwJoV8h/MEvPq048tP1vWWPeQft85VVWS8XxfOaTtgJZD/VLSBKXcOIr3YUZ3M87/nSPXJ0lV4h6fIO7ChTxvP8OOPDLsg6D9/Uxx53svlum62XYXLa9pVPzxfp8Jwl9RSBfKchz0oLap++r73qXnYdyJZuL49tLpuoLsBw36XeWrsfNk+i4+c6NKFytD90UuyVftchXoMl+d8zPiuP38iknHdu5wtAtmTnHV3hjrsoz9bheNhyvvc76Mj5cDx+n+B8cGfL+XpWPo514/mMxXy0HoLwrcz/ytGJ+36xI389tiV12i/cZx/7U+8P548cvRHNhCy4wt992s1wdJzaB59jEpZbJ1GehNXJU7rF+5h0zrn5EXKZ/rpyZryjkK/n4yj++ArBTP5BuL8PUyUq6l8yZMj70IJh6kasV27/BZMurMi07mqkJnTDn0uUo1eWlfWo0q+nlyhO/q6ZXLb+jhSmT8qETdinxJcdZ5wXiOcxxYZ9fkhch6JQh32H+hzV8drFmxz7/zT4TDs+Q43Taqe7vaG59Ph5vQsdjXn/TTeh7pYvnq55S7dCLwcfXCXQ8RJltz8KWWGa84x32+50tty/+XF1xhZXF57/F2O9B9tllW21pvwf58eusvZ5cHcW3V5Rn3JLf2Ta3Xfx8NNm2zi2t/ToYq69m7xbGiv+xkreX6+X6bTm9iP3PfcT7fpCREJ9oLy867TN8zUXdtU4dP1tXIKFPOWx/OjrjOwR9Yh4nHi/ev/zdQPs8zgyeY089/aR5+qknRfN+589aG2lfa69N3y2oHgZrHjtej2Hr6cTyC/GYL/AZlq1GGcMvZwaScuqz7ye6EaYcM6VUObTmmK941VXXkGfa8bPvYvGXX/4DuY0mlZjTz/y6XIl3xBEnmMuv+IF5zF2VJ/H08tfj12WXXyrbssUW23T8OizLBnQXRtLl4KBPbaT8kHYc0z6PuBN5f/zXC+b7v3jUvPjyVPOpndaUPy6ttMx4+mWJ//DOG5bGtBmzzcP/ec3MnjNHtnvXjZYwB205way3Quf5drzeMktOMF/aa01z/pEbmeM/+2YzkeoTjxLfxnPM6BG3q0rhmWeekZOEfBKPT+bxM+9GAl596RnzX5/7mPncp/Y2P7vqcvnP+BBwEsJRAqv5RKlkEr97vPUXXXQxc9zXTjFHHf91M2Ehe2IoP75TP5CuP9s+ENJ+PM/t0aPTJ1J1e0WR316sf7H9h9KsD4TWB7rXnxOPJOW2fx2dZQAy5Meg1wdYI6W0lQI/xk8clFfOadQYWvQYjz0/0/z7yfhtM/n2m395aLpTwwveZ7zXkkQLLklrL2ldKKk2dKJKczUtUhzzE475mnV8Bc35PK1Trj9orRN8zS7xq4uWEil3ZUozJM9JyrPxDJRbxwI6vV6OL8pC4oQ7gLZl6fisjoAaTdUH7XilFVYwF15qbyOtwbeR22XnD7r49Pq88DXqq6olKwvSNiCl+R+n+OQk/3GVr86zQRaclfqwnmPAapv3/a5ss7nlAq9c6mZyOsUM8aBZSGmik7gYEC8C1XTqTepJaRRSziu/4/ab5TmC+CNRHpJ4UQC0rr9LnM9JUKccsL5ezwHlDTKD5xPf2pKvxOKTa+BJP3VXKnI8h7p4X6cYCOkYA145AJ1im7ULaLdMxYEZwgEfrH3oLgwUjWd+4YXnkrlnryB9LhMH2FyXcsf8bMgPqOfeZWHj+Z/E+GQXXzEJ8AkWPqnnP0uPG02147QcN/mZoTnYZWc6bu5kj5vJ+r1it2SmIlvuGFdU8BWyTzz2qC3PiQesna0H6OQY2Tgb6sXn+Zp1PdCaabHa6mtwgVzB0blyOhvP/1yzzZYbmIk0lvzsO0BsiZMKk3gg8b0yPy4d3219ewXhV75yQOaZdz4QD3TW55xdZpgaRYlAtGQ8XzPleqoVU8rVXDBUWnNOPG1FrhbuaJvCfjEmclpeKKdXyk90zFc6w0xW4wWdxKX8Trxm22evvly/oEaC5lc330tap5PrX5dEC8sSmvV1okWmzE+0SJfxy+W5+9KOV5bkHeNuBHxlHd+pgY97H//Yrpnnv6UgVdv1+eq7J/7zulwpB+y4w5Zm6603yDwjD/nkResDXmlG65fvA9DJtrkXwOV8ldXHPx7ZNoKs6eoBknp1n71yfgGpciSta6aknQZS4bqwDRUYqBsHZHTOCwhp/QJ0WaLQpgt1peG+qL53Y1mLNZLS2pd2fO3l8xItSmt+7t3Nt1xvbr75+q7xfDXeEYcdL1fmnXHG15Ir8TbffGtZP4n3tgH6lltvkG3ZfLOtRaO8MsuyAZ3HFFNI95MpMY+4s1NbbbC8+cyHVjOf/NBaZuyY0ebRp14zV13/rLn1r8+ZObKBHbw2eabZ9+t3mH1P+rM56PQ/mTlz5prx40abDVZbxCyyYOekx7MvTjF/+POzZs2VFzPLLDHejF8gfmXZvIZf/vKX5pprrpFn2l1yySXm5ZdflgmC9PWvd+4BXQdc/1ve8hbJ88lDmYw1wP3+xS9sv7974SXm4Sdf8q7CmiNXZQE4z6tP90Jrv2j8CiusSF+ElorGj58w3qyx5pqS5z8w8JUADF0f37qKb6/C4Fs88u1a+CoxxlNP/cf9t3knnomv5nroQXslGMD+euu/UfL8X/133HVPat/odMNt7r+bZY0OoGPbp/1Y/NLLLGNWW83+Ai3bJc/pSa/Pz2j5zxOPJ1rYUlADLCUhjlhrnwFIlPv9PPq4E+X2knn7D+mwI+3t1Px6sX1c5rfLZU+72/rw1Xn87DzE+Ik7lVfOacxYWvQYf3tshnlt6hwzdvQoc/QuSya3yUT69meWMRMXtcfNOx6cZqbPrPe+7jXGqCvybMorq5Mi9dHg5WpapDjmO+ZMXnmYdXxac6ablnjOOy0+tE45fq80NyZMGXi+lpzHWV9z2udsN19yuZpLHHs+Z6EtbLm+YkHK4dPyphvoCzaBb6/H/yHb8QGtucTnbDxfgcZtcuJnvPHVgnhGns/JFT/Jmrxw2mO+wuS63/6CVQK+5eZJ/DzAJE5+uuiazFlZkOaM5/MVdWefYZ+jhSvq1l5X7Xd/PeKbbkzvd76VNH++8nNO//Ofx1LxfEXK0ouPMXvuuoN9BqE0bG/jM8V9HiTxQKJpIb4USSbNkhUzFc85p/lKzmQ8H3bj+YobR4/3+Ajf6YHq4dUkZ5eZ9gReew5JHC2xf/gWpHLlFLdDyX+mnl2z054FdIctrH77BrSf32xvX22fQ9uJ4+9Et91m/7DOV+bhCixActRJxHccAsqxkZ6uykAsTkJlkdYpBkgsxVcmuavgbrrp+lQcX/FzyJcPsFeAXfnj3PVFe4XQKbZZWayymn1WBt+e74nH6XuYF8fPtsEVV26DErb1ZDnmZ+Iduvsdzf95ffaZJ0spg0/oHX3kl90Vy514wOZofceAX877la+oYuA5b7gyDc96s+jUw3zo4cdJDCc86wzP0pM422nOpDWxHDd/o46b73yHfS4e+YjXLKjhp9gtmanIlvsMJDodL1dsuqvobuZbbHIhh7j4+/k/8OkYy8cE/tzBc1mS97eL4wWPH67AYEi57he0x9JeTrn2N3DHFu4Pp1D8z39un5HEfeb/4sd6yftDKrTx/rzhK/Nw1UAHUB220Bo5W87t4HaZt995T/KMPGbMM8Rv8PZA/2jJzy/kK/n23H1HucLFbqRdU0Aa9QhDp5hyPdWKKeVqLui1plaL+xLgsef3RAeYXlYT+TrDjLzykK+1ZiZV3lV78bkc8wsypVI+dJRd/xLdhSW0SJxlJOgM5/j8w6ASu1T+gw92ni/GVzrzHQvkeOyuiLr/gefsM+depOOKegacrdXWw1fZnX32Bak4Pj7qZ+QhPs0WVtlyhnyPlr/5wKHvd3QsfcpdgcVXyU1caunkCu2b+XsQvWQ/uJd/ddc69HuUr+93z97DM/VSz7fjl6sHgJZnafNnBK7aQnvE3L/bbrfHesQLI9GLMukylWiRKQulpJ1uKacPeZzUpcqbZMCVdny8SK+jrorzXHnxODM22XhzuToTV2jyZyzvfz8W481gzfOF12Ngvviv1HyhfqCcIc964xe2xW2OVfSKbWMBlrVYIymtfWnH114+L9GitN57709JO3xlnfjoA72ged9svvk2oi+/7FJz+OFfTa7E2/sjnzRXXP4DL57Jrof1L6N1pB1VHmRZQjNUeVdm5JUX9CWgm9bs/Mpac45PiXnEncgbv+AYs88Oa5hll7K3qWPwH2Vv/is/ZHqqeXXyTEmMZ1+aYp56YYbk//3YFPqFyp4o0Lj6D4+aG/7ygpk2Qz3caT7Ck0/aD8m3vvWt8uw6fr4dMH36dPmv9Saw/PLLm3e8wz4Dgk/CoV2Aby140kknyeR84xvfaP75z386Jx9+v3fd+YNm5eWWkGfoMbjf9lksFji14J9i4GeScRxD+3nxjFhct3j+IxM/O4OvAPjV//xcttf3p0yebK664jLz+muvybPT+Blqiyy6mHnr2+3zMH732+vMPffYfeKvd9ef/yjP1PPB5eu/6S3ynDlu79abb7QnZq0t/NST/zE77/geuUXkCccdaWbMmJH4jNdefdVMnT5N8v56PnR5iAFo3i7cQpS36+6/2ucA+uvxL/X8izV0EQYyvstkyh0DOp77+c5NNpX8TTf8nvaZnXPw+R8EfnDx92Qfvv2Na5i///VuKffPUcv2ueccJv0g/vOf7xSP8c6NN5UrPH0/w5R0+Sia7+pizEYxefocc/O/7RxYdemxZv2V7C2MfSy72Biz9vK2/MFnZppHn88+R3NYwPtqFCW3Ozvj3SUxummdGHnlocTIKy+TeJEqq6od86KbjsXH/FztpZTWfpf4hDnr8r7WHPM1c7ZIXC5bSpVzFhpgzf/AgT/aH/6Vg+SXDYRdOenH5rST7X/k860edf1ASGsG+EohbpOPuSd//Vgz1f3TCMfx7eEmLjbabLM5/8ct334kXJ/PfJs4vo0mg/MXXXxBfjwtKukY22ym/I7bbjFrr76MbCt/Dh1w4JfMghMmyHPAkv1+CO33+9x+p0Vqv29l9/vKK60qt4Pjz9hvn3eOmTZlqpTzejxuDK6P6+Ur/pI/GNNxX8aN0oXfOz/5nJP+cbnL+1qz9kUzOeb/tO6M5zFmKvWNwX5qPKmvvLKqJtueg9aPPeo/aw5I13fR9zvb6JczkiunnAYDrFdeeRW7n//xV3PUEV+SkzaIO/fcs5Pna/EJP1veqQU5zUB+vNoftNEprRk+CgnQ2tdakJSDO+0JSDO23NLe2pXnoVzh5eLP+9ZZqX0g6/sVQHtl0FLkxdvyucnzBO0JMdrnL7wgwXxcOPnEY1JzVhb++iRS9RXwNQNFfL5S6eQTj5U+cZ//9q9H5YQLa35/+fEAnvljHa8+t0RJek1bzu19+9vnyL6xmCvjwVfe7bHbDnKFg0a63k7taW1zK624gj1xJ3k6bl7I28Bw8bTRWA/aQvtcwgunUJ5wx0+xWzJr/+qrr5Tt5tvW8udUKH4LvqUm4dRTjre3F2WDyvl4c8Sh7ti4yWZynOJnKGGuHSVzzV4Zx8/6PMmNK8Dl0o6rL6U9lvZyyrXPz+w76OBDWcjVk2fKP3d04vgZfnvuvkNyFRyeobjSynzsp9+v+P1xlD0mYb3zzj3LXIL349v5d14ql7UB6A5baG3nKT+DUZdb2Hj+pxM+BtgSu1xplU7/zj//mzRn+fhP+58+v1P7n8bQrxfP2EM9hZg2upQPPUjmTJ7OY4rKLQdrH3qQzJSnRyLTRjSim2TOlNU2m/YTpgw0rWVlWmc4x+cfl5Ol7/M/+Wyysb1jAp+42Hff/TvrOfjxfOXxqbi1pmCuuZLq4NtpfuWQA+RzMIl3dWBpWetOOUOvJcd/OZbys5jt69zz6PvdJfhuY5+pveWW20g89437g5ruf+Df5vDDcWzbnI5teNathY2yudvvuCW1bdaDbwG91pqd5+lx/Xy8FY82Hv1j4G9slq0v9SmtWXykpFxpl2x4R3NRRmNdrYU72lYW9vllfzpas/3p6Izv4Eo78e7FPzxO/DxCxuFHHCTjCP/Kq35sTj3NjtMWMu58V4DdZT5ccul3zHm0/xEr40/rA1zGsOvRfKF6uD5bno7n9rkf/Eif5VewtzefNOlHyVzkWJwAx/pgBj+i4YUXn7PltO2+n+hcplwpX2vHlCrpHF5lldXM3nt/0txyy/Xmlpuv5zWs7/EZZ35NrtxjzSfw+Mo8vhKP1+Fn5j32+CNypZ6N52Y76x908Ke5xBx22HGpcs206GhZQjOcL6X53PEZvu7krWb4upO3mtFNd/JWM7poKcjR3jb73M0f8feLXG2FRc01Z21pTj7greaLZ//F7Hr4LWa3I241t/3tWbPq8ouajd+4hFl52fFmq7cvZb5/zUPmd3c+Ze599FXzr4decTUY85ld1jWH7rOmWWW5zsnB+Q3LLrus8L///W9z1113mTlz5tD8sL/AnHvuuebiiy8Wvy74mX2f+cxnzPrrr2/+8Ic/0Jv4MPPQQw9JW6+++qo555xzzBlnnCGxO+64o1lrrbUkH4Lu92gzxyw6nn75e+1F870LzjU/+VGn33JCm8C3SeVn2THO+39nmfdvsyl9KN+X+JZHKd1Bvp/VgO+/+a1vN5/+7P5S8o0zTzEX/Pc55vXXXhX/2aefMqef8jVz0fe+bRZZdFHz0Y9/Sn5RHjtmjNmJPrTWWXd9eY7EYV/+L3P97//PzJ41S04EXv+7/zXHHnmIeYbW78C2x89E2m2PvaSE27vqih/LMwX5GPDoww+Zrx5zuPy3LP8h86Mf+6RZYIEFzOhRo2gf2TNDP73yMrPWyhPl+SDYos6WWfjbZ3N2qTUAze3svCt9GFPbvF3HH3WoueWm6912zZbtOuHYI+Skpl3DAuuHNJDxXUG6vOMD0IjnfvKD6Pl5MPzw/hOOPVyufpw7d46ZNnWq+emkH8u+ZXz8k58167/pzZLH+gzZvqPd9s124/b7/zVHH/Yl8fiX7e0/8CE5gZ30M48pWZ2OG1P8UZilsfCCo82ZH5soV96d/fGJZpHx2Y+NMVR0xE5LSMyPD1rOrLPCOHPIB63+7ueXMRMX6X6m8V1rj0+u7uN8LzFmAbvPePeBZb96Oui7pHUS7xLD17HEyCsvlWjRiB4kh5L2Y/G9SLE+RDRDyjhxWQ4zfP2FLx4iz9Xjk0T+M+v2/6x9Fs4F3/+h2ZSOS379gF8PIGUqAdCf+dwB8gdwfh4e37pct3nG2eeZtddeV/K6Hl/76cO7fMgceODnzUWXXpDrc+JFJe04pBmyLcu7beFnthF/YDt7qzz+/LnwksvNWuu4q9Fp8YWDDzGfxH5/h9vvtJ6/3zd5l93v/OzTA//rS1IPn0iRdiiW15M/ltC+5H3K9fIVf+/Y2P5TyP6f+7jtCyWcHBRQnIynl6BTzHD5VDyTyzMn43nxd5O+ybZQ+4zTv0HjSdvOK7jVO+wyYL9+/gM+npHGdfEJQX42Hp/gZJx28leTtvQ2oj5cMcj7iZ/hd+iXDpDP1KQ9B9b8LKtjjz8pOTmzzhrLZOrmudm5q0CnEuQ0A4hP+0pTJ9K+YvgoJEBrX2tBUg7utCdwmucdnqfJc1iew8b74BR70uegLx5q358c71cA7ZVBS5EXb8tHyZWNe+71MSmTff4G2ufUnn2+4nelXODi7Xqd9btqyuRqjxkyN95J70Hv2XQ+33H7LRL/y19cnZzI5PfjiiuuYk49/RzRfALmqkk/kbjUvP08zdstNpR5i/YYST9oyX/Ueddm9lln9haZtt2Vl19E2uugc0Wz3VfLun7Se809u6xzZRbD1p9lztnlh3em4+YBdNzkW21Sp1JxhTWX8EKVJxzw3TJ51h8/i80xTmjt+ZGP2Wd/Un711e0zunkeHvpleh9PnyafTbhKTPade5bbpu4PyZ/69H5yAo2alPf3R6g+huy/NWn/UfzKK+j9LF20/SzD1Mvccse777FP0lfePv/Zc+usaf/hg8HPDOTt4vr4/XHMsSd3xpzisB7ej6ef5R1fpR8AdIctOhpX1GF/nH3mSfKsO37mnbwvaD+ivU03fqOU2TXtkp/ddMAB9pmRcvxfgY7/3v7nfu/7mQMl3n+mH7bfXnFL/ZHSCFOnS/nQNVl+Z8opL8ScUTr5HawhDtZHrTJ3fucr6CumZXPaLQv70CwLas3aD2mMMzR3opJ2HNOac33KpHxPax+akZRnGCnkF2PbIXofn0rvY3kmHB3HHO+/v/0s4pN43/nuj+RqJV7FvyJqnbXpOObiP7DjVhIvkKrpuMR3oeBjyiX0fXelRZL68bw5fiYqx7luCIt26zMDfjlg+0DHf+lD5xl9Bx1E323WWk8iN91kC3PBBe6zhbYJsfzMPvls+dR+5gsHHSL1+s/Ms/Xa/n5gx/TtsqUv8uoAmvfrh3fZU7Zbjr2b8rMBqc2lvWcIEmQcEqZXV60YKRTvEsPXXFRV28q6x4uPviB5OuXnMHDaafQ7Ae2viUvT/udnFLq0x547mJdefNF84QuHmk99kn7vwv51PuYsjzePO1Us8+BDH9xNyvnkHGJ5PXwOMtB+Zr5Q7EQvntv9As0vxOOZfDxn1l6H5oyq28bZ7cMz9tDvQw45UJ7JCF+Y91OQKVfK19oxpUo6wIcf9lX5J6KDDt431+e/XX5070/JFXirrrK6lO+91yfluXl2/ePNrbfcYOPphfX4lpq4Gm+1VdZI+4pp0ZyPFPNF9Vijba0D3M0f8SfygJWWXdgsstBYM3uOMbNmzzX/e8czZtzY0eakA95qzjr4beaEz7/VfHGvdc0yS00wh3/rr+YwSrMpjsG36Nxxi1XM+AXtyZ35Edttt53ZfPPNzaOPPmre9773mTFjxpjRo/lgu7TcVvNNb3qTi6wPvrXmt7/9bbPuuuvSm/kys+aaa0pbfBUgn9h77bXXzMc//nFzxBFHyIm/bgj1e6UVljZnnXaiWX/9Tr/lBDZhscWWMNts+14rEuCMN+I8bSlBvp9dH/B9PoH42f0OMl8+7Gg5QcUn0lZfYQkzcZFR5o1rrSQnFvkWi8edcLLZ+cN7ypuX13/jm95sjj7+RLmaj6++222n95vlllhA0u47by8t7P0xeym0hW2P1//YJz8r7fFBd//PfsKsstyiZulFR5uN3rKWPVG39rrmlDO+SbyerLnAguPNu9/zPulHB3r7OrAyu/2J9pYM319zrXXMiaedLdvFV9/ttMO2brvGyXbxCS/+A2lnvfT6NmeXfDLYFQmQ9+M5m6yX0q6QYHPpeD4hesLJZ0hfeJ+98210LFlsrFlpmYVln/K+/dz+XzCfP/BgmoNjvXot+EpMvvy/s3123PgPxbztX/36aWaNN6xl2yyUXP9c4ttr9vKqvHkFvI/GjKP3FO83NcaFNOeL6LxEQZU0LfqrPWbP90XHfKSiWrP2tY7Fl/ULxvOrkraJwZSUJ2x91jam4y84foI565xvy4kjH3wcuv3P/zK777lPEt+pwQLlfinnpNxjAJr/I3HS1b82Rx7TecYTg//ox7fb3HjTzex6VHmqHugAH3Dg58yKK64Y9ClTX1NG62741W9uMtff/BezJp/4QDwteL+f/U3a799T+51+ib/9T7Tf99gn1R5f0cH18O0kfbCe9LNr5YoT1HvSKWfLlScA18nrfvLTn7cFrl5bObPN+uXCDPFUvMvygplv+z3pZ4HxfPg5s8kmNJ6yHsWLg2rQTro9v/zTn7UnCQEu34TmB+9XjR/+5OokFuvzfjnk8GOkjGGb6dRv0dF85QjvT72f7bY8666kpHgutCsJoG0J2AHlDTKQ8TmTowWeTvmA5/MVQbf/8V8ydwCZm3+8h+bmR5M4YQDaK4ROsc0mmufHfQ91bovK4Dxf8ZbM47x6Ykwr5WqPi8E+ww4ny04/61x5P3K5vtKK47j805/Jzlu/vaQfVqVO8gC8v3lOJ2NAK8n8/CnNz6PT81PG5k57vE7qpfgifMAB9rhpNZV0jY/5ijmTp20BL4L41XU3po6DPO+OdM8F9Ovjcr4FpD9XGbw/z/rG+fR793jbHi346rD7Hnw2O9f++Vjn+EhAPB/7LBfQ1Kus7zH53Ncnnno9dXwGeNuef2l2+nhJGb4yb9JVdHz1nonI4H7ztuj4DqA77Vt09Jprr5PMXwY5Zvz48eakU76R2h8M1t/4pn22oq2Jo+fS73XrmOtvuivTvyOP+hr1+1rpv21urvnghz6ceuYVr4962O8wF3fTmgv6lMpqJOh8VutnOFZfbH3NBfpHW5HynaZFSttEEr5ieXm+1dovqPEq6nuvqHZ1oRwabcS0Zu1X0l7SWidaZMr8RItMWV5i5JU3mXjzQpDPojv+ZSZdyd9L+b1v1+Hv/Rd854dyQsIHHyc4CaRqOi6tuY657je3pI4VDF73vvvpe9jG/DuCfTGQl/45BvxyBtf5t78/munHr37Fnzf03QYvWkc+W2hbMp8tF9Bny1nfpu/b/Nnito3KcrftyM5xEfXyC4Bm5r9XXXdddru5bu4fQ+J1cus3lYLtVEiF69LbENI5XAQctyB9FzjrbPq9y51wA2TO3k7fn3Z34+/q5ec0Yr8DPJ4cizlhI+2L1/c9QM8XfvEczqs7GWe8KJ7n1yGH+L/H2PIoI2kdSdJGTnnTia/KO/fci+zJvC98OuPzFXenn36C2XmXbc1hhx0vZZvJ8+6MxF92+Q/kyjwykm189LGHzU47byu35Dz3WxdKue/7unGWZQE/jymmkO4lU8rTo2jBpfME/vSvZ83ZP35QTlR+ZqfVzHs2pl9+CDNnzTFj+ZlIcgbTmB/96kHzr0deMycf+HaJHQaceOKJ5vjjj5cTUz/+8Y/dM2+6g+M+9jH7H4w333yznNBioPxtb3ubueKKK+SEmQ+0pf3HH39croj71a9+Ze69916z2mqrmfe+973mc5/7nLn//vvl5JrfP75ab5999jG/+c1v5GTfcccdJ/UAXMdHPvIR89e//jXXf+6558yFF15oJk2aJFfT8S8U73nPe8y+++5r3v3ud6dO4vlt7bfffuab3/ymew5KsX5v+97tzHcu+pH8Ny6Dnyl30ffONz/+wcXyi9GFP7hcTmiFcNZpJ5lTTzo+U08IfIuV/fb9mPn9//1GntN3qHtuGsBXPPKJqx/94CK5JSafCOL237/9B8zHP/UZs/Y66yXz1Qffwup7F5xn/ve6X8mt1ngd/o/pj3z04+a2W28y+38mu62MvPbe+rYNzC677mn2+eS+Zumll3GRFjOmT5c/elx68fdkvWv/7yb5L2b+b/ljjvyKueTC76Ta8cs/9Zn9zMmnfcOMd+PD8PdHnq+3C33bdY+9zDlnnxasVyO230Mouh7H/ezKy8wvrv6pueXmG+SL8Fbb0Jz93P5msy22lpPIgK5zr30+Ya74yQ/NpMt/lIwdj/fn9j9IThTWxZzZxkx/fZ45nPcECy48uBOePDLdPm5ivoaOH6k6xkDGp4x/iITWflQPkrkf3J+yuuWRz5SRcdVac8xvkNHBoO+QlFOei6sy0FQ8UNQHqsYDIa0ZKOoDVeOBQpoLOOMoGXdP+z7fXvOYo74iV0td+5ub7DNrJNCtl6zYO605BLdagmHXGk3X32utUak+LuAMgZ8lfbSba7giLm8+lNWao+s7RDUlT1bWmoGmfKBqPBDSmoGqflkGqvpd46kA4x6aL31n23yWY37LfePtT3rKXHfsCp1xg19U95K5HW6vqA/dIANV/bLxQFM+oLVG2fV9vf3JT5lfH7NC2qcAHpcQMr6rkOu6jupKfDRUhYGifqNAQ8Y88MC95jOf3cssu+zy5jsXxP9e2x90+pePmN/B9qfQmB29POXK1BepX08QL/z0M75mzqDEz8A7gpLA+aef/jWzxRZbm80342fldcr5dpzMnfK5ciUen8RbddXVzV1/fpDKyUA7aN/XknHka41cf9BaA75moLqep07kMZ56fooZTdu23MSFRL80Zbb5we2vmfWXHW3e/+bFpKzF/Ae+UnPKjLlm5uzO9G95+PmVl18yBx/4WfOrX1wtV+4deNCXC61XiCmT+zmiOeYHmE8+7/+Zzom8Q444ttB63RhIyinPxdCzZ9Icz38U6HyPsRMojeM9No9CJoLNCkJ6kAyU1S1GPnAgC4HH27ehG2PKyIFSl4ML+JJxxBLI1V58LrRfNl4j5mvE2q+rNZquv1das4Oev5n5UlXHuEu8GI4SHfMBLz7FgNVnnXGi3CaQr/g5+dRvyj++cTk/84yvcuMrjy74Hv+xZCkpj9VX3u81A0XjB8QY95geJKO/MR3gs848WW7ryFfEnXzK2XK7Ry6/6sqfdObad39Ic23p1HotDwFjHmg9SEb/tNYc81sePMu4UlYArf2yjNWL+pF4INHJCo6N2eHkp+UkTLo8xEBVrRko6gOD0ppDKFofQBrjKfA0hwXHG1pzWT+gAa0VdjiF5pCcyCkKNJSFrQvzsSjC9fUCfFvCuao9/kd5vkUm3/qSr6jjq+0Y/BzYY475irn00u/KFXSHHnpsprdVtWZANBUkw+oYgbq8Lu9wKo3ZUcvH423zjbCczDvz63IS7rxvXSRX2hVZL2/9a37+O7PKKqsXWm/QDNT2qUDGhfLiOw0k2gWU0fPMrTWBFZZeKDmJN3P2XPPI89PNoy/ONk+8PEPKWsyf4Gd4LTp+lFl4QX42my1z5Jg/KizyufV74T/6yMNmu3e/y0xcZLTZ79P72GfPueczPv3kf8w3zzxVTuLJM+R2+GCyXpZj7eewy2S0ZkthP8JA0fhujATNnfP12AVGmXHhCxbnW/A+GTeO5gjvL9JBRiqrhyHRopAeJCOV1cOQivbZMaOb1syo4wsj8QJ5TjEtKq11YtTS1GhKO040LXK1Y2jNxX33GZFoy9oP12ePH6nyrtodb/zyFGvfqz+XIz5l0tpxULt4zvVEay6wvijO2eVgtGbnUydzNS3q6RjLT77PGd8XHfMl62nNaX/fzx0oJ1CSZyy6Z8ThVpZ8Rwi5g0iyvmOqyGop8nRJv+dMuZDPNCxMnSqkB8mcKaID/Bl3q16+8o6fjYdn1CVzDc/ki9RTiKlXA2emPK055g8DUydz9SCZM3lac8zvB1MvcnWPmZZh3y19rVn8LlpzWT/R1IlOCbT2s8x3Ngr79FLlaU2vrlrFIyXa+TZQ8s4K+B1tGQl+R2d89M1pWlpOaSTPT7Esm9N4ldV2a3I49Aqtj1eORl+1Fo5pzWX9gEbSWiVGXnk4heNtXTk++parKT7kN8nuZX+8F/n8bMdDD7F3zsIz7zitvPIichKPb5/JzzTkeLV2Za0ZL9HUJ83yyimvz5QrEkepKT7iiBPML675PdVtzE67bGu+cPBn5Aq74Hr04mfn8cm7icuMEd5i823MXX9+yKy66hriI65vLMtyjKTLwYV96kPKd1r73Neyep67Io8xe84c89LkOeb3/37VrDJxvHnTCguaRSeM4U1u0cLMoRk/ZfpcM32WfU+4E9zJGe5W90+z+uX/XG2OO/IQud1nHvgZcvycqG3fu70ZPdo+MzBYn2RceY6fKi/Aur4yOu+KvBCS9R1cNUHE/Fkz55pZ7ZV5gupX4mFAiyISzwPMA10UiEe1GdZ+Wa25gC8ZR3nxgI4XlNUadevrl9YMFPWBolozUDW+oo/5ACTzoy5TXUSVfPQzpR0F/ZbnCcY8qKubZK6X6y8bPwSMK/MA/kPJ9y/mW9KvQ6p4PS07xjhrrTnm12H0p65umHFlHiBz7SJ+njc/x7t4PVkGqvplGWgqHijqAwXieTy5WFBUayaLKFse8kvGAzGdrAgMWmvUjdeI1Ve2PY2y7Wvk+Cy5GIAWpgzGH0j5ZZkyqfnkGMjMHwUdXwP2irwyV1O1yAXGESiqe8lAWV0S5a/IC6PJugYB/8o84JOf/Lw5+eRvmPHju/xXO8YNKKp7yQ6xjzNckReCCq+sNTP4uXiXX3apnJhj8BV2q66yuvyddpWVV5Oyx5941Nxyyw3ybD0Gx5z7rYvMFpvb5+eF6h/RTJnkY6bfPK+dyLvrsSnmwtteN8svOsYcsNXiZuIiY53TokUafCKPb7c5b70DRiaeePwx87OrLjf/95tfy7PnGPycvA/utKs8/2/lVVaVspGEos/d6xX4mXkzp84Vnh/Bz8IbN949E48+8OQTF9B6PgBvLm92CGX9uvFV69MM4IsNkPEp5cXHGAj6xFxxyC8VDzvmtzzvMWVknHU5WPvQg2T0T2vNMX8eYaCqX5aBpuKBXB8ZR8k80NpjVKDLQ37Z+IzvkJRTnosz2jGgy0M+UFRrBqr6ZeOBqvFN+2XjAdEwHCXj7mmsqOcFOOaX5Ux9VnZ8h4ymJHGKgap+0wwUjY8xUDR+qJkyMq5aa475TTK3w+2V1S33jZNn5KnyKFNGxk3rmowKK/lkCTztwhMGhk1r1PXLok59eK5dKQR2SFIX/H4yoHWLrrDPyCs5/jEkb/gAMG4OfJLulluuN7fceqN5nPJ8go/L+KQdg0/u8e03997rk7bMH/dKjIwjloD2CyEWr/2y8Rp1+xfW89yJvL89Mc1cesfrZqs1FzA7v719Jl6L7pCr82bMNTNmdd4WLc+nTBn5glpWD5K5H9yfLpqvzps9w57Ymx/AJ+7GLEDJuwoP+wUoq2OIxZetryfgDqAjPgMhf5AMaN1i3gfmAZA3P4r4TTJQ1G8UaGhQiLVf19coW1+f+4cPYqCoRjNRrRm+Zu130ZIBeqU1A73SMQaa8oGi8TEGavqZeeEYcSG/Ntvqc330s6xueeQz5kFZ3UtG/4r60C0PP+eN56AZ/fP0Dic/lX1Gno7vGQNF42MMFPWBovFl/Vg8kKNl3JxMNOI8X6Tnp1j7NbUD30bP/1O9vopO+15FirPIe0beKHqln0mXXr+sn9Xp3oT8DufXV9zPry/sl40nn/a/DBvKKZOrhb34VHkxLv2MPCqQ9qBbThhoygcymgp4XADt64IkHuWKfX+eO5HHGzNz1lwzbgy9tXgjW7QoAD6Rxyf0+MSeBd4xQKtHto4hFl/Wr1tfWcTr4xN5c+jYOGc2fajTRJ8zh9YZ6Yd/OsiPHkVfUOh4P3rMXDN6LDE/+RW7o2kGYrrF/Ie8+cIMhPxBMkBavhg6mQesVhSxeO2X1Rp162tKawaK+kBRHWMAX/wT32kg8RVjhZDfKKM5Twu6+KJbHn6mjIybLgdrH3qQjP5prTnmtzx8TBkZN601x/wmmdvh9srqlnvGQFM+kImnDI8rAK19zUDQJ+YKKvlkCcpqAsmeao26vkbT9QG4Ik+jV+0l0BWEdC8ZKOq3yEWlK/ICKFwXximEvPFsmoGi/jyKnlyR1zQwLkBV3SQDMT3CME8+I69FiyrgdwKfzJs2k94Y9MaWL6bM5Mn7HFpz6w+tb42mNDKd8ky8g9ZJPCAaFcRhV4/FF6+vGMq2V7d/Zfsfa7+u1mi4fswnIDO/Yr5m+Jq1X0NLxpGvBUmgYqApHygaH2OgKR8IxTfNQNH4ioz5ENODZPQ35rc87zHGuaifNz/6zeif1ppjfsvDxxjnlKasIOT3mIGivnTYZ0CXhxgo6gNF48v6sXigKa0ZGICWcXYy8T1O+YSU7fk90QEGEB+EXkEjUyGlOvVp1K2vbHtNowftc3VcLVBU95KBon4P0D4jryFg3IC88ew3A1o3jPYZeRWAcQpB+/64NsVAUT8A/Yy8SHhpf1i0ZqBXflemTPK1xeeY30t2/eNrF1q0aEHgN8fCC44yi/JzteidwVrKLXW0ZkutP4Q+Z5vTfAF9uhzMEO2S1lyU1faq4SKJV4jHF68vN2X6qOqDn7Dzg1pzXd9LonU8vwJaUlmtU/d4W9LRsfhkPmlNC2bOJJ6vaZHHHV+z9mtozudpLnBaMxK0ZqSO1nHaT+ssO58yqXJoxUghX3KlfK1LMFOe7sqcs8ueMnWqkB4kc6aIP4xMvczVJZh/uvmlmamEtvDKFVtU9zVbOE2diPkWKt5jQU55UV+zoJvmTJ52HPM1B9dvQrNwnNJdfM3aL60FFbRji+Jas0WWtS852wnOeNqmsG+5ZxoJ2rH2O9r5jpE6Wvtl420SzaavJe/Fa1+05ZSf0paLx5fT/F0l5bskMoe131ft+ppozSmfmHSHPd/T2teaFgX9fEaiZVpnuKxvdTaui8+98nWKydY+tLDn53LMr8j0KsaMvPIaTH2opHvJlEr50A3y+HGjzLSZ9q+xKZ9bLaL7yfTK1Zpjfg3GK+NTm/4LWjP3rW8aSWtKWutEi0yZn2ghzHOH55D2M4lfeVox5qMub4Tx0lq/Yn4Tr7J9gE6YhiClKzCS6Jz6Ur5OPAXyx59NS+lyJFpkyvxEi6zmd1qe5lwhTa9avhR4uvOiAlla7mirqvtdtRQwK02vrn5Ua9a+1h7Tgv32RF6LFgoLjDVm8QmjzILEDD7j3fI8wC5T2IceJFPqqjXDDzBSrs+ktPY1S3wNrRm+5sR3KdGOE+2S1rHEyCtHYuSV+4mRV141MbppnXiRKlOaF7nacVNac1cfSWsu8Dnm5zFn87RiJOiBsqWsnh+YFt115ykIKT9h52fKq3KB+jiTMMWntMdEXX1myuRqzuWy9mkR8dNac45vqeOLCukOrPR8b8mo6msNFPUBaJQU8r2NhNa+ZgFRWsf84lqzZByFNcU7TvyUDviSsZzSiE98KeJlhq1fVhNBCzzfobtP2rFFca3ZIsva74m2G8WZcppYa83ar6w5U0Q7TmkWvo750LQYlNZsQTrAFsOjNVtU9Gkn6HIL5XssyCkP+YKcuMI+Z/xy6CJMa+WWg7UPPUhm6itzrptfg2mjsppz3XzNlMstB8d8xZzpqimn9LKLjzFPvTQ7HW8DxE/rHB/luax9rTVrX2l65WqWPgf9+tq+OrqyT530X1EfWtjzK2ldn2YXj4TyRHf8p16aJXMo5Uv1Smfq8Lnj2/k4K9FV2P50dMLuZX/CL1rBU6S9PL/q63RJ0fXT3ImSHPU55XvbEPLTTJRbHmIi4qde7ow/F6b8lNZ+F53HFJWrOVdIay7r58TLEiwBfddItX0psKUpLZluWvPc9taaLVp0w0z6vsW325zNzxOz75wAWn9k+y16Dt79PAxASA8zhxDzW4x8YB4ASvM3KfvfUg7wK3JSX0DH4oUB+E4yECaI+YSmtGagqA8U1TEGeuX3moGMTxmeDxmtOeY3ydwOt1fUh2553mPKyDhrrTnm12Gul+uvq1sePqaMjFNdPUjmfqA/Lc9bTBkZ54gGUvOiBqOBXB92UR+6CwNN+cCgtUZR/8xfvGzetMoCZocNFmqkvhAwbkCisaLiun4hBmK6RRDX3jXF/PPxGeawnZZwJfWA+bgjzceuyBvPQfN8iGvvduP/oWbGv2/AuAHdxrUqA0V9QOsRhjEnEFy+RYsWCmNGG7mMmc+n80k9+QJL5fK+p0yrh1B7bI1seYhj8dovrR1iWsNVE4T2Y/GDAfeIezYoxNpvun+R+njAeeCBjKbkrw4f5RmO+Zopk4qvoCXjKKNtVqB9waC1BnzNQL+0ZqApHygaH2DMByDRET/D5HFYUDfI6H9KO/L9lud9zpsf/Wb0p65uefiZx4vHLeYPE6N/WmuO+Y0xUDS+aQZ65ZeNB6rGd/ExD+D78yJh2L3SioGYTioC+q01mq5f6xhi8WX9uvVpULyMM2V5tQzX9StyYRRfYeYsY268Z6p595smuJIWjQDjBoR0PxnQWiPme/jhDa+ZLdabYFZbxt0yrCb475o3/qudj8m4Af449piTjy/tO/gfbz+8kcZ/3fT4q/AMtD8sWjNQ1e8pU0bGQZeDtQ/dS0b77RV5LVoUQ+fqPFfQosX8BPnEyGEg5A+SAa01Yv4IADa7Kej6YvWX9XuuqYC/8ADJFyDKc3EoXjMCQ7oud60Pdlnd8shnysi4aq055veTuR/cH61HCANF4/vNQFW/LAOiYThKxt3Tub7H1siWV2VdX0Y7ZDQlLzxhoKpfNh6oqjUDVf2y8UDV+Fo+Fci4au0xVtTlIb9sfMZ3SMopz8UZ3RADTcUDIb/lEkyZ0DzpG6M/WmuO+S03ynt/8xlzyj5LmTcsOy4cRxkZl7K6JqPCXB92UZ/ygJTnMFDUBwatNXrtMx5+dqY56icvmsu/tJwrKYEuDex1zjPm1L2XMmssN64T1wsGivotUqg1/nWRN17MQHIgoHxeXNQvwIBoGI58X0PH5yLml4Wur6zWCPvtFXktWhRE5+o8Y2bN6bytWh4hTJlSnyOUScVDa475/WTuB/cnphtioKl4oKl4oKzWqBsfQ9P15YIr4IqAkB4kA2V1i5EPzIMQtA89SAbq6r6AG+SGQ4j5ZVG2vrr9q9teWa2QfBBTnsMyrH2tNWu/gpaMozJaMCitGSjqA0W1ZqBqfFm/brxjjH9GO0BnmDwOC/oNcl6/mWN+yyOfMQ+0HiSjf1prjvkt954xbkX9kB4ku/7OmWPMTf+aZrZYn6+C6pR3AN1rBpqKB0J+WQZCOhZfw5dxczLRmsni1Sprzd3jz//fV81m646XW2GKnwCBQDnNVd14D83H9ca7krQ/il58V7IQyvrldWxrYvH5fofz29dxQMjvypQJDjtl+JqqmH/+b+34v3mVcflxaC+zfsCHjnKF7R1SBgauqYDHAUg0AtUKQZ/L2yvyWrQoj1nu6jw+oWeBdxbQ6sFqjbJ+LL4s6vZPo+n+xdCD9rg6rhYoqgfJQFndYuQD8yAE7Yd0j7jbF72EgQJa6nMyD6gW0FqjrF83vmp9moF+ac1AbZ8K8n5xSOJDOsJYoarflbG61i2PfKaMjGtZPUzM/UL/Wh7ZTBkZV60Hyeif1ppj/jzMQNH4GANF42MM1PapIG+eILCq1tw1nrICrQkuLMNAUR8YtNao62scfOELZvsNJ8SfTdYUiu6AfjJQVs+H4GfjXXfXVPOtfSe6kmZx8EU0HzfoMh8xbkBR3UsGyuoRCH42noz/p3sz/n2HP47DwiMU7RV5LVpUwOjRxiw4jt/9xsyc444DdCDI+2KcHCdafzC+xzaweR1kBxsPI4uYXw26vlj9dX2NsvWV1Rq9bq+sVuDx5YFOoOK1D42wvmmPxXCU6JgPFNWagarxZf268TEGqvp14xtizIuYP0hGf+rqlkc+83jyuGqtOeY3yehfUR+65ZHPGOeY7soIr+orxgpB7aD9IAO98mPxQFGtGSjqA1XjgQFomQdOltFcTTKPQlpzQR8I1Q9onQFWBLTWqOtrlI2Poen+DQDcPe4mENL9ZEBrjZhfAeusMNac+rOXzarLjDUrTxzjSlsEgXEDiupeMlBWl8Rt900337r2FXPc7kuYJRce7UqbxTor0ny8mubj0vPJfMQ4AkV1kwxE9G33u/HfrXfj3w26expl/apaM1DVr8WUka8hWg+C2yvyWrSoB74qb8oMvkqvfSu1GMHg6UsfDAmK6kEyUFYPIbBZRRGL135ZrVG3vpCOMRD1qUC+2FA+Ly7jQw+S0b+yuuWRz5SRcQ1pzfB7yGgw6Dsk5ZTn4ozWHPCBTHyAgaZ8oGo8ENKagaI+UDUeKKS5gDOOIBPWvheQzI8+a80haN9Vk2DYtEbT9dfVGk3XL5oLOOMo0cSp+eAo6DepHQr7Di4sQVGtGSjqA0W1ZqCq1gxU9csyUNXvGk8FMs6eRiDGX/up8l6wbb68bnkgfNfD083XJ71kPv/+xcwOGyyU9ikj46T1IBn907pBBorGxxjolw80pflKvO/+9lVz3B5Lmo3WWFA8Rmx9DYxjAqzgmP27HqH5eCXNx/ctZnZ8+0IpvyfcKFDxsCLWv3yfr8Tj8T9+9yXNht74x6Hri7SfmSAK2kd1QXbxTWrJOGIJaF8waK0BXzNQXbcn8lq0aAhTZ841U2d03l4tDzlTJvdzQ3PM7ydzP7g/ZXWAgZCOxcd8oGmtUdefJ8EbzBsOQGsGQn6TDBT1W8xDwEAXRN78yGMgGk8ZOTDqcnABXzKO8uIAHZ8L7ZeN14j5GrH262qNpuvvldbsgPkBFNWoJqhjHIv3fJvp+KId+VrgxacYCPll44Gqfq8ZKBo/JIzx11pzzG+S0b+yuuWRz5gHMd1PRv/K6paHlAHSGGf40KUYqxf1I/FAot0K2u9UZB58eob51rWvmeWXGG322mIRs8ayYz0fqKo1A0V9YFBacwhF6wNIy7g56WsOS8ZVTIL2NZf1Axog/fAzM8zlt0w2T788xxy846JmzeXGOZOBFYsiFt/xH3xmZmc+br4wzUduV69ftv3u0M+o04j7RbfOoieaC5yRDCdrR3m+Zt9/6NmZ6fHncfD8vPUzbMOzuuXCDNT2qUDGgfLdfCDRLrCbbk/ktWjRIGbL1XlzzczZriAB3oEhtH5v/brodf3zIHh38W4DiupBMlBWt5j/gHkDQDvWX8y0H4yv6AsDOfGixSRoTXBhQWh/UFoz0JQPhOLLMlDVL8yU4fEu7EMPE/v99Vn7Wrc8/EwZGTddDtY+9CAZ/dNac8xvefiYMjJuWmuO+XWY6+X66+qWRz5TRsY1phtmNJDrkyXwtIR38QGJy2GgqA8Uja/rA/3WV9z6urn6jslmnRXGmU3XHW/WX2mcWX6JMWbCAvZWejpeA+MWRKgD/WQgpudDTJ0xxzz98mxzz39mmtvvm2bue2qm2XXjhc2emy3iIvqLSTQff3anm4/r0Hxckebjkp35mIwr4I9zrxgo6o8gJOP/JI3/vW78N6Hxf9dgxr82MC5AUd1LBmJ6hKE9kdeiRQ8wbaYxk6fPtV94SctxgjKtHgJdgu2K1bVmoLSm5MmMjqFs/HCCt4C3JISYXxZl62u4f5g4AFZPWPtOaz+oNZf1taYEwJeMI18LYlqj7PqD0pqBoj5QVGsGqsZX9DEfgES7uGS+lGW7enVfsxdvMx0fulEGisa33AhjvEO6aPwgGf3TWnPMb3n4GONcVveS0b+iPvSIYaCqX5aBpuKBqn6XeBlnJ4v4/rxImCxeLVMe8mvGA1ongcCgtUbdeI1YfXXbKxuvkeOz5GIgpSmD8QbgV2LKpOaPZucDobg+4IZ/TjN/fHCauf+pWebZV2abaTP71HCLgWL8uFFm2cXHmLVXGGveueZ4s/UbxztnsLjhX+187Acy478+jX/g+JP5uFPQh6uqWjNQ1Z+nmTLJx4zPMb8Jbk/ktWjRG9ir84yZ2T47r8VIAE9T+mAIQvshPUgGivrzEbAbQijr142vWp9moLSmAvkiRHkuz/2C5K0Q9Im5gpBfNz7FWF3rlud9poyMu9aDZPSvrJ5HGajql2WgqXigkE8FMq5aeyyGo6DfRcfiM75DUk55Lg5pIClXDFTVmoGqftl4oGp8037ZeEA0DEcynpRJ4kO+x9bIllflWH1ARlNiqRmo6jfNQNH4GANF40cUU0bGWZeD4feS0V5RH7rl4WfKyLjFdElGBZV8sgSeduEJCzwfSPmEkNYM1NUadX2NpuurDd1gSGsGQn4dBrTWiPktGgAGpiD8cewLU0YOPLocjExRxOK1XzZeo27/wro9kdeiRY/B/8HCJ/Twtmt5SJkysc+JlA89TIz+xnRFBorGxxioqjUDTesYYvFl6+sJuAPcEaCoHiQDWmvE/BYjD5gHQFE9TFwUheJR8aAQa7+ur1G2vgH3Dx/EQEhjtajWrP0KWjKAp2O+oKjWDPRKxxhoygeKxscYqOljvFFeVNdmW12heBsY1y3Pe4x5ENODZPRX65aHnzGOMd1PRv/K6p4xUDQ+xkBRHygaX9aPxQM5WsbNycT3WPuiNZMl4T3SQEx3VlQcQtrPPpOunp/V6d6E/A7n11fcj9WXHwcUqo/2vwwDyikT1l3im2Sul+unAmkv0dpXej5ioCkfKKs1MI5JoGLfb0/ktWjRB8yhdxk/O2/GLFeQvCOBVvdWxxCLL+vXra8s+t1eD8Dd424CIT1MDGitEfNbjHxgXgBF9SAZII0v8rmI+TlAMyFov6zWqFtfU1ozUNQHiuoYAxmfMvKLgAO0ZiDkN8rcDiW/HB3O9Tt2yyOdKSPjGtOaY34d5nq5/rK65eFnysi4ldXDxNwv9K/lnjBQ1S8cTxkeVyAZZ8r7fjReMVZoxKesIOYTXHGCprVGWb/p+mLod3tR6AqhB8mA1i2GH93GtV8MaN1i8MA4haB9f1ybYqCoP0LQnshr0aKPmD7LPjuPgS/CrOS4Aa259Sv71qiu04xMJy6zvkOiVRyg42Owq6OiEGJ+WZRtr27/yvY/1n5drdFw/ZhPQFGNajIMX7P2a2jJOApqrOf5As9PMVDUB4rGxxhoygdC8U0zUDS+ImM+lNYO0INkf3t8jvktj3zGPNB6kIz+ldUtjzyWcaesAFr7vWY0F/CBRLsVtN+pKMJAUR8oGl/Wj8UDTWnNwLBoj2UeUBZI2Z7fEx1gAPEhxPxshZTKxMdQt76y7TWNPrTP1XMzQEgPkgGtWwwfMG5A3ngW8ZtkIKZbDB8wjoA/roPigoiFl/WHRWsGeuV3ZcrI1wxdDtY+dC8Z7bcn8lq06C/s1XnGzJjVvvVaDDHkE8JmBdCagZDfTwa07gPQjaag64vVX9YflNYMVI0PMmXkC09EA4k/SOZ+UCqtWx75TBkZ15juwqgwFleZbfVxP8BAVb9sPFA1vqwfiwea0pqBnmgu4IyjIlrPD2vU0A6FfQcXlqCo1hxC0fqAQWuNpuvvi+YCZwTnQ4+1ZsCFdTjgA4PSmoGqftl4oKgPFI0v69diysg4exoBoflSlkvXZ8OzWnPMb7n3TBkZh7K6n8ztcvsx3SADTfnAoLVGXT+Koh10jHHX5bUYKOoPFdDRplC2vlh8w/1LJoADNJqJ+prL+lpTSgGGI46HFtTVGk3XX1VrpmV7Iq9Fi8Fg+iz77Dw+sZf39my5YaZMpc+RkcT+9uQwUNWPxQNFteYQitYHxOrTKNv+UII7yB0NQfvQg2SgrG4x7wHzIgQc6ADEJ+z8THlVpkysPgDxknHUzc9FzNfQ8WW1Rlm/bvwI15n56HSGyeOwwn5Z7bEYjoI6J17g+SkGivpAKL4sA1X9eYQxzkV96EEy+qe15pjf8sjnvPnRb0Z/YrrligwUjS/BGMdUOZDjQ6cYdlU/wqgg0Q5adxpSDDTlA1XjgZDWDAy71sjxWaI4GeeqWrP2tXYMwA8iswKlMvH1oJ85pxH3u/e+vk63X3R9zUAhnwpk2LTuJXM73F5RH7rlxhiI+lTA4wAk2gXGfJ/bE3ktWgwQ/O7jk3l8y037zgwB79wQWr+e36Ln4N3PwwAU1cPEIWg/Ft9i5AHzIAD9xSs1byqw/uLW7Ytc0AfgOxn1CagG6JfWDFTVMQZ65feagYxPGZ4PGa25bHw/mfuB/rQ8bzFlZJzL6l4yt8PtFfWhWx75TBkZV60Hyeif1ppjfsvDz5SRcVQaSPxBMveDUkZ3YaApHxi01ijr97o+jBuQaASqFYK+45hfiIGyusXggXEEiupeMlBWt+g/MG4A9CAZ0HqEoT2R16LFEGAGPztvxlz5spQcZygjX5hb3azuwjawuF83HtBaI+pT8m2thwPcI+7ZoBBrv+n+lWyPB5gHOgT4WC3DMV8zZVLxDWjJOGIJaF8waK0BXzPQL60ZaMoHisbH2AHzAeWJdkjmi2byOCyoG2T0O6UdBf2W50nGvNBac8xvktG/oj50yyOf88abOeb3ktG/srpnDBSN7zcDVf2y8UDV+C4+5gH8XE1ZgafFbkorBkLxgNZJINCU1hxC0fqAsjqGWHxZv259GhSfGk+PBV184ZhfkQGtNTLzrUXfgXEDiupeMlBWt+g/MG5ASGsGQn4BTg4f2neIHV6iPiXfHhatGajqDxVTJvlY6jW3J/JatBgO8DvRXp3XviVbDCF4WtIHR4KiepAMlNUjENjspqDri9Vf1u+7pgL54kN5Lg/6ihEY0nW5VH0Ij+mWRz5TRsa1rB4kcz+4PzE9pAwUje83A1X9sgyIhuEoE6990np+YAVdXpV1fRntkNGUvPC47xgI+WXjgarxTftl44Gq8bV8KpBx09pjMRwF/S46Fp/xHZJyynNxVFdkoKl4IOS3XIIpI+OsteaYX4e5Xq6/rG55+JgyMk4xPUjmfnB/PA1IeQ4DRX1g0Fqj137PgQ4MkgGtWwweGKcQcCAA/HEVdn6mvAQDomE4yvg2K9DxuYj5ZaHrK6s1wn57Iq9FiyEDX503ZcZcM5vemfy2xdu35T4zZVKfO0X1IJn7wf0pq/vEQFU/Fg8U1ZpDKFofEKtPo2z7jYAr5IoBaM1AyG+SgaJ+i/kXefMjj4Gi8XUYKOr3FehICDG/LMrWV7d/ddsrqxWSD2LKc1hmdecDofiEtd+AlowjloD2BYPSmoGiPlBUawaqxtf1gVB8Qcb4A8l8UAyE/CYZ/SurWx75jHkQ0/1k9K+sbnn4GeOs9SA51N/EBwJxjTPQVDwQ8ssyENKx+Bq+jJuTidbsbD+eKOV31Zoj8UBMJysC3XX2GXYxP42yfnkd25pYfL7f4fz2dRwQ8rsyZZJhzTDVR5nqfkFGf7SOcoXtHVIG+uUDWmtgnELI+KiQy9sTeS1aDCf46rxpM/H2dO/YBK2upzXKxpdF2fZjaLp/MfShPa6emwFCepAMFPVbzL/AvADy5ksRvyAnX/S6xQFF/S7AaoDWGmX9uvFV69MM9EtrBmr7VOD/IpCJd35GRxgrVPW7MlbXWnPMb3n4mTIyjrocDH+YGP3TWnPMb3nwTBkZp5jWHPPrMNfL9ZfV8xEDReP7zUBtnwoy88MLSLRbsajW3DWesoIu2oUnLIj5hGHTGnX9gaPsBkD3k4GYbtF/YJxC0D50PxmI+S0GD4wLkDdeRfwmOYSYP2C0J/JatBhizJxtzOTpc80cepfKF2E6oGSY4uQ40/r5vsc2sHkdZAcbDyOLmF8Nur5Y/XV9jbL1ldUavW6vrNaIxPP480QAQhqr9Uxr7uKL4cjXgqJaM1A1vq4PhOLLMlDVrxvfJ86bH8wxv0lGf4r6Id3yyGeMe1k9SEb/Y7rlkccY57I6xbCr+hFGBYl20H6QgV75sXigqNYMFPWBqvHAEGiZB05287k4mTchrbmsH9CA1hlgRUBrjbq+Rtn4GJru3wDA3eNuAkV1PxmI6Rb9B8YpBO1DDxO3GF5gnICQ7iUDRf0+IdZcWb+q1gxU9WsxZeRriNaaY34T3J7Ia9Fi+JG+Oq9Fix6Apxd9MAShfehBMhDSofghBLrZFHR9ZbVG3fpCOsZAVT9hyvAXHyD5IkR53x8q5n5x/7Rued5jysg463Iw/B4yGgz6Dkk55bm4tHYM6PIQA73yY/FAUa0ZKOoDVeOBqlozINozkvnRZ605gYsDtJ/RlLqs3net0XT9dbVG0/Xnai7gjKPCmjgZ735rB1ecoKjWDBT1gaJaM1BVawaq+mUZqOp3jacCGWdPS8ZRno950TPmdri9oj50y8PHlJFx0lpzzG+SuR1uL6aHiIF++cCgtQbGMYFaIfFR3g8GtNaI+QJUPKyI9a/p/uv6aravJxDCg+ziC/tlNSUAvmSAQWsN+JqB6ro9kdeixQgBX53Hz86bNce+ffE2brkiU6bS58ggmfvB/SmrAwzE4orGA4PWGjFfo2z8UII3gDcEgNYMhPx+MhDTGjG/xRAAA10QOhxaMxDyE6aMHBh1ObiuTwlAvGRC0H7ZeI2YrxFrv67WaLr+uloDvmYHjH+CiJ+ZLyEd41h8Fx/9gw8tSFbMxgs8vysDvfJ7zUDR+CFhjHNZ3UtG/4r60C2PfMY4F/X9eTEsnNfvloeIAdIYN/ihcY35XRmrh7RiINFuhZgfZKCoDxSNj/nAoLTmEIrWB+RoGUcnoz6BbYQl80CXg7Uf0ECoPkDHR6Er0Cjrx+LLQT+jTiPu1+t9I5oLOOOoiE6G2bE1suVF/Qzb8PK65YSBnvtUwOMAJNoFdtPtibwWLUYYps6glLk6D+/wEOZ3vy56Xf98CN6dvFsBaM1AyG+SgbLxLeY/YB4ARXWA9Re1sn4sXjRlBTGdA1dNgkFpzUBTPhCKL8tAVb9nTBmeH0PF6F9Z3fLIZ8rIuGo9SEb/yuqWh58pI+NWVveSuR1ur6gP3fLIZ8rIuJbVNRkVFvIhu2hAynMYKOoDRePr+sCgtUZdPwOsMEgGtG4x/MA4Annj228GtG4xeGCcgJDuJQNF/RGC9kReixYjELP42Xkz5prZc7zjEGXkC3Wru+sSbFesrjUDwfUdMpqSJzM6hlh82foGA+4h9zSEmF8WZetruH86PKOpgCcKAI24qNZc1teaEgBfMo66aYHWGmX9QWnNQFEfKKo1A1XjK/qYD0CiXVxIR9mGV/c1e/E20/GhNcf8rgwUjW95IIz5ofUgGf0rq1seeYxxj+lBMvob00PLQFW/LANNxQNV/Vg8kKNlHjiZaM1k8WqZ8pBfMx7QOgl0iPlDpzXK+k23VzZeI+YT2OYwAWUw3gD8SkyZ1PzRHPMdA1q3GD5g3IC88ew3AzHdYviQN5494uTjSvsOmY8zBRVeWWsGqvrzNFNGxqWsboLbE3ktWoxcTJ3JV+i1b+EWAwBPO/ogSQCtGQj5/WQgpudDYDeFEPM1dHxZrQFfM1BaU4F8EaI8l4c0kPiKsUJRPxbflbF6Wd3yyGfKyLjG9CCZ+8H9iel5lIGqflkGmooHCvlUIOPaRUvGUeJ7bI2wjsVnfIeQT2T7p+MpSblioKrWDFT1y8YDVeOb9svGA5XiqUCPPwIz86Iix+oDMpoSy4RjvmMg5DfNQFPxQMifp5kyoXkyMEb/tG55+JgyMk5ldYSxQiWfLIGnJbyLD0hcDgNFfaCs1uh1fRoxv3GU3aCQ7iUDMd2iB8BAFIQOh9YMhPzCTBk5sOhyMDI5QFwKXeIF2i8brxHzNWLtd3R7Iq9FixEOfmYePzuPn6HHb2u8vVsuyZSJfU6kfOhhZvRfa80x3zEQiyvKQFWtGWhaxxCLL1tfT8Ad4I6EoH3oQTJQVrcY+cA8ALTWgD9MDJTVuUDFw4pY/8r2v2x9dduv2z+l8UEMJB/MlOfiqNas/QpaMo7KaEFRrRnoldYMVI2P+UDR+BgDNX2MdyhO+9C1Gc3E4nIY/dNac8xveeQx5oHWg2T0L6ZbHj7GOBb1ofvJ6E9M94yBovExBor6QNH4sn4sHiiqPZZxpKwAWjNZEt4nDWjdCVQcQtrPPpOunp/V6d7En4EXq69Yex2O+fn9C8XFfWLKyDCJpngq6GjPr8Refd18bofbC8XBn48YaMoHymoNjEsCrODY99sTeS1azCOYNtOe0LPAOx6Y33UMsfiyft36yqLf7ZVFgfbZ5jCgqB4kA1prxPwWIx+YFyFoH3qQDJDGF3lBzC8ANBOC9stqjbr1NaU1A0V9oKiOMZDxKeP/ogAd9fvM6FCu37FbHulMGRnXurqXzO1wezG/5ZHHlJFx1OVg+MPE6J/WmmN+y0EGqvqF4ynD4wSE/GA8fMVYoSm/q6Ys4IoTNK01yvpN1xdDv9uLQlcIrRkI+U0yENMthg9548kMhPwmGYhpjZjfovfAOALQg+QRgvZEXosW8xD4mXn87Dx+hh6+aCfHJWjN85FvMx0/ptOMTCcus75DomN+Qdh4VBhCzC+Lsu3V7V/Z/sfar6s1mq5faR5fHmggpLFahuFr1n4NLRlHQY31PF/g+SkGivpA0fgYA035QCi+aQaKxldkzIeifqIdoAfJ6G9Z3fLIZ8yDmB4ko78x3fIIZYA0xh2+Pw8GxUCiibl/MT/IQFEfKBpf1o/FA01pzcCwaI9lHlAWgC3wfCnX8V38Slqz8wGUA9rPILMCpTLxMdStr2x7TWMA7XNz3CwAPUgGYrrF4IFxA6rqJhkoq1sMHhhHIKT7yYDWCrGPv8jq0eYGpTUDvfJrMWVkHLTuB7cn8lq0mPeQvjqvRYsK4OlDHxQJiupBMlBXVwCvztU0BV1frP6y/qC0ZqCqLsyUkS8+SgOpL0aDYu4HpdK65ZHPlJFxLas9RoW6vG9sm8+y84FQHBDyy8YDVePL+rF4oCmtGSjqA4U0KnIU9Unr+YEV+6YdMpqSJ4O+5hAy9VEapNYo6w9aa+TGcwFnHOWOfxG/htYMJOWU5+KQDyAO6JfWDFT1y8YDVbVmoKpfiykj4+ppyThK/BqMBovGE9n+lNUt958pI+Ogy8Hahx4m9vtbkIF++UBRrRmoqzXq+mWBcUuABhwnvirvKQNaDwXQ0aZQtr5YfI/7pydMSGO1DJf1taYEwJeMo25aUFZr1K2vKa2Zlu2JvBYt5k3w1Xl8Mm9G++y8YkyZrp8j0MPM3E/012fnA6F4QJeHGKiqNYdQtD4gVp9G2faHEtxB7mgI2oceJgZifov5DzjQAZn54fxMeVWmTKw+APGScdTNz0XM19DxZbVGWb9ufF2t0XT9EZ2Zj05rBkI+kVRbWXuM/qV8T9uMK/fiBZ6fYqCoD4TiyzJQ1a8bP0IY4631IBn9K6tbnvfYnxc+x/wmGf0pq1seUgZIY5zhQ6cYdlW/JANadxpSDDTlA1XjgZDWDBT1gX5rjRyfJRcLKCPjSlkp97Sgiy9as/a1dgxk5o9CxtcVaMT8ctDPnMuiXHt1e6/90DPxgJDWDBTyqUCGRetBMveD+6N1ywNjAOMEBLWugMvbE3ktWszbmM5X51Hq/lbHkSGEed1v0XPw7udhAIrqYWKgrG4xz0N/8UrNmwrc7YtblXjxKSuI+QTYQL+0ZqCqjjHQlA+E4ptmIONThudDUGvWPvQgGf3TWnPMb3n4mTIyjjE9SOZ+cH9iuuWRx5SRcYzpfjK3y+2X1S2PfKaMjKvWmmN+k8ztcHsx7TGgy6v6wKC1BnzNQNX6QihbP8YxhIyPChwnviovxUBRv8XwAOMUgvb9ce0XAzHdov/AOAEh3U8GtNaI+QNGeyKvRYv5AHPoXT55+lwzk5+dR1qOS5SRL+Dzu/bYGtnyon4sPqMdymoNV20CrYcD3CPu2aAQa7/p/pVtLxLPE4AnApBZ3fkojzJlUvFNa0oAfMkAno75gqa1BnzNwLBozUBRHygaH2NAlWM+AMn8UAwk5ZTn4lB81O/C6F+q3KtP+9ADZaBofMuFGONfVg+S0f+YbnnkMca5rO4no78x3TMGisb3m4Gqftl4oGp8CR/zIKUpK/C02E1pzZF4QOskEGhKaw6haH1AWR1DLL6sX7c+DYrHeAK8eqK7+MKenyqvyUBUU0FqvrXoOzBuIWgfup8MxHSL/gPjFIL2Q7oCJ4ePmA/Ad4gdflT40GjNQFV/qJgyMi5a94LbE3ktWsw/mD7L3m6zfde3KA2eM/TBEYT2oYeJgZgegcBmNgVdX6z+sv6gtGYg9wuSF5Bot2IovizXqg+ra93yvM+UkXHXepCM/pXVQ8JA0fh+M1DVL8tASHeNpwI9PxCoy6tyrD4gpIls/2O+Y0CXhxgo6gNF45v2y8YDVeNr+VQg49RFS8ZR4ntsjbCOxZf1M2zDgwxU9cvGAyF/2BkoGt9TpoyMc1ndS+Z2uL2Y3/LwM2Vk3LQeJKN/nhZo32NAl4d8YNBao9d+z4EOaAZCfpMMxLRGzG/Re2AcAeiEKSMHBl1elSmj6wNyNQJDiPlloesrqzXCfnsir0WL+Qx8dR6fzOOTenxYwOGhZcWUSX1OFNWDZO4H96eoD90nBqr6sXigqNYcQtH6gFh9GmXbbwRcIVcMFNWDZCCmW8z7wLwAiupBMqB1X4COhBDzy6JsfXX7V7e9sloBH7QhaD/5YKY8F2dY+01rSgB8yQCejvmCprRmoKgPFNWagarxdX0gFF+QMd5AoiN+lCmWqHi8x+hfUV804PktjzzGOJfV/WT0N6ZbHn7GuGqtOeY3yehfUDtov2cMNBUPhPyyDIR0LL6GL+PmZKK9+FyfsmIX1Zoj8UBRPwECgbTOPuMu5qdR1i+vde/rxlu/w/n16Tgg5Hdlysiw5GqqjwpyfWHPT5WXZK6X649pzRQg7evyEchAv3xAa42oTwE8TgmwApe3J/JatJg/wSfyps7gE3veESHBvK41ysaXRdn2Y2i6fzH0uz0CN8fNAtCagZDfJANl42MoG99i+IF5ABTVFTn5oheJ68pATBOwGqC1Rlm/bnzV+jQD/dKagaZ8IBSfMGWSX/C6MFao6ndlrF5WtzzvMWUy82PQjP6V1S0PH1NGxqmu7iVzO9xezJ+PGCga328GavtUIONMefGdBoLarRDSmmPxXTWkpwXa9xgYNq1R1x96hHbIIBnQusXwo9u4DopbDC8wTkBI95KBsnrAaE/ktWgxH4Pf/ZNnzDUzZtl88gXcZ4qT49Y84NtMIC7HL6o1J76D1QhwlIn3/EZQtr5YfK/rK6s16ranEYtvuD4ef54IQFGNahrTmrv4YjjytaCorxmoGl/XB0LxZRmo6teNr8tAJA7zoqweJKP/WmuO+S0PP2PcY3qQjP6W1S0PP2Oci/rQKYZd1S/JQKKJdb+ZdXwoLkHIL8tAVa0ZKOoDVeOBqloz0AMt84KyXJzMk5DWXNYPaCCjKXkyU6DjM8hUoBDzNcrGxzDs/SsAbo6bDUH70INkQOsWw49u4zooDiHmt+g/MG5A3nj2mwGte4xYc2X9qlozUNVvlCkjXzNiuhfcnshr0aIFn8jj223ybTdbzKfgsacPhiC0Dz2SeIiBbjYFXV9ZrVG3vpCOMVDVT5gy/MUHSL4IUd73M3qQzP3g/mitOea3PPKZMrnzJOY3yEAwjjwOi2rHgC4PMVDVL8tAVa0ZKOoDVeOBqlozIBqGo0QTY7wL+TW05gQuLrO+Q0ZTylsd6LfWaLr+ulqj6fpzNRdwxlHUJ52ZH2L0UTtkNCVPBn3NQFEfGJTWDFT1yzJQ1AeKxnf1qUDGVetBMveD+6N1y8PHlJFxqqubZK6X6y+rB8hAv3xg0FoD45hArRD0e8lAWZ0LVDysiPWv6f7r+mq2rydIqPqEXXymHKz9spoSAF8ygKdjvqBprQFfM1BdtyfyWrRoIeAjAZ/Mmza/PjuPMoU+dwbJ6E8sDuz3vwEGmvKBprVGzNcoGx9D0/UVAjfIDQNF9SAZqKtbDCF4gHigCkKHF9WVmTJy4NTl4JhPCUC8ZBz5vsDzBVpr1PU1Yu3X1RpN119Xa8DXDEQ05geQmS8hrbluvMdiOArqnHiB53dloFd+rxkoGj+kjHGP+YNk9Efrluc/7jZPBsWh/sb8lvvEQI6Pccxdz/NrMaoL+EBRP6+fKQaK+kDR+JgPDEprDqFofUAFLePoJINthCXjrMvB2i+rNTu/MLBiCGX9WHw56GfUacT9er1vRHMBZxxFfdLJMDvGirq8qB9lu3pct5ww0HOfCngcgKB2K/q6PZHXokWLFGbMts/Om526PA9HkBBGuh9D3fVbZMC7k3crAK0ZKBrfTwa01oj5LUYeMA8ArTXgB1h/USvrx+JFU1ZQQMt6Hlw1QWh/UFozUNQHQvFlGajq94wpw/MjozXH/CaZ2+H2ivrQLY98poyMa1ndT+Z2uf2YbnnkMWVkHGN6kMz94P7EdMsjjykj46jLwdqHrsmosJIP29OAlOcwEPLLxgNN+cCgtUZdP4NQBzQDqlzPj0oMlNUtBg+MIwCtGQj5TTIQ0y0GD4wb4I/joBjQesjRnshr0aJFLiZPn2um87PzKC/HNcrIF/aRrjV38a1RXWuOru8Q1ZQ8GUUsvmx9gwH3kHsaQswvi7L19bh/enWeEDwxAGjERbXmsr7WlAD4knHUTQu01ijrD0prBor6QFGtGagaX9HHfEig4hJf6Sijmqq+Zi/eZjp+Vd2VgaLxLQ+EeTx5XGN6kIz+xnTLI58x7loPktG/snpoGKjql2WgqXigqh+LB3K0zAMnE404zxfp+SnWfs14oKzuVKQYGLTWKOs33V7ZeI2Yr0HxGG+AV0c1pZkyqK+S7xiI6RaDB8YNKKp7yUBZ3WLw8MfRZyDkN8lATCtkPv4UIquX9kN6vmbKyDho3QS3J/JatGgRwszZ9nabs+e4ghYtAP7koA+SBEX1IBkoq+cDYDeFEPM1dHxZrQFfM1BVJ0wZ/mIEhLRmVFDUj8V3ZaxeVrc88pkyMq5l9SCZ+8H90VpzzB8hDFT1yzLQVDxQyaeMjKNXDqR8jxEY0rH4sn4m3iEppzwXg4FMPKWUTylPawaq+mXjgarxTftl44FK8VQg4+ZpBKbmgeenygtwbn2+7xDSRLb9mO8Y0OW9YqCpeCDkz9NMmWRcfY75vWT0r6xuuf9MGRkHXQ7WPnSEsUIjPqSnBVoT3GoZBor6wKC1Rl2/LBpvT68APUhu0UNgR1eEXj2kKzNl5MCiy8HIOGIJxHQuvPoEWmvU9TWK19eeyGvRokUUfDJv6kx72MDhY75jyqQ+R4rqQTL3g/ujtWbta90jBor6QNV4oKzWqBsfQ9n4RsANcsMA9DAxENMt5j/kzZdBM1BW5wIVDyti/Svb/7L11W2/4f7hgxiAxmpRX7P2K2jJOCriQwu01kgqUgz0SmsGqsbHfKBofIyBXvmOMd5a12Y0E4vLYfSvrG555DPmgdaaY36TjP6V1S0PP2OctR4ko39a94yBovF1GQjpWHxZv2w8UCBexo2yAugcX6SnBV38OhrQuhNoOeNrIN4i+0y6tF9W138GXtovr21vOhzz/d534kNx5X3SNB4yLIijTDLMpdmrr5LvOOnf/MNAUz7QuKYCHifA1+2JvBYtWhQCX53Hz86bJc/O4yOIf+gYaVqjab9ufWXR7/bKokD7bHNYCNqHHiQDIR2KbzH/AfMAyJsfA2R8kRegHNB+A0DzgNYaZf1Bac1AUR8oqmMMZHzK5P1ioOOAxI8wViwaH+Ou9cHWWnPMb3n4mTIyjjE9SOZ+oD8+x/yWh58pkzvuMb+XjP6V1S0XZqCqXzYeCPkJU4bHFYDWjBWa8rtqygKu2CLmE8pqjbL+sNenEfNrI7ZB0L1koKjfYniAcQpB+/64NsVAUR/QukX/gXECQrqfDGitEfN7jPZEXosWLUqBr86bNpOOW3TkkC/8VCbHMWjNQ+xbI6zTjEwnLrZ+RjtondQXgI1HhVnY1cN+NcTq037ZeI2y/Y+1H9MaZf0eax5vHngAGmGZ1eFrJk/iG9CScRT0Ue7FCzw/xUBRHygaH2OgKR8IxTfNQNH4PjHmB5DMF8U6vpeM/hX1/e1peWQzxrmsHiSj/1q3PEIZII1xhp83/kX8Jhko6me2TzNQ1AeKxpf1y8YDVbVmYFi0xzLOlM2F9rtoqa6u1lzQDwKBgNYaMV+jbn1l22saA2ifm+NmgaK6lwyU1S0GD4xjCNqHbpKBon6L4QHGKQTt++PaLwZiuiZi1ZX1q2rNQK/8WkwZ+RoS073g9kReixYtymLWHGOmTJ8r3GIeBX8y0AdFAq014A+Sgbp6CMDd4W4BWmuU9evGV9Wagaq6MlOGvwgBuV+QmMnz43vK3A63V9SHbnnkM2VkXHU5WPvQw8Tob0ADGd8xoMtDDBT1gaLxZf2y8UBVrRko6gONaC7gjCMZX8r4jBX7ph1Ka0osNYeg/UFrjbL+oLVGbjwXcMZRYU0cnC8ltWagqA+Q5GoT9EtrBqr6ZeOBqlozUNWvxZSRcfW0ZBzl+Xp+xNiuGI8Lsl09rlsefqZMcJwHxXn9ZO7iA7q8Vz5QND7mA2W1Rlm/dn0UwOOSACs4jvk9YSCmBwJ0dFCItd90/3R9SusJAo2wDJf1tdasfWQc+VpQVmvUra8prZmW7Ym8Fi1aVMXUmXPNlBn5h5cRx5Tp+jkS0sPE3C/uX0ADGd8xoMtDDFTVmkMoWh8Qq0+jbPsjErwBvCFASA8zhxDzW4x84EAHYF4A8FFemylTqj7K6HgAvmRCiPkaOr6s1ijr142vqzWarj+iM/MR2sWF/AyTx2GVteYu8TbjyqEd+X6KHXXz/z9776LYuI4sW/rc+f/P7b13vScBYdFUkFAC4FOuXHN1AoFIAnAlW5Jbo3am5rcqjOZb67cqtNYPKv32/JXKeb089Ospfe71eyrnac1rPvQmCubpI/mqx87yJ/XyToWqN00bav55EFFozWG0HmpeFVpzONsrK/W5j8X2+LTMdB/gVTVXr1pyYB4WufjlBfaY+6146/Xtt3U1zWt/Ew9qXhWacpvIbej1R2raJ+3n+dDTFBa5DVJf4KmPM00XxAd5QRBsIn0rL/3tvB+/Xj2VlGecKlfnweGkf/7Uhlaov5NCax78Negbr+m+gPl90qDzN2p71DflNgTijJcbe3lVGPWqMFrv5VCr31uhtb6qNkj3x8JfqZyv14e+v9og91X9lcr5en3o/dUGuW+9/kxN+6b9PR/6/mqD3Ndef6SmfdJ+rbmNIc+vKLTm0OpVYatXyFVhdD3Y2yv0cYILik65zB+qwftA3+BVX89SUB+cD32pofm8j2cpeP5mxAd5QRDsQvp2XvpAb3petEF+Q393P9NHsJxvzb36hS/0eqUsO6Fe8fJjSDumna/C23/v8/Xu59SnGyDdCLC4vJJXtdQf5u0B5HkAM+/lmb29Qq4Kd/Gq0JpDa72nIPPcDzB5Ly/gF2pZKqvmvfpiPX4e9apevkmhtT50SOm7569UztvrQ++v9Lk1x1+pnE/9YQqt9WcrjOa99TBa35vPNN8HNszgVS3K5aNe1akHz08XwqhXrdG6Hmz1yt751vUUq6efq6zkaXm2WdwPJyks7q/g9rzq61kK6oP7Qx9hrb+NOj19bM0rUA538aowmt9KbZD70utHND7IC4JgL36lv533/c/Hj19lIvh7SK8k9sIyUfN3UlCvePkN4MfaC13PW783v8qrwvTGyMY5Lx5qfquyYWv9k3K5elUvD30/tUHuq3pVL99T0z5pv9YcfxOF1vqzFUbzXoWaf1lvE7nPM0/h030xy5/mG3R1vRc5VOsL07yN0zQKOl9TaM2htX7vvLceRut3zW2Q+zabh6d8phTWvFffmy/0Ub70RcHN7TGfrymM5ndXaK0/VW2Q++j5KzWdg/OE3lttkPvW64/UtE/ab+YzXm7k+RWFu3nl6PxwvB+45vdU2OqD80n//qkPsPA2kf+Db2P6tUlt4K0H1OdBDS/vRdfr9Uo9jw/ygiDYnf9+PD7QS/D08/Zqg6fXjZq/UtM50nm8OpR6T23QVV9RGM29emj1qjVa1wNvPaV3/11IC6aFodVfqdDrg68H9wW0+isVPH8IHKSGl/fSu97W823dr9crTs4LL0wvxDZO0wvVfG9vDyDPgyKvfOYorwqtObR6VRit35pDrb5XC/Sf+ckX8K5arUl7fYdy7icPszz06+ur++Qs5TzqVb089Hylj73+SOV8rTn+MIW96qGW9yrUvFe/NYeG+txHG+a41av25o6fIIBnr39Dzs+f6c37vZ5+a/0j/9T19bQOavlLtUFui85ntfWs4CmnPussf5rvVPZrzSdf9se/scJZOahX3NwKUl8mZhfEB3lBEBxC+nbevz8+Pr7/5Bln/lTzbl7xcuXs9fbm7P2MtF3aFlr9nRTUK14evB/cB9Dqr1Ro8LzRB5ap0ZtvrT97vb28KuyVg1tvE/kXOhvnHC8K1dw0LVDLu+qJvbxDobU+9CK1wWrfNffqj9S0b9rf86H3UxvkPuk8qnnNX6npHJxnrl7+xgqt9WcrbM5tIvfRxq9yeLovZsqFrXlv/ZNalFFvlMsm7uaVrfntaf0HUoVavkVBveLlwfnQR5j3da5Qy/fUGl4enA99g7V+nq2g/mLig7wgCA7lvx9/Pv5JfzvPnmnWfhFIT0D5efGqfKY8QR/jmSjyKt+F3vW8+qPX6/XK1v0Ur37n9VL/040w4eR4ynbzqi/yHBTp8Rm8KozWezm0+q0Ko/nW+q0KTh33RWuOv1I5X68PfX/lPlCv6uV7KudrzfGh76/0Wf2TEo/mnQqTN00bVD2U+YVCLe9VGPWq0JrDaD2MelU4wOf7woZperpPcmhortqbVzwsvD1m1q1foAsovblX38vW8yl7n28H0nHSsQB/pYJ6xcuD86GP0OqPVOj1wfnQN8CrQi3fU8HzO+Mt35tf5U9VG+S3HeqP0PggLwiCo/ltzzLpf2rz+88yEbwf6ZXCXjgmWv2dtIbmXv0BcMy90PV6vbJ1vZpXhdH6qtogvfGBWr7wjnJBa32XsnyvD/16aoPc516/o3Kg1nqTx3nUF4VaXq23x0jeqzDqVaE1h9F6GPWqkD1BkWZvSr+3elVy1SkvLLw9ZvZyr+y9/lav7L3+kE8TaVBkui9mngv1fjnMF7q9PZJVhdYcrvKqMJr3KrTm0Fr/MreJ3Ff1ql6+p6Z90n69PvR6tUHui86jmuPPVM6j/kKFs3K42itubgWpbxNccKWC+reEH6yGl/ei623cf3GDCIvtSj3zC9W819sDyPOgyCufOdor5Kow7uODvCAITuPbz4+Pf749/teoeRp6G7VBfh1R9fIrlfOrV/XyorBXDnt7pTf36nvZe70h0gHSQWqQX6nQmoP64IbQyEH08pofVhvkJ0KdR73cHkB9HhR5lWfUK1tzpXe9Xq9sXW9vr5CrguO5P6Dmuaw1X3jVjjwPiqzVk2emCx2Fo/KjFVrr31TX+n22cp6tPvT9NfUz9VW9qpfvqZyv14eepNBaP9N5n4eV5QZzmPx0QUWhNYfWei+Hq7xqjdb1YMDT38wLny5bqOa9XrXkwHwNrV/gLmCPee7V96F/o07x822n3+6fz7danybSoEhurw3myoU635p362O5pQ+dFA7PbSL1AZp90vggLwiCM0nfzvv3e/pQb/7UU56Rqhyde2y9PliQ/jnTPyuM+isVen3w9eC+qEFe0fkbs5Hcq8/ehpmGPM/PKGVVNL/Kq0JrDq31nsJofpjaIPW/21+p6RzpPJ4PfT+1Qe5jr79S0znSedSrenno/dQGuW/qVb18T037pP16fej7qw1yX9VvVBYcyolnHvI86uUvFM7K4WqvbM0XOAegzxPkRadc5jcptObBfaBPUPNHKrTmwXXQF1jrV0u+p4Lnb0Z8kBcEwSWkD/LS385LH+zl58mkNkhPSJf6mT6C5Xwt31oPvd6jbFPFy+9BOmE6aQ0v76V3vZPPl26AdCMAnm3cXLU3V28PqNXnQZG5z6hXevOrvCq05tDqVWG0fmsOtfqi3B/qVaGWmzyWreWqL+o53+p1Kzn+pUJrfeglSp97/ZXK+dWHvr/SZ/WqXr6ncr7WHH8bhdG8V2GveqjlvQoNPve52MlT9yJ/Uotyec2revWOB/WfhaJwtVd68733661XBvajn5DiFr+qNni6P1S9vCgs7i97POX2mPvgeuhjDfIjFVrz4D7QJ2j1Ryo4fvHyJ+jlSm9e86pwVH4rtUHug/o9ND7IC4LgKtKzT/rbeel/cjN4M9Irh72QTLT6KxVa878I/hlqeLmi9b1eIVeFUa8KvFGCpzdOM4VqbpoWrvku5fLWHB/6/mqD3FedRzXHX6mcb6t/E4XRvFdhr3qo5b0K2dvE1NeiFNa8V9+bL+oL07yN03QtB+qg5lVhNO+th9H6vfPeehiqt4nct5nPgyJr+XQfNOrjwvYcqvWFad7GaRoFnb+Lwmj+pdUGua+9/kxN+6b9PR96f7VBtc8z5YJDcuKZhzy/otCaQ6tXha1e6c33Xk/x8gW1A16pwYHwD70TutxaP7vUBvmJROdRBkXW6kD9KrP1MuqVrbnSvl58kBcEweV8T3877/uf/O08np5upzZ4eh1p9VdqOkc6T82r1uoPUtirHvb2ytZ6pXe9XprWSwWpEFr9lQrqFS8P3p+1+yMp1PIrFdSvwoV3xTvf3ufX9bbu33s+p54XVmj1LLtQzQ/weVDklV9lWkgUjvKqMFrv5dBa7ykclRel3zB5ybv1cXl7/QvlvJ4PfX+l773+SOV8rTk+9P5KHz1/pnK+Xj+s0Fq/t8JReW89NNTnvtkwg/fyYuc+l+/koerLBZovKHUT+/rtfwNP/wZdr3+c5lO9fH76z/paXX9u3vqR20KdDWjTk3p51tl6Q3nRtA/7zdXL31hhrxwO9zaR+pKID/KCILgF6Yko/e28/37wlDV/ajrbK7351vV6OXu/Xhr2T3Eqa4V6T6G1fouClwd/H9wH0OpP0umN4XweyItdoPUNsA2oV3rzu3pVGPWqMFpfzW1i8YvfinJha72nL9cj7vWh7682yH1Vf6Vyvl4fen+1Qe5brz9T075pf8+HNiuM5lvrq2qD1FeY7gMbv8xFuaA1f+ltmOn1RllmwvNK7/W96ylHr6d4+eFwgCsV1Af3hz7CWn/PVlAfnA99qaH5vI9HKfT6k4kP8oIguBXffz2+nffLNP9CYXP5edIG818wJt2Q8wRc88/K4LPOu37hC+qn9UD8oz5NpGDJo7yej+Gtp3lvvdJ7fm9/zyu9+cE+9Ts1HvCULS4nV7Us15/g86BI1asWeZVnat6r9xT2yqG1fqtCa/1Jyv0Bk9dc/JXK+T0f+n5Kn1tz/JXK+dSrennoTRTM02dy9arkhyrbVXKY/HTBoELNe/W9eW89jHpVuItXrbFyPfdLZubzckd71ZLXWORcWMPLla3r9e63N1fvb6Tt0zFqkF+poD64P/QR1vp7tgbvA32DV309S0H9RrzlevNRrwpH5ZvUBvltRq/fQ+ODvCAI7kj6MO+/H8UE15NeKeyFowr5lQqj9TeCY7bi1Wu+tX7Uq8KoH1YbpDdCML0xsvE8X/grNZ0jncfzql4e+n5qg9xX9apevqemfdJ+lRwW9UVB50cVat6r781762HUq0JrDrv4NJEGRaa+zzwXTvfD2b7genvMLp+0huZXe6U3v9orTdeniTQoUvWmzfeL41XdvOB6e8zsYV4VRvPeehj1qjCab1Ib5D7O5mE1x8+UC3W+Ne/Wx3JLH3p/tUHuW68/UtM+ab8OD3l+RWE0762H1hx6vUKuCqPr1aBvE3JBNT9SodefAge9Cm//vc/nrKc3CJ7L9PJaPqnm6lU1Z1Bk7jPqld78Kq9q/zc+yAuC4K784Nt5v+tPY7upDYZeZ+6knLc1xxcFna8ptObg1Sut64G3ntK7/1uSfoD0g0Crv5NCrw/eH57IIPV3Zqv5sNogP1HqfE1toPVAngcraH0Tul6vV3rzrfVbvbL3+p1+uv+Yr+QLtSyXj3rVF/WPQZnHF+nJnxRqfqvCaL61fqtCa/2gpv6kvvX6O+n85wn9WkqfW/O1++Ns5XzqQ2+iYJ6+ka96G2Zm+ZNalMtrea/KelCrn5guFIXWHEbroeZVoTWHs70ysB79zcx8Klv0X1Vz9aqNOaifCkH9Vrz1+vbTv2Gn9O6m6y3zda8KQ7kNcls8f6SmfdJ+rTk+9DCFRW6D1AdY7VfJ44O8IAhuT/rbef/mv51XIz/1PYareHlwO1K7ygtVBq8KtfxMBc8HXw594zXdF1DzFZ3Wc+pa65tyGwJxRnOv3vC8Qq4Ko14VRuu9HFrrtyq01lfVBun+cP2Vms6RzuP50PdXG+S+qlf18j017ZP2a83xofdXG+S+6TyqOf5K5XzqQ7+e2iD3WedR8iuV88w85PkVhdYcWr0qjHpVaM1BvdJ7fa9X6OOEXDDlzJ+hoF7x8uB46BvU/JkK6hUvD85nrZ9nK6i/GfFBXhAEbwHfzvv5uzyv2jNX/oXBxpv8TB/Bcr419+q7fUG9Ui6b6PXnkHZMO9+Vvc/nrae5U59ugHQj1NCc5apa6ptz9aorOZDnQZFXPnO0V8hV4S5eFVpzaPWegpNzf7h5Ab9Qy1JZNe/VF+txPvLHQPIVv6tCa33oLsp9oF7Vy/dUztea40PfX+mz+iuV8/X6YYXW+rMVRvNehZr36nvzmeb7wIYZvGqJ5/UmT/lLr+rUQ6+fFoJWr1qjdT042iu9+db1lIb16Dekci5b3A8nKSzuJ0Hrg+uhjzDv61yhlm9R6PXB9dBHwKtCLTednj625hU053K4yqvCaH5rtUHug+dHND7IC4LgnfC/nRdcQmqJvbBMtPorFdQrvfUXwI+1F73refVb19vLq8L0xsjGr3J4eiO1QdloKCfu9aHvrzbIfd3qr9R0jnQe9apevpNCa/3ZCqN5r8JQvU3kvs18HhRZy6c+N+rjwvbcrS9M8zZO0yjofE2hNYfW+r3z3noYrd87f1lvE4t+p6DI5Ffqnuo35At9lFc9LPKiUPNefW9+d4XW+kvVBrmv6lW9fE9N+6T9PB96P7VB7pPOo+RHKvvN5jnAam5jKGULhbt55ej8cHoPiD9TwfPB+dAnWHibyE8IBfJhtUF+ItH5mQL1eVDkVb4Lul6vV+p5fJAXBMHbkb6V98+3x7fzeHo7XW3w9DqCV/XyKzWdK51PvaqXNyqM5l49tHrVGq3rgbee0rv/IaQN0kZQ81cqtObB3wv3BazdL2cr9Ppd4CA1vLyX3vW2nm/rfr1ecXJeeGHh7ZHspCU/zKsyKPLKZ47yqtCaQ6tXhdH6rTnU6nsVZJ77Aab7w1OrNWmv71DO9+SLzPPQr6/cF+pVvXyLcp6tPvR+mvqT+qT+SuV86g9T2KseanmvQs179VtzaKjPfbRhjmc+U8tVe3PHg/qp8MHyb9J5+TPLv0G3t5+fZo/6R/6p6+tpHdTycbX1rD+5TczbYGqrDab8af5g5Xw2kffHh1YVPK+4uRWkvkzMLogP8oIgeFv++/H4n9t8PKPNn8r29oqXK2evtzdn72ek7dK2oP4JC57eedxEodcHXx/uE8BfqdCQ8x83oKzG1lzR+l6vbF3vLK8KrTm49TaRf6Gzcc4rHqZclAtq+db6J+Vyz88UdD70ZmqD3Mdef6Wmc6TzqA99f7VB7qv6K5Xz9frQwxQOz20i9RXwqlzYmvfWP6lFGfVGueyBlxtne2Vr3sve63nQtwk9QKs/UsHzwf2gj1DzRyr0+uB86BvgVaGW76mg/mLig7wgCN6aX78/Pv73/c/Hj5/2hGZPsLwhndRq8vOuzq/kPEGT7+sZfM4v8jyxAvUFsRVerLeKV9+7noeu1+uV3nxr/db1BO6PCanXfHE/VTy01i+0I8+DIq/yzBSIwmi9l0Or36owmm+t36rQWl9R7gf1d1LO6/nQ91f63uuvVM6vPvT9lT6/9NiOfJPKekzU6idK3UKhlvcqjHpVaM1htB5GvSoc4LkfMp430uXJZ53lT/Oo5hUPtfWgVl9FF1B6c6++l63nU/Y+3w6k46RjQc2rQi3fotDrg/tBX6Hmj1RozYP7QJ+g5o9U6PUb8Zbrze/iVWE0f1Ib5Lcd6o/Q+CAvCIKvwOe384JDSP+09sIx0ervpNDrT4Bj7oWu1+uVrevVvCqM1ns5LOptkN8YqXcUWus3adrHHm4e+vXUBrnPOo9qjt9R2bC13uRxnoqHRV5RGM17FUa9KrTmMFoPo14VVj2FRaredOr/Rq9KrjrlhW5vj5k93Ct7r7/VK3uvP+TTRBoUST73cebJM1NQ6s7wBdfbY3b5pNCaw1VeFUbz3npozaG1/mVuE7mvvf5ITfuk/VpzfOj91Qa5b+qvVM6n/kSFs3K42itubgWpTxO1Dc5UUP+W8IPV8PJedL2t+3eeb3oisHG6bKGa93pVBkWSBc0zR3uFXBXGfXyQFwTBlyF9Oy99mPfj1+fT3G5qg6HXnSs1nSOdp9dXFPbKYW+v9OZefS97r3cI6YAcdK5Qy69UUK94eXACNG4ndDm8KtTySW2Qnwh1HvVye0CtHsjzANQrW3Old71er2xdb2+vkKuC4+k3jHqTx/Y1r9qbv6jPAUyFjsJR+dZ6T6G1/k11rd9JvXxP5Tytec2Hvr/S915/pHK+1hwfepJCa/1M1/qZ1MuflPLBHCZfLlA/Keh8LYfW+q05HOVVa7SuBwM+97FY1xvp8uSzzvIhr1pyYB4WXuoX6AWKt8E29G/UKX6+7fTb/fP5VuvTRBoUye21AdNTzvyKenm3PpZbelUvD60qtObgeptIfUlBfJAXBMGX47+fHx//fJs/tZVnvGG2Xh+4pH/e+SuVojn+TgqeD/4+1u6XpIX5G7O1Oi9vqoeV/GW9wXQNza/yqtCaQ2u9pzCab61vVhuk/rv+Sk3nSOfp9aHvrzbIfVV/pXK+Xh96f7VB7luvP1LTPmm/1hwf+v5qg9xXz3cqC7TWPymXz3zmRZ59h8JZOVztla15L/R5gg2KTrnMj2rTeqA+uB/0Ddb6ebaC+uB66FONtX7urdDrLyY+yAuC4Evyu/ztvO+/yvOuPdPlXyhs/NJ3KE/oNd9bD73eo2xTxcvvQTphOmkNL++ld72Tz5dugHQjQKvnGAvtzdWras6gyCu/Sm9+lVeF1hxavSqM1ns5tPqKcn+4voBfqGWprJqr9tbP9HGh758UannoLZQ+t+b4K5XzqVf18tD7KX3u9Vcq51f/Ngqt9Z7CXvVQy3sVRr0qmF+9TyzK5TWv6tU7HtR/Fj60msPZXunN996vt17ZYb9k0zTU/Kra4On+UPXyolCrB/XB/Zn38S4avA/0DV719SgF8YuXN0EvV3rzmleFo/JbqQ1yH3p9i8YHeUEQfGW+pW/nff+Tn/CCE0n/3vZCM4FXhVq+p0JvvUdv/Q3hx67h5YrW93pl63rd3ibSGyWY3jjZOE1Xc1EuqPldleU9H/r11Qa57+pVvXxPTfuk/Vpz/BdRaK33FPaqh1req5C9TeS+znweFJk8dSu6NXfrH/YzLyy8PWa26lVhNO+th9H6vfPeehitf1IGRXK/bTDPp/ugUdmgNXfrC9O8jdP0IrdHnr+Zwmj+pdUGuY86j2qOv1I5n/rQ+6sNct/Ui0I1N00L1PKX9diZz3i5kedXFGreq/dy6PXK0espW/MF3gFr/kiFXh+cD30D/LDaID9R6Dzq5fYA9atwIahXtuZK+3rxQV4QBF+e3/Yslz7M+/7z8+mvW23Q9TqCv5Ny3tYcfxOFvXLY2yu9uVffS9N6qSAVQqu/UmGrD96f1M/UV2j1VyqoV3LOhXfFO9/e59f1tu7fe77O9XihhZrnsoX25gM+D4q4/jH8ZFpIFO7iVaE1h1bvKRyVF6XfMHnNxbv6KG+v71DOrz706yl9b83n98lVunbO0Hsqfev1Zyrn9fywQmv93gpH5b310FCf+2TDTENe87n8IA9TLlqFhWBfv/wbd17+zPJv0PX6x26fup7D0o+tV88f/qmOQZGpbepX1dazwXheNO2T9uv1b6ywVw6He5tIfUjEB3lBEPw1fH47Lz0Dzp/61Cu9+db1ejl7v14O2D8tl5YFvCrU8jO1hpcH7w/3AbT6KxXM88Y9s5K/9CukeFrPUK/snV/lVWHUq8JofTW3iekXuLlaluuLZ6Ja36ld61Hu+dD3VxvkvqpX9fI9Ne2T9mvN8aH3Vxvkvuk8qjn+SuV86kObFVrrPYXWek9h6ruNc148PN0XM+WC1nyTt2FGvVHKJjyv9F5/9XrK1vxwOIAq1PIjFdQrXh4cD32Dmj9TQb3i5cHx0DeY9/EsBc+fTHyQFwTBX0V6xkt/O+/bD3sCtCfg9ASYn4enQZlfKIPPea13fUHzSUH8o57CJY/yej6Gt57mvfVK7/m9/T2v9OYH+9Tv1HhYeHs8XV7yhVqW6s7weVCk6rnuRf6kUPNevaewVw6t9VsVWutP0tTP1GeYvObir1TO3+tD31+5Dzyv6uVblPPVfK0+9KYKrfUzXev37sp2lRwmXy5Qr1rNoea9+t68tx5GvSrcxavWWLk+3xfFzn1eriMf8qolB+ZhkYtfoAt4ePVb86O5ev8G0vE45lUKng/uB32Emj9TQb3i5cHx0Deo+TMV1CteLmxdzjteq1eF0fxStUF+26F+D40P8oIg+BtJ/zOb6dt56X92M9iB9O9oLywLhZq/UkG94uUHwDFb8eq3rreXV4VRP6w2SG+EYHpjZONX9Zcq59nqQ99fbZD72usvVJjmbZymUdD5UYWa9+p78956GPWq0JrDLj5NpEGRqe8zv5rP9BGc6AsLb49Z+aQ1NL/aK7351V4ZWi9NpEGRpvuh06u61xe6vT1mdjevCqN5bz2MelUYzQ9VG+S+vvBcQP9VvbxbH8stvaqXh16vNsh98vyRmvZJ+7XmNoY8v6JQy3sV9sqh1atCaw7qle5cJujbBHlFp/rBPCu05qfCQa7C23/v8znr6Q2y8PaYX17LJy151atqzqCI6x/DT2b5Kppf5VXt/8YHeUEQ/K2kZ7/0YV76n9ysPU1W1QarrzuqXn6mpnOk81Q8TPOOQmsOo/XQ65Wt9R699aeQDpQOVkNz/J0UWvPg68ATWQ3N5/fFkNogPzHqfE1toPVAngdFFvlj2M5svUyvV3rzrfVbvbL3+qNetTDdH6KwuH9aveqL+segzDfk2ReZ508KNb9VYTTfWr9VobX+JJ36fyOtndfLQ99fuQ88f6Zyvl4fej/NfbVhBq9qUS6v5b3aud6E+dWfA1pzGK2HmleF1hzO9srAerlvxc59Kpv6ilfVXL1qYw6eny7cC2+9vv30b8opvbvtvZ6y3G/dPymDIrm9NpgrF+h8a96tj+WWPvQwhUVug9QHmPpkY83jg7wgCP56vv8q3877XSaC6+EVC1r9lQq9Pnh79I3XgtTveY7fSaf9t+Q2zPR6oywz4XmFXBVGvSqM1ns5tNZvVWitr6oN1n5RcP2Vms6RzqNe1ctD76c2yH3r9VdqOkc6j/rQ91cb5L6qv1I5X68P/Xpqg8X9cbZynpnPaD5T0PlaDq1eFUa9KrTmcLVX6OOEXFDNz1TwfHA+9Ala/ZkKng+uh77BvI9zhVq+RUH9zYgP8oIgCArpb+f9992eGO2Jmzeuc+UJvZZ79d2+oF7x6suyE+q30rZeqkiVd2Xv83nrad5bL6SGp8YD5VUt9c25etWGPA+KrK1PnjnaK+SqcBevCq05tHpPYWPO/QCTL3Vr90v2W9Vbb5Y/Bp95ze+q0FofuovS/15/pXJ+9aHvr/TZ81cq5/XyYYXW+rMVRvNehZr36nvzmea+2jCD9/Ji5z6X17yqUw+t+QSF0OpVa7SuB0d7pTffup7SsB79hFQ++VnO/BkKi/vLHk+5PeY+uB/0FWr+SIXWPLgO+gKtfkWnp4+tOZAXFk9P6u3x4vLDvCqM5m+lNsh9UD+i8UFeEATBJz/Kt/N+xbfz+kivJPbCMtHqr1TY6r8g6cdLP2YrXv3W9fbyquDmNpHeOMH0RsrGuZ68TEy5o15913qUez7066kNcp91HtUcf6Vyvl5/kEJr/dkKo3mvwi71DIrkftpgnk99blQ2aM3d+sI0b+M07eYVhdYcWuv3znvrYbR+7/xlvU3kvs18HhRZ81Ofiz6C5Xxr7urj8snDIi8KNe/V9+Z3V2itv1RtkPva64/UtE/arzXHh95fbVDt64HKAVZzi6CULRTu5pWj88up/YNcqaA+uB/TE0JhrZ+HKoMiyYLmu6Dr9XqlnscHeUEQBCukD/P++/H59LlQG+Q3pL3+TprOlc7X6wcVRnOvHlq9ao3W9cBbT+nd/xTShmljwKtCLb9SW+mtD+4P9wGs3R8t+Z4KrfmpcJC96F3Pqz/6fL1ecXJeeGHh7fG0XcmZ392ras6gyNxnrvKqMOpVYbR+aw61+l4FmaffMPVfVOuLrdZvUc73ND/bT3N86NdT+t/rj1TO15rjQ++n9E29qpfvqZzP87sp7FUPtbxXoea9+q05NNTnPhbb7FUtMlnO13LHg+P/z/zzRwEs9MD/G3PP+f5+fpo96h/5p66v155vVVvP/v1zW5i3waef5cy/1N76inI+m8jr4VW1PnRSaM1rvMrjg7wgCIIK9W/n8VTcilffm/fuv5Wz91shbZ+OsYoF7/BOAjwffH24L2B+n8wVavlFyn/cgHiVlXrl5fUraH2vV7aud5ZXhdYcWusntUH+hU08TLkoF9TyrfVPyuUdHvJ86PuqDXJf1V+pnK/Xh95fbZD71uuP1LRP2q81x4cepnB4bhOprzD13ca5nrxMTLmo5r31T2pRptcbZg/1ytF5L3uv50HfquiBav5KDd4H+gav+nqWgvrgfOgLtPojFXr9wcQHeUEQBA7pw7x/v9ugPEHzi0qfZ/A5v6gH8oLmi/pVUkFaqBWvvnc9D12v1yu9+db6respznrcP1DzXNaaL7xqb/7C5wFMQamr5TCrf1JozaHVb1UYzbfWb1Vora8o90Ovv1I5v/rQr6f03cuvVM7jeVUvD71e6fMmj53lm7RzvQnznOtJoZb3Kox6VWjNYbQeRr0qHOBzn4t1cyPFlE33ic6jmvd61ZKDesXLp4VraO7V99K7v8fe5/No2C/FqayG5jV/pIKXB/eHvsFaP89WUB/cD/oGa/08W0H9RrzlevO7eFUYzZ/UBvltRa8f0fggLwiCwOdn+nbejz9Z/0rSK4W9cFTRHH8nhdb8RDjGXuh6vV7Zul7Nq8JovZfDot4G+Y1Rp4cpv1LTOeyxUC8PfX+1Qe6z+h2VDVvrF/q4fPKwyCsKo3mvwqhXhdYcRuth1KtCk+fCIpM3nfrfkr/wquSqU16orQcLb4+ZPdwre6+/1St7rz/k00QaFMFOOsszs4Lq/XC0Lyy8PWblk0JrDld5VRjNe+uhNYfW+q7cBrnPOo+SX6mcR33o/dUGuW+eP1PTvmn/Xr+jwlk5XO0VN7eC1IeJ1g2PVOj1t4QfrIaX96Lrbd2/83x6Q3H5pCUf9qorOZDnARztFXJVGPfxQV4QBEEH/6Zv56397TwbrL7u3Ek5r+crCnvlsLdXenOvvpe91zuEdMB0UGj1VyqoV7w8OAEatxO6XKuvqg3yE6HOo17eoJA9QZG5V7w84+VK73q9Xtm63t5eIVcFx3N/TDh5zXNZ1av25i98HsAUlLqah1n+pDCab633FFrr31Tpd6+/Ujm/+tCvp/Td81cq51UfepJCa/1M6WOvf1LiwRyquWlaoFb/uUFRqHmvfmsOR3nVGq3rwYDPfSrWzY0UUzb1edSrVnJY+FJfRS9QvA22oX+DTvHzbaff7p/Pt1qfJtKgCHZSzc1PbS7KBTq/mz6W933oYQpubhOpL4n4IC8IgqCTn78f/3Obf+23865g8UpmjzV/JwX1ipcH7w/3BYifvzHLkBedcpmvqVev+Wo9kBe7YCVnGTjLq0JrDq31nsJovrV+WG2Q7oeFV/XyPTXtk/ZrzfGh7682yH31/JWazpHO4+Wh76c2yH3UeZT8SuU86kPfX22Q+6rzqOZ4R7mgtf6l2lKZF7lJl8JZOVztla254q5nBalvE1xQ1Mur9YN5VvB8cD30DeZ9nCvU8j0VPB/cj7V+nq2g/mLig7wgCIJB/v3x5+Ofb/ZEak/s+Zm0PMHjVd28UKtf+AqlbEK94uX3IJ0wnbSGl/fSu97J5+PGgVbPMRbam6tX1ZxBEdc/hp/M8lU0v6tXhVGvCqP1Xg6tXhVknvtl4Qv4hVqWyqq5am/9TDlvl4dZHvp+yn3g+TOV89V8rT70/ZW+qr9SOZ/nb6vQWu8p7FUPtbxXYdSrgnnuC/LssTOfwatapPU9Hqq+XODVTwvD0V7pzffer7de2Xs/I8WpDPCraoPUz+Fc1QZr9aA+uD/zPs4VavmRCuoVLw+Oh75BzZ+phcXLmSDlCzQf9apwVH4rtUHug86jmuNbND7IC4IgGOdX/nbex8ePX/FU+kT657AXmgm8KrTWn6mgXvHyN4Afu4aXK1rf65Wt6232NpHfONk4zePh6Y3VTLmg5ndVlp/5zIs8+9CvpzbIfe71V2o6RzqP+i+i0Fq/t8Jo3quQvU3kvs58HhRZ83p/PILlfGveWw8Lb4+ZrXpVGM1762G0fu+8tx5G61/mNpH7qr5DWbg1d+sL07yN07Sb30RhNP+r1Qa5r+qvVM6nXtXLQ69XG+Q+iYcp36hssJrnnYzW3IYmLxX2yuFqrxydu3gHxh+p0JoH10FfoNVX1Qb5iULnUS+3B3g+w4WgXtmaK+3rxQd5QRAEO/Bf+nbe98+n18XrCl7Vy8/UdI50Hs9fpLBXDnt7pTf36ntpWi8VpMIamuOvVKj51vrg/aHPNTSf3xdXKTR5Lrwr3vn2Pr+ut3X/3vP1rieeF17AU7a4vJJPqvmAz4Mibv4YfjIVisJdvCq05tDqPYWj8sH6qf+ectlo/kI5j3pVLw99f+W+UH+lcj71ql4eerzSt9Ycf6VyPvXDCq31eysclffWw2j9i5w+kmePPcuLVuFC2Ncv/8adlz+z/Bt0vV5P5+Vt9Z/amz+81kH2NpHbpn5VbT0bjOeNms6RzqN+s67/e5yhsFcOh3ubSH1IxAd5QRAEO/H4dt6fjx+/0jPsq6dWL+/l7P16OWD/tFxaFlr9lQq9Pnh/uA9aof5KBfO8cc801D/5FbgM1Ct751d5VRj1qjBaX81tIv8CZ+OcVzxM+UZlg6GcWL2ql4feT22Q+9brr9R0jnQe9aHvrzbIfVV/pXI+9ape/oUVRvNehdZ6T2GR2yD1FZ7ui5lyQWu+ydsw43mjXDZxtFeOXk/Zmh+O9wPX/JEKvT44H/oGrf5IhV4fnA99g5o/U0H9ycQHeUEQBDvz34/HB3r5ydX+T/qFJj/Tlid89apTXnh4CpZ4+Rjeepr31iu95/f297zSm5/sU39To2uQL9SydNkZPg+KVHPmV+rJnxRGvaewVw6t9VsVRvOjFWSe+0P9lcr5WvP5zxP63kqft/orNZ2D84TeUKG1fqa1vnt5l7JcJYfJlwt6/aRQ8159b95bD6NeFVpzOMqr1li5PvUzTWc6fFqG+2HYq5Yc3Fz8VAjqPbz6rbnSW++x93oHkI7HMecKtXxPha0+OJ/075/6UENz/JkKng/Ohz5Bqz9Sodc7eOW9+ahXhdH8VmqD6W3NVo0P8oIgCPbntz2zpv+pze8//5Kn2PRj2gvLRKu/UqHX3xB+rBpermj9Xl4VRr0q1PLeenj5RuosTeewR3Ne86FfT22Q++z5CxWmeRunaTcfVKh5r743762HUa8KrTns4tNEGhTBTqq5+cX9kYMTfWHh7TErX+QKdXC1V3rzq70ytF6aSIMizd609f5Rda8vNOeFUjaxl1eF1hxa670cWr0qjOa9Ck31Nsh9feHzoEg1Z/4IfSzv+9D7qw1y39RfqZxv5iHPn6CwVw6t9V4OvV7pzRfeJlKfYPIUim7NmxTUnwIHuQpv/73P17ufU7+4oeyR7KQlr3pVzRkUcfPH8JNZvormV3lV+7/xQV4QBMFxfPv5+Hbe79/2hGvPu9PryxVq5zGpeljkgwo179V7Oeztld7cq38L0g+QfhDAq0It31OhNQ++EDS6Ak90oOV4VVjkNshPhDpfUxu8rGdQZK2ui9l6mV6v9OZb67d6Ze/1d/bT/VnmF/drxZfyulfdWj/THBSZvCrU/FaF0Xxr/VaF1vqTlD6rV/XyPZXz9frQ91fug15/pnJez4feVME8fSXPHlvLe3VlvVc6YZ59k3r5pFDzvfVQ86rQmsMb+ty3Yl1vpMuTzzrLV71qYw69fjMcpIaXK731r9G/UadsPb3mNf+kDIokP7W5aFO+Mj+sj+V8H7qbwpY8PsgLgiA4mMe38/58fP9ZJoJ+5q9ciZq/UqE1D/5euC9g7X5pyYvyhnxTbsMMXutA6w3KwPMKuSqMelUYrfdyaK3fqtBaX1Ub5F/YdB7VHH+lcr5eH/p+aoPcR51Hya9UzuN5VS8PvV5tkPvk+Ss1nSOdx8tDv57aYLXvXr5R2SB77MxnvNzI8ysKNe/Vezm01m/N4WqvTP2ssMhZ8EoF9cH9edXXsxTUB9dDn6DV76mw1R9MfJAXBEFwEvnbed8e//8G5Wfe8oTPLzYLX1CvLxRevZTv/jrTtl6qSJV35ezz6X7e/k6eGp4aD97y1DO/UM3Vq+6Q5wHMvJdner1Crgp38arQmkOr9xQ25twfMPlSV8s3q61lMpTzc6hX9fKXCq31oYcofff8lcp5PR/6fkqfe/2ddP7zDCm01p+tMJr3KtS8V9+bv6inzy/zYuc+l9e8am/u+AkCaPWqNVrXg6O90ptvXU9pWI/+QSqf/Iv8FLXB/H5iHtQH94f+Av5KBfXB9dAnqPkjFZx88fIn6HKK5qNeFUbzt1Ib5D6oV/XypPFBXhAEwXmkZ9z0t/O+fbW/nZd+nPSK0wr1nkJr/RaF1jyY4J+phpcrWr+XVwU3t4n0xgmmN1I2zvW13FEWGM1fKperV/Xy0PdXG+Q+e/5KTedI5/H8QQqt9WcrjOa9CnvVQ/Y2kfuqXvVFzsKr163kbn2hObdxmq4ptObQWr933lsPo/W9ea9C9jaR+4ZPQYE8D4rM+z71PwfL+da8V2Gat3GaRqHmvfre/O4KrfW3UhvkPnv+Sk3nSOdRH3p/tcFqX718o7LBam5RZuZL+aSZWQ5PuXG2V47OL8f7B8GfqaBe8fLgePgPPsz7eIraID/xzOaBPA/2wltP8976T+KDvCAIggtI/zOb6X9u89cd/nYeaucy8f1BCnvVw1710OuVrfWnkDZMG8Oov1Kh1wfvD/cBtPorFTx/CBxkL3rX8+rPPp/mG8/HC+2E1C+2K/XM7+5VNWdQZO4zL3KvPjPqVWHUq8Jo/dYcavW9CjJPv2Hymjv1h6vtZbKaz3+e0K+t9N3zVyrnVR96P6Vvvf5I5Xy9/jSF0bxXYa96aM2hoT73sdiWPHtVi9Jli/la3ulB/P+Zf/4ogAsf+H9j7jnv9Wlm3/3Kjz1pb/7w7flWtfXs3z+3hXkbfPoX+arO6l/WOZr2SfvZRF5v8pqLD50U9sph7uODvCAIgotIT77523k/cDV4agf1R3P2fr3Y+WrvJEDn76CgXvHy4P3gPoBWfxPlP24Z5mto/Qos34rW93qlN7/Kq0JrDq31VbVB+gUO8KpQyxf1pmmD1von5fLW3MaQ50PfV22Q++r5KzWdI53H86HvpzbIffT8lZrOkc6jPvQwhcNzm0h9hUW95sV7ygK75DbMeN4ol03s7ZWjc2Xv9Tx2308vwF+pNbw8OB/6Bmv9PFvB88H9WOvn3gqt+UnEB3lBEAQX8/3X42/npW/nZeQFgl+MQP06LODz2Marb1+vDV2v1yu9+db6respznr5N90dvEletupVe/MXPg+KTJ66Wg6z+ieF1hxa/VaF0Xxr/VaF1vqKcj/0+iuV86tX9fLQ99e1++Nq5Xy9PvR+Sl9b81WPneWbtHO9CfOcK6mXDyu05tBa7+UwWg81rwqtOZzg831QbCLFk5/lzD+p5r1eteSw8PaY2UW+QC9QFgva41V9L737e+x9Po8D9kvLpWUBf6UG7wN9g1pfoZbvqeD54H6s9TMp1PI9FdRvxFuuN7+LV4XR/KXaIL/N0HlUc3yLxgd5QRAE9yB9O++/H1/kKTn9GPZCM4FXhVp+poLnD4Bj7IW3nuZb68/yqtCaw6LeBvmNUaeHKb9S0zns0e1D319tkPva6zuUDVvrXX0st/QVhdG8V2HUq0JrDqP1MOpVoclzYZFmb8r94HlVctXW9WDh7TGzh3tl7/W3emXv9ffyT8oAZgXN98fevrDw9piV+3lRuItXhdG8tx5ac2it781fqg3o82XKeTyv6uWhx6sNch96/Zma9k37e35HhbNyuNorbm4FqQ9VahueqeDlt4SDnkXvfl5953p6Q+nli7x46lyvupIDeR4UeeUzW71CrgrjPj7IC4IguBE/0rfzvv/5+GmaX5fsGfowtf1Mll615FCrg9Yc9vZKb+7V97L3eoeQDpgOWkNz/JUKvT64ABp3EN7y5FW1QX6i03nUyxsUsicosvCPYUbzVbxc6V2v1ytH79frFXJV2NlzP8Hi/qrlqpbN6938hc+DIpOnruZhlj8pjOZb6z2F0fxNlH635vgrlfOpV/Xy0PdT7gP1Vyrn83zoQQqt9TOlj605/kmJj8pFYfKmnC8r1LxXvzWHo7xqjdb14ACf+1ZsIsWUTX09ylcUqK+iFyiLBe2xZb1n9G/QKX6+7fTb/fP5Wq9XhextYmpzUQp1/jB9bLf0oYcpuLlN5L7YOD7IC4IguCFf6tt5e7B4JbNHi79SodcHXw/uiwq8MZugvuiUy3xNvXrNV+uBvFg3N1gGzvKq0JpDa72nMJpvrR9WG6T7odtfqekc6TzqPbVBV33o+WqD3KdefydN5+J8oV9LbdB8HxylnMfzql4e+n5qg8X9saJc0Frv6cv1PuNnfZGDzh+Vw9Ve6c03r2cFuZ/gbYCv6LTeYJ4Ven1wPvQNRv2eCr0+uJ55H+cKtfxIvQnxQV4QBMFN4dt56W/n5Wfq8gLCLz6w8PaYP7Frrmi9R2/9PqQd085n0bufV7/3+WW91OD8m1Ch5rlsob25elXNGRRx88fwk1m+iuZ39aow6lVhtN7LodWrQi0vyv0B0/2ialkqq+aqvfUz5XytefYwy0PfT+lzr7+Tzn+e0PdW+qpe1cv3VM7X62+j0FrvKexVD7W8V6E1h4Z67gvy7HNo1LyqRSa7eZhyUVA/LQRHe6U333u/3npl7/2MFKcywKtmbJD7bMPVOi9XtcFaPfR6l+4Lgl7SP2/6Z4ZWf6aC54PzoU/Q6o/UgvdytsgFKb+tf2u1Qe6D+haND/KCIAjuzb/f7fFu385Lx7UXmolRf6VCr39D+LFreLnSu97W/b319vKT2iC9kYLVN1izC2req+9SLp/NP62n+Wcc+tXVBrnvnr9S0znSeXr9myi01u+tMJr3KmRvE7lv+BQUyPOgyFQ/Uy7U+da8tx4W3h4zW81VYTTvrYfR+q05jNZDzatCU24TuW/qVV/kLLx63Uru1heacxun6VGF1npPYTT/q9UGua+9/khN+6T9en3o/dUGqW+A36psMJQTq3+hsFcOV3vl6Lyb2g9wpYL64HroU421fj6pDfITg86jXm4PaMoJQL2yNVfa14sP8oIgCN6A9Dfz0rfz0rf0Fm+A91Lbx6Tfn6SwVw57e6U39+p72Xu9TFowLQx4VajlZyqoD74+3AdQ81cqrHoK74p3vr3Pr+tt3b/3fL3ric8voK+8PZ4ur+STlvw0b48n5sFc4S5eFVpzaPWewlH5YD39Vq8KtdzksWwtf6GcZ6sPfX9N/Ux97fVnKuf1fOj9da2/ZyvnUa/q5ZOCV3eUwlF5bz2M1r/I6SN59tiZz7zIN3lRoA40XxbYY9wv/8adlz+z/Bt0vV5P5+Vt9Z/amz+81kH2NpHbol4157aeTazmWb28UdM50n6e79b1f48zFPbK4UwfH+QFQRC8Ef/+SN/Q06ft9JT+6qncy5Xeeo+911shLc8rW6Lmr1RozYO/F+4LWLtfWvKdlDfqmVodqF+By0C9snd+tFfIVWHUq8JofTW3ifwLm43X6shhqt+obDCUE/f60PdTG+Q+ev5KTedI5/F86PupDXIfPX+lpnOk83j+L1IYzXsVWus9hUVug9RXeLoPZgrV3DQtOOqf1KJMrzfMZq8Kd/PK0fnh9B4Qf6aC54P7QR9h3tezFDwfnA99glG/p4J6xcs3Eh/kBUEQvBk/f398/PPt8e28xOMXJV5h9sJbT/PeeqX3/Fef72ov5N98LVeFad7GafoyP9McFJm8apF5fabVewp75dBav1VhND9aQea5D9Srevmeyvl660PfX+lra17zV+rauZN6eehJCq31M6XPvb5LuXw0F+UC9ZNCzXv1vXlvPYx6VWjN4SivWqNhvdz3Yl/5dNl0n4x61cYc1E+FoN7Dq+/Nt67Xy97rHUA6XjomtPo9FVpzUB/cD/oI875epaA+uB/0Ddb6ebSCl5+Mt/3eec3fSm2Q34aoV/XypPFBXhAEwXvy34/H/9zmLUjHSK84NTTH30nB8zeEH6OGlytav5dXhVGvCrW8tx6qb6Qsy/W1/EpN50rnU6/q5aHvpzbIfVV/ocI0b+M07eaDCjXv1ffmvfUw6lWhNYej/JMyKJL7a4NFzvxK/Wq+xRdqvpQvcoU6uNore69/tFd2WT9NpEGRam5avV/Eq/Zev/CFhbfHzO7mVaE1h9Z6L4dWrwqjea9CU70Ncl91HmVQZFE/u4D743R9bB/6DmqD3Df1ql6+p6Z90n4zn9H8QIXRvLceWnPo9crm9W0i9QnU6wVTzryolzcpeP4QOMhVePvvfb7e/Zz6xQ1lj2QnLflivqY2eKrv9fZ4gqCG5vfx8UFeEATBG/MrfTvv+5+P7z/tCd2e16fXqzW1+vSEX8thUT+oUPNevZfD3l7pzb36tyD9AOkHgVZ/pYLng68HT2TAfQGtflIb5CdCna+pDV7We7k9aqzmXAi9XunNt9Zv9cre6+/sp/uT+VpeWNwvNa+6tX6mOSgyedUi8/pMrb5XYTTfWr9VobX+JKXPvf5I5XytOT70/ZU+t+bz++Iq5XzqQ2+qYJ4+kmefQ6OW9yqXe3VFYfKmaQEvnxRqvrceal4VWnP4Aj73sdhFbiTL9NT3mldtzKG2PqjfDBvV8HKlt/41+jfqFD/v++lqXhWyt4nclpnPgyLVnPk99LFcvw8dVtiSxwd5QRAEX4D07bz0t/P+mif0+StZQl/hWvMzFdR79NYH94f7Alp9RfMb6x3z1XogL3bhDS4D9Qq5KpzlVaE1h9b6rQqt9cNqg/wLnOdVvXxPTfuk/bw89OupDVb77uV7KufZ6kPvpzbIfdJ5VHP8nXR+3tCvpTbIfe71G5UFs8e25jaGUrZQqHmv3suhtX5rDld7xc2tIPcTuOBKBfWKlwfnQx9h3tezFNQH94c+wlp/91ZozU8iPsgLgiD4IvDtvPS38+bP7Ee/zrStlypS5V05+3y6n7e/k+tvWt7y1DO/UM3Vq+6Q50GRHp/p9Qq5KtzFq0JrDq3eU9iYc3/A5EtdLd+stpbJUM7PoV7Vy18qtNaHnqLcB+qvVM7X60Pvr/S5NcffSdfOndTLJwWv7iqF0bxXoea9+t68tx7M5/ug2Fc+X45X7c0dD73+cyHRGppf7ZXefOt+Su/+ykqeLNMLtcHT/bBVbbC2HqgP7g99hHlf5wq1fE8FzwfXQ99g3sertLB4OROkfIHmo14VRvO3Vhvkvug8Sr6m8UFeEATB1+Lbz4+Pf77d/Nt56XDpFQrwqmmYbYUAAP/0SURBVFDLz1Tw/F8I/0w1vFzR+su9TaQ3TtDqPWWj0fylcvlWH/r+aoPc115/paZzpPOoP0ihtf5shdG8V2GvesjeJnJfe/1MWVjna3lv/SIvTPM2TtM1hdYcWuv3zr16aPWqMJr31kNTTlBktf85WM635r0K07yN0zQKi3p7zOsW9fYYye+u0Fp/a7VB7qv6K5XzeT70fmqD3Kdev1FZsCnHznxGvVEumzjbK0fnvey9XvcPgD9TwfPB+Uz/gS/QN8CrQi1vVhvkJ5bZPJDnwQpa38SL9TKa99Z/Eh/kBUEQfEF+2zN7+jAvfag3f+PcpbaOydKrenmjwl71sFc9HO2VrfkupA3SRjU0x1+p0OuDrwf3BdT8lQq9fhc4yFV4++99vt79tp6vc73phdjGqazmobV+8qqaMyiyxWf28qow6lVhtH5rDq31noKTp37l+6lSN+UF/OFqe5ms5pxPvaqXh76fch+ov1I5n+dD76f0sTXHX6lr5zxUYTTvVdirHlpzGK0H87lvxU5e1aJ0Wa3fi3yjL/yf+eePAih84P0NOb9+a/6M5kv/WO1Te/OHb8+3qree5daf3DbmbTC1daGz+pd1rVrW4zzM13zopLBXDnMfH+QFQRB8YdIHef9+Tx/sbXmq56Xlrtj5eCcB81e6RM1fqdDrg68H90UNzfEX6dN/3JiHFa//8VTKss1ofa9XevOrvCq05tBaX1UbpF/gAO/mjrJAa32XsvzMQ54PfV+1Qe5rr79S0znSedSHvr/aIPdV/ZXK+TwfupvCUXlvPazeHyvKhXvlT96GGfVGKZvY2ytH58rd1uvdb3FBqz9SodcH50PfoNUfqdDrg+uZ9/EqBfUHEx/kBUEQfHHm385b4/G6wytSDS/vRdfr9UpvvrV+63qKs970mzA4ec1z2bBX9epnPg+KLNZZyfEZvCq05tDqtyqM5lvrPYXRvFHpc2s+vy+uUs7X60O/ns7vi7lq7tUfqZzX86Hvr/T9yWNr+cEKkzdN+3v5sEJrDq31Xg6j9VDzqtCawwk+3wfFut5IlyefdZYPeVXNiwfmQfMFeoGyWNAer+p76d3fY+/zeRywX1ouLQt4Vajleyp4Prge+gat/kiFXh9cD32EVr+nQq938Mp787t4VRjNN6kN8tsQ9S0aH+QFQRD8HXxPfzvv+5/8wd7hpD3shWai1V+p0OtvCD9WDc176xVvvb28KrTmsKi3QX5jpPOo5sXDlF+p6Rz2aM7xoe+vNsh91XlUc3yHsmBrvauP5ZZeteRQq4Na3qvQmkNrvZfDaD3UvCq05tDkWahINTed+u141Wlh0db1wPX2mFk/t0ePV7aut7dX9l5/L/+kDGDmn3LTp/ujSDXf0xfwqlAuWyjUfG89jHpVGM1762HUq8Jo/lJtsNp3L99RYZq3cZru9qH3UxvkPqm/Ujmf+h0Vzsrhaq9szRdwwZ301nDQs+jdz6vfuJ5ezhMBTE8MNk7TrldtyPOgyNr6muMzvV4hV4VxHx/kBUEQ/EWkZ/z0Yd5/Px4vA/nlwAb5da3VVxS8utZ62NsrW+s9eutvSfoB0g8CNX+lgueDC6BRFzG/T1bVBt4vAi/zBoXsbeJpPQZF1urJV/FypXe9Xq8cvV+vV8hVYWdP/6HVL9SyVNacv/Cc7ymf6SMQD7P8SWE031rvKYzmX0Tps+fPVM7X60PfX7kPev2Ryvlac3zoTgqt9R1KH9V3KZeP5qIwedOncxe0flEn9cO5Vw97edUarevBAT73rdhEiic/y/P83r6iQD14+YLFBfboqX+N/g06xc/7TrO/fz5f6/WqkL1N5LbMPIVT+yV/mj9CH9sv1ctDmxW68vggLwiC4O/j1G/n7YG+kima469UqPlaffDXwRvmCe6LwpTP75cNqut56+fchhnmQXODy2tovpdXhdYcWus9hdF8a/1uaoP8C5vOo+RXKufZ6kPvpzbIfdJ5VHP8nXR+3rl6eej91QarfffyPZXzbPWh7682yH1VLwq1fFdN+9ijx0OeX1HYK4ervdKb772edwF9nupEt+ZZoTUP7gN9qqH5vK97KbTmwX2gT9Dqj1RQr3j5RuKDvCAIgr+U9OSf/3bej77XoYNflyqkHdPOZ9G7n1e/9/md9abfjAp4LtPLa/mkmqtX1bzX2wPI82CF1fyuXhXO8qrQmkOrV4VaXpT7Aab7QxRq+UKt1qS9vkM5/5OHWR76fkqfW/P5fXEXXTt3Ui8PvZ/S161+T03rpvV762+j0Fq/t8Jo3qvQmkNr/Uxz322YqXlVi0zGvaqTg/rpQrjaK2evp+yde/VGilMZvPQ2oP9AnnWWP83X1AZr9bCoLwrqXbovCPaGPsK8r1cpqA/Oh77U0Hzex4PVezlb5IKUv41XhdH8ULVB7oPnVVMeH+QFQRD83fz49fhA79eRrwb5FecxXEVz/J0UPP8F4Z+hFa9e8956xVtvLz+pDdIbKai90YLmetO0QS3v1Zfrfcav1QZd9aH3Vxvkvqq/Ujlfr38Thdb6vRVG816FppygSO6vDab62YVT/0W9vLceat7kcT7N7ZHnRWE0762H0fqtOYzWQ82rwlBug9xHz8+UBXS+lvfWL/LCNG/jND2q0FrvKYzmd1dore9SG+S+6jyqOf5K5XzqQ++vNsh9U6/q5aJcMJQTe36moPOjOVztlaPzbmo/gCrU8j0VPB/cj7V+PqkN8hOBzu+okD0BqFe25kr7evFBXhAEQZBJ/1Ob/363FwZ7fZheN+dqNfnlQ/1JCnvlsLdXenOvvpe918ukBdPC0OqvVOj1wfvDfQCt/kqF7AlW0PpLeHG+jJf3outt3b/3fL3rOZ4X2hqac/mkJT/N2wPIp2CuRaYcrvKq0JpDq/cUjsoH6+m36wv4hVqWyqp5h3K+1hwf+v5Kn1vz+X1xlXI+9aH3V/rY6/dUzrPVTwo6f5bCUXlvPYzWd+SpH8lmXvhcvpcXhakO1Vz8VAh9fvk37rz8meXfoNvbez/Nev2n9uYPr3WQvU3kNjR5W88maNtSvbxR075pv17v6vq/xzsqnOnjg7wgCIJgIn877/vHx69d/3heesk5+aWm9sqnCrX8TAXPB18f7gto9QdpfmPu1YHnDS5rxavvzY/2CrkqjHpVGK3vzSe1Qb4/CnjNe5UFRvMnpdzzoe+vNsh9Va/q5Xtq2ift1+tD7682yH3r9VdqOkc6j/q/SGE0v1phkdsg9RWmvtv4ZS7KBaP+SS3KzOaf6nNoqDdK2ULhbl45Or+c2j/IlQrqg/tB32Ctn2crqA/uB32Dmj9Swct3Jj7IC4IgCBbw7bw6vEKBemVrrvSud/T5vP329sLqb8az+pov5ef5meagyOS9HFq9p7BXDq31WxVG86MVZJ77oNffSfl51Kt6eej7KfeB+iuV8/X60JMUWutnSp9bc3yXcvloLsoF6ictTDlondQP5731MOpVoTWHo7xqjdb1wHy+D4qd+1Q23SejXrUxB89PF7bi1ffmW9frZe/1LiAdP/0YgL9SQX1wP+gb1Lwq1PItCuoVLw/OZ62fV+tFeNvvnde8KhyVd6kN8tsQz69pfJAXBEEQrPEzfzvvz8fP32ViC+mVJr0iQc3fSUG94uUnwLFreLmi9b1e2bpezatCLe+th+mNk41z3uqv1HSOdB71ql4e+n5qg9xX9apevqNCc27jND2qUPNefW/eWw+jXhVaczjKPymDIlPfZ17zVc91R/gCXrVGWWbiaq/svf7RXtl7/VWfJkpQvT/EL+6Pkqu2rgeut8fM+rk91rwqtOYwWg+jXhVG816F1npPIXubyH2deQrp9+n62H6pXh56vtog96XXH6lpn7Rfa47fUaG13lPYK4fbeZtIfamxyFmg6JTLfJdCa74rbHQV3v57n693P6deb5DF5SVn3lUbPNX3ensAeR6ssJrfx8cHeUEQBMFL/v3+J//PbaaXDV4+ntQG+XVS5qHmvXovh7290pt79W9B+gHSDwKt/kqFXh+8P7xRr5H6PY9rftKy3mK+pjZ4We/l9qihefZcWEPz3npl63q9Xjl6v7O8akHv38X9UvOqW+tnmoMik/dymNU/KdTy3nqo5Vvrtyq01l+k9N3zVyrn9Xzo11PuA/VXKudTr+rloScprOS5rzbM4DXvVS736lCnHiY/XVAUdL6mMOpVoTWH0Xq4uzeSZbrab7xqb17xoN6FhWpszZXe+tfo36hT/Lzvp6t5VWjyXFhk8qZTO8Wrbs1LvPShwwpb8vggLwiCIHBJ38pLH+b9/HWTl4z5K1mi1V+psNUHX4/U39RnqPmK8oZ7r3y1HsiLdb3BMjXIVeEsrwqtObTWb1VorR9WG+Rf4Lb6KzWdg/OEfi21Qe5zr99T07ppfa8O1Xp86PurDdz+n61r50zq5aHvrzbIfVa/UVlwKLcoM/OlvKqwVw6t9VtzuNorbm4FuZ9Q2+BMhV4fXA99hFa/p8JWH5xP+vdPfQD8lQrqDyY+yAuCIAia4dt5c9pet3jFuytnn0/38/Z38sVvWsJiu1LP/EI1V6+6Q54HRdb21xyf6fUKuSrcxatCaw6t3lPYmNPvCanTfLo/tqqtZTKUc76ar9V3KbTWh56i9FW9am/9FuV8rTk+9OspfVev6uV7Kufr9W+jMJr3KtS8V9+b99aD+XwfFNvsVS0yWc7X8k4Pnv+8ULSG5ld7pTffup/Su7+ysj/9hRRTNu8/POW9agPWm8+DesXLg/Ohj9Dqj1To9cH50Ddo9UdqofpyVhC7QPNRrwqj+ZdWG0wvM6rxQV4QBEHQw6/87bw/Hz9+lYkR0itPeoWCVn+lQq//C+CfqYaXK1p/ubeJ9MYJWus95cLR/KVyec2r1upD319tkPuq86jm+CuV86lX9fJGhdb6sxVG816FvephNbdB7qPnZ8oCOl/Le+sXeWGat3GaXviioPO1HFrr9869emj1qjCa99ZDk+fCIlPfZ54L9b5AvbxXF+s97GdeWHh75DpRGM2vVhjN30ptkPuqXtXL99S0T9qv14feX22Q+6Z+o7LgUG5RRr1RLpsY9argeWXv/Oj9DocDXKmgPjif6T/wFegb1Pyw2iA/seg8yqBIsqC+idl6q2jeW/9JfJAXBEEQDPHfj4+Pf77ZS4i9vvBGm5ebEYXWek+h5r16L4e9vbI1P4V0gHQQqPk7KagPvj7cB7B2f7Tkeyq05rvCRlfh7b/3+Xr323q+zvPrL76tnm1cr6r5is+DIi05PrOXV4WzvCrslUNrvacwmhel3zB5yXfXx/KrOefr9aHvr9wH6lW9fE/lfL0+9P5Kn9VfqZxPvaqXNyuM5r0Ke9VDaw6j9WA+963YyVM3y7Od5U+q+UYP6qfCgpeLX/7Nua35M5ov/WO1T+3NH749X1fwc289y+3fP7eBeRus+qyz+qf5Ua2sl/ZN+5PjQyeFvXKY+/ggLwiCIBjm8e28j48fl/7tPHtJ451Fjdor4Z0UPB/8fXCfQM2fpLyhf5qHFd/7H08Pre/1Sm9+lVeF1hxa6z0F7ocpLx6mXJQLan5XZfmZz7zIsw+9v9og903nUc3xVyrnU6/q5aH3UxvkvqlX9fI9Ne2T9uv1ocMKR+W99TDdFzbOOV4UqrlpWqA1f/I2zGz1htkur+ydH72fcvZ+C3SBmj9SoTUP7gN9qrHWz70VWvPgPtAnqPkjFTyveLlDfJAXBEEQbOa/H4+/ndf+ipIK0ysY9HqlN99av3U9Zet+4vNvuiuestZ84VW9+pnPgyKLdVZyfAavCq05tHpVqOW99VDLt9Z7CqP5Tsp94HlVL99TOa+Xh349pc+9/krl/OpVvTz0fkqfn7wNM7X8YIXWPB94i0JrDq31Xg6j9VDzqtCawwk+97lYNzdSTNl0n4x6Vc3VFwXyKnqBsljQHq/qe+nd32Pv83kcsF9aLi0Lrf5IhdY8eB/W+nm2gvrgeuhTDc3nfd1LoTVvxCvvze/iVWE036Q2yG9DPL+m8UFeEARBsAe/7dUk/U9tfl/723nplSa9IkHNX6nQmr8x/FigXunNj/Kq0JpDa31VbZDeSMHqG6yG/FRN57DHwoe+v9og91XnUc3xHcqCrfWuPpZr9jDNi0It71VozaG13sthtB5qXhVac9jFp4kSTP12vOq0sGjrerDZ22Nmu72ydb29vbL3+nv5J2UAM6/5S2869ftgrwqlbKFQ8731MOpVYTTvrYdRrwqj+Uu1Qe6zzqOa43dUqNZZlspcH3o/tUHuk+dVvXyLpnXT+upVvfyFwlk5XO2VrfmC2gFUoZbvqTW8/BQ46Fn07ufV77weTwQwPTHYOE27XrU3X/F5UGTuM71eIVeFcR8f5AVBEAS78u3nx8f/0t/Oe/y//HKzptCaw1avbK336K2/JekHSD8ItPorFdQrXh7sAI25iPl9MVfgjT0s6ku+mB9VG7z8xcIeQJ4HNbxc6V2v1ytH79frFXJVONgv7r+KX6hlqaw57/UzfQTii8zzJ4XWHFrrtyqM5l9E6XOvP1M5r+dDv55yH3j5lcp51IfupNBa36H00fMvlfLRXBQmb5oWqOZQ6hYKo7lXD3t51Rqt68EBPvet2AWaz3xaZur7qPfUBqkevHwBhaBe8fJn9G/QKX7ed5r9/fP5Wq9XhextIrdl5vOgyFo+3RZHadon7dfrQ5sVuvL4IC8IgiDYm/ztvO8fH99/nvQSwysb4D2F1vojNfh74T4A8fmN8Vo+qNN6Fe/VZwXyYhOUZbTeeMqNvbwqHOU9hdF8a/1paoPpF7irlPNs9aHvrzbIfVWv6uV7aton7dfrQ++vNsh96/VXajpHOo/60PdXG+S+9vojNe2T9mvNbQx5fkVhrxyu9srR6ynd61lB6ttUKLo1b1JQH9wf+ghr/T1bg/tAX2povtbPoxU8vzPxQV4QBEFwGN9+/vn459vjg70aB7/ODZJOlE7Wilffu56Hs970m1Fh4e0xv7yWT1ryqlfVvNfbA8jzoMirPHNXrwpneVVozaHVq0ItL8r9AJN38oValsqqfqvO1nsMPvPsi8zzWym01oc26eI+uYFyvl4fen+lz605/krlfOpVvXw3hdb6vRVG816F1hxa61/k+T4odvKqFqXLhr2qk4Pnp4XgbK+cvZ6yd+7Vr5DK02WrWJD7XGyC+qyz/Gm+pjboqq9oM90XBHtD36Dmz1RQr3h5cD5r/TxIp5cvzQuLlzdBym/jVeGo/FC1Qe6DzqOaz318kBcEQRAcSXqV+ef7n/w/uVmFVyio+TspqFe8/A3gx94LXc9bvzc/yk9qg/RGCmpvtKBaL8oCtbxXX65H3OtD319tkPuqXtXL99S0T9qvNce/iUJr/d4Ko3mvQlNOUGTq+8yv5jN9BMv5mnr1mkO1vlAuWyiM5r31MFq/NYfReqh5VRjNn9QGua/qZ8oFOl/Le+sXeWGat3GaXvhGhdZ6T2E0D+1QG9Tuk9OU86hX9fLQ89UGuS+93lEuaK1/Ui7v8JDnVxRac7jaK0fnm/F+IPyRCq15cB/W+pUUpicKG6/V7a4MiiRbQ+tX8XKlfb34IC8IgiA4he8/Hx/o/f79+TLUo7BXDnt7pTffup7SWz9E2iBtBDV/pUKvD94f7oMamuPvpNDrT4GD1vDyXnS9rfv3nq93vV4v8IssUD5pyU/z9gDyPCjyymeu8qrQmkOr9xSOyrfWF6X/C1/AL9SyVFbNd1TO6/nQr6fcB+qvVM6nXtXLQ69X+ur5I5XztOb4SUHn76IwmvfWw2h9bz7T3DcbZmY+x3t5VXLVkoP6qRD6/PJv3Hn5M8u/Qbe3936a9fpP7c0fXutgNbdBbgv+Sa3eChbtntTLG5X9WnO8q+v/Hu+osFcOr3x8kBcEQRCcRnrFSX87L/1Pbn7CS9mOzF/pEq3+SoVeH3x9uE+g5g9S3rC/rIMGzxv9VtimRm9+tFfIVWHUq8Jo/XBuE/n+KOCn+pp3lAtG85fK5epD319tkPu61e+pad20fmuOD/16aoPqfXCWch71ql7+xgqj+dUKbm4TuY82fpmLUjjqVbuutyGU6YXC3bxydH453j8I/kyFXh+cD32DmleFWr5FodcH10MfAX+lHkR8kBcEQRCcDt/O+/W7TEyveK149Zr31itb99vbC/qbsNZPeQE/lZ/lZ5qDIpP3cmj1nsJeObTWb1UYzY9WcOq4L7z8Tsr5en3o+yv3gXpVL99TOV9rjg99f6XP6ruUy726RmXBqi+o/zyIKIzmvfUw6lWhNYejvGqN1vXAfL4Piu3xaZnpPqp51cYcauuDehcWqtGbb12vl7P3O4B0vHRMqPkzFdQrXh4cD32DUb+nQq8Proc+Qqs/UsHzO+Mtv3de86pwVL5JbZDfhqhf0/ggLwiCILiKf779+fgv/e289EqUXrEAf6VCr78Ajl3DyxWt7/XK1vVGvafg5jbx9MZKVXP8lcr5en3o+6sNcl97/YHKAVvrTR7nU69ayaHmvfrevLceRr0qtOZwlH9SBkXcvOZN6ffRXrWG5mWZibO9svf6e3nVGq3rwZBPEyV4uh+KrOWL+6PkqppXfWGzt8fMVr0qtOYwWg+jXhVG816Fveohe5vIfZ15Cum35k/zR+hj+34fer3aIPdF51HyK5XzqL+xwl45XO0VN7eC1LcJLig65TJ/qO4KC9+Vvc/nrae5U7+4QQTNWa6qpX7YqzIokixonrmPjw/ygiAIgkv58evj43/fPr+dl16eeJmaKxztld7cq/8SpB8w/aCAv1KhNQ++DrxRb4X7Aub3yZDawPtF4WVuD2jKCWpo3luvbF2v1ytH73eWVy3o/Vvz0+WjXrUjfww+8+yLzH1mVv+kUMt766GWb63fqtBafxOl/+qvVM7X60PfX7kPPK/q5VuU8/X60IsUGnL6TI7vUi736lCnHiZfLtD8cyFHYdSrQmsOo/XwBj730YZpeuprDg3NVXvzioeFt8fMLtD6Be4C9niVK731r9G/Uaf4ed9Pd4hPE2lQpOpNp/aLbs0X+igP3aCwJY8P8oIgCIJbkP523n8/Gl+S5q9kCfUK+ZUKW33w9Un9Tn0HvGqBN9i1uq15Vlipzz6HhnqjlFUhV4WzvCq05tDqtyq01g+rDfIvcDqPal48TPmVms5hj4V6eej91Qa5jzqPao6/UjmfelUvD72f2iD3Tb2ql++paZ+0X68PfX+1Qe6r5zuVBYZyizIzX8qfdZbDap09oJb31sNeOVztFTe3gtzPGrUNz1Tw8uB+0Ceo+SMVWvPgOugLtPojFTy/M/FBXhAEQXAb0rfz0t/O+2l6Lrwin4Xu5+2/NRf0NzMun1Tz4hd16N75is+DInOf6fUKuSrcxatCaw6t3lPYKwep436AyUverY/Lx/OZcl4v71JorQ+9ROlzr79SOb96VS8PvZ/S515/pHK+1hz/Ngqjea9CzXv1vXlvPZjPfS62JZ/fF5NalC5bzNfyjR7UfxaK1tD8aq/05lv3U3r3V1b2p5+Q4sm/yIfUBk/3j2rJgXnwfHA9uY+PYabmr1RQH1wPfaqx1s+9tTA9HXl5BSkf9qowmn9ptcH0MjPXlMcHeUEQBMHd+Pf7n49/fxSTyK9YFyu05n8R/DPU8HKld71er2xdb+FtYnqjNfeiUM1N0wK1fGv9k3K5+tCvrzbIfVd/pXK+Xv9FFUbzXoW96qGWP6kNcl/Vz5QLdL6W99Yv8sI0b+M0XfMwzYtCzXv1e+dePbR6VRjNe+uhyXNhkdxPGzBdzWf6CJbzo+qtBwtvj2RVYTS/WmE0fyu1Qe7rVr+npnXT+q05PvT+aoPcN893KgsM5RZl1BvlsgcvclVozUG90pufvd/p1H4gVajlWxTUK14e7ACNaUTL8cNqg/zEovOol9ujCy6soXlv/SfxQV4QBEFwS9K38v73/c/HL1NexnoUat6r93LY2ytb81NIB0gHgVZ/pYJ6xcuD94P7AOb3xVyhtf5MbaWpnoWvwtt/7/P17rf1fL3nl3p+0YSa57KF9uYDPg+KvPKZUa8KZ3lV2CuH1npPYWNOv2Hypa7mN+tjuaZ6zu350K+n3Aeev1I5r/rQ+yt99PyZyvl6/bDCaN6rsFc9jOZePaz43LdiJ0/di/xJLcrlNa/q1YsHz08XwrNf/s25rfkzmi+9nm7rem37qQL1vfmnWm7//rkNzNug7l/UD+lsvfl8WjetTz55zcX/RQp75TD38UFeEARBcGvSN/PSN/Tq8NL3glevhAn8nRTUK14evD/cF9Dqr1Qwzxv5Vbx8BbapoXlvveKtd5ZXhdYcWr2nsMhtkH6BA7wqF9T8rsryM595kWcf+vXUBtX7ZK699T3Kebb60PupDXKftvo9Na2b1m/N8aHDCkflvfUw9d3GOa94mHJRLmjNX3obZlrzYhOlbMLzyt753ddTvLyb2g9wpYL64P686utVGtwH+lJD87V+blVozUF9J/FBXhAEQXB7fv7++Pjn25/8N/TW4RWzhuZb67eup2zdT/z0m3Ch1bNM1at69R0+D4pUvSq05tDqVaGW99ZDLd9a7ymM5jsp98NWf6Wmc3CeuXp56P2VPrfm8/viKuV8vT70/TT33YYZvOZHK9tVcph8uUB9s0JrDq31vblXD61eFVpzuIHP90GxiRRTNt0nZ/miQF7Dy5cL2qOn3uPs9fbmhP3S8mkbqPkrFdQH9+dVX89S8HxwP+gjzPt6lRbclz97vIi787t4VRjNN6kNch90HtUcnzQ+yAuCIAjehf9+fHz8k76dN72i7ajQmrfSW38C/FigXunNj/Kq0JpDa31VbZDeSEHtjRZM+ZWazmEP14d+PbVB7rPnVWc5C67W7aGP5as5THWiUMt7FVpzaK3vzb16aPWq0JrDLj5NlGDqd/JF1vzi/sjBUjWv+kJzXlh4e8xst1e2rre3V/Zefy+vWmP1ei4ssno/HOxVoZRNuLk9kleFo7wqjOa99TDqVWE036Q2yH1Wv6OyYWu9yeM86lW9PPR4tUHuw1a/p6Z10/q9vkPhrBxavSps9crW3EUWoM8T5Ecq9PpT4KBn0bufV7/z+fUGwbONm6v25is+D4q88hnPK73Xt/v4IC8IgiB4K379/vj43+zbeenlbP5ChleFvb2HV9+73iWkA6aDQqu/UqHXBwdAYy5Ct194m3j6xcEe3BdZS76YH1UbvPzFwh5AngcrePkqXr3mvV45er9er5Crwsme+wGm+0PVslTWnPf6mT4C8UVe5ZlZ/qQwWr9VYTT/IkqfW3P8lcr51Kt6eej769r9cbZyHs+renloUWit71D62Jrjn5R4NFeVeiYmX1D/eaEojOZePezlVeHuXlmpX+vvsPfUBi/rS16FQlCvePkz+jfnlK25svX0y3+N5/2X+bpXhdWcQZHcThvM86nNR2naJ+3XmuNDj9X4IC8IgiB4R6Zv5yV4ZYNRf6XW0NyrD94P7oMKvGGeoH5Qp/Uq3qvPCuTFrvmneoNlYC+vCkd5T2GvHGr1eyu49TaYfoGbq+Ze/RZN66b1vTpU6/Gh7682yH3t9Udq2ift15rjQ++vNsh903lUc/yVyvnUq3p56P3VBrmPnr9S0znSeWYe8vyKwl45XO2Vo9dTutezgtS3qVAuqOZFvbxJodcH10MfoebPVFCveHlwPPQN5n28SkH9zsQHeUEQBMHbkr6dlz7M+/6zTOwGr8itePW963l07jf9plRBcy6ftOSL+Zra4Km+19sDyPOgyKs8c1evCmd5VWjNodWrQi2v1HN/ePlCLcvlNb9VZ+txLnLO9zJf8acqtNaHNmnqZ+qrelUv31M5X2uOD31/pc/qr1TO1+sPU2it31thNO9VaM2htf5Fzn1Ajn/SXGzMfC5v9apODr1+WhiO9sre63te2Tvfup5i9bnPxSbS5Swz3Qc6X1MbdNVXFNQri/stOB36Bq3+SIVeH1wPfQS8KtTyBp2ePjQveE8vmsvll3lVOCq/ldog9yX5+CAvCIIgeHe+lW/nrb5hOUqh178h/Nh7oet56/fmp3ubmN5YJV8UyGHypbDmt+rL9Yh7fej7qw1yX3v9lZrOkc7j+ZsqtNbvrTCa9yo05QRFFvWam9f7gwt0vqZeveZufaGUfaqXF4Va3lsPo/Vbcxith5pXhdH8SRkUWe13S/7Ce/WLvDDN2zhNu76i4NW11sNoHtqhNsh9Vq/q5Vs0rZvW3+pDr1cb5L54/kpN50jnmXnI8ysKrTlc7ZWj88PhAHfS4D7Qlxo8EcBaP3dVBkWShVU/q1/Fy5X29eKDvCAIguBL8Ntezf759vh2Hi9zc4Wa762HXq9srffYe70m0oJpYcCrQi3fU6E1D/5e1u6PqxVa81PhIDW8vJfe9fY+X+96vV6o/SIL5Mwf7lUZFHnlM1d5VWjNodV7Cnvl0Fo/qNwPMN0fqpalsmq+o3K+Xh/6/sp94PkzlfP1+tD7K31Wf6VyPvWTgs7fRWE0762H0frefKa5bzbMzHyOO/KXXpVcteTg+elCeO2Xf8POy59Z/g26vb3306zXf2pv/vBaB7W8rlZv/Vm0e1IvP0gX56xp7897X4W9cnjl44O8IAiC4Evx7efjA72nF7fWV8YrFXp98PfBfQN4Vajljcob9Jd10JDzRr8VlqnRmx/tFXJVOMurQmsOC28T+f4o6DrkC+8oF4zmL5XL1at6eej91Qa5jzqPao6/UjmfelUvD72f2iD3Tb2ql2/RtG5af6t/Y4XW+rspbM5tIvUVqr5ciFftzV/WW5SZ+VI+aWaWw1NunO2Vo/PL6f0B8GcqeD44H/pUQ/OaP1LBy4ProS+w1q+WfE+t4eUO8UFeEARB8OXg23npQ70HvKLW2Ds/2ivkqgV+Qwb8VH6WV53leVDklc+0ek9hrxxa67cqjOZHK7TWV3Rx3xT18jOV83o+9P2Vvvf6K5Xzqw99f6XPvf5JiWv5RmWDyRc0ryqM5r31MOpVoTWHo7wqHODzfVDsqzxNT/dNzav25o2+GS6s0ZtvXa+Xs/c7gHS8dExo9Ucq9PrgfOhbDc1r/kgFLw/uB32Cmj9SoTXfCW+5vfOaV4Wj8k1qg/w2RL1qyuODvCAIguCrkv5nNtPfzvv920x+RexQqPla/QVwjBpervSut3V/b729vCqM5pPaYPWNl/orNZ0jncfzoV9PbZD7rPMo+YHKhq31Jo/z9fqioPM1hdG8tx5GvSq05jBaDzWvCk05QZHJm9Lvo73qRKkDzRfeHi8u390re6+/l1et0boeDPk0kQZFWvzi/sjBUjWv+sJwfaGUTdS8KrTmMFoPo14VRvNehb3qIXubyH2d+TwospZzHxymaZ+0X2uOD72/2qDa17OU83he1csPVNgrh6u94uZWkPowIRdMOfNnKKhXvDzDwndl7/N562neWy/oDUR5VUv9sFddyYE8D+A+Pj7IC4IgCL406VXuf9//fHz78fDp5W/+wqde6c29+i9B+gHTDwp4VajlVyqoV7w8uAE0thEtx6tCLZ/UBr2/KKhCU05QQ/PeesXLFW9/zyu9+V29aoH7A1o9yzR71Q15DorMfWa6cFmfmeUvFfbKoVa/t0Jr/U2UPvf6I5Xzteb40PdX+rzVH6lpn7Sfl4depNCQ0zfytX66OXEtV3XqYfLlAi+vKox6VWjNYbQe3sDnPhbreiNdnnzWWf40j2pe8VBbD2r1VXQBxcuV3vrX6N+oU/y876c7xKeJNCjS4qc2F30Ey/nWfKGP8n4fOilsyeODvCAIguCvYPp2XnrVq70yHqnQmoP64OvDfQHz+2SuUMuL5jfSG3KvnjfqGfVGKVunof4srwqtObT6rQqj+WFqg3x/FPCXajqHPbp96PurDXJf1V+pnK/Xh95fbZD71uuP1LRP2q81x4e+v9og97XXO8oFu+TYFx7y/IpCLe+th71yuNorW/MFXHAnDd4H+gav+nqWgvrgeugT1PyRCq35TsQHeUEQBMFfQ3rBS38777/y7bxPeMU9C93P239rLky/SRcWx9G8eOoWune+4vOgSI/PqFe8+rt4VWjNodWrwmi9l4PUcT/A5DUX7+qjfDxXfVH/CJb6ModaHnoLpc+t+fy+uEo5X68PfT+l756/Ujmv52+r0Fq/VWGveqjlvfXQ4PN9UOzkVS1Kly3ma/lGD+o/Cx9azeFuXunNt+6n9O6vNOyfbJrO2IB+A/mQ2uDp/lH18qKgPrgf9A3W+nm2gvrg/rzq61XaiFfem7f6v0ptkF9G1nx8kBcEQRD8bfz49fhA79fI386rKXj+C8I/Qw0vV3rX6/XK1vUW3iaqb7xmHqZclAtq+db6J+XyXh/6/mqD3FfPX6npHOk8Xv5FFVrrtyrsVQ+1/EltkPuqfqY5KLJW/xiU+RW/ut6rvFDLTR77a7098rwo1LxXvzWH0XqoeVUYzXvroclzYZH5Oqu5ee0/Fyzui0HtXQ/MPp/fy4tCLb9aYTT/0mqD3Gf1V+r8fKH3VhvkvvV6R7lgKLco88KbLOuNPL+i0JqDeqX3+l6vbM176V7P+4Fqfk+FrT7YgfQPmv5hG9FyvCrU8kltkJ8odB71cnt0wYU1NO+t/yQ+yAuCIAj+Wvh23vyFkNdtVTjaK1vzU0gHSAepoTn+SoVeH7w/3AegXqnVX6mgXvHyDAtfhbf/3ufr3W/r+XrP7+zPL56w+RdVzQd8HhTp8Rn1CrkqnOVVYa8cWus9hY05/Z6QuikXv1nZxqtbUc6nPvTrK/eB+iuV83k+9H5KH1tz/JnKeTw/rDCa9yrsVQ+juVcPrV4VzK/1dyqveVWv3vGgfiqEZ7/8m3N9ea/f/jfwnvN+/ziNKlDfm3+ql5vaILcpe6u3iU8/y4d0tt6rPO2T9qvVkf9FCnvlMPfxQV4QBEHwV5O/nfe9fDsP9BX1CgX1Sm998H5wX9TQHH+lgnneyGe8vAG2qaF5b73irXeWV4XWHFq9p7DIbZB+gQO8KrTWb9K0rj3m8xz4ZX3o11Mb5D73+iM17ZP2a83xofdXG+S+6TyqOf5K5XzqVb38L1Y4Kt9aP6kNch/Fw5SLckFrvsnbMKPeKGUTnld686v3U7bmu1P7AVShlu+p4Pngfqz1MynU8iMV1CteHhwPfYN5H69SUN9JfJAXBEEQBEb6MO/f78VMr7jQ65XefKOffhMutHqWqXpVr77D50GRque6WZ6Z5U8Ko14VanlvPbTmUKvvVRjNT1Lul4Uv4K9UztvrQ99fuQ88f6VyXs+HvqmCefpOPr8PDlO2q+Qw+XKB56sKrTm01vfmXj20elVozeFu3kg2TWdskO8TG+b5mc+8yId8USAHL1+wuMAePfUeZ6+3N2fvZ6Tt0raAv1LB88H9oI/Q6vdU2OqD80n//qkPUPNnKqhXvLyTrdt5x2/1qjCaH6o2yG9D1CeND/KCIAiC4MHP8u28pItXVNjqb0A6TjoWqFd686O8KrTm0FrvKdTeaMHTG6+rNJ3DHt0+9P3VBrmvG/xjUOYvUDD7ea6kXj6o0JpDa31v7tVDq1eF1hx28WkiDYq4ufnF/ZGDpWq+my8svD1m1s/tMfeKV3+2V/Zefy+vWmP1ei4sstr/lnyDV4Vub49kVeEorwqjeW89jHpVGM03qQ1yXz3/QllwNF/oo7zfh56vNsh90HlU85q/UtM5OE+jwlk5tNZ7OfR6pTffvJ4VpL5NcMGVCupPgYOcRe9+Xv3e55f19IbR7aYnAhun+YX25urtAeR5UOSVz6hXvPpxHx/kBUEQBIHw7/c/H/+Ub+ell8v5C6V6D6++d71LSAd8vG9YR3P8nRS8PPh60OcavLGHtftjV7XBpl8sHsOM5k149Zr3euXo/Xq9svf6G/3ifixeFWq5SV522M/0Ecj8rF7z7GGWPymM1m9VGM3/EqXf6q9UztfrQ7+ezu+LuXr5nsp5tvrQikJr/Y6a+pP6pP5JiUfzTgX183M/KYzmvfUw6lXh7l5Zqc99LHbuU9nU5xwaL/LsPbXBy/qS16jeXzW8XNm6Xt9+e+9W+5t5UPOq0JTbRG6L+is1nSOdR33osRof5AVBEATBkp+/Pz7++fYna9sr6kaFXh+8P9wHFXjDPEH9oE7rVbxXv5rbMFOrm8E07OVV4SjvKeyVQ61+bwW33gb5F7hef6Wmc6TzqFf18tD7qw1yHz1/paZzpPN4PvT91Aa5j54/U9O+af9eH/r+aoPcV/VXKueb+YzmMwWdH82h1avC3byy+3pWkPo2IRdU86JTLvNdCq05qA/Ohz7V0Bx/poLng/OhT1DzZyqoV7zcIT7IC4IgCIIXzL+dV4dX8Bpe3kvvek69/qal5eTMu2qDp/per7qSA3kewNVeIVeFs7wqtObQ6lWhlvfWF6b7QxQW90+lvltn63Gu1rzmT1VorQ9tUvrf669Uzu/50PdT+tzrz1TO6/nDFFrr91YYzXsVWnNore/IuQ9q9Tm3YY5bvWpvLh7UT4VwtFf2Xt/zyt751vUUq6efkC6f/It8VWf1L+scBdfbxNP9FpwOfauhOf5MBc8H94M+Qs0P6PT04eVAXtB84e3x4vLDvCocld9KbZD7kHx8kBcEQRAEr/mVvp33/c/Hj59meEWFmld9Y/gx9kLX89bvza/yqsAbL6j6cuH0Rm2jblqPy9WHfj21Qe6z56/UdI50nl5/E4XW+r0VRvNehdYcmuptQu8PCnW+pl695m59YZq3cZp286Kg8zWF1hxa67fmMFoPNa8Ko/mTMiiS+2WD7pz5Fa/q5oVabvLYX31FwatrrYfRPLRDbZD73OuP1LRP2q81x4feT22Q+6T+SuV8M5/RfKag87UcrvbK0fnhcABVqOVHKqgP7gdPBLDWz13VBvmJZjYPq57CGl6utK8XH+QFQRAEQSP//fjz8c+3ldfxxzCDV61Rux4879G7/y6kBdPCgFeFWn6mgueDrw/3Bczvk7lCLT9TQf0pcJAaXt5L73p7n693vV4v1H6RhUVePHUL1bzXq2rOoMjcZzryzF5eFVpzaPWqMFrv5dBaP6j0G6b+i0It31M5X2u+9nOFvqfS515/pnJeLw+9v9I39apevqdyvqovaH4bhdG8tx5G63vzmea+2TCzwZt83gfqVZ166PXTQvDs9W/I+fkzy79Bt7d/dfp6/af25g+vdVDL62r11o/cFuZt8OlnOfNnKOdTr2oF+Xw6/4YKe+XwyscHeUEQBEHQwfTtvF9meEXdQ6G33qO3Prg/3AfQ6geVN+it9asK5nljn9F8BZap0ZtvrR9dTxXO8qrQmkOrr6oNFr/4rSgXjOYvlcu3+tD3Vxvkvqq/Ujlfrw+9v9og963XH6lpn7Rfa45/Y4XW+rspbM5tIvUVWr0qC7fmXfXYmc+oN8plE2d75ej87eAHulJBfXB/6COs9fdsDe4LfYKaP1Kh1zvEB3lBEARBMMDzt/PS/02vwHC0V8hVC9NvxoVWzzK7edUX9XlQZO4zrbmnsFcOrfVbFUbzoxVa6yvK/dHrr1TOr17Vy0Pvr/Td81cq5+31ofdX+tya45+UuJbvrDB509r5s8Jo3lsPo14VWnM4yqvCBT7fFzZM09N9UvOqvXmjB+ZraP0CdwF7zPPe+q2cvd8BpOOlY9bQHH+lgvrg/tBHWOvv2Rq8D/QNXvX1LAX1G/GW2zs/yqtCLd+kNshvK1p8fJAXBEEQBGP8zt/O+/j4/vPeL6W8AWjFq9e8t17x1tvLq8JoPqkN0hsraH4j5igXtNZ3KcurV/Xy0PdXG6zeJ17eoWzYWr/Qx+W+Lwo6X1MYzXvrYdSrQmsOo/VQ86rQlBMUmbwp/W7KN3jViVK3uL6w8PZYuxz29sre6+/lVWu0rgdDPk2kQRE3N7+4P3KwVM1384WFt8fMVnNVaM1htB5GvSqM5r31UMt762E1Z1Ak+dxX9VdqOkc6j/rQ+6sNct96/Z6a1k3rb/UnKuyVw9VecXMrSH2YkAuq+ZEKvX4VFr4re5/PW0/z3npBb5Da8pOW+mGvupIDeR7A1f6T+CAvCIIgCDby7cefj/99t5dbe0VNL7evXli9/C3Q9xWt/k4KvT64ITS2ES1v9VW1Qe8vCr0K2RMUmeeZWZ5Rr2zNFW9/zyu9+dVeIVctcH9MOPnifmr1qhvyHBSp+pX6zCx/qbBXDrX6vRVa62+q9N3L76Rr5wz9O5T7QP2VWjuvl4eepLCS00fPPylxLVd16qE1/1ywojDqVaE1h9F6GPWqcIHPfSw2kWLKpj7rPKp5r1ctOahfwIU1vFzprX+N/o06xc/7frpDfJpIgyJubn5qc1Eu1PnW3NXH5b4PnRS25PFBXhAEQRDswG97Nf3n25+P73v97TxQr3h58H5wH0CrryhvuEdzr5436pkGn68DzY0UX+FVoTWHVr9VYTQ/TG2Q748CfqGWzesP1bRP2q81x4e+v9og99XzV2o6RzqP50PfT22Q++j5KzWdI53H86HvpzbIfdR5VHO8o1wwmr9ULp95yPMrCrW8tx5ac7i7V7bmC2oHKEqfJyQ/RGt4eXA+9A3W+tmS76ng+eB66BvM+3iVgvqNxAd5QRAEQbAj334+PtBLH+zV4RUe1Ctbc0XqF8exiflvWnjqFrp3vuLzoEiPz6hXvPq7eFU4yqvCaL2Xg9RxP0zUcvGussxorvqi/hF0epjloe+n3Aeev1I5r+dD31/pu/orlfP1+tsotNZvVdirHmp5bz00+HwfFDt56mZ5trP8STXf6KHqywWaTwvB3bzSm2/dT+ndX+nd33L6Damcy7rVBqw3lBcFzwfXQ99g3se5Qi3fU6HXB9cz7+NcoZYfqaBeWLz8Cc7l7natXhVG87fR+CAvCIIgCPYlfYj37/fH/+Tm9IoL6v8C0o+bfuy90PV6vbJ1vZqf1Ab5Da94mHJRLqjlW+uflMtnPvMizz70/dUGua+9/k6azsX55urlb6LQWr9VYa96qOVPaoPct5q3B9TqKaT/6lW35ov6gtnPc80UuuvtsUcOo/VQ86owmvfWw6hXhextIvdt5il8ug9m+dN8g66u90JhmrdxmnbzoqDzd1EYzb+02iD31fNnato37d/rQ89XG+Q+6DyqOd5RLtglt2Fm5nOsuVEuWyi05tDqVWGrV3rzvdfrxjsQ/kiF1jzYEf6hG9HyVj+sNshPJDo/U2jyXFhD8976T+KDvCAIgiA4iO/l23m/Zq+0+XX+McyoV7bmp5AOsP4+44Hm+DspeHnw9aDPNTRfuz/OVuj1q7DwVXj7732+3v22nq/3/M7+/OIJtV9Ewf1FVfMBnwdFWnJ8Rr0yLSQKZ3lV2CuH1npPYa8cpI5+q9+sbOPVrSjn6/VdCq31oaco94F6VS/fUzlfrw+9v9Jn9Vcq51M/rDCa9yrsVQ+juVcPrV4VzNNH8uyxM5/Bq1qk9T0e1E+FBS8/2G//G3jPeb9/nOZT1+u1Dmq5rlfPV+qtH7ktzNtganO3ztYbyotO5/t7FPbKYe7jg7wgCIIgOJD0KvvP9z/5f3Kz+oq9prDVB1+f1O/Ud8DfRHkjn/HyBri8hua99Yq33lleFVpzaPWewiK3QfoFDvBaB9X6g5WDrObE6lW9fINCa33ooNog99HzV2o6RzqP50PfT22Q++j5MzXtm/bv9aGTwmjeq9BaX1UbpL4CXpULWvNN3oYZzxvlsgn1Sm/e65Wj11O8fHd6fyD8kQqteXAf6FMNzed9PUvB88H50Ceo+TMV1HcSH+QFQRAEwQmsfTvvE17h4WA//aZcwFNW9apefYfPgyLVnPlZfWaWPymMelWo5b310JpDrb5XYTS/SLk/YLpfRLX+SOV8rfn85wl9b6XPvf5K5fzqQ99UwTx9Jl/rf0vepSxXyaGam6YF1FcVWnNore/NvXpo9arQmsNVXnUG0xkb5Pug2Fc+X7fVqzbmVSgE9YqXK1vX6z3f3py9n5G2S9tCqz9SodcH10Mfa2iO31OhNQf1wfnQpxqa489U8PxGvOV681GvCqP5oWqD/DZkzccHeUEQBEFwDukF999vHx//pb+ddyH5DcBjmFGv9OZXeVUY9Z7CIrdBeqMF0xsvVcvm9Ydq2ift15rjQ99fbZD7qvOo5iueC6b742SFad7GadrNBxVac2it7829emj1qtCawyk+TaRBkdxfG8x1ulBU8918odvbY2YXXvHqz/bK3uvv5VVrrF7PhUWavWn1fun0qlC9vrDw9pjZ07wqtObQWu/l0Fq/d96rkL1N5L72+pmysM635q4+Lvd96P3VBrlv6q/U+fnm+iIHnd8r762H1hyu9oqbW0HqywQXqEIt31PB84fAQc6idz+vfu/z63rO+tMTgY1T2UJ7c/WqmjMoMvcZ9YpXP+7jg7wgCIIgOJkfPz8+/vf9z8ev34+X47d/IW5936EKtfxMreHlwfvDG3fgvoD5fbKL2uDlLxKqDIokC5o34dVr3uuVo/fr9cre62/0i/sRX+pq+UItS2XDXrWjPgcwFYoW6anP1PJehdH8L1H66nlVL99TOa+Xh349pc+9fk/lPK15zYdWFFrrd1T6+NJjO/ItClVvmjbU/PMgolDLe+th1KvC3b2yUp/7WGyPT8tM9wHeUxu8rC85MA+LXPwCXcDDq9+aP7P3bsu/iaf5uleFptwmcht6/ZGa9kn7eT50X40P8oIgCILgGv75Xr6dN38lrr1ig/rgy8Mb5gnuC5jfJ3MFmZ/Wq3ivvjfPOoNpeFfvKeyVQ61+bwW33gap/805/krlfL0+9P3VBrmv6q9UztfrQ++vNsh96/Vnato37e/50PdXG+S+9vojNe2T9pv5jJcbeX5FoTWHVq8Ko14Vtnrl6PUU+jzBBUWnXOYPVVAf3A/6Bmv9PFtBfXA+9KWG5vM+HqXQ6zuJD/KCIAiC4EJ+/Hr87byfv8tEE+mlO70DaMWp19+0tLyWV7XUD3vVlRzI8wBm3ssze3uFXBXO8qrQmkOrV4Va3ltf4P5gfvKFmt+stpbJUM7PoV7VyzcptNaHDil99/yVynl7fej9lT635vgrlfOpP0yhtX5vhdG8V6E1h9b63vxFfb4vbJjjVq/am4sHz08XFry86lVrtK4HW72yd751PcXq6ecqK3lanm0WOqt/WdepsPA28XT/BLdnrb9nK6gP7g99hLX+Nur09LE1Lyy8PWb2NK8KR+W3UhvkPiQfH+QFQRAEwfX8+z09/o6XZN6QgHqlN99aP+pVgTde0Oq3KgdprX9SLlev6uWh7682WL1PvHxP5TytOf4mCq31eyuM5nsr1PzLepvIfZ55Cp/ui1n+ND8Fy/la7tYXmnMbp2kUdL6m0JpDa/3WHEbroeZVYTR/WW8TuW/4FBTI86DI5LluxatuzRf6KF/6olDLq/X2OCIP3aA2yH30/JWazpHOoz70fmqD3Cf1ql6+p6Z90n4zn/FyI8+vKNzNK1vzy+n9B8AfqdDrg/PhiQBSP2Z28rupDfITic7PFKjPgxpe3svnevFBXhAEQRDchJ/p23nf/+Rv6cHq+4bHsAmvvne9JtKCj/cZD9Qr5Fcq9Prg68F9Aa3+SgXPHwIHOYve/bz6o9fr9YL+IqssftEtnmUXqnmvV9WcQZEenznKq0JrDq1eFUbrvRxa6weVfsPktb5AfqVyLvWh76/0uTWf3xd30bVzh95T6VuvP1I5XzUvaP1tFEbzXoWa9+p78xf19OllXuzc5/KaV/XqHQ/qp0J49vo35Pz8meXfoNvbvzp9vf5Te/OH1zqo5XW1eutHbktrboOpzTaY8qf5nZXzLHzZH/8XK/T4+CAvCIIgCG5G/nYefztv/ko/V1CveHnwfnAfQKsfVN6Qt9avKvR6g2Vq9OZb60fXU4WzvCq05tDqq2qD/AudelGo5qZpgVreVU/cmuND319tkPvq+Ss1nSOdx/Oh76c2yH30/JWazpHOo/6NFVrr76awObeJ1Fdw8+JVubA1761/Uosy6o1y2cTZXjk672Xv9brRA+BVoZZvUVCveHlwPvQR5n2dK9TyPbWGlwfnQ99grZ9nK6h3iA/ygiAIguCGPH87j1f8GpqL5zdgaPUss5tXfVGfB0WGvSrUvFfv5dBav1VhNN9a7ym01lc09TPdH605/krlfL0+9P2V+0C9qpfvqZyvNceHfj1d6/8U1/KdFSZvunbe5nrQ+ZpCaw6tXhVacxith5pXhQt8vi9smKan+ySHhuaqvXmjB+Zh4aV+gV6geBsoXt7L2fv1ssP+6fK0DOCvVFCveHlwPvQR5n2dK9TyPRU8H1wPfYN5H+cKtXxPBc934l2+d34Xrwq1fFjjg7wgCIIguC///fj4+OfbtpdqXvj3Qtfz1u/Nj/KqMJpPaoP03+dALV94R7mgtb5LWb7Xh349tUHuc6/vUDZsrXf1sdzSF4VaXq23x0jeWw+jXhVacxith5pXhaacoEizN6XfW70queqUFxbeHjN7uFf2Xn8vr1qjdT04xKeJNCgy3RczP10oqvfPbr7Q7e2RrCq05jBaD6NeFUbz3nqo5b310JTbRO6relUv31PTPmk/z4feT22Q+6TzqOb4PZX9WvOaP1Fhrxyu9srm3ApSnya44EwFz6/CQnfl7PPpft7+Tq43iLc89cx3e9WVHMjzoMgrnznafxIf5AVBEATBzfn1++Pjf9+e/3YepJf3y1/I6+8zHpDfWcHzwQ2hkYPo5TVfVRv0/qLQq5A9QZFXeUa9sjVXvP09r/TmV3uFXBUcz/0DNc9l1VzVsnn9lpzz4rWePDNd6CjslUOtfm+F1vqzFVrrK7rW76uV86lX9fLQ91PuA/WqXr6ncr5eH3qSQmv9TOd9npS4lqt69U4Ok58uqCiMelVozWG0Hka9Klzg6S+kePKznPkn1bzXq5Yc1CtePi1cQ3Ovvg/9G3WKn78+3S18mkiDIrm9NpgrF+p8a96tj+WWPrRZ4VUeH+QFQRAEwZuQv5333V6256/cvLIHX5f5O7c1yCvKG+zR3KvnjXqmwefrQPMVUvk8P8qrQmsOrX6rwmh+mNog3x8FvOYLf6Wmc6TzeD70/dQGuY+9/kpN50jnUR/6/mqD3Ff1Vyrn6/Wh7682yH1V7ygXjOYvlctnHvI8qvUdCnvlcHevbM0V+jghC1Tzg/Tp/qnVgfrgeugT1PyRCr0+OB/6BnhVqOV7Kni+k/ggLwiCIAjeiPTtvPQ/tfn96dt5vGNoxanX37TwXKaX1/JJe3P19oBafR4UmfuMesWrv4tXhaO8KozWezm0+opO94ejUK2zLJVVc9UX9Zxv9bqVPHuY5aHvp/S511+pnF996PsrfVav6uV7KudrzfG3UWit36qwVz3U8l6FBp/7XOzkqXuRP6lFubzmVb168bBYR/LpQribV3rzrfspvfsrvftbTn8hlXPZXKGWZ7UB6w3lRaHXB9dDH2tojt9ToTUP7gN9glZ/pILjFy9/gl6udG5X9aowmr+Nxgd5QRAEQfB+rH4776bwxmMvdL1er2xdr+ZVIf9eP5vAq0I1N00L13yXcvls/mk9zT/j0HdXG+S+6jyqOf5Oynl7/ZsotNZvVdirHmp5r0L2NpH7OvMU0m/1qlvzRX1hmrdxmq7lMNWJwl45jNZDzavCaN5bD6NeFbK3idy3mc+DImv5dB806uNCv26qLzTnNk7TKOj8qEJrvacwmn9ptUHua68/U9O+aX/Ph95fbVDt80y5YDR/WY+deShlC4XWHFrrvRx6vXL0eoqXd1M74JUK6oMd4B96J3S5eR+H1Ab5iUTnZwpNOUENzXvrP4kP8oIgCILgTfmdvp33/c/Ht59looH8PuMxPA/vfQv+zlrDy4P3h/sAav5KBc+vwkJX4e2/9/l699t6vt7zO/vziycsvD2eLi858wvV/ACfB0XmPqNemRYShbO8KuyVQ2u9p7BXDlJHvz3frY/L2+tfKOf18i6F1vrQU5S+bvV7alo3rd+a40Pvr/TR82cq51Ov6uXNCq31nsJe9TCae/XQ6lXBPH0kzz6HRs2rWmQy7KHqywVe/bQw7Ou3/w2857zfP07zqW310L+e5ivr2b9/bkP2pjagLU/q5Vln6w3lRdM+7DdXL39jhb1ymPv4IC8IgiAI3pxv5dt5R72i6xsJpTc/yqtCaw61+ma1QXqDCnjNF/5KTedI5/F86NdXG+S+q1f18j017ZP2q+SwqC8KOj+qUPNe/dYcRuuh5lWhNYfResieC4tUvWn1/ii5qubDvuB6e8zswite/VVetUbrenCWV62RcwqLVL1p8/2y0auC6+0xs4d5Vdgrh9Z6L4fW+r3zXoXsbSL3WX2HsnBrvauP5ZY+9P5qg9y3Xr+npnXT+r2+Q2GvHFq9KrTmoF7ZO3frrSD1ZUIuqOZHKvT6U+CgV+HtvzVXnHq9QfBcppfX8kl78xWfB0Ve+YznFXJVqPv4IC8IgiAIvgC/7dU8/e28nm/n7Ub7+44H+CsVtvrg/Un9TH2FhbeJ9MYeyA9TG7z8xcIeQJ4HK3j5Kl695r31irfe2V4hV4WT/eJ+LH6hlqWyw/xMH4H4Iq/yzCx/Uhit9xRG86sVWusHlT635vgrlfOpD/37lPtC/ZXK+dSrenloUWit71D69jK3YQavalEur+W9KusxMfmC+s8LRWE09+qh1atCaw5388pKPf3NzHwqW/RfVXP1qo15FQpB/Va89fr202+4KVt307z/G3UDOYMiuZ02mOdTm4/StE/arzXHh27T+CAvCIIgCL4O339+fPzv23HfzgsugHdu0OoHlTfgNe/VZwXyYtf8y3ojxT1eIVeFUa8Ko/W9+dZ6T6G1vqo2mH6Bm6uXn6mc1/Oh7682yH1Vr+rle2raJ+3XmuND7682yH3TeVRz/JXK+dSrenno/dUGuY+ev1LTOdJ5Zh7y/IpCaw57eVXwvLJ1Pc8ru69nBalvU6FcUM2PVFCveHlwPPQNav5MBfWKlwfHQ99g3serFNR3Eh/kBUEQBMEXI72ypw/zPr+dxzuICtNvUhU0Z7lJS171qpr3ensAeR4UeZVn/havCqP1Xg6t3lNwcu4PL3fVak3a6z19sR7nI38MJF/xoe+v3AfqVb18T+V8rTk+9P2VPqu/Ujlfr38bhb3qoZb3KtS8V78hz/dBsZNXLfG83uQpf+lVnRx6/bQwbPVKb773fr31irde73692Hq5z8Um0vJsM90HOl9TG3TVVxQW95Og9cH50Deo+TMVen1wPfQR8KpQyxt0enrx8gqaczlc5VVhNL+txgd5QRAEQfA1Sd/OS3877/fvMvEm8EYF1Cu9+VFeFdI7rfyG18avcpjqRbmwlvfWv8yJe33o+6sNcl97/ZWazpHO43lVL39Thb3qoZb3KjTVMyji5uZzX2eeC6Z+O+rVa+7WF0rZp3p5RaE1h1avCqN5bz2MelUYzV/W28Si3ykoMvmVuqf6LXlhmrdxmu72RUHnawqjeeiOaoPcV/WqXr6npn3Sfr0+9Hq1Qe6LzqPkJysHyB4781DKFgqtOVztla355dR+4DMV1AfXQ59g4W0iPyEUyI9UyJ6gyKt8FS9XPuvjg7wgCIIg+MKkV/n0Yd5/P8qEoO87TkHft+CvVGjNg68DfW5F6+f3yVUKvf4UOOhZ6H7e/ltzpXe9jfvXfpEFcuYP96qziVyHLzL3mau8KhzlPYW9cmitH1TuB5juD1XLUlk131E535MvUs1Dv4RyH3he1cu3KOfr9aH3V/qs/krlfOonBZ0/S2E071VozaG1vjd/UZ/7aMMcz3ymlqv25uLB89OF8Nov/2adlz+z/Bt0vV5Pt7X+kX9qb/7wy7pRtfWsP7lNzNtgarMNpvxpvqa99RWdzufp3v8e1ynslSfig7wgCIIg+At412/nBQPU3vkdpLxBf1kHDTlv9FthmRpermj93l7Ze328KozWezks6m2Q748CXvOFd5QLRvMu/VzuWV/koPOhN1Mb5D7qPKo5/krlfOpVvTz0fmqD3Df1ql6+p6Z90n69/o0VWuvvprA5t4nUV5h8Kax51d78Zb1FmZkv5ZNmZjk85cbZXtma783u+3n/IDV/poKXB/eDPkHNH6nQmgfXQV9grV8t+Z4Knhfig7wgCIIg+ItIfzvvvx+8gyjwGzLgKTvNq87yPCjyKs+0ek9hrxxa6z2Fo/KjFVrrK8r94PkrlfN6PvT9lb73+iuV86sPfX+lz55/qZR7dYPKBtUcSt1CYTTvrYfR+q05HOVVa7SuBys+97nYlhyfyqb7BK+q+U6+GS6s0ZtvXU/Ze72zaThfilMZtPojFXp9cD/oK9T8kQqteXAf6BPU/JEKrflOeMv15lf5U9UG+W1I8vFBXhAEQRD8Xfz49fHxz7c/H7/Kt/N4g9CK1vd6Zet6e3lVGM0ntcH0xuuVv1LTOdJ5PB/69dQGuc86j2qO31HZsLXe5HGeXl9ROCrvrYfR+q05HOVVoclzYZHJm9Lv032h29tjZnfzqjVa14OrvbL3+qs+TaRBkRZPn6d+52Cpmg/7guvtMbNVrwqjXhVGvSoclffWQy3vrYfsbSL3tdcfqWmftF9rjg+9v9qg2terlPOpV/XyAxX2yuFqr7i5FaQ+TNQ2OFNBveLlt4AfrIaX99K73sbz6Q2E57KFat7rVVdyIM8DOM/HB3lBEARB8JeSPsz7t/K38zZRe9+hCrX8Sm2ltz44ABq3E7rc/L7IaoP0xh4WuWqpH87tAU05AahX9s631m9dT9m6315eFZx8cb81+oValsqqXrU3n/k8KDL3manQxHTKexVG8631nsJoflOl3+pVvXxP5XytOT706yl97/VHKudrzfGhJyk05PSNfK2fbk5cy1Wdeph8uaDqocwvFEa9KrTmcJRXhQt87mOxrjfS5clnneVP86jmjR6Yh4WX+gV6geJtoHh5H/o36hQ/f336U3yaSIMiuZ02YLqaz/QRLOdb84U+ypde1cv/YoVXeXyQFwRBEAR/Mfnbed//fPwyDd6Ennd6Bm+wa3Ve3luv+aq3IZTpdRrqz/Kq0JpDa72nMJpfpjZI98PCX6mcr9eHvr/aIPdV/ZXK+Xp96P3VBrlvvf5ITfuk/VpzfOj7qw1yX3u9o1wwmj+plWZm3mSZG3l+B4W9crjaK0fnC2oHLErfdf5QDd4H+gav+nqWgvrgeuhTjbV+7q3Q6x3ig7wgCIIgCPKHef9+L2b6TaqQ3inM7DIvnrqFbs1VbfBUz6DIK5/xvNJ7/dFeIVeFo7ynsFcOUsf9AJPX3KlfqGWpbDjv0MdCS32ZQy0PvYXS59Z8fl9cpZyv14e+n9J3z1+pnFf92yi01m9VqHmvvjfvrYeG+nwf2DCDV7Uol7fmGz2o/yx86CJXqIervXL0eh5b12s4X7JpOmMD+g3kqzqrH8obFdRvZvcFA2Wtn2crqA/uD32Etf6erY145b35qFeF0fw2Gh/kBUEQBEGQ+Fm+nZd0T3jjUcPLld71ttbv7m0i/X4PeOqquSgX1PKt9U/K5TOf0Tz066kNct89r+rle2raJ+3n5V9UobV+q0LNe/W9+Uu1gfY7B0Umv1L3VL8lL9Ryk8d5a/U2znlRqHmvvjfvrYdRrwqjeW89NNUzKOLm5nNfZ54LFvdFRb16zd36Qin7VC8vCrW8V6G13lNorf9SaoPcR51HNcdfqZxPfej91Aa5T57vVBYYyolnPuPlRp5fURj1qtCag3pl7/zo/RZ4B6j5IxV6fXA+9A3wqlDLJ7VBfqLQedTL7QHqV+HCVur18UFeEARBEARP/Pv9z8c/fDtvD/R9SKu/UqHXB18P7gto9VcqqFe8/BA4aCtefe96HmefT/ON9fziCZt/UdV8wOdBkR6fafWqMOpVYbTey6HVb1UYzYvS74laLt5VlhnNXyjnUx/69+mr++Qs5TyeD72f0sdef6ZyXs8PK4zmvQp71UMt762HUT/T3EcbZvCqFuXys7xoFS6Eff3yb9h5+TO9ec2z6zJn/llheX1b/qnr+z/V2SC3idwmPv0sH9LZeq/q0j5pv9Yc/8YKR+bxQV4QBEEQBAt+/v74+Ofb/t/OCw5A3/kpmus7wisUzPPGPePlDbAN9HqlN7/Kq8KoV4Va3lsPub82sVDLcn3xTFTrO/VpPWxrXvOh7682yH1Vr+rle2raJ+3XmuND7682yH3TeVRz/JXK+dSHNiuM5r31UMuraoPcZ/HwdF/MlAta803ehhn1Rimb8LzSmx+93tH7HU7tB1CFWr6ngueD+0EfoebPVFCveHlwPPQN5n28SkG9EB/kBUEQBEFQJX8775u9VUi/OfMb9KRWkN9oHOVnmoMiVb9Sn5nlTwqj3lM4Kt9a7ymM5icp94nnr1TO2+tD31+5Dzx/pXJeLw99f6Wv6ruUy7061KmHyZcLPF9V8Opa66E1h9F6qHlVaM3hbK+s1Of7oti5T2XTfZND40Wevarm6ovCdL8V3Fz88gJ7zP1WvPV697v7+XYgbZe2BfyVCp4P7gd9hJo/U6HXB+dD36Dmz1RQr3i5sHW53nzUq8JofpjGB3lBEARBELziV/p23vc/Hz9+lgmBNxY1ND/Kq0JrDq31nkL+74lsYsqLhym/UtM57NHtQ7+e2iD3uddfqDDN2zhNL3J75PmNCjXv1W/NYbQeal4VWnMYrYfsubBIi1/cHzk40RcW3h4zu/CKV3+VV63Ruh5c7ZXV+jSRBkWq90ORar7Bq0K3t8fM7uZVYa8cRuuh5lXhqLxXIXubyH31/AtlYa+uWR/L9fvQ+6kNcp88f6SmfdJ+rTn+hcJeObTWb81BvdJ7fa9X3NwKUp8muOBKBfWnwEHuine+3vN3rqc3jF4+PRHYOM0vtDdf8XlQpMdn1CvkqlD38UFeEARBEARN/PcjfTvv8TbiCX2fodTeh1ypUPOt9cH7Q59rpLfKa79IHKY2ePmLhT2APA+KvMqb8Oo1761Xtu63t1fIVeFkv7gfi1eFad7GaXo3P9NHIPOzes2zh1n+pDBa7ykclR+t0Fp/ks7vi6uU86hX7a0PfT/lvvD8mcr5en1oRaG1fm8F8/M+T2pRLq/lveqsB+oX50ZhNPfqodWrQmsOd/PKSj39zcx8Kpv3P/MiX/WqjXmNRc6FNbxc2Xc9/oZcja27aa77kavCLrlN5Laov1LTOdJ51Idu0/ggLwiCIAiCVrxv5wUHwDu3Vlbf8bUrb8Br3qvPCuTFdtcblIHnFXJVOMurwmi+td5TaK2vqg3yL3C9/kpN50jnUa/q5aH3UxvkvvX6KzWdI51Hfej7qw1yX9VfqZyv14e+v9og91X9lcr5Zj6j+UxB52s5tHpVaM1BvbJ1vbO9Qh8n5IJqfqaC54PzoU81NMefqeD54HzoE9S8KtTyLQrqFSePD/KCIAiCIOjm6dt5/CaWTH7joV5V816vyqBIsqB55m/xqjBa7+XQ6lVhtL6ST/ePKHXT/MNW67vVW2+WPwaf+aqHWR76fkr/e/2VyvnVh76/0mfPX6mc1/Nvo7BXPdTyXoW96qEhz30vdvKz+tXchjlu9apODrV6UD8Vwlav9OZ779dbr3jr9e7Xi61HPyEtP/lZzvxLtUFXfUVhcX/Z41UenA99q6F5zR+p4OXB/aBPUPMDOj19eDmQFxZPT+rt8eLyw7wqjOa31fggLwiCIAiCEX7bO4j0Yd73n/u+leCNCqhXevOjvCq4uU2kN8BQ9eVCvKdefdd6lHs+9OupDXKfdR4lv1I5z1b/lyqM5r0Ke9VD9jaR+zrzFE79dtSr19ytL0zzNk7Tbl5RaM2h1avCaN5bD6NeFUbzl/U2kfs283lQZM1PfS76CJbzzXmhlps8zuf5oqDzNYXR/O4KrfWXqg1yX3v9kZr2Sfu15vjQ+6sNqn09UDlA9tiZh1K2UGjN4WqvbM0vp/YDX6mgPrgf0xNCYa2fhyqDIsmC5qt4ufJZHx/kBUEQBEGwiW/p23nfHx/sNaHvW/CqUMvPVPC84uXB+8F9AXhVqOV7KrTmp8JBzkL38/bfmiu9623cv/aLLCzy4qnb3auSzzQHReY+05Fn9vKqcJT3FPbKobXeU5B5+gzzvs8Vavmeyvme5pleyec/T+h7K/3e6o/UtE/az8tD76/0Tb2ql++pnK/qocyfrjCa9yq05tBa35u/qM99LLbZq1pkspyv5eKh108LwbNf/s06L39m+Tfoer2ebmv9I//U3vzhl3WjautZP3JbmLfBp5/lzL/U3vqKcj71qlaQ99P5v1Bh7uODvCAIgiAINvP4dt6fj+/xt/Oup/bOTxVqeaPyBr21flXBPG/sm2ioZ5tWtH5vr+y9Pl4VRuu9HBb1Nsj3R2GRq2p98apcMJp3Kct1eMjzoe+rNsh9VX+lcr5eH3p/tUHuW68/UtM+ab/WHP/GCq31d1PYnNtE6iu0elUWrnmv/kktysx8Ln+RQ657DDNne2Vrvjdn77eAA9xJg/eBvsGrvp6loD64HvoENX+kQqePD/KCIAiCINiNbz8fH+jlb+elR37jYYP8G7bnVb36mc8DmHkvz0wLicJeObTWewpH5UcrtNZXlPuh11+pnF+9qpeH3l/pu+evVM7b60Pvr/S51z8pcS0/WCfMc84nhdG8tx5G67fmcJRXrdG6Hgz4fB8UO/epbLpP8Kqa7+SB+Rpav8BdwB7zvLfeY+/1zqbhfClOZTU0x5+p4Png/tBXmPf5KgX1wf2gb7DWz7MV1G/EW643v4tXhdH8SW2Q31YkHx/kBUEQBEGwJ+mdRfqf2kz/k5vZ2yO9Aamh+VVeFVpzWNTbYHrj1eOv1HSOdB71ql4e+v5qg9xnz29QNmytX+jjct9XFI7Ke+thtH5rDkd5VWjyXFhk8qb0uynf0xea80Ipm9jLq9ZoXQ+u9sre66/6NJEGRdzcPH3W+0G1er9s9YWFt8fMVnNVGPWqMOpV4ai8tx5G67tyG+Q+ev5KTedI51Efen+1Qe6b58/UtG/av9efqLBXDld7xc2tIPVhonXDIxV6/S3hB6vh5b30rrfxfHoDaTl+Uq0vXvOqV13JgTwPQL3i1bf7+CAvCIIgCIJDSP8zm+nbeb9+mxl5n3KlQq8P3h/uA1h4m3j6RcEe3AerWuqH8waF7AmKzP0qe+db67eup2zd7yyvWtD7zcun+0nVslRW9aq9+cznQZGq57oX/qXCaL613lMYzW+qqT+pT1v9lZrOwXlCv7bSd89fqZxXfehJCg319K3XPylxLVd16qGam6YF1FcVRr0qtOYwWg81rwo39LmPxSZSTNnUZ51HNe/1FQXqq+gFymJBe2xZrw/9G3WKn78+/Sk+TaRBEeykmpuf2lyUC3S+NXf1cbnvQ5s1ER/kBUEQBEFwGOlNRvow79uPhw92YP5OLuF43lBP86Je3qu63qq3YUa9spKXZSbO8qrQmkOr9xRG88vUBvkXOPWqXr6npn3Sfq05PvT91Qa5r56/UtM50nk8H/p+aoPcR89fqekc6TzqQ99fbZD7qvOo5nhHuWA0f1mPnXkoZZsV9srhaq8cnStTP4EFinr5IVrDy4PzoW+w1s+WfE8Fzwf3Y62fZyuod4gP8oIgCIIgOJzp23npXcf8DUxWG+TfyHW+pjZ4qmdQpMdn1Cte/dleIVeFo7ynsFcOUsf9MFHLK/X4hVqWyobzDuW8XR5meej7KfeB569Uzuv50PdX+q7+SuV8vf42Cq31eysclffWQ0N9vg9smMGv5Nm25hs9VH25QPMFpW7iaq/svb56D6++N2+op9+QyrlsobP6obxRwfPdbF4g8Jj3ca5Qy/dU8Lzi5cHx0Eeo+TMV1AtO3J2PelUYzW+j8UFeEARBEARn8c+3j4//yt/OA96YtOLVa95br3jrbfY2kX/ft3Gax8OUi3JBLd9a/6RcPvOZF3n2oe+vNsh93eqv1HQOzjNXL38Thdb6sxVG85dqg9zHmc+DImte749HsJzfK1/UF6Z5G6dpFGreq+/Ne+th1KvCaN5bD6P1L3ObyH2deQqf7oNZ/jQ/Bcv5Wu7WF6Z5G6dpNy8KOj+qsFc91PK/Wm2Q++r5MzXtm/ZXr+rlocerDXIfdB7VHO8oF4zmT2qlGS83zGavCjXv1W/NQb3Sm5+9XzetBzxSoTUProO+QKuvqg3yE4XOo15uD/B8hgtbqdfHB3lBEARBEJzKj1+Pb+f9TH87L6HvU/B3UvDy4OtBn2tovnZ/nK3Q60+Bg7bi1feu53H2+TTfWM8vnlD7RRS6f5FVr6o5gyItOT7T6lVh1KvCaL2XQ6tXhVreWw+1vLGefqt3lWVG8xfK+dSrenno++va/ZHUy/dUzrPVh95PU39Sn9RfqZxP/bDCaN6rsFc91PLeehj1qmCePpJnjz3Li05QWPDyjX75N+y8/JnevObZdZkz/6xQqwd/Pe88K+tZP3Jbsje1Qa2tvs7Wa6qvaDpHOo/6N1Y4Mo8P8oIgCIIguIR/vn98/Pc93oZsZv7Obg3N8VcqmOeNe8arb4DLamjeW694653lVWHUq0It762H6Rc6G+e8eKj5rcqGQzmxelUvD72f2iD3rddfqekc6TzqQ99fbZD7qv5K5Xy9PnRSGM1766GWN6sNUl8Br8oFrfkmb8OM541y2YR6xavfup5y9X6n0/sD4vdU6PXB9dBHaPVHKvT64HzoG9T8mQrqhfggLwiCIAiCy/j56+Pjf3w7b3ojY4P0m/pcc1Bkmp953vFofWaWPymMek/hqHxrvacwml+k3B/qr1TO15rPf57Q91b63OvvpPOfJ/S9lb6qV/XyLmW5Sg7V3DQtoL6q4NW11kNrDqP1UPOq0JrDDX3ue7E9Pi0z3Td4Vc3Vq5Yc3Fz8VAjqt+Kt17vf3c+3A2m7tC3gVaGW76nQ64ProY81NMefqeD54HzoE7T6IxV6vYNXvnc+6lVhND9M44O8IAiCIAiu5t/v6fF4S8IbFWj1qtCaQ2u9p7DIbZD++x7AX6rpHPZozvGhX19tkPvu+QsVpnkbp2k3H1TYqx5acxith5pXhdYcRushey4s4ubmF/dHDk70hYW3x8wucmVRb487eNUarevB1V5ZrU8TaVCk2Zs23z+OV4Xq9YWFt8fM7uZVYa8cRuuh5lXhqLxXIXubyH3t9TNlYZ3fTR/L+z70/mqD3Df1VyrnU/9CYTTvrYe9cmit93Lo9YqbW0Hq0wQXDOq0nlP3UkH9KXCQu+Kdr/f8ves59dMTgY1T2UJ78xWfB0VacnxGvTItJAp1Hx/kBUEQBEFwC9K38/75/ufjx08za+9brlRQH3x9eOMO3Bcwv08OURt4v4jkQZFkQfMmvHrNe+uVrfvt7RVyVTjZL+5HfKmr5gV8KR/3nr6ozwFMhaIwWu8pHJUfrdBaf5LSZ/WqXr6ncr7WHB/6/kqfe/2Zynk9H1pRaK0/UOnrk8fW8l5dWW+uoP7zwod6+aRQy716aPWq0JrDVV61xsr1uY/F9vi0zHQf1LxqYw7MwyIXv0AX8PDq+9bTvymnbN1N8733a/JpIg2K5PbaYK5N+cr8sD6W831on8YHeUEQBEEQ3In5t/OCAXinB0/v/GYKMs8b8Jr36r18tR7Ii01QBp5XyFXhLK8Ke+VQq+9VaK2vqg1Sv5tz/JXK+Xp96PurDXJf1V+pnK/Xh95fbZD71uvP1LRv2t/zoe+vNsh9Va/q5Xtq2iftN/MZLzfy/IrCqFeF1hxa670crvaKm1tB6tsEF1ypoD64H/QN1vp5toL64HzoSw3Na35PhV4vxAd5QRAEQRDcjl+/H38778cvM/yml96x8MbmSVdyIM8DmHkvz/wtXhVac2j1qjBaX8m5P5iv+gJ+s9paJkP5IxAPtTz0LZW+e/5K5by9PvT+Sp97/ZXK+dV/WYXRvFdhr3pozaGhPt8XNsxxq1ftzR0P6qfCgpdf7pWt9Yq3Xu9+vdh69G+VlTxtzzEWOqt/WdeqNpjfH8zD4v4Jbg/9BfyVGrwP9A1e9dXR6elja15wn67scYZXhdH8thof5AVBEARBcFf++/Hx8c+3129VeGNTQ/OrvCqkd2LpDTC0ek/ZaDR/qVyuXtXLQ99fbbB6n3j5nsp5WvOa/0sVRvNehb3qIXubyH2deQqf7otZ/jQ/Bcv5Wu7WF5pzG6fpmkJrDq1eFUbz3noY9aowmr+st4ncN3wKCuR5UGTe96n/OVjO75Uv9FG+9EVB52sKo/ndFVrrb6U2yH32/JWazpHOoz70/mqD1b56+UZlg+yxM5/pzWcKd/PK1vxyev8B8Ecq9PrgfPJ/gFMjCqkfMzv5MxWyJ6jh5cpnfXyQFwRBEATBrUnfzksf5n3nb+fxPuZMha0+eH9SP1NfodVfqeD5Q+AgZ6H7eftvzZXe9Tbur7/IKotfdItn2d29KvlMc1Ckx2eO8qpwlPcU9sqhtd5TkHn6DJN38tPV9jbJnvOTz3+e0PdW+t2a1/yVunbu0Hsqfev1Ryrnq+YFrT9NYTTvVWjNobW+N39Rn/tUbEs+7+ukFqXLFvO1vNOD+P8z//xRAxc+WP4NOS9/RvPj/fx09fxTe/OHX9Y919fzlXr7989tac1tQBuXOqt/WdepnGfhy3740EkT8UFeEARBEARvQf52XvrbefHO5TXzd3qJVj+ovCFvrV9VMM8b+cxK/rJ+hVT+Kle0fm+v7L3+qFeF1hxafVVtkO+nAl4VqrlpWrCWdynLteY2hjwf+r5qg9xXz1+p6RzpPJ4PfT+1Qe6j56/UdI50HvVvrNBafzeFzblNpL7Col7z4lW5oOa9+q7coox6o1w2cbZXtua93G2/BXoB/kqt4eXB+dA3WOtnS76ngueD66FvMO/jUQqteSE+yAuCIAiC4G34Xf523vf8t/Pskd/YMCjS4zPTQqKwVw6t9Z7CUfnRCq31FU39nP83O16Ov1I5X68PfX/lPlCv6uV7Kufr9aFfT+f3xaTEtfxgnTA/P6+XTwq1vLceRuu35nCUV63Ruh4M+HwfFPvKp8sWqvlOHpiHhZf6BXqB4m2geLmy93pnc8D50nIse5WC+uD+0EdY629LvqeC54ProW8w7+NcoZbvqeD5TrzLe/O7eFXYPY8P8oIgCIIgeDe+lW/npXcxvLGBUa8KrTks6m2Q//scnUc1xzvKBa31XcryW33o+6sNcl97fYeyYWu9q4/llr6icFTeWw+j9VtzOMqrQpPnwiLN3pT74XRfWHh7zOxuXrVG63pwtVf2Xn/Ip4k0KJI8fdb7QbV6v2z1hW5vj2RV4S5eFY7Ke+thtL43f1Ib5L6qv1I5n+dD76c2yH3SeVRz/JnKeTx/osJeOVztFTe3gtSHKrUNz1Tw/C3hB6nh5b30rrfxfHoDafnCa33x1LledSUH8jwosvCP4SezPDPu44O8IAiCIAjekt/2Dib97bz0oV5+X8P7mz0Uen3w9eC+AN7YA3lVS/1w3qCQPUGRRf4YfjKrX6U331q/dT1l635v5qf7s8wv7i/ywpSrWjavd/MXPg+KLNZZyR8DR2E031rvKYzmX0Tps/orlfOpV/Xy0PdT7gP1ql6+p3K+Xh+6k0Jr/UzpY2uePXaWv1SvvnO9zwsqCqNeFVpzGK2HmleFG/rct2ITKaZs6qvOo5r3+ooC9VX0AmWxoD22rNeH/o06xc9fn/4q/6QMiuT22mCuXKDzrXm3PpZb+tA+jQ/ygiAIgiB4Z779fHyg99e+o+GdXQ3N8UV5g63zo6rrrXobZlZ8rgPNjbLMxFleFVpzaPWewlH5YWqDfD8U8Jov/JWazpHO4/nQ91Mb5D72+is1nSOdR33o+6sNcl/VX6mcz/OhX19tUL1PZsoFo/nLeuzMQylb5E/zDQp75XC1V/bO3XoryP0EuaCaD+q03qs66PXB9dBHqPkjFXp9cD3zPs4VavmeCp4X4oO8IAiCIAjenvRuJv3tvPSh3vSbW3qHk98IMSgy9xn1ild/tlfIVeEsrwp75dBaX1HuD5juF1Go5SaPZWt5h3K+1jx7mOWh76f0uddfqZxffej7K31Wr+rleyrna83xt1Ford9b4ai8tx4a6nOfbZjBD+TZHuRhykWrsBBc7ZW911fv4dX35g319BdSOZfNNTOrX63z8kaFXu/SfUHQS/rnTf/M0Or3VGjNQX1wPvQJWv2RCo73Xv70cqVzu6pXhdH8Nhof5AVBEARB8FX4Xr6dl/5nN4E3PjV686P8pDZIb4ABrwq1fFFvmjZorX9SLp/NP62n+Wcc+u5qg9xXnUc1r/krNZ0jnafXv4lCa/3ZCqP5S7VB7ttsHsjzoMhUP1Mu1Pm98kV9YZq3cZpGYVFvj3ndot4eI3lvPYx6VRjNe+thtP5lbhO5bzOfB0XW8uk+KPoIlvO13K0vNOc2TtNHKexVD7X8r1Yb5L72+jM17Zv293zo/dUG1T7PlAta6z19uZ5FUMoWCjXv1W/NQb3Se32vV7bm3dQOeKWC+uB66BPUfFVtkJ8odB71cntAU07QSr0+PsgLgiAIguBLkd7Z/PP9z8d/383oG6qjtIaXB+8P9wHU/JUKnr8l/CA1vLyX3vW2nk/zjfX84gkLb4+ny0vO/EI1V6+q+YDPA2j1qnCWV4XWHFq9KtTy3nqo5Y319NfzqlDLTR7b1PIXyvlqvlYf+vWUPvf6PZXztOY1H3o/pY+eV/XyLcr51Kt6+aTg1e2lsFc91PJehVGvCubpI3n2OTRe+Fy+lxeFXj8tDH1++TfsvPyZ3rzfez+NV7+ef+r6/loHObd//9yG7E1tQFue1MuzztYbyoumfdJ+nn8jhSPz+CAvCIIgCIIvSf523vc/H79/l4m/ldo7Q9B3iK35Tsob+pd1HXBZDc176xVvvbO8KhzlPQU3t4n8C5uNX+Uw1W9UNhrKiXt96PurDXJf1V+pnK/Xh95fbZD71uvP1LRv2t/zoZPCaL61flhtkPoKT/fBTKGam6YFd/E2zPR6oyxThVwVPK/0Xt/rla354fQeEH+lBu8DfYNXfT1LQX1wPvQFWv2RCo6PD/KCIAiCIPjSpL+dl7+dt3jHVCS/FSo+0+pVYbS+N99a7ymM5lvrBzX/NzUrXtXLz1TOrz70/ZU+t+bz++IuunbupF4eej+lr1t9l3L5aC76eUFFwatrrYfWHEbroeZVoTWH0Xo4wee+F/vKp8um+wSvqrl61cYcPD9duBfeer373f18B5C2T8eooTl+T4XWPHgf6COs9fdsBfXB/XnV17MU1Dt45XvnNa8KR+WHaXyQFwRBEATBV+fHr8ffzvv1+/ONEIx6T2GR2yD99zuAX6hl8/qFv1LTOdJ51Kt6eej7qQ1yX9WrevmOCs25jdP0qMJe9dCaw2g91LwqtOYwWg9NPk2kQZGp7zPPhdP9cLQv1LxqDYvTshN38ao1WteDq73SdH2aSIMiVW869XujV3WvLyy8PWZ2N68Ke+UwWg81rwqj+d4K2dtE7itelUGRqX6mXKDzh+lju6UPvb/aIPdNvaqX76lpn7Rfh4c8v4PCUXlvPbTm0OsVN7eC1AdQrwtMOfOiXt6k0Ot3gYPcFe98vefvXc+p5wagbKFermqDp/oGnwdF5j6jXvHq6z4+yAuCIAiC4K8hfZj378jfzoNeH7w/vHGH1N+Zrfrd1AYvfxFpyPNgBeqeeFGf0by3Xtm6395eIVeFi/10fzJfywuL+2XUe/qiPgdFJq9aZF6feVGfqeW99TCaH63QWn+S0udef6VyfvWh76/0uTWf3xdXKedTH1pRaK0/UOnjk7dhppb3Kpc35lCrh8mbcr6soPM1hVGvCq05XOVVazSsl/tU7CufLpv6WvOqjTm4ufgFXNiKV9+3nv5NuaPx9uv96Ya8TeS24FNQeMpnSqHOD+tjuX4f+lrjg7wgCIIgCP4m5t/O+5LwTg9afdH8RvqF9+p786xAfbELb3AZqFfIVeEsrwp75VCr71UYzZvVBvkXOM9fqekc6TyeD31/tUHuq3pVL99T0z5pv9YcH3p/tUHum86jmuOvVM6nPvTrqQ1yn3UeJT9S2W82zwFWcxtDKVsojHpVaM2htd7L4WqvuLkV5H5CbYMzFdQrXh4cD32DmleFWr5FQb3i5cH50EeY9/UoBS8X4oO8IAiCIAj+SvK3837YYPFOiHdQ8Ld4VWjNodWrwmh9Jdf/5qeaF/Cb1dYyGco555MvUs33VmitD91FuQ/Uq3r5nsr5en3o/ZU+99ZfqZxHvaqXv43CaN6rsFc9tObQUJ/vCxvmeOYztVy1N3fqoddPC8PVXtlar3jr9e7XS8P5cl+LTaRyLlvorP5lXavaYG09WNw/we2hjzDv61yhlu+pNbw8OB/6Bmv9PFsL3tORlB/mVWE0v63GB3lBEARBEPyt/Czfzvs5+3Yeb5RgL68K+ff02YSbF+8pC43mL5XLe33o11Mb5D73+is1nSOdR/1fqjCa9yrsVQ/Z20Tu68znQZG1XO+PR7Ccr+W99Yu8MM3bOE3XFFpzaPWqMJr31sOoV4XRvLcesicostr/HCzn98oX9YVp3sZp2s0rCqP53RVa62+tNsh9VX+lcj7Ph95PbZD71Os3Kgtmj23NbZzRfKZwN69szS+n9wfAn6ng+eB8pv/AF+gb1PyRCtkTrODlq3zWxwd5QRAEQRD89fz7/c/HP99skN9YrSi05qA++HpwH0DNX6nQ63eBg1yFt//WXOld7+DzLX7RrXiWac2rXpVcdZbnQZFXeeYorwpHeU9hrxxa6z0FJ6efXn662t4m2XMu8ppX9fLQ91PuD/VXau28Xh56vdJHL79SYfKmtfNeotBa7ym05tBa35t79bDicx+LnbyqRemyxXwt3+gL/2f++aMGCh8s/4bctFBW/2/MPee9nn3Av35eXc8/tTd/+GXdc30976233PqT28a8Daa2LnRW/7Juo3I+m8j74UMnTcQHeUEQBEEQBEb6Vl76MO/nry/21mj+zm8NfYfYqbwBb61fVRjwvPGvkcpf5YpXr3mvV7aut5dXhdYcWn1VbZDvpwLezUW5oJbvqmw38xnNQ99PbZD72uuv1HSOdB71oe+vNsh9VX+lcj7Ph56msFcOi3obpD7D030xUy6oea++K7coo94olz3wcmNvr2zNe7nbfgv0glZ/pEKvD86HvkGrP1Kh1wfnQ98Arwq1fE8F8fFBXhAEQRAEwYzp23kTa++skkJrDq31nsJR+dEKrfUV5b/Bac3xVyrnq/lafej7K33d6vfUtG5av7c+9OspfX7y2Fp+sMLkTdP+Xj4p6HxNoTWH1vqtORzlVWu0rgcDPt8HxbreSJcnn3WWH+KLwsKX+ip6geJtoHi5snW93v325oD903JpWcCrQi3forDVB9eT+pH6AjV/pEJrHlwHfYFWf6RCr3fwynvzu3hV2D2PD/KCIAiCIAie+ZW/nffn48ev9TdWSaHmJ7VB+u9zYJGrlnpPuaC1fpOyXWuOD31/tUHuq86jmuM7lAVb6119LLf0qiWHWh2M5r31MFq/NYejvCoMeRYqUvWmU7/P9gXX22Nmh71qjdb14Gqv7L3+kE8TaVCk2Zs23z9bfcH19phdPincxavCUXlvPYzW9+ZPaoPc161+T03rpvV7fej91Qa5b+qvVM6n/kSFvXK42itb8wVccKWC+reEH2wvetfz6jfmGvNEANMTg43TtOtVG/I8KLJW/8SsPjPu44O8IAiCIAiCCv/9+Pj433/2Vim9b+L90/ydk/rg68N9APP7Yq6w+ReFBoXsbaL2i4T6DIU1evOt9VvXU7au92ae/kOrX6hlqaw57/UzzUGRyXsKo/nWek9hNP8iSp89f6Zyvl4f+v7KfdDrj1TO15rjQ3dSaK3vUPr45G2YmeUv1UpNxnNRLlA/aWHKQfKqV4XWHEbroeZV4YY+963YRIon/yLPOsuHvGrJYeHtMbOLfMHiAnv01G9D/0ad4uevT7/dP+/fev2TMiiS22uDRc58a75FH8stvaqX/+0aH+QFQRAEQRDUyd/O+/7x8ePnm75l4p0fiOcN9vo7xX7V9Zq8DTPMg+ZGuWziLK8KrTm0ek/hqPxoBe6HKa/5KzWdI52n14feX22Q+6bzqOb4K5XzqVf18tD7qQ1y39SrevmemvZJ+7Xm+NCvpzbIfVYvCrW8V9kwe+xW/0Jhrxyu9sreefd6MpH7s7ZgRaf6wbxJQf0bov/V/+Pf+v+m+f8r//jJpzE6Zz6n6815dV2itk6aq3m9PrG2RiJP/ykfhqUoe5P/Z3O/be+i836nD88+/s+usN/75/N6/cMv6x7Xmy3r5g/jOBd1abhy5vnc589pe3yW5Pn5z03tfC4xX0NrlHmdQvZlST/y/Eds9XsqdPr4IC8IgiAIgqCB/348/nbe461TekcFZ3uFXBXO8qqwVw6t9RVN/Zv/coJXhVpu8li2lu+onP/JwywPfT+lz635/L6Y6Z/fvz/+7//9v2peU65LmrwlL+uzTud7kKfM/9//2f7lnH/+zM6Dtxyl7kkZ6rzpy+teaOt1Xt2rPP/TJN95Pv5JX/mkPedPmvzUqsbrJ7WL8ihNFZ/MtD73CVEu+6xj8vFflNm+T/PPaqOn69XPdXF/p3MUn65LOr/fbPAYllXTJcxXNf+/z38vtiJXX5tf1sHr++g4haPy3npoqM//mDbMNOTTP77k2Z7lRatwIVztlb3XV+/h1ffmDfX0E1J51c/qmX/SrXlRaM2b6b4g2Bv6CPO+VjS/Rtn/h+o8PikfWKnXD7CeFNQ7zJ/u+ODo1YdE8OpDJmipAa39PAse5Wz5/+Yxc/CZfb7nSf6x5mf20CWp7nHdZz7f43m+DPJ6nyyvxaeFH8JgtnQm23LJVGr/Jy05LTXT8vZx8mmIp1Q9PyPzE+r3wtZN+7nbmUk/Z3qr+OuX/afD9FV9zd9W7cZIGgRBEARBEDik333S3877/rNMGLyxglE/qQ3mb8bxqlDNTdOCNb9VX65HrF7Vy0PfT22Q+6pe1cv31LRP2q81x7+JTpQfapqf+d82nl/HD5v8/7Mx9fhUP9d5zjrk83V1Pu9jpF85F/OsV2rS/53vl3y6LuXMq6a6+bnSulyT5y3I/0VWyfkvsD7XZ2CS5oumSXxaPf0r4nNxuUivT6S9WYd6fCrmfMn/Tv/FWp5O/7esV/h/6b9wyxOPrPw/3PTzP/28s3l8zpKmqTRIa9rc3Oc6fAGPTusW0nzqQx6X/ec/Rxo9fIqe+zrv3+Nn/Lxv0MdKn8yvz/PpOptbaEHrks/rlho8UL+2f+6X6Xy9+X65B0ntkc85rWuzubTkXGrjR12qKf9eqaDUp4Jct6Ka99Yv8sI0b+M0fZTCXvVQy/9qtUHuq86jmuOvVM6nPvT+aoPUN1jtb1LL5vVblQVXc4uglD10lj/N2wN0/qgceN2ZsENqfTo0Z//MHyvlV/JclKLH6+X/9//staY8HvPl2nJN8jAfJx4Vdbz8FbrXa1JxPvQAn9fmLWf7pn+9x7ufTx7vZea7MZqfoTZ+Jm+V/88n847Vr6NmPQc9/+O9zfM1zzUcJt1nz3voWrDY48mbs2VY1WO5ej899026z/MjfZhn77V//Xj8ryz9/mVhWieFpd8Pr+rlDQrZE7RSr48P8oIgCIIgCDr5lv523rfyVvbVO6nVN3KPYfBFSP2cv89u9VcqqFe8/BQ4eA0v76V3va3n+8zzf9nv/pb6vN7nN7Dsl+t8fZqzmeKLybUPKfOFNJVdKpv9/6k9/bLO9SVP3oaPi7h4pgw/5+1M+ZtSD883upJfW69cks+fTa5P3zTLVUYpTP83n/fx83+S/g2e6+d++W/wuV6CPPGoeVyP///Zew+Aa46y/Huet5dUQi+ht4ReEiD0JlWaSBNEBFFEpFcFsaEI+omAioiUP6B0pJcEAqElJBAgQOgphF6F5O3vd//uMjs7Z/ec85S3Zq7n2b3nutvM1nN258yuNl3U5fo2/8gjyxOpFZ0eORRf8s7fYPnNxxDLE8tt/mV8jPiymLBLyXksj9mYJv07BK/rNXR5A139Gmol9dM4cTa155Ptx/5Rj/gDug+QfEB2IwqMa4TqPb7yV1d8Sv8AbppvMk5lju6vx9D310vnV3JkGTdUFfpYD2XcNLlY/yYrmVf+nPZ6o+0LGe2reZP7n4zttly+QlLPt3G+CD31zMNHZaCvj6rhiz9PcT4d8w8MxS3FPzBmH5bl8vXtgVhudVJe2/tc2MD6tni4rQ9cYn2axXLA7fOPTrsFnbQTb7V15q1ezeeO+Zbo2hd1zYa2U3zHvO27zfRcc1bVMCd0dbZ1Ogg7ZlLavn132uGvSqEzj6OBVbbSMrAn7a0jr6GhoaGhoaFhCeC+H4/a3La/vzuv/OYHlsr3kPTrwel+Y6jtwjWf0yFE2kDNayzWvlz/pfJaBvYUnyUDy7aLorzgD579gy9SRoKl2nsy3KfwcoRPPbIoZCSdpidPGZ9/wV3YI64cWTRkX4yMhYH32y8l+x+NQ5btjjzhN6SPuCH/UpZ+yHJ5J/LBq7xl+0Jfr7deHpmjyv6WYkLmuAE7N9h0JB5+ng+9zJWHVD1+dFh6fMT18hIqpNT3/CJjwdVfyG4hUhpd/iEe8SQLXspye5Z+Q3nGZB1n+t0SP+xfy7p9urwi4NGuzh8/57RPbNHOOg+yXj70Y8s1rd46b+mf84lBR2a6vZZs556dgjNJ1dlFBd8rMlpQ8yazDMzrP0sG5vVfrgzk7S5ltTsP9PaLQkbAinApKua1OwXuNoqw1zIwi9eo7RznnE8A5x7swUHpr7dtxQaP81TYy1u6ZQdKGT+EmXavpwdvR2DIp9QNlcd0wNSeT1R6dnbf4PzbD4FEh6mS8bk5ph+zl35IXduVPrdb/mxrGMOhXK4c14Mn6kEyVX6kMB356MCzsqGrZ5d2zFo+dKtWrdLY1at3p3XrVqW1a/n8ULPqGxou7tixI6Xt23anbdt45KYrx1AfrsH3pgxUvHXkNTQ0NDQ0NDQsA1t5d558IeSHkIb4BhYov5GVMrBU+3L9Z8nAUu3L9V+i5KutXrEuku9LGe2fxZs8IKVuQpH6i2n/JTWy9GNTaxEIySOV9BfWfvMOk0tN6vtH+I3JiA//UoYfvMxfSuba3sjjXOM8P8CfPPXyDS1vSAv1fDP8aHKpxx9Z6st8dXzJx+pBRjtqOeRf50XW7Sz9yjxD7Q99+JX5py0/frPs6OvlEY2I/vKV9giO/JZGokb2G/ikXkrEVvtj+EO8JaqP/FFp5MuN8Ojs7xxp7XZU/sisEh7rp4P5hb2LC1g8slyP3Ei1Wyrmn/OGyvW4WP34EGM80NVrGMuPtLhoh9nL7YY98ne3eyIu0OXry8B+yHWhnJYct7zQahRMsQ/yWs5pDyyWTyASz4tZ/iudb7FY6fbtA9A8mhkIvodk2cHEGU6O2AkZ6I5rQ3ceIB7v0Otcy2HPfgM6ZIm+vzdUYeXwj3wlurjherqYOD92OYb8QVkGNS9R5ivbO0+OiC39S12NsIFstyo7CNeOxMIeHYv4lR2IfIxwOq87HHeh9DhJ5P5y7pc/XNavX0jr1i2ktWslB4qGhoYe+HrJ6LwLf727uHfThx9uGcFrGRiz7zEpJxFkQ0NDQ0NDQ0PDEsG3Kd6dt3VH90Ur0PvihZRCeXEVvLbP5PtS0g7as1je5IEvpaDbtea1nGVfQRkNHLU7sl7KqBcrc1KH6kWnN3mCV5Jf3AN8gk+MTCK+4Hbfhll3Mw5k/0qWI4RUX+ULhF9c/kU7AmVeXU5syEDkpyiT5nMdyPGuz7yQ5FOb5y/9y/agizhQ5guof9wAE/vqVauU64i38NcK1N2FzPHnhqkqWCfiRJoBTnzcaIuRTbP8yV/yMj5GyoWT+o/A02RYmM4lbnJ9lHy+9Wsj3ALT4hXBKRd2o1aH+dpyZT8HJd0udT7nzCNfLF8/Hn/jQ8tjlRbtEBn5y3yUtShT1FeDGOyRH5T1gYgv86tZKwohc/kv95/gEpbtJILH/kztwWP/gROf80hQ5IujJddPGvcPBNd1owhng4d1MGcnk/YxXsvAStkDS/UPjPFaBpZqX2kZWJK/KLr9wGQ41vo9Jq26SV7LWfZ9Ju08NM2P8wTnizF7lixgyWWK80wZD0eyUsr4Wh9xoQ+/WJljfJqMdqi/FPT8U3BNJRT/iIJrO4rzVinDDxl6jRvxK/Xl56jq1aPvX8ZZ+8NfZ+oxtH67SG+/65GrqdfzTaxfRx1HpfqjlIDwqD/iw79sTyfJ09cTH585ZTzffzZsSNqJt3q1VdXQ0DAAOXA4LLdy32arlJf8zrwBrgUXJa8xaJ+ft468hoaGhoaGhoYVwrYd9u68sV94NRyAiC/qYxj7nr1iUgqLurCoZRRcQAODvPAfRG1frH+N5da30rxG2GsZ2G2rLMPscbO8GyFjN16w28iZCJrMZ7GT/pbDRgIFgkc9dT4teVsU+Hm85qRAXu5QCYFry6DagYA/t5LMWI6UGpJSyvFGar0ZdFnQOFdr5HE7arsJht2QXcS/v9yG0o4+ONL8dgmf9J+U9fqv13OgbgcxJtEjNU3Fx+s1iR95Sq5rMXN8y/2hq0ed8B9p15gcam8ZP5SP9iFH6yGZOnm8bE8dmef+Fm77WTliL8dVsvQP7jWpHIorRwgG79UX0RFX8XK5s0uv1kmJX8cDU9aTyLF6htZ7LYf8S1n71/msvYG+31D8QSNZabrwFd+XMtpX81rOsl9sZGBe/5WRuuorPZsEGceXe6IUGDcnj2fm27E8T4Xf8PlQw3vnS1epPTr+a/8yT89fuH4XiPNicbzb8W/2IlFPDvkDr8rLZodbGVuc1yjjaPHIyGcyEPGU+3ZrI6VhbujnK+s3jLfP0LcbtzKqWA9dveYfj78krpTY8aNsPmx/+X6CResxOzB/zFRk9oWF1TglRujJJk/r1q9OGze0TryGhnnAccqjNS+6cLeOzuNQ42jj0DkgpJxIkA0NDQ0NDQ0NDSsAvljx7jweublfIL75Bca4S74Z6kVgpR+Ts/znyhcIf6czuSDSjKG27ytey8BK2QNj/ouVgaXa55ZSYP9YNF9hyS+845feMeKltmcu7YBkPe2SKX5RjRMy+4mIX1zXMvwjecQtR06rZ5r/UL552xUEPpSvXA8lxx75y7ih9Rb+Icf8h+xlXC3DT6VvZ52JTv4nuO4n7q92ycK790r/kFipBV6OJCj1Y/6h1/1R4jCN+cGR5f44JrXdIgk2znoze1Ra+pcSO3LaeiUf7VK4f9gjLuqp6xvjpV7zixV73g74Fn51npBj+qX41etxzA9JPmS53obiSz/stRQhEH+RebuJhC9V9s970j4xoBerTNKeOs4t2Z5Llaz8mzwIpRQm9o+9IKMBg3YxKQru7lkGxjgyktZ29KUfMjpoan1IoD4UyOsY89cY8R87X2R4++K47c4TcOKw2/ki7JrbEfUF5uGT53fzGrqtbP7DNgPZC5ul6uA81i+866gs7DbrOrqcY9etUvgFzyOd63yOrKfMypT/4MD77bp1USG2AR10dWdeDd02dMpqucsZvhHXW4/CY93Sebdpk70Tz0MaGhrmwJaLbGSevi+Pw6s8foLvSzmC1pHX0NDQ0NDQ0LAHwOg8Hre5Uy/8+EYW2F95LQPz2gPz8loGluq/RDtfhcsr3+DLlpJLxJLs0c4edzFqX2kZmNf/wJT2C/L6F+UdL6Wu6gF9yHwzqfCb2LT4ef6S51+ih3PouQHEL/U9X2nXYmdR/fAv9CVef+lt8fmX98Uv+nPeQmZ7ZPO8pZ/lgeu/eVKgtmK5IiT0yOClvfRTPdLzRBz64KU+4sOu8VW+UtbtqPMMyfCL/MFZv7QTDuwS2+oPP+Q87RqS9sv/yN8t/xCv2419zC/0tYy4ejnz/lJxcxf/0m5azVg2qtzvzHPSHjznK+PITGDYPUuOc57z5lrcj3YXy9XpWV6zw70JPRn+Wr/IWJ+1jPjwH5NDeev6upu5wev8hrr+sp7wL/Ojj/WgXPSstc6mc5lNLlc/T8CTTMjAUu1T/K2Rjnl5LcUkYlI/Zl+kf2AWz4GBA43XWKx9T9dXY7p/bEqbOUTHMQL0fOEdQaaPjHbM6meAK+UIU1l2HHWSIOwS2TstESCFzPn3vEDsahKu9eGEO3Fqt3xGizhHtDH7V8h5C5/IMcTrcqkbwpg9cgfKXGXMtLJBlt/Tq0b1KPr1lrkDwft6i9WSx4dPcFDmoYgp51E3KctnFR13qzi3wsXEjymw6/5ECnxReVn9+CONc+L52ON9eIcegmNDQ8NisHNHShddtDtt28oR1R16+72UkwqyoaGhoaGhoaFhD4DOvC3bJ7+IBfgmVlz3zbY7nyUDo3aRVDRmX5SMdLPsTR58Ugq6nWt9yNoefF/KaF/FS6fSXv4SXvUUXWaID7weQTP2i/o6z5Ac86/zDsXV9ZfLVccHor6sd//AmD14KbuVa7JnR+dc24l0XrcTGZerdr90cj0Dcoa+zKNZteh6VwFiYoQcrjYiCRedTejherNNZNxQCx7+ahEZ/voLfr9hG3nU2YPMTwM7riVb3iJ9b32MLS/2QNY7wl/LlX+Zr9zOmh9e6K2RXXzY8Y+4kKVfub0iXy8PemSRT+2CofxlPlDrI15jySOyjA8ZCP+sL/y1HcEpA+E9PSqk2xdEz/azBCHcy+vR/a/YP+bZH0upJpfl/lX61XmLJphdCtRBu3V/xkVsTPSTluuzCPe4DrU9ZGDMvr/LwLz++7WUAtt1gtdyln0lJfVQ32L5EiVJSl6fL8b8huSYfzQWno8T4aU+4sIOr4+zbqH75+dShn9ZT8TXcqxdpV+dd0haeyyOGXKwXWIQmu2ZoyC+4HKaEo3krez1+QvZ1S6kzmOJ1ERc/n2Hw9akFkxfBovEGp8ZGuZlEMsH8Ik4LYMifhWddejdVvLIh4WSsZT0VV1hl3/s+h3Cob4eC8i3ft1CWr/epoaGhsXjogtT2rJFjuPeDylWQkbBBTRQ2+dC59868hoaGhoaGhoa9jC2y9UZ787TRzc0HNyov5cHr2VgzL6SMjCvfUURFe0rDNVf6qw8dElkN0ziJlGXI3xNZbGd3fwBurB1MndZZW5SVdk3ykP5yjIuYQ+UfmrUPC6EhrvmFzvc6hI4z4h4derzHBIz4epS8PC3kQfEGa/tZbxBYlDq+qKrL2CO3TJ6oMPaVCx/ZR/i0QTTs04ZgWTx2rRIpQi9tancngaL19JA+zpu9ZadL6Ef8x+zEx/t7JYjMOlvvJN669ET6Dqv7KXs6qnXfy0Dnd7WKx+Ctn5j/yuSdtLjKMHLkXmTMtw7fajm5T29GTp9wLktR9Eez2bbfXJ/yvmER8iQPfLWMvy6dW5c87lku5X1l/nUr6g37JGnrifrkYV/mX+o/TnO/YIfUDIv3CL5npTRvnntwZsclL1V5/oxzkjo7l1lk7KMq4835NBxHNLOf6UaLgUEnTfCs0mmsMORMUK5lKW9y0ce9MYn/PERhJ7aNFRLlqJgYvPzgKo7fY5z/7HzBajPY+Y/cH7TuM6/zN/F9dfvZL2GiNP1rrDtE3FIyx9twUdnjmiP+WO3eNGoYbh9yjSntdPaR1zXztrfKor2GXT0nsbDrH0yTxs2rNLHarI5GxoaFo+tW3ZrR96OHd1RuD9L0DryGhoaGhoaGhr2Ei7cltKWbfvZV69p3xTBmN2lXkxOsc8lA0vwt4vZcUTYvJjlX9sXy2ssN99K8VoG5rUH5uWzZCD2r2x3Hsj2SkZAqVclXDtP+jdrSr95Ze6EcWXomWnuyEsVGJ2Xv1zHHQs8/MzT9EiCSl7GhT1XXsnSz34RT6ngSkxHm8t2MByHd79ZvPjglnmX1+rjf6hdnb5sj+aBD+QrZb2ekJZXWJUv9OpH2fX0H+p9UfSoZBrKW9uRoQ39ZD0og++2EUxF5xzS7peK3W8KY9+5s7shZyk1QDl2G4Fg/kWVKiNvqe/yYDaltkeKo8sZ8bW+ksTv5MavlAmCs34IHvMPnuGV6XoXmt8piAleSWv/pB7ZLV+3nbo4/q3+aHduD/VVect4/KKdcKsn8uHXt0tpUTLa0c8bXBRF3pITp+uN+HDFwr9Msb95iKBo34jdrRAv2bz0i/2Q/Vf3a/SFX95PNYnpyVbXky2u7zyb3FMysFL2wIS/FHTTO4JP2F0x6l/J2n9RdjEpnDPTjhb5z/srcLsdV+YT54MMT6rxUinn0zE7OaiuzAfHPgYsvXwF6nhrA7SrL6A24XT7RL7wD5TtK1HmGbN7eoWZu+UN72hTr21FYKnvfJXJZOcUZWU8IioAwuP7W3DscY7O/oVeTvwp+uswUWn8sMg6TPm3+ME8AffjP+JKe+Szz21XCjRGEKpu3UBMbx4ddB2I1HVkqh5iHXEO3rjRpoaGhqVh2zbrzNsusnfA1QfnvHwlZaDirSOvoaGhoaGhoWEvgtF5PG5zx876G1ug1o/JwJ6y72kZmNd/iZKvunq3YAbfn+XQcjU5t9RVWPDul9FwwE0Ru9OTV3npR5y6dn5lvjFZ/zK8bIdWrVwgZDSvB6t/cIeW1M6/3fiJSPT2i/vu3Xi5ES7zL/BHuOZzf72hZD1SXS2RL9fqUovYO/96/SLhEZftmtfWm/1LvcHVH7/YfiYjjuWczG/+kc8zTtSf7bTb89f2fjvgtl50EQs9shzJYXFFO8Rerg9gl+Qj7SrkULuQut7g8h/t6a0fXPESXi+Hrq+C23aLejqheWWm+0nYlUu03th07jI6zUKPjJEg5X6GxI/0wTWP+NEuKU3496QgbnxqXGTLy8kkdnPQcsjIn7kW0QHTx3rszheBiAt0efoyMN0e26W/aGav6479pYyH61rIvn17na+rJ3Rd/cios7THekBX87o+OMeB6cGkfSYnb4TPtAswh5st3B7kIzIQ/qOoA2pMJJRpOflqLDffYutbGmxfo64a4/XHPjuGbp/tI58RJLWamcqqx3gh6w4i/jturnVc7dezByo99SBj/ehZy/3r9TXP+gh06zvOBWav9REzljtiAmWOWTGWumtTiYiN+sFYviFE7jImclnds9sXZVD71nZRmIhZ1+yOi/TTL4E9fd6uzku5ZvVC2rhpVdrQHqvZ0LBkbN+2O23dktLW4ofWcZgF5uW1DKy4XU40pb2hoaGhoaGhoWEv4KJtTHqJ1v+CJoXedVzwSgbG7HtV0g6ZJniTB7+Ugm73mi9CRsJ5/fsybrx0emaIPBJFyvpL+4iz6pTDgpdJ1I4uB5nf5Aig4saOTKFH2n02Zv184R+/3AfmL5xyYae+QJ3fpJX0plFRD5L6uS8Y6Md1MlByXae76AS0supksvXYcfO3OWuIUmyTMp/qKGS9cDGqP3pB+Md6gJf1sXyeRPOV60t9sGOTv6ifERgUYLh0XCbihepak3/6KekvUqNyG3FUcq+iZ4/4ogmZGzFku8DaTEEmcyzskpF4VXYxuj9J2anbbV0AWx+SV/56+2kkEuR1JWBe71/mXNZvXJkqu/rCAmL9j3P8vV2a0+I7Lp72rwh/ClFfoK7f0smsV5/xiIfjZvW5SR2t7EX1N4jS/jPC32d5HrXCa3/N7Z1ZPX/5zyM31FHs6lDaIx577H9eW+YUddbbP21kiPmx48BjfwWxzvGnTN7Yf/w/qs0IbrEQYR4b69vsGMv1bf7Mh/IF5uW1DKyUPTCv/yx7YF7/xdqnSinopqn1IWt78H0py/bJFMZaP68kvtZHZTUvJXrdf0VOizO7aOy/54+Mz6kyf9gtHt4t35C9+BjqyTpfKct6h+0s36R+SA7VQ3z8WCXrpaCumdvxn/UuzSrfLwZGnPf9nPM7jji/eXb0nM/CP/T5PIZGDKTp1q+XIHBx06InIYr4XfxAQf4sI3GdX/5e5Jy46FS1/SVbVZAHvb4jT2LNbsbwrCVgvcX+F9BIdLRD5Np1q9KmjQtp3brSq6GhYTHYvt1G5G3bKqR3QEpBj/FaH7K211ymHsIQWDpvHXkNDQ0NDQ0NDfsIO/zdeciGAwSL/t4tCr7YB8Kepdsn9EuVUpiVr4cwDED9p9gVs+w1av/F8hrYgfnUlza26ktbP1/cgDYVs8mbS6U/8WUV3IqZvNVi3G5gd/5Wl4+Qc55HNjmv81s+EDa7idPn/JTbMJGPZEYFxrWFmkMoN5bsjhzKQsqEwO6+6LuRUXCZ3D9ujoW95Ja/WFOeR2/MaceCrW/LmxN7vC2vbTvTl8sLtyZgR+/bTy1ERK0RZ/4BrVftAjGot9eXl5ss3NgreM6e17fxThpyiOqtfotDhp3lp10WbybzC/tQPbSHyTpnJtsdeWK5O2AnXzGyrudn9v5xgL5bfzXv4iKPxbtzp5f6pGQ3gUXm/UCTmH/cFNW4iM/Sjx/16/KJRkPCTzKKLOzoY39TO/kxE+XRoZe5rhfnhKpdGE0wwG35Iz6aGLzUI8v1W2/PWJ9IPYTQu3/kje2LtczX5Y/6wm7+sT+ICiu1WQpqqdoxjySePPByv6U9kc+qnMxf7jelfp/JWLmz+L6U0d6aX0xkrIqsx4TeeXlcTUo/D2W/jnd+UqKo+2XhL3/dfo59aH82Pdza2R0Pag+zcskv8ZQMYe/8SaJ2X+hogZnNHjLOk+rhdvMPO/XV+SiqxvOwPL7+hOv5GCc8KejJSBWqs+UPlcdZDQLjXpXA/HN49g9gGOKWAz58vjB058PAZL6uvdiEex5K5h/b02Dny6H6kHF+A7TR7HTQledZOusAeoXYGJ1OU+XTWhTW7nxeFthysLzGDeJnHwYZXZy1h5F4GzbQked1NTQ0LBrbt/uIvK1yfAm3o3E/l3IyQDY0NDQ0NDQ0NOwjxOi8PYL45heouF5cDtmXKHO+ET7LX2Ug7E4nMGCPNIGV4rUMzGsPzMtnycCesu9pGZiwS4H9YYLXcsCOtvbDCxm/3PYotccIltIfiT0qUD8xqNqVZT6NC0vBIVnvEmPJ55H6S24pcHlJK7QfQvSdU7+eegRBKeuRAaV/ONX+/fpNP7Qck/mG85d68ublEeiNOaTM0ZftNb2lCL1xKdn/zPZaXOc/kU/8uM3Wa5fYkJZX/NCLAn/NG9wlUci83HDx1uWRxOw3eeSUZXFYXOiR5f5Z728KLcRyWq5sdyfNI4F6yS+6sONtfq7UYqw/WiwonOGraT8F19uSBRcm0m5Tmn/Ifj6vD3+3I8v9QW+jul/Ya8msrL/Tm1bzSLnMG/HT8jMjQ8TpVnQ/8kX7wz9vZ2aiDD8kfrGc4Rdxtczrw0KyXvcX+Ih9jMNyp6ByA/bR/aqS5X4aPPwDQ3FqFoK08KH13NmbPICkFHQ7z+CBbF+GlLnkFlLoJ86HEPEbijdLsT/LDBFxyPr4DPT97LxS2+M8E35WiRdFW/pnP0fEa7lsl2MaL6rKJNuFI+v6FBFUxOdOQVfk3J4nUN86hkW3lwYB8dGScPwp0+dFprI9ZUdWgPSs54Cub4/VQHEwq2iE4y9zNZlCTfoDjWzHSJ5YRjiJhdNPuFtmC/rBjx5pfsFtmcWHEXX6blvqllZGHkfUp8sMKWBetn/q9pYCuvCzGEpdHJ14XXaHOOGh0fK/YcMqndqIvIaGpSOPyOMdeSX0ILWiIvhKysC8dkfryGtoaGhoaGho2A+wQy4YeXfe9h3xDS5Q8xphr2Vgf+G1DMxrD8zrPyL56lteZGc+wz4hxYbbqH0FZbS/x12M2i8GMorOe6us8NNfWPNLav+lddjHf8kv85H1SH5k/cv8CT+RUoNy6sE/2oddf6mO3XkZP9j+0EcSkdyYsppMrxHIbGe5XY+P6O0X3lpzxfErpYTiwpz2i19300nnXR5Y1Kc3n0SPgZlz/O1GGsHdyB3NU0hCIv/E9tH/Tm+tZb0Sh5/l7W6iWVxub+QppLkGlznLIcqQphOPYmTAWL5yO9XLYe3CHu3t7GUer9JBO/rrydphPI8cKeo17u0n3rla3F7mK2W0M+rRdrpHbQ+uSYs0MeLN9CaH9sPSXsq8P8J9f5EM2c4SmX+ZR8pSb3R2uSLHletD79z6dszxMJXE4W/bKfvpv+m7EPOP/a0Xj97t+IPSPiTNL/JZvVHPRH63B89+xLu9bmfYtei8sxtsP0FvmfS41+0dNmsfMvLHfmJ5TJbtHWpHgHbW+ft+ff+57NYoKbtdedC9xSsZWCzPiQN7mtdY6fw1n4XanzK6QOyPBlYf6FYh+5+QHBbHTez7xHT5TOcGh5nDJ2zd/k1Q/lzT7ce/zvJ5T8NFqLueH+HqMGEfl5pVikIqfdSb9WPAt4TGeTxFaVukUKlqSo4iXksSp1bX2/lXypog4gqudZnQ2MgnZdanRkRc2ECOxSbS4w22LS1WFQL3d6i7FS1ObGqVctaHl9ejDCOFXIEUWUcY1Ic2i+QzS2D7knX2Gte55ZJJZeTKSssT0BCB7V8U1MU+ttRowVqzKNevXZU2blrdOvIaGpaBckRewI60DsFrGViqfclSThLIhoaGhoaGhoaG/QBbtqV0YTE6z68rJ77IBbK9kuE4xpcrp+YL82J5kwe+lIJu18XyOaTMI0p5ObIk7CUvJXElzyNdyCdKwsNe/sJe9S7H9PNI4vQ2olcy5BftUU49JZcp4qIdSNU7ws9uDS1ofXbb3Tj2/It4iTV/ibD/rNeVUEj0ZX3M435kaUeWeYLH5WZur/NAMLW7jXnEj623Xr7CHsDOdiaAm2zablkh6qp2QkTv91M1XmSMPAqp8fwtdPGqlCwaZ8XeiCXNI5Jw79/McbHOgyOjPs0nyNvfebRfqYVHtWrDP7a3LjfxUiZJrFPlAc/ni5fz1f6RG00/r0wapEx9QhXIfgJShj22G1zzCWfCiT/zo33m32s/viJCV+azeFzUUzmAl/tvAMbyB6K+Xj2UkWV81EMZoBedxZlet7v7l+2nKOocHxwgdT9hP5AEplevLi4HSn7db4UoN3/dn93P8omeHVH9aWeXJzrhon3Zbum7eIxCQo+T2imXlXkwN51jP6z9lTuCI4fyT26vzr+UgTF7k1OkFHTT1XxfymifFPS8KAXlMpXHsflLyUmOy35w05fnLTT4URlybD8t6x2yl3Ko/tD346xFnURv56Fo71A7Il/mUtLPRdGqHnu0t4rPUgrZX0slx0+0UtA8Zb5sn0PGeUtnwsWgeVHBZa5c7Lmd1OPnKau/y9Ozw8NOnuB44ZjPX7EcYTdzzh92zp+cb7GLc9YLj5nGiVK/f8jJWTkTXCZdAmkbp+FV+sME4UxA7ear65OtpudncdaKQo+T1a1qjwW2HVRhnBJOQAzr1qW0cWPryGtoWA6W/o68OWRAeRhclPZBFP4VWkdeQ0NDQ0NDQ8N+hp1yccnovG07XNGw/2L8e7ahtgfflzKwWL5PYA2PSxa9CSKwGxzouWVsuhqlb4n6RkqJMFm5yOv+gS4OWfg5ujzlzSHzi7YbJu2TcB+xs7y8e8U6jPDvbOopdhuxE6AR/by9Zbbgzq2gCrHbyAIpqx0HEdwAc39uYoVdWih/OAS3YvCoz2+b9eza4aA3y7CKyv1jefA3Z4OqURU6cyBQqxEb8aw3VQn6dmuP3YCL9WsjhSIgpN2Am9zfIl9fhoe2ecAe0DYI7/YJ254dOv9+/eYX8Tqv7J2OUuQx2Xl0+q5+pAFVHa/bQ5Sq8c6gDp0fUmoXESOvOn2Wkkf3L+G6PFKiUlsfopX9PDeiJy18Ul9K/pn19VKa8Nebo9YzNmG3/Q9ttX6Jk1LoSz/ZkWUKjiCvxdn+1V8fVKVc9KUfMprS+cu8alctoz3IVatW93j4TXAkxQzTU3+df5rUdpHX27eYeF/lg/oh/z0u88qv+L6U0b6a13KWfT+X2vSCx/6q+5fbWUTspX4sHplXifAh/8iX91+RHBmlX8iyHbU+H2/5Fxzi5x46z/lFK/aw6nlIncjrXM5LZR53EOp5NJ/5WT5RqZvrkcRne6Gv7cjVIrkICX/5tyqZUZ/osxIZcK6q0i6S3v3yi0IpfT329LFctV6LlEFwyrWfSOpT6aZoN5xZrtcR+sgLfN1kk9tRWzydc7iJQqQuIusQRP5Yv7q9Wa/uSyrWp0qB58tc6tH9iO3gnHjbH6nD3pG3cSOP1gyfhoaGxeJAe0ceaB15DQ0NDQ0NDQ37KbZstw69ZaH85jeE2j7G95C0i+BJfU8GFssHEGkDNa+xWPty/ZfKaxnYU3yWDCzV3l2ixE1cg3VgSUFvnHRRXRz3n7gB0rkgIy64ZC2jJuPwF57rw1MK2MO/zBdSU7qwGqjJuThx+0XTiXN2F735Myv8ZSp/ia92pPhM6D0OffyCH6mNIj/+Uo71yrz8pX/2G9GrFKsWXW8a41EfPPKU9pAaJ3a9DSXlqAe738bq/MkjPpZXNPqPv9VT+kW+zj7gl7XBO1m2f8jOetMOVN6Ro/uJZBKD3f/0ONor3ugBgn4ozSL/q1bL8ur+FJK84qf+spyyAtAb4H2/2D9JVh8fkWdQipd5M6+WXxxUirOk1/aaXZek83PeradJu5Eyv28XSqIs76kio5Fdtr6978d/t78Ex85+szPry5GoXR5dGQ5Kvf1Ol6fvX9qR3co0Wcdxe5XlHGpf+Nd65upd5EXiF/5dvlJvI3hUL3MN1UyT+xWyPq9ZoMXhH/fv8TOjZMtxUkDjPPLXfj29Vib/Mun9a1VPLle0i1noa6lJNF8nh/wONBmY13+WDMzrv1wZmGkXxcAmzI4lZy+A637oXJ1EstXH9hLNW+zXqncXzY8aKvu5do5JOZ8/JTh4+blKGVia7njztB00Xuy6/1Pq25VrI8p8Xak7jwvch3k+L8NdD5NPH82nOpE2kqxA5Kvrq/SBqKcHz91DjhN9mNCFL1P4lHXNWybUVQo4M3Rqw0eVXSzIdpfMkGyw8oMg9Boqs+wv0BMgCtez/2m8bB/d8DIVHyh5e2CP7wM5uci8bDJpfKEDwnW718ukZfSq6EImfAQu19OR196R19CwLIy+I68Gx6QfpvtMOuRzIJ8iGhoaGhoaGhoa9jN0o/Pqb3SBMb5cGViqfbn+y5WO8gJ5yC/s+1JGe5bLDzKpi+Y8FrWU6PMv34tfcOsv5f2Xy3kVhb7IW8aVfsrx83yRd5qMdsDr/HQAqcb1SG1/pPB4pFIBtatRnG1EnC+P2swj+0syfYed+OVf7nsleTmi0koST6apdnPwG15+46q8QeV+xvmFukahUFmuF10Uset68fVj7bPlz8utWpEUnYeM9uTWD2zHkOrn9dd5kBGX/eBFe1WPHRf3r/0iPmTE1fpeOySezLU95y/0Gd1CifB2edwu2iOce5C5fs9TtocUltLstsZDaTJKzGN/Ik5vVCv3vGKPm9Sx/9l6EWetlPUlUhulCU0vvBwwQWXWcT65//ak7TwyoWLmXFtr7TaOiSXz9iFJYRV5nEiPYw60pP+02/zIErdLdPnLfFYhM43TBVI+LGO7dvkmuW1/8lMXWplRoMIMb59IXQ8C863rsbDIb/5eVHR58B+ymz4Qy93lK+1jy9NhOD/+5fJS1pLw8DcfthtK02lhXi5Ck03ltZzTHhjLH6j5BCJwXszyX+l8i8V4vtiesX90x5aVQXAQ9tJWxgzBXCfzBsbyhwR2XsJXqRR8hp/8LehJLPwoiDlzXMnjSmQUa571SCno52vFI380pjyv4qN6mRDEqg6jIGLQBUrdUBmU/qC0gTBX6ow6X4nIPZETvehKddkO8ceUNWWeoTIYbUOedSC/++v+4DoFOTU3usLufALldhQH3d11u7kzIuzk1u3sfloXUqYRuX4dI/JWp/Xr2dkaGhqWAkbkbdmS0rY53pEXmJfXMrBUe5Zykir9GxoaGhoaGhoa9kNs9dF5el0o3+T0WnJfSWmPiMXzJg98KQXdrovly5AyV5lHcHh27PpLePQiw17GYw+YXfzlT395L3by4IwXI2x0pIjKXepnNUWNJhVUAMTX9EVe5V0+oDcGsXlnRNwszPkEOT/2ghOqjFyep2dHej5bLrNE+wPhH+hxIdq54vE5rxoNQ/efSvsYVyk5udUU64NEMaLJNFKvFLSs7RchPvpuGkC7ED4BvU8KydtVIP7ERfeEOlNAD9UTqOntBi1tsLqVx40236/ySCPPo/WJVP+CM4Pb+hcqeS2zFsVQrD+1W3yxewp3Aw7k0eWiaE5YS4Q3QOr6lRzWeeV2cgpHE/6aBz/nBqlP5iw+HuTI+5OqZE7ekOoV/gZMCjFHPSox8O96RXCxaeedqTq7QLevT0CrxkvbwT9rWODtIt6o8di/yvZqSRPZcsX6mQD2iHfAdhd39S2flF2nHBMFF5njJhJu25X9X9Yfi+52zk96vhLebR0lGqjtKfPICoz9t8xfx+f9p7CX/rbfgTAa3C2j5BojwaW9PH9ioQ35eBdoZpmV2w0Z9TMv97fggbw9FVKyf12PWpv46urET8rRnrx85IqygFKXr1+/5a3aSVl0OS70nrPUl37IobylvedX5IPHcvSXfzi+k1JSYuuCnJovzmfOxZR9VS9apIa6XXklc57wL+wy7+nhyNi/CVOPiMNFZyW3ePzz+nJ/czICHdpOpYykusRVXL1+df0TU/jBYx0qDz1cyuonTtoOofxwZyc/bBAv69wWF/xlzuEd5zXNOyQjL5Byrh+JakiqH+1yKYZOH35hF04+r2fSr7B7hEoxql31kU+kzDjubLkiS+SxAlLPdy7h8b0tQuLzWM9rklCqyfFqL3jEkzD0kS/7aUW4d9dNxov2ZmfTK5dtZxoD27Nc//gjdX+BK0TjQTlP+MExwIv6ApHXpJSCyKzTu/R22MIkHYm3iUdrto68hoYlo3tHnhxpeoyKsnfghaztc3AtuIAGartifi6fQxrd0NDQ0NDQ0NCwn4OL0V/zZbO9O28vov4iPQPhPksGZvpLYVEXFrWMgoshv0DtP4javlj/GoXdl6V/eWJ2bh4po4Mtbo6pXxdvPsa7HKVdhcDsdiOrywfqS6Np9QEbETO9PWVKVHCr2246hb8ZcC5vyvTjy/wGs0deeLk82ahxLqxSMYlvtjucd2FS0M5HNWa7Av3oCCqxR3yJMp/aiYdHnHDt+Qp7ODpUV8ggUXfm2Bzhp+ulyi/QiNwukeofUKv5qokbaUVyLboRqcsTdpFRLHtspB22X7lR6+vXE35de+Huj1OsL/Th78HWwo6rLIoGCPkrO7OQlZ5OrAWWL/TMgpf+Je/5CzQXwuyh7kG3pcTpfuEjUfPyht05EpQcKROWBdZ7bNfwU+75A6VdW4Uf+aDhL5wb9P7OuexXyTi2O8A7fzs+u+N2Mj72jxixxPlPRIbls61scWUeq7rLV8syv+5f5X6QpY2sHcob7a/zhizt/fYPr4fQB5/VfmR/vclcg4b9Yj2XeTN3o+ZTewhvn7RLSp0fJpHdCFTbAmGv/ZSreUAvMkagosdT7TLX9eR+tCO4+mnKLl/mwjykx5FLWb/4WTzl/vYq5Vj9ud2V/5js/EUjicq80f6yXZ09ZLQP23B7iSs7IdFHPvjuXTtFdPXY8WGE7W0RcI4P7F3+fD7X5dgpXM4Tkk/3EzPo+cM6zbxSrVzsIi1dp9eOKk0ffi4DwvsjoUPWcVLOvPSzenNO7EB9mTx+AjmhCFs/1vrQRynmtv20vgF7h+C+fpxHiXm/HvPr22V9OOvqN3hLvNxH5yn5ZJlLrh20Uor66OwF+kQB/vI6wp/1EcvZZQER16GsRSaZxQhrs9nSRbxatEdSqYgFe7RmG5HX0LAsHGjvyFMpJx5kQ0NDQ0NDQ0PDAQIdnbeNC0hXLAbxTTDQ+2YoQmRczysq+6j/Eu0qAwP+ytUoqLnA3UZR2/cVr2VgpeyBMf/FysBS7XNLKbC9880TI5P2ijtTHr/0743I8xsembsfMuJCPyTLm315pEzEmVrsnk9mCPSlzO0SP/3Ff8Utj8xH4mdJbt3Eu8FCT764/YPU1UAdaKRsNxH9dhP1hv8CnTQiq3yjMuJEoesBPfHZL1pQxSHxp54yTvOVcdFe4iJPWEVftnMwD/6Fn+rFLoYuDplr6+KRaheL7wc5n+Zxrn7Cs1243q+UkihyfXDyhB5/+OpV9o4deOg1n+eJvFIoRxpkSb5oRxkP17iKy9RbvtxO8uGJv/MhuUray41jyZG3Xx1H/sy9XcHH4qZx8knZ8jkPP5nj1bOPyTJP5EeWfnWesKOPeKToGLG7etVqOZ53qnPpbyNzyuUxmf1kru1GJX7hqCM/pFieH5CrdTuTBKvB8hTnKdL49tTzjMfDtf7Q03HkejhZwm5SCm7XvAKWK+pRPTrtnMDXlFoq7OOcdqEx6HkRvWpxts4S9ARH54n5qYfqkbGeVSUTfiGprOR5fchU5hnzA7rcRZzqRRdxpcRebrfSP7j6C8r9Ltc3kCfaGX7j+f087/ohv9I/6pmXl/mNF+sTPSGYKq7tmDhvYTGu/U9FZzHnPds9pX61W/xqOU/ulPMkPPT58538rs/1kAI4j/VI3lDGcZf9tYCf5MPNdkqNoKgFhJR1jeAPl4nzAojtqlr/PNXPWdHr+UJ0rDetC9BgF2ioF3/Tou9vx3K7BkJv0NZP2FeW92uo21Ojjq/BqsjNH8JIg2K7Z/sekOWy6nkr9ruAmmxfMK8a7GderBD7j6LYfp5UEPauflDXs2HDKu3Ia+/Ia2hYOroReULKQ6k8JMEY35MyUHH5fBk7vTQ0NDQ0NDQ0NOyv4HqSR21u3R7f+AJL5bUMzGsPzMtrGViq/xLtfBUu7yRk7n7BFy0tfOn2Whb+VujswVdUBub1n0/WIwNYhKzHT/51kaq4epXUdmQ5AkDziombMdP8oj113tCHX+itvfj280qEiO7mdh2HLJdb9Z1JJTfuOLB1AJYq9U6nmQs/czbe61jhzih3Qu0OqQVFO+BZb7GK8APqX3DKQ8BOPUNxSA2TWbSH5R5YH9le6inqTPR219Q48XWesbwhV602O6rwNyLC/XBlNpQn+7udkViMsICHa+mveqTHDdlrSZFZ1B/cgkWIjHZoCDNf7lj+up1IbnLqTUeZwi/yo1Y9/i5dZTN3KusNffYvuO5Xnr+2I8kztL+AiA97xNcSIFim0Mf+LP86q/0DYY/21DL7i4zl6NmL5VNX1+PCfrrAfsZIHpFZz4yzgsngep6A+3bU84SuH0bw0JHHTWGLs0e6RXsEHmqLaOcT65hzA5HqykwyqF/H++czpJ33tMOgOA7zTWPxx260H9+vJ9qKT/gPAf+uXgk1FUWNZXl8PeR2dvVGHQqRYlEP68iJZPj7+ZA43a8IEJG5KPDPUsMkT9+u51O3W8dR6CV/uR+O+AePlorF7IGIQwrMVNijYRmx3vFF3/FArB9bB6rxMtLWY9RHvK3nYf/Ib7HYLB6U/oEur2xl35+s8832kdIO6nirz+ot6y/b0/d3YNPck3aLM4v5iE7apjnRlsvjEuT6sLtO56LWjyUlMtP9wA2+fmI/snaLOc7F+EVbcVdu+Uqu54b47OvpTZJvFz8Aif3NofUQajPhoqRImVhJEOsD9JfVEDqA3pahL0lKiLn2cx5M6Ja3vy5qoOnW2iQGY0KHYLsF0BfrOCfv1JkjN6y3jrw2Iq+hYeloI/IaGhoaGhoaGhr2KnjMJh16cl2vF3r5OtARvJbxjXDMvqKyq64vZ9mbPPClFHQ7FxwWerTl/qIj1rhR5bL0D30ZN+QX+UIfHDtxEKXhT1GT9u25HWKLSybVw+VPWqDcksDMHjznkXL5y/qe9Lyg1Ntt0L6/35eT1NYelXDqoX6vT/1LHn5ioLqu9XAsZgwe9dU3rrJ+SMqMDMqj3rBH/c61EQKLq9pd6p0rynZVMtDTF8sDmMd2zH5SiBEhuIU0q3BuyNYj5jTQXHpcZr2RdGHPtQkv8y0wYoPHrPnNWJm6OG9nyYl3bjPhMrGf6H4hxoiLZewCDL3tib9k7TIRE/W6VK0Df9HBQ9+zC2p9llLQ7B4f6MV7/tjvc30E4yX/WpKZttP9dHm9rCjiPBIn02uxWz41eTQ2quraKXo1eRbfTuZdgLyi5/iOjqbw0UiIH7gap5UIkXMLN/dtLbPTyP5ASc83ahLudt+v0Gv7sPt5L7zIactlVaDXSqlq9aq0Y8fOtGYNjwRFpVnUHusD/2harJs4f0bnD8fPTqnX0lsG3gUGWHY464EgOhX401ya31qk60kKZInzKJ1e1KhenrfksrB5eyqXHNHuzo9/42FDb/VNOf+6jHrDL3jkU5XOOn1IbY+IeeoJCZCxv2e95NB8Itltyvagr9tJnNYrJe3/wVWmsp3RvtCXeSjihajbr5ztrYGEYEcv9fv+NyixWxUT9tg2Braj5c3b0+NkLuZdXp9vZ8+3muNMw7FTH/Zyu8TylnltOdh/I19ISWpc8ury0whpK49O7NYHenHFz5jpJYedLyAypxKAdH2uh1ysHCG5XUr0v6tH/oJbHjs/RL6oB3u3/PjXIycj22ReJHET27vgKyKlIGln80XKSLAku5gUBXf3LIGtbV9/4sj2ivUTiOO3i4myRAsp8wG4Ghxq1waDqLFzCQ4ibwnejbepdeQ1NCwLEyPy8oG4XCkFPfHU+pBRmBedv3zuFGeShoaGhoaGhoaGAw58m6Mzb4t8GW3Yx6i/l8/L9yc5L+bytxsa3c0K0Ygibq6VUI8B/RjKHFEupRRGm9fVgbS21W0yzk1su0kS9vChCmI7jsKWN4DN9AGrzzyZ+U06EH6agLaLH3bqYI6dCTtTUZ9HdvYSpY67kV2XoN7EtDyGur2Zu7tV5lxvSnr7XN35yb/71/F283O6Ha751GA3MQ3hKCURetM1uM9t7QbMHtFjdqRZunwAbcl78dpAWX5dkIDlATYfyxe1Vfl8fXbo/PsyULd70j7Eu3p7LRD080R7u4h+vjJPGRfIdvlnU0V89vLtnfMXvAvCs+Iu9djDv9DHzfWws391+3H4WboMj+N40A7X8NOOKpERgp8QbZ/4WSeAcM3FrDtfWBDxAfKQhf1Z9OqHv430xG4jenyEnx+nRFi76SwziV6Xx03kwd9GTKHH7iPfhMdIN/Rq9/rVLiqrpVsOy2OIkVxWT+cX+ehciTjNJC4lt3agN44+2hl+yDIPMuqr60XG8ppUpUurL/xD6nr15Sj9St6T+i8zq1y0npf9QfcP385sf+G8izHvd+wXsRJERmblGo9e/9UeI7jCX+N3MsJTozp9aRf/2K9jf1Do8jhHpSmYFTz84fjDQ5Z+EVfqS3twt2tTkG5c5SOYo+lYQ9paEYjR/GV5aLcUdbtg57/cb9FznIjUDKqSAHWVmeZBBpwTH9uZ/XAn2xILW1iDu1Ckzor1qPUL1w8cKWa7yFj/nr/cr8v2xXIryXB/zY8+gtRoUHXoTfb2F92fvH5vh65P9+vHIcmHW/ijMOS82oAuLlIEr+2Z7zEZmNd/lgxMt+fl1rKsP1lf9fnC9jvT9PQ9v0CtdxnbX13N3+Z1vEDXt4G9lw68TZv27468nfK3S6a1aZ1r9h22bduWzjvvvPTe975X+S1ucYt07LHHyjrcpLzh4okDbUQekO8axdmgoaGhoaGhoaHhgEWMzuNXuXOj/GYI5uX7UgaE68W20wnMsg8gqhlDbV8sr7HcfCvFaxmY1x4YjdcbIcUvmv0mEHb9Rbnr7SZ+5x/x+ZfioiA00HG1Zhk3OcOe83GzeBU3tuGTcbUkvhxRECbyAc2vniJV7/766CuPEwPt13i8d3GzzePEpp0DSK8v5wspttx+ZMQhh3jpL3+e2ezKkJJXfJAg6gtM48iB21FT7TXG/EEZh95vc2WU/uE3JMu4IW5+sX5m5xuUUpDVnDkFeG63G7Jf5R88FCXXPC4n4qfJSDfC83qoucvsPyLxX8r6Rw+QY/GBWj+PjPpi/wfl+cb8Zm3vzs7haucJy2fHE04yj3yFnrmZxBJ21bsUY+TP5zP0Hq/rVfT5EZL4S1njdtPRgZ/MCXTo+Ux4rx7NZ/WQRrMvrNLliRF03JTWOOqTQuxneCPj/KjxLm1EVcdpU/DIp3Fee5w3Ra1O2LWIhyXI5y1dbkuknQlitThHdEqE3qR919HtTigp0UuOyBf+geCl1PWO9LjSDjL3fHmhXbJ96vp2uR5kjpUQ4dlPptjuWU8eeEj0Gu920WU/ZK2XSVHHYxdJu4lFlnr1c1uOI41M5AJlPtrN/sT+qrnUwWfkk4lHbOp6IY79R3c/r99K3X4iqtifrVbrJGZEadhV750h3eerqCQ/DiZkZi7aHFsyQBstThruduEEqblbD9YY/KnX48XN8nXwSIFZYv15Q3TS/KVuIkuOtjl+AVJUviWG6qOc9RmWO/azEmW81uyxsU5r/xKW1eZDGLcsEXXC4HtAsu351/0l1g/7oZ8wOOegBoTkeEQYCkS+CWiwoLCpr6KopIaY9vdHa/4y/Tz9aPcF6dfpF+nIdJl02YUr7tMOvV/96lfp05/+dHrc4x6n/ElPelJ60IMelC5xiUsob7h4Io/I2+aKAIdeHJ9DqO3BV1IGKr18roydGRoaGhoaGhoaGg408MVOR+flL6TFN7+eDIzZ97QMzOu/ROkX4Ivm+5Msl6eUs+z7SEbTS/3gL5GXIfOiCx/6pXTnR3usfr0lVcQN5Qm9+k/NKwImwUN5I079PDTXA0FJfWX+uEOkHIjkxjtJ3EXrE66XcN744OUNOQsvuEgpWeZC3xsJMq/M7V0kX7IMzOu/GMn67rZ7k5XU7S5FRfDavo9lQKg2S1Vmz8dFD3A6obrj2ACXOPnXG95hzPlsP9FjT9CdL4CdZyyEmcQjtRjHnukjj1SiN4MVmlMI54OyUbkNbtdMACl51Ow2fDmeA3CZdB14vLWEtmHinX42gseWlclzhdTzkxWpz86jUV/XGZjbh5+UYRBNqyVm0l7PZ3ZReRuB3iR3i203P/+K3c5tWKzz0GJk0vMXelSm09rlXzv/xM46ZrNajLqIHgfn7t/Z4QTJVOS39hMnZfUfkQGJj06iUp1BfrcrNDdJAkVCtfl+0wO8jKm5o84d+er9LfyQ5BlIFeg+H3Fne/m+5jJg267jAa8BB+YG/Kr4wGR+4ib9FAPxXtmwLRBtyT7C/Zxg1cHVoGCfNb1MKyZlFvWwvHQkcazrtvJ9wM8d+Zwikv0++ODiYyr8WY/lOzbh3boVrdRn5zhlMmmCUdi2oTTpF9stgzpKvkhM5JvA7PZmVG1hnZS5oxzrJYAWTaeVkhJmXYyuU2UC4ZoHnUjGluZEWcrM/nWmn0litPOa+wORG9at3m9H5G1JF6Wzdp2RvrD7lPTD3eekKy4cm26/6p7p0guX32edeb/85S/TRz/60XT/+99f+V/91V+lRz/60elSl7qU8sVgx44daedORhzrlkqrV6/WSX/YsASQL/a9tWvXunYY1EndjDAs49atW6extKPch1cC27dv1zoD1MkUyx+I9q9fv17tW7Zs6cUtBiwHy7RmzRrX7BmUI/ICcTgG5uW1DKy4XVZ8aW9oaGhoaGhoaDgIsJ3Redt2px3+hCa+8e0xKfWJWDxv8sCXUtDtOoXDsl5kObJDf2nPdS/3k9xe+uVf6hdx5PPsKsNe65Gaj5IUdESA+6ne4/oRJssRIID4GLERweEf4KZt5p4czuLVei3GesAv8rkt8mt9jjIPMrfHEe3pRobYiBW7oJeCKeXf7NG+iAsZqPVj9sC8vJaBee2BHpdlYTl1dWBwsWQuktU2xGs5yz/Qs+t+7+11TPjLVNC5eS3HMG++wD7nopi2fuJ4iGOId2kNHR9Ajwl8lTGvj2fZPmhw4yAS2P7VxVhEB7Vj1XSer6xfFeSkjSKE0j5rCu/kQoqSwi7rYFE/v5Gr+fWAFqpc/DPHL/YnmaHGrhaBc9xXrSYPHD8Lxs9a7+2GRwEIwY6kTtRxnvFKxSRcG6ysOx9qIhEFx7fm8dhEcsDJa5lFzYQPNilj8RYZyCECTl7Wq+4P8LCTL6Tro34VMlk+sxqXeoSqRvzMbgj/WgbG+Cz/xdqXJaXA4k/wmdK2EVyYRqMvP6+R6KNC1p7urq63H9nAfbuqNPfuuDAuIh/fwckH62Toa1n5SQ7Vy/lB6w1etsPj4vAyrk6Z07jQr6jM7YFbfQC5S2Z22HbLUX8viDx6PnGl8Xr91VLmVqn8W83o7ThXpdrLOB0RyVclmOQGsf50/UhBv7ehV5X5wLQqoSaH9bE/qUUKVp9J0zMr6tE4eOTplsM47jhZvo67USQZWU9w9hF4LD/nE1vfZud8ZXZmaL0+bIC8gljvzNh+tn+bzeLJl0mG5QvAih9PCNavX50274cdebT0jF2fTp/d/cF03u4vpx1pW1qXNqXrLNw6nbDqrunKC1d3z72Ln/70p+mDH/xgeshDHqL8uc99bvqDP/iDdIUrXEH5YvD9738//fCHP9SOKkBn4KUvfem0efNm5YsF+X72s5+lDRs2pKtc5Sp5/xgCnWosy1lnnZV+8IMfpP/7v//Tx4MSx0Q76ABbSZxzzjlaV+DCCy9Mv/71r7UzsQTtP/roo9N1r3tdtX/2s59NP//5z926OFzykpdM17zmNdNlL3tZ1+wZjL8jTwp6wNX6kLW95jL1EAYXehw7V8zP5fzvZ4GGhoaGhoaGhoaDDozOu6h+XETD0jHre3aN+GIfCP8s3T6hX6qUwqx8gfDXgotp9kGM24cvM8w/LlJj5FqHzm7x3PDobu6W0mD+JcJmdYSf+aDC3PcxmI6pzDfEQejs1o62S7nY41fsZb6ouAZBPTXxKMNfb/EYz46UA+gWwWmn5I9MWke0rSfFRlhPD0c/ZF8sL6QaXGRe2wf8FYW9JwPz2gNj/kMyMGQPDMXNY1+a7EZRDNkD4/ErLmM7z2sPrjLUfb17GqfDK+5Yo1Q/7izHeULWh7+rSx2IF70eAZrP4/SOvdlVga7k+TxF/Sax2zss5fhXresLv+iEy3kKO7JbmiJe8tq5qPOz9spy2V180Um93ikYt5azf1HMBM6M9ub9AyFSuS1H3ATPcSK1XbkeG8kY+l77e/ud5SvzAD1Psl4VxXKJ1EUWWeaZ2J+j/Sq7PNmOLIoqnUR+uIWWTi51fQxw3c+o13klGdkcP/4Ysi9LRvsyd9T2RchYr9PPF2Nx8BL9fHBzMX3HJUvV3vCL/aXMb4tq+0PkibhO2v4oNfX1FIOjGrQLqGRi+Q1Rfy9uitRU9fFoSilL+/V4lWKOKe2Vf0+a2c5ntZ31ZbQomMznRfOz4ybiCulQV50DsUWcNiBgXiC3JwP95Hkh0PmHvm8f5rZf1P6Wi9Ks+O580/mHX+cf7aIzEKnvFMUu/xbW9zf0ed0e9ttdvn3wNTv7ARLU+QTiVGSQifUZXsyFaT6wkDZsWJ02bVytj9jcX3BRujB9a9fX0id3/2/63u5vCf8/WepdaW3alDamzemaCzdNN151G5HHeMSex7e+9a10yimnpE996lPp85//vD5eExxzzDHppje9aTr++OPTAx/4QH3E5rTRX7/4xS/SJz7xifThD384fec739FHdcZoM0agXfWqV023u93t0p3vfOfRx3XS8fejH/0oXXDBBencc89NX/7yl9P3vvc97RS8zGUuk+5617um+9znPrIvDm9TOu9OOukkXR7iyEfHHu2mE/GQQw5Jd7zjHbUN1772tbVdy8W3v/3t9LrXvS6dfPLJrrERhEyMuitx+OGHp3vc4x76+FKW8znPeU76yle+4tbFgcee3vOe99TOvD2JA+0deSrlpIVsaGhoaGhoaGg4SLFdrjPo0OO1IDX4JujXuYbBb4zzy5xvhM/yVxkIu9OZdkGkCewtXsvAUvksGdhT9sVKfmFcjtAIvW7cgofMN1ec51+KiyJ+wa3EoyhpfjOQQO35l9kyi3i1C/o3e+ymITwk+pIPS7sR1EnRe5w3Tf3oB7D7ZlKPGAtzFw+X8oS9kgH4LtGwZNP897ykvb5+e/ph6StJ/me129e/cwXrR8Sw/4BkvZbrt7SjL/lMObCckTfaJQYpdv7cRA4uxmzP/tE+10/Iov09OeLP/s7xAad+bQcl7EV71F+4nPPzegg97dK4aVLqkb9OlnqkL5+XevFSSV7+rB/wy9pxrv1rUmYW8boQptLbvGoPaL3kcbvHG+/yA9W7f/aT3KwngIj8xDP2ouRLk0PrYbbslsvar+1UKSbuz+MiM+Piqcshkv1FHCOPxsPxy5LzqJ93e/q+5Pym60m553cuc5HSPlaQUufsj0LFzZOpp7XH7eXnhiYTCY8RRDEiiDjj5OvyDsn8eSJT+Jf5yxHX4VfL8IeX+Uo5y46M5WPe3x8nJbNYP7PaN68sl7+2R/vVYv9Laq++K484/NWAh8x75yM0zKQ29su8vwkPP9VbHH78az8b+5X6R15bLtsf8bN43Q6aiDj2F/ETnQhR4CdC/uBWA2vGuYXJTOdKaIbZdQ3m9WHLYv4ULc4k7QpkuzoI3FnrUn/bv80Q/p1z1BsoWquMHLq86OzfLQYkq488gGh1cJi/RWjHk9+U75bPrAHzj+xhMW2/NIyZdnGIukHmEVglGLW7nGU3B6St655dVxwEGX5GFQXX/bKym87jM0RX+HQwJSF9eA4xdKYu54YNq9LmTWv2mxF5W+Tv/N3fTh/f9S6RZ6dLLVwhbU9b0w93n5uusHCMduqxLFdauGa60apbp2vs4c48RqqdccYZ6f3vf3869dRT09e//nXtXIpRdIxaO/LII9PVrna1dMIJJ2gH1A1ucIN01FFHqb0EnWZ0nr3+9a9PZ555po6I27Fjh1vZTAvaeXf9618/3e1ud0sPf/jD06GHHqqPhwSMYPvSl76UPv7xj6fzzjtP42kLnXmMxGP02rHHHpt+7/d+L/3+7//+YEfeZz7zmfSud70rnXjiienss8/W5WA/i/MiMUx0UN7+9rfXTjA6FpcL6nz5y1+ePvaxj7mGzdjVW4L1ybI///nP1/XNiEc6TxcDloEOyRe96EXpN37jN3SE4Z7E9m3WiTfzHXnB96V0rP4LgZcbGhoaGhoaGhoOQqyW64ENa+VCVb4Ebt8Z3wgDe4vXMjCvPTCv/yzpYKWUV/qZO4JPSLHhNmqv5WL9Cxnt7nEXo/a9K7VEUWb6C39vB/rSThPh/MI+/Hvxki/0mqfIH3HZn5t+UijzhD8SldanKtNrvPN8s7CK47//2EOvT+fEV/5SiXgTJNTaZ3pvP41ApTFSL0WF+dnNMpPm0+kNhb6/UB2v5Sz73FKWJ5ZLaE+vEM5c9UZVA1eEFGDnTigQe6z/crkpuaOWunizd1LsUiQ6YFVaPppoCDv1IUa4SL2ZXPjbv8x0Ow61p9PrTQ1vn8pcT6CM62TcCDHpy6fFgitMT3Zce/sLApnbY3pLrTP3EVgwBaUq9R+95wtkvRPmEm/r17ndScegkpFJ2jmmMejpisYRe19qHs8rio7nfPxjlzkcL9WbnXrMD1mN5MFOAiUiMVkKg9oFtNcUNsef/RK7y8zNQ+eGSDpLBoSTT1HKAb+8vwFbL9YeP28qVKt6Ok+VZ7vM8Ne8Lgf3YylJAB4KgjWkiEPH+RJ7EZftCm+HqPDM7VUGuv3SdGbXThzMOg97l9c2aehc79s5uLXf/Cl7SSaxF9w+l2J7C6LAsqq7+WtYsV9rhspe8kl7X9o+hVfo+/EZlX/nGFga11Rj+XJ9rhLk9ub9JwBnO4Yu4kWnqs5uKfx4Lv2jTLEC9bIK2E5InHb7fiMZ8bC8hUaBrwRouwsYr7Z33t80m+p2674e+q4O46Wlg9mlYnFWPTPaIdJswNrUt0uBNqgULvsZ9VudzNxfUPKwexVhNUI8m0CMuiiuLtsDoEDbpHnjvMHkbVUO7FjOwQ7fRQVh6DtY534VtB/DllkKunJYJyVijYGxZSrXGaDsujJc4XU5LI792+H+ethFLC5Szi1TLjPNvzutWb2Q1q5bldas4dy+b7E1bUkX7P52+uLuT6WvyHT5haul6y4cl9YsrEk/3f39dM1VN0+XW7iKdub9ePd304XpV+mwhaPSpoXNabX8rTR27Nihj4OkA4qOKDq+GD13+ctfXjvueJwmj6NkVB1+X/ziF7Uj+4pXvKI+yjE64AA+dKK95jWv0dF4vGvviCOOUF8eI4k/HXV0yJ1//vn6mMwrXelK6XKXu5w+ahIwmo/Hev7nf/6ndogxSo1RfcSQb+vWrfooyRvf+MbpZje7mR5LAUbcMYKP+lkWRvGhIz+j1WgH7WGfooPwxz/+sXY8sgzYGSVX5lss3vnOd2on5ne/+10d+UeHI3WyLuuJR3syyvEmN7mJtuULX/iCdszx6NFpE8tDxyTrgQ5W4h/60Ifqthrq1FxJ7Ny5W/YXkwHWVsc6XsvAUu1Lla0jr6GhoaGhoaHhYoK1axbSOpn40W3cp+JrYXy/XwynOM2upeDGKj5g70lKNh/ms/xnSUrMKn3mlX1CzrIv17+QFCa4/k+x712pFxhwaUVP7/sZ9hjxoY8vwo67zLlGCz9u4sXjjeC1zPlI6PrhkSSdv10D2mPj8EdvXIT7q16J6SNPZ2EerJD4l5Kiz/XCWSa7WSYQQckuqC0+8o7mryX5lLsmNxJmjR70X5Qkj/5ru9gcZTtZnRPtjniKOuvsTiEpj9RCUmDmUrmjzt/VY+7KKRBX6CNf5Mr7QeWfuTq7XmS333R22bQTeqSuF5EaX+TrSd3g/Tj1d17653yK4E7xK2Sv/YouHmmaYo5g/ROnxb7ET6XMyn0/9KWfIfy7OPJHYHgRp3C/ofo9UP7sdmWnCTsk6jG/4HS4d3okM2THpaiFLn9W6n5okPUm89gvS4m7hkQBwNXGRHsK7vXo9lBng1ksrzEB+4Genwpku0S7PZ9C2D/s3/N0sKrJ73HCCaNdUW9sW5Oi97yEordy5T/A1c/9vRLValH+1B+bM9svpUyQBrreS/6v+cv9lzxWinnHSGPtNx/yUdR8MZeTPzK4tUs9lRuM23nN9b48JqU0lYek/gG9TH19xWt7cBR7lNvSdlwdCi40OCUVfD6GnXiAQbavbDjdP9RWfo6HxLcP3d6+4s3PtpdlZr/RSGURb9V2+bI9JHYx9rn+9/QcI24SadrYP9COS4OWNJ+SgpvHsF3KWq/p9TzjenjIaBdzcXGlGfHP7azi7bxV6gsuU98utVC0GdGq15vmajc97rTHRmoSj69acztye4nDQaUqCo4iOKqCzyVFzOW3SClzXT77oqga/mKkJHukLV/4d3+hDX0npZTzd36x3XXSWXc8oY39Qf9Cz7lcrcZpDzb+6MBbtx905O2Qv+/tPjd9ftcp6Yu7T0mb0iHpLqsfkq6wcLX0k3SB2L6TrrhwTLrpqlulNWm96H4gum+kX6RfpkstXDZt3AOdeXSc0fn2t3/7t+knP/mJbt/rXe966QEPeEC6973vnW51q1tpZxTveKODitF7dMJd+cpXTte61rV0RFjgm9/8pnZmvfGNb9QOOx6BeYc73EFz3ete90q3uc1tdEQdj8ekLnLRmXfrW99aR/exvdB98pOf1JGB+G7cuFHroDPxoosuyp2MdOLREWb7j4Fled/73qcdeV/72tdUR0ch9dPZxWM0r3Od62hOOgfJRwchkjrIt9TOMDo3GYX4uc99TpeddfasZz0r3elOd0q3ve1tddnLCR2dkXRKrl27Nh122GG63o877rjB6eY3v7l22sW6oyOPEXg8mhM7oxr3NHbuWEg7dsqhtrM7tjjW9Ljr8Uk50+5/xkHJ0Yxwn/d5J1tHXkNDQ0NDQ0PDxQh8l1+/Vr4GyvfB7d1TQRr2FuKOxywZmNd/OTIwyz4FcYFRIi5EVWqesJu0m7CA/RHdgujs5h0w2ef4KTciwn6xn/UwSVVydxWYDnW2u9RHrSlUSa1WrKHJi3Llpzf+A2q2fEBtpV3R2edDVKbJrejQ5UCn6SJn5A8JijLrL9TAb25qUWesicIBzjLUabOUQs++0tyKOle9G0wpGOEZS+DcQM3o7JQ6XsvAvHYrTeOG4LXs/G17jfl1/oaVsgfG/MelbWJptfdYYVHo9mX/ROIkutgfIgfO2Y70/dlHfubREqLfrfml7P56zslxJrXT3aXeVIWTUPXyD5WCjnwLPTda8cek/sDOK92Ii9BPSk/tGplrgRlaKen+F7yTpV6P2hE/A/Yox7mub9/t+un7j0OXt4uPTp0YiRLS7Nysphz+SFkvtFf+o1mRL+dle6l/AH3Isv5SAiTr3dZL36/cHqV+JJ8uxxC3/La/sV/Z/oBF7bH8WYbeR4hFnlG/Wl/YtUC97heGCXtwEIVOsv9EZ163XkAEml6rcH+TWDoeCL+yYjv++lyPuyLeZNQvXKVzMVle2tHl0f09Lz8T/p5PpNqdxXbN21fDPH+0z/dftc+QtMP2K+PEWz1SkjzRXm1f2EVZ+ltEZ7f2mh9S60FqnEn7ziJ2NU9K/DSPcpli/fQk7fI4CsTB9Zd9th+HPx7mZ52rHqglXR7xs3ajYNYth22P8vgNaSiXs8xrqPW1vSyDMf86btLOfsDiwrVJDl0FXu62U8C4+VuevgT++QDXfWvSzvoJFrLvZ+3TXFRWrm+Xa9auSuvWrk5r1hCzb8Ce8oPdF6RP7npP+vLuz6RDFg5Pd1/9yHTlhWtLe1el89M30/d2fztdfuFa6aoL1xR5dFq3sDH9KH0/nbP7zHRh2paOWLikTMPvlFsqGLX2lre8Rd+Hx/rjkZd0evHoyute97o6Uu2GN7yhdsrR6cVjIBkRxug6RpUx0i7Au/U+8IEPaE7wiEc8Qic6865+9aur/41udKP0jW98Q99hx+gyRsTd97731ZF/jIyjE+yrX/2q1kXH1YMf/OD027/929qRR0chnXt0ztHByOM97Txp+MEPfpBe9rKX6ahB/Gj77/zO76Q/+qM/0g482krnI+/E27Fjh3bm0XFIpxgdePe///17IwznBZ141Pcv//Iv2nY6Bemke9rTnpaucY1r6HLXEx19dF4yco/387FMtIt1PjTRbvzf/va367v4GMGInnfrMVJvqR2Qi8GOnbvTzu32+pHu6Nu/5Z5fKw0NDQ0NDQ0NDfsdNq5bSIdvWkhr18gXQ/lmmCexDfJaxjRmn1OCmX4xBa9lbZ8ygWm8nsCQPiYwjdcTMy27HOU+ZT4iw17LmflLHtMsO4o5JL/E17JcbjBippbZhpQppF6eOI8JRcm5aaAy6+xmUehj4i6LSgHS7oOIznlp15EDyu0yiZsl9qtns6uUKcep1nkhxWgVFcBbw2SymzB1vNmtNI/EnxJ1qcKKMplW5qqnZA7ayYCdmUx2z9Ls4Y9J3YXaL9EtH400VnGZDcvavlz/gXgtBBc7hdCvGJc1M9XuXAp9/Yh9QoYdqRtkxD7Gx/IN2BETXEq1vSfnsPt8mM8vdaSHrAI7/FYp5yaW7r/C1Y+Z2tE7sX/br0UVnW6+OsVoembs51Y0afk7iR5ER7zdpHZJwlXSDhF609sa6vURKseR6PPxpjPKdnxpysjn89we59yuLbllEkT9KuEU4S6lgF7bjVRD8MgjUhooGodwJejVXeD1UEKqvuP4dHZlPW6rgpnYtGxZo9PDEPWZn30mmGdP79KTWj63q0pmpcznt8LObS7NK1MvLwuOiHbJv9lLaXOVsmx9zj9+5Jf6VA/nlnVn10w6E4Wl9f3F8ug+rlwgQtewSouH2urFr7Or3gtRj3GB+nX2EPIvReZ9qZtRpS1HIOcTqX5wMftmz3G6+Xz96HEUXPKpS4bk0ZTeIIX7a2qZ2Q45wVl26pGzgkpqy/ufeSjXcUqqsHap1RxEWHtif6UxC7r9gcvgSNpQ8VKynbFGvCh1Tj0sp9WHvy839WGHZLtF9vMghEsx63XZxD/0zMiJ3WXmzNW/k8ws3iRz1ftczxPaaPSayLigjIv6A6bXkk5m9/zWMEFI4N7qV/qjs/VhZechNZ/pwy5zkaZg3vdH5zI4toLTMdbnMpft6iU9Nn0V6LZeJX6xKGVcrkelt9O5nl8iv8SqXW1m1/1J40gMt7L5G6dT1fw9WnWqlpl4S9lnMu0bbE/b0vd2n5c+tuvt6Vu7v5Qus3B0uu2q+6UrL1wrbUgbrd09LIh+U7r6wrHpVqt+I1164WrpvN1fTqfuOjF9XeRKgo4zHjFpncZJR4hFJxMdUky80+6Wt7xletSjHqUj4R7/+Mdr5xqdSyV41COdZYw2451zd73rXbUDjUdW0hHHxEg+Ou3ISwcYo+F4JCcj/gC+vIPv2c9+dnrCE56gowIZqYaeTi/ACLbNmzdruQTLwkg+OudoC52StJORa/gzEo+Rb1e96lW1g5BlBfjzPr5YB4sFbadTkBGBjBjk/Xe8f49RctQby15OtIXl4Bil8xA/2jY2AR45SmclddCRSmcmjwpdSufjkiHt1fPKNMn+vBS+klLn/n2joaGhoaGhoaHh4oc18h35sI0LaeM6rgftpoPMTcYUvJaz7BNSpgG9lgb0PWle89uVxxTcpJUKLkHKa6l/U+wua3vN5/KXwrx2lQWHwGsZfnuKM9vF+13kgnVQr0QuOniOayX1/UOCOq6UuT5Zyh7fbb9O5nKGesJuM0D9qnVVJ0u9SQyWT0fY0MSwaz3OEZSCh6R+jXWurUKi6PSaVrXYKdm8iysk+bRUc2tncG0zZtZ19uskem0e0vVI4lS6vY4Tg0gCa/0USWGQS6HkUKm05J2M5fP1nvXzSCn0+GLtyGL9KtdiwUckSzmPfVTi6vvNqB8FXy+j9iG9S8Q8vJYUZGa82i+MiXB95kj80Je8tCMtTs8f7JGi14hCb/un8X48dmXdzXL2KxTkISb8dX8zXxXofdpVlLWeWlIH7XNu7RF/O6ByfeoXeiT6qJc4yjJRH7zLh0+/3phkJhN5rB26PqiHPKwulREvimin7ifEEuftIU70SvkjQfiLk7XL/URq3pzH9JS7fGLDwzk3LbHn87H8qRQdslvPQpUTZv6qd38Np53qaJLcuj2znphYEoTotdTF44teM4vSlo82mn+2q558InUZRK9t6uLVrtLjvM2Rz/a/8KN6410nndmyPco+Bc+dPOhZEM1j/jkfU64fv379TH0u8WV7ism456e+kmuZdVDngyPMFn596fk0lXP1L/2sbH6eR6X4sf2cS8H0Pp/QF7Kze275oy58lTPl5TS7+VtZZcFVV/hmv4ilLHUtsCzx5/7qG3EF15UXNtXHepEp73+2v8dk50HxD6lxMlGO/DGhYXvrFHlLncdRRnqcibDTBPfxKbdDc+LveZF5gvukNstpMaW943q+QKf+XRl9TOFv5c4Xncy03Pd3XejhoXcZ+vCXma7LHEedsjbR5/jSHvHYYtL9zrbRTvcv/fL2DI4d6T7q71yXOfRui3rUjq9L09PYvY8t6aL03d3fSZ/c9V7txLvUwuXTDRduna6xcP20OR0y+qhMOuUPS0ekqy1cN91i1V3S4QuXkjzfSGfu+kT6xu6vuNfyQYcXnWoBOqMYDcc+ySgvJjrQGPVFZ94f//Efp4c85CHaoUcHXwlGn9Hx9tjHPlYnRqXRqUVHU+TasWOHjsSjMwp9dHZFJx3toaON/HTE0amIT9hBtKkEnWm0+0c/+pHWQQcXeXh3HB1mUT910pFGW+O9fOwftGepoDPy9NNP1w5BcrGuaDuPwOQRn4wkpAOOUXt0XkVbtCPLEW0bmtgWPIKU9/7R6coIPtpPZynrq8yzR6HHUX+qdcrzMTc/r6XaC75YuxT0r3XkNTQ0NDQ0NDRczMHovCM2r0rr9PphgR9+KUwGr+UUO2KCU7L53pGUbD5VSiMH5Sz7SkoKi7GP8X0guxFxlHVe2NFDTJpe/JEy696hY3xYSqnMK9Iw4C9zOkVsROAUf22tWWxkBjb/Rb+YynwQLVmIQLUTUpdPS+ZfckNp70tDcClpXc6lfrl+03YqEJW9loolct1e5J/i35dMEqBcG+Y6s3sq4yL1EaYFt1nsJ15/5FM7U8kn7VprYe9J0OMyc9lxqV/3g+AmR/1tqYxrseDYVSJMb7yz1xKwjSOPIexm0/ZlO4rOU2Mztzm6XL9C4l0a4NgDpV30Od6g+1+ZrvDX+gO4abjn14WQSaT6q923t+YjHrvsFx6n+VCJCG75CjsgD/FsP4xiNZMQbiZpUeeWDz8pxgQ6LnkqqfuFJVEdWrWLTu1otH7K0j73VYiwUi50dgoymdq5SOPAubc3DN150FoT/tYWj7cGq7S0MmOCu94Nxn1ORWaPqbTbVHL+7EaSlTXeY33NG1f042tpZctnx6GsU5GW34He8+m5Wv+UaH38qb/GUxIr/rrsGMJfbPiEHmX2s+1snjLXOEHEix2/bFc1MaE3rqWCK0o7ukFp9piC134xIUz27eP5usm42KOtwb2cJUujx5JMwllWk+ardnisU/dH6shu/VwVHhK7/ClEaD7lMte8xJgx56MymcJu/rbVAXNtj8z0XBKY2F4m0WV9LXVukqlLZ4U41rU+tRdx2ApOMLqSq5/86XIKt+UxM9AmsxyhgqsUv1BidxnQOHemGQCh9WvB9SpNFyOfS4khJDqV8tdrT23P0rYJnMny2nYPPQ3lT4jVE/pCapxL1ctf6LMkT8nxKiR/kYe/0h57DpPq/W8V+6e21fdf1/NX8lJGPJ9JbJ8xu7ZXN5qsdy/rJG3q5Y02u17jSz/slMMO16x7F7vSzvTD3d9NZ+7+RPrS7k/qozGvv3BCus6qm2gn3axW0Zl3qPhdb+FmEncrfUfeObu/mj6/6xPpJ7t/rO/cWy7ojKNTKEaHMTKNx2x+/OMf13KMlKNDiZFtPH6Sx2Mymq3uTGM0Hu9/4314TJe73OWyD99n6MA77bTTtGOLx1kyKi1y0SEFaANlOtvoaItOuBr4laCzi5i73e1uWvdv/uZv6jvvIm8JOu3o9Nuxw9YfHWN0/NU550V05DGyEMQjQ3kMJu8L/O///m99fOl73vOe9KUvfUlHDi4GdAh+9rOf1ffvUQfrlfXGxHbZe7D1o2dkPaaEu+xz2z6L4SaDd3/ZHryYl7y2B2/vyGtoaGhoaGhoaJALQ3t3HnJbe3degXwLYz7U7sFrGRizzy2lIBcES7fLFAh/LYxht7l4HKkpR0SZUv2UmdWaUnrCray/YOxBuP5TXz8m8pg0OxbLwBxm9o4H+CV3x7lw80ZEgo6DfPeszh9YCS5zEV4Ss9vVVWdKDWO8lg5bSU7ADHvwcBviKtAbt5uS5hL27qYjdrjMNY/xnr/rs2T7lPbgKIKLItujfpnUgkpmKsUQe0dwC1QX5vJvdo3W/Ql9aTeZORk9RFsR7ZFidLLkzipzUhnxZZ4Uv/5nntsBKr9CxvFgnoU+c5O5fsVsu1L0ef2y5tCHX+ffW/46j/PB+m0l6XpSu3Pzg8vxCc3c7aVUs/spD70qetL2U7NbfRKnQI/AD1Tc/XX5g4tduao6fXATzjWPJpT/vtT90e2sB7vBK5z1osHO1bNrh7a/0Icf85jp/hf53B55y/gJGduD9pTtIF9Gv95cDD3rWWARwY2ZxduhcTqzOKXmb3lWSRjbV3heT+olE+2jbJkjb9Sj7c88/LVWrOHV5Yh6hWcPNbqn23WUTOYidESMFg2iD7tKmXf+sVyex9MjfTXkfOrvMnjnb+tDO5NK6csZ0lpl3JZ8OscfVupNApuD0BsJvcj+gpgUfRcpoJ2iKOvv/JARF3B/z0sVZRxRxi2DYdJOSfXkYf27Xv1Yf87Db7eOlQLoZa7L6fERpyh5X9r5s14PPreVkLkvpMrYnvC83+MXevWXf6G95rg0vden3OOyX8kLfYB6RRHn/7Je1bhdmerNDy0l4yx3JC38s87Q+Zf64LWs/WfZA8M8tkjNu/NeoIs3n36+sOik/2F3ST7dUKGxsqEoYxTk9Z5twQOR14syW7N6Ia1dxzvyJjuE9iS2y9/Xdp+ZTt91Ylqb1qXbrb5/utaqG6bD0xHaSRdg1N756Rv5HXlHL1wtrU82Woy1vUaiL7Vw2bQt7Ug/Td9Pv0w/Soely6RLLByleZcDOtroePrYxz6WH3N5wQUXaGcb25rRehyPdJTRKUbnGzHYatCphA8dY0x0wNFpRk5GytG5xXvk6Cikg5ARc7zD7rjjjuuNCqxBPB1lMeqNx3PyWEke7RntoG5G//E+Pjry7nznO+vjLWlHCZaDTjweU3niiSdqmff/nXDCCenud7/7YKfhNLBuGCX3qle9Kp1zzjnaQUl7eU/gSSedpMv6mc98Jp1yyikqf/nLX+ooQx4VSiflLNDeM888M73mNa/RTkDW5y1ucYvcUbnY9i4HDFrcsWO3TnSSc9T50bbfyr17xDc0NDQ0NDQ0NOzX2KCj8xZ0dB7XEXxpnCbBcuy1BBM8pll8YAJD+pjAdG43KTrelQe5zAa5y8x9Cl7L2r+Wnd3bl3ktzT6pLySFzLn5YLrQ62VD5pUdFb2/PgpObyahN5XqkBHPzQy9QHXOTG92SNn8Oz06sxfxuMI1D0LyeyDcfgGOPfxET/slMPxVqq/bqT/sqhGODH9tdeGPoLRorlky14UR+L0e18tcuJtEFvE+H+a1dLs0ouNen86H7MycywxJRMkzWDjaKdqe3ePZDyw4uMxloSby5foKSaG0B1cZfMBfJq+y0DNDX8SpHPCT/85v0l5K6sGHWU+vCw5cP0WSJdc3hwS6P1hx3B+xBM5CdfubSdrHduvFodcVAIwzL+2TUkCQVGo3IGy8AbDjEwkp40yZ91uN16JI7BhNYTeZgXOdC3DJeeDmZ8tlDqGHq17AZiTO8ogUbu0WfzlgQ4+7NYE8xju9ecX5LaQpmWz7q1Ru9Ws+ZnDaW0iUwbHrLKQg4s0/2tnpmaks4oKr8Lm1y7n8Wx5rr+WNODHH/iEKi7N61cz+JMQ3vfu5RKgkBuZR4SxS61ELc4A+e9p+qH4Am3lHnHkFpH3mqHY1ST0WQRGdbWV3k3Rxu0z83N+dLY4QCvr51+ltBJqUXJ/bj56y+kl7NAi9+eU8pcQfsJz4sRCi6u2fLtVVJmuX+6vO5BCP7VXmifZ27fZ8xiwOqRVRIl/EFXk8wNxMr1IKlkLilCtRaEk5/hqoWvJrArTEGxFISSuw/EhCuvbW+UXrobYqnQi0vZhVhh6FC9drPuUmWQptnpZdXyD8fKHNXwt9qfsMfgoN0LwWocL9TDJjD1Ud7ZJStmtj4fLnedXu+Ty92axodtaf6FSL1GTGbc1ajJcwGVeF+WsMFahOK1SUvro9VRcxpS1kTM6jPpdaBbaefjZn9J0+uUH+kDYaT1uj//bpZGtT/VV6fPxlLrmEEMEETO+2ohRl++v8bFX134lnucymO1bY1dfs9n3XPPcm6IA7auHy6dhVt0n3WP2odK2F66dD02HSpjhfzo/1aWO6yaoT0m1W3TtdY+GmkvfSkr8/Im4poAPt2GOPTQ996EN1dB4dRXRMffKTn0x/93d/p+/De97znqejyX7605961PwgF4+E/JM/+ZP0+7//++l973ufdmbd4AY30Hfu8ZhO3se3XLB96bRjtBoTj7cc6hzcsmVL+sY3vqEdYz/84Q9Vd/WrX107/5bSKbZjxw5dL3S28ehMwIi77373u9p5SUchdsrf+ta30hve8Ib04he/WEcmzgM6LqNTMB7/yfa6yU1uspdH4wVk72U9cSzrwe1H2Tx8T0qdT+rbiLyGhoaGhoaGhoYe5LpWR+fJ98W0fYddR9qcL5UhA0vltQws1X+Jdr3zMsTdb4zPlOa+dHstC38rdPbgtZxlnyoDw/b8S3Xh2kQp6VwINxdMGRePpg//vuQX3HbbBE7eyKchpX/BWTTVu9R3pijcbyFu3mmQSQt1QLhoK6T4Wx6Ls5tWEbQ0mUdy6HxVxc1vWfVEPtZbYYH33aweaZHrTaLPYKXukuUXyTtxYv/xFKbXONOPSqtg8bzJA0/Gdp/B2c/o8DcL+m7/svME/q6KuELGfhdSD1uP106Fnl1sakfmgkzAudZvVI8L8qi58lMH9xdu5yfnuKg7fhyHpT9+2Nwf6XbVMwu9+qGCS54c78erI+cp7MbViAsFjdD1kNsbWsuveuUB47oe0OPGxMzjc17+vF7dDvCev+UPf48wiaOfZ+G6/WgPFVD086OV1UMAd3812PnONrnpg4OolXq6/UgmDaAYZZdqlTI2aLRFZXyOYRRkbjQXIrfmc1+Q9UZzvYHMQ8dxUCDigfjF8mQZ6zEj9KLjH3vmSHGpuG4/9IoyH7LgIqw+tm/4hN247WvBmVge9zcXhXjZXPLp/qYwSUYQWlulROCPJkerNE/XTKwPYULRWKdRZ9P4WB4R5lf6IN2AmyJswHz181P3NddkjjQlevLwCGAlub7CDkQfLlavnZeyMk6TnlcL5KWIn0Jk2FVKgX81M3N/L+u/Gl3reUKavpg0H9s0IPlUjTSf4GY2XcD8XJ1Rki6PobOpnnVRQLy9BCLWymWswXRav+6XAtvBqjoNdi7Crh46j8mWA61wNgNOtA13YrSd5Xoy2PdLCuS2Yo5n7jnjz/yQ7kM7hbPvwlev5nGNvFetOnfsYXDkrl/YkI5auEy6zMLl08a0Oa0e6HybNiIvQC46BjctHKL5jlq4ZFonXuiXAzplGEV3pStdSUeJMSqPzic6o5johDr//PPTWWedlb7whS9oxxUdZYzMmwd0lp188snprW99q47IY7Ta5S9/eR05x/v0GJVHh9S0jtZ5RuQByvVUglGAdKD9x3/8h3ZUkve6171uus997qMdebyrr46ZBTolzz77bG0b76zj0aMPfvCD04Me9CAt3/GOd9RHkrIu6cxjxB6PyjzssMN0PfBY0Wk444wztCOUdjM674Y3vGG63/3up6MY5xnRt5KgH9EmDjSOrPi2xv65f8rWkdfQ0NDQ0NDQ0DAIHttChx5fGnfu4uIBbUgpzcuVUbJ5lrW95j4flitkl0qHucsxPlPq/zLsU/wplPbgtZxlnyq1mHlcQJje9olhu3CE/gI0tCLdD05HcbZwMw8uCntnnro67+xkpSNA72P0/JmEoPf4gF24Ek+AxXV+llelJpXKlKvG6nE/WxK0YR2SUeo4dY37r5CUhSglVU7nfekrQaH6Kl/YbR2yUvhnNumXJYUpXFs1ZB+R6jigD7kou5DQG6eIj/HYv4JLYUJq+0te2Sf8M+/HZbtiUp8louCGQh/tcW6oeWjG7ME7v2F7Ja1RFDLPGmtWobfjCjXQW4/ocZDjz6RH5zjbJiXXGtwvRgZpHt2v9N/XiOkpTO738h8NEbibFpDMLbVLtduaBuwzpjepeZ3jq96ZExdjFfpxcD0hWpAsq+eTiuz85ybVW+0WZ8j7q4A29fmk1Hx2QhOFx1vDzG4lnToOhHspYu2cYL55vSozna2tsMmfqPPvBqSMl3mEp8EWM7SMdhE/ll+YaiSR+nuQ6qUc3Gadfy+/xHaSW+Ulx78738dmsbrlj7LqpeArbThvKeXfnZAULS92Ye6U2wETW5fXuBYRxE1IdVo0t/UqRVGbHlL50y6VqmIukmV3/2xHSoEU+tmPxvOLXpcvSwwi836nCWy9CDouUqswzpyto9WSR+NFhkXdOq6f377tyGGPsO2mWMswbTcSP2ToPS5vd9Wb1H1f/uNnSJYEfymKRG81GLc45yFl1vGuHtsfMJqV85zW43nULivXq3I78DiXui4thcLa43lk6rfPSCe7dpTtIeWEBBN6LVScoki4/Nn5Dq6qzJG2GxEDx+56dUcP8CfO7MFt20RcZydeF7qM97Lut+7HH24aFx4SG+vBNQIpSbFvV7VsH36Y4DYFGYUhHLYdRYu/c227I6/3kDgqN6xduyqt3weP1gTa+ZYO0Y65VWl4BNU8HXmAZeNRmpvSZpmvk3wrszw8KpN3xDGKjcc+XuEKV9DHVNJRxIi6n//85yrp0PvBD36gHW+M3qPjbxboLDv33HN1NBpg1Brx5EbSycXIufp9eyXm7cibhS9+8YvpHe94h3aM0alG++973/tqhxuj8pYyIo/HktJBSKccHXm3vOUt9d11jJqjfVe72tW0k5TO0u9///vaMco6gLOe8RsDy80jQBnFyAg/8LCHPSzd9a531djFLPtKYBeP1ty5oFIqZ6b6OOaWLkkypC/syihVMvyCV7J15DU0NDQ0NDQ0NIxCvkumdWvkS6NcB+yQL7nFNWjDEPxaPaPmNcK+P8lAyd1uFxJm0p3D7XaTxKRbVfILZBuh5ypBURR4YkoejwweMH0V2aeaKu6BxM0+dRryc2kzr78om2BmN3vnQg5nxk2dIRR1KIJ33jRZV2PWu38YOgeULsdQxCtqHnC95oa7Tx6Zh0pmKoPLFP4TeqTMSr3NHKJTP9FN5IMj4TJpASEEfeYyBc9x/OLd7YqaF/FaDi6SFJnL5G2w1BEj+djJlONbo9SFT8SK9PbpyEzNK1RdynzhD/AHYlM/nalGob/YD+45sgsz2muqorJKBjSowJh/+EVs6BF2FHUwf7RRipsRQI/p3C7OEyyPGjBXdpHK1WA0eoaEa0mlGoo8UpD9OOwKj7e00iLiqEe3Dyj9pNVSj2rcTqjqiTODSMtjJyHyITwPXOa6KNo+OGvC4nrb2WXWe/7Ii8wjSsxo7VHA3W9CApFa7LjVY5LMlqzwr/JoSX1A52ce4Uf7uHnYxXV64NxO1Bm6CZAymaWrrzsPm9V4J1Vf5WM9e8GSIFUFj/YB1+MiM90uLplj1Hp8u8HVNYejd6nm4LK85u6yywPy/l1IixMv5cSHtBTMbT1XXPxUUrSZ7Y+hl3kpiaUzzs5tpmeNYFW7x2U//lTC8QuJ3h77ZzPrlKMjjfvH5Fnl9ZgUu+vx0Rw6RXlSWueNTBpnkg4vzRP1IMNWcMqmx0/q78nw63O+7+ojF4fkavyNmx9TlxfOSCmVMkXeiF+NXI3PKotHCjddZ8eXZSVugfwQ2R56nuJzGZT7TcisR0JMj7DzHBITevJICT+P70uvh0TCY/9RHtLPH9LSvt4l+3g/LgAnv0jalfNE3KQ/eSxbmW+RUkQvXpZLz+PCACVlqshM0M+jOllxrCpDt340RvXMbCqXp/tcQ+P+zro5oNSvt4ONxlu3jzryWNp4WOgY5u3IA/PkWyw4ZqIzjw6ta17zmtr5xMi7eNcdI/UYSUaHEp1RdMDRmTTPyDw67Og0owOODjw6BuncY6Lua1zjGunQQw/V8hBWoiPv61//evrf//3f9O53v1s7FTdt2qSjAhk9d/zxx2vH2lJA/bSd9/HRacd6gbNeNmzYoJ2Ul73sZVXSGUpnIo/IZN9mHdP5N4avfe1r2unI6MEdPhLyD//wD9ONb3xjzb23wb2NnTt26Tvy4ijTtS+zku8vErSOvIaGhoaGhoaGhpnIo/Pkm6Q+PUh0XGfsExkTsygzySyXnYOebpkTmMplNo3XEzMtu9xXvCe1IBc07oTIFxBC4maeUm46aQD+/QsN4oNzM0ohQt31zhHS8nX5TY+P+ZlEazmkPs+ldiRW96NoN8Asr5rCz+8zRT6T+ElZHczRhOk7mc0uyWCAx32ZfH8mpNs7KfmUUdJWqNQ4YaaxmXJR2OLqLNtrCYZlWZ/NZ/r5giiXck9SrCSgHXErqdYPxpGPhQteSJDjZKbrDekeNi+kOjhkI5t/7KMShSI4xZKrHeHZkc4Voaeos46DvL1lUsnNOvmP9oc9L4/MOWaAiojPASLcoF6ST/dbmKpdotFAlx5f7i9mNqlmeOEXXN0cmPN2VIPEi3OpV4hRwz0eu0nTgz5H4hxWt/Avam23aj0uXL0etHY4Gw8/Zn0pc4zC4Dlftg9L7Dhnf5nrcRnL6XpOLrb/iB6FzHS9yErX86CZdLZaJnztRryft1Tv/gRqnKjd3pdU1+cRF35M3PhfkKQqg4ekvpmSZrkUXc8evJRSl9rprBBJxwZ8TfbzPKqnY4Ll8M4Kz6vt1s4KOjOMrxFH7dQIO3HuH/VRNrvkldyWx+PR4yO+OQ8cO5IYbwc6q8/jiMdPZPiFvssv9al/tNvy5AkuRuyaP7iUaS/5aj1tDP/IF3wN7Qy/kKqflExrg69hMn/kWuF0DJkf0sv4rBU7ZSQ/2JIJSY61Yfccpve88l1QueaRfG5bK3p++AWnk0HjyBETPllvdZje+drVnX2d8yIH7Vnn0/r1UoeWzc73U2LXa+cG/mHHhs78QqeT+66Tetat7/T4k0cn0UdOptBHvHGJF7lB5eocs17yWuxqsZkffMOGNWnjBtExwdeLlGm9SuOUtb3ESx7WaWxfTiGU2Q85NuTfQNkE86xHmkpiVBq3WCMmI565FvhX7hZXmx7e2Q3qqXaZZP82u9TKZ27odYLTfs62nkOnKJc646Ip9MqG5VS7FOSEHtz++3Y+a3pcZd+PFcnanNDLh1fJRVi79VNFQG5KSjo9k2RD6XOzZr3GuU6SU2a/YmJf2B+xmI68PQE6lehcojOPDiJG413lKlfRkWW8iw1OZxqj8RhNxsgyHkNJRxTTNNBBRucW78RjtNrRRx+tHVrf/OY3NQ+PpaRTjs6usc605XTksVy/+MUv0n/913/p4z2pj8da0hn2xCc+Md3iFrcYfJfevODcQmcnHXcxyrBsE2X0rFvez8foOtrESD46Te95z3u6Z4fYHryX8AMf+IC+04/OQXwZQcjov1nLvSegI/J2yJGoX/Q4r9KG/rKaSXQyZYnPEN/DUmZ8L9fmNjQ0NDQ0NDQ0NMyFrdtTunDrbn9Mln69XYIMzOu/RMlXXf3iO6c9+P4ko72L5cuU0QS4vdvD9Nx8CV7aQ683bTxPrY84tatL+JmMuCHJhSXvUujlKfOVkmLmiMl8dvtkUt+X5O+WB17/cnx5cka+vBEGOCoQ2z1L0WEreLyjrNablOVDAuVhn0/GetSLWfTCtetHuHXWmb2WxOE5pEfqRWtl76KG7cg6PiIiHlnWW9rLPOFf1mMjocr9oZOl33LlUDtDDrbXj6M6z8pIgy5fbPcwsf2r/UFveih3n8KOSmd8eLA/MtINPfaCZ3+XcD1MIg4uiWz/cqhaeBxPkQcTKmbkp6j24jylEupSoPuzlaRsfnTIoLaJ26udvyqBuRKVfQ0Uwh8Z9XuATnE+Yy5S/jUityt8geWnTYbQhy88yiXG9IHIY6tafamorHoIE262XuuQqBm9rp9uAWaizDWtOWGzG3J7CJJ6T6ZvaBjDLjmP7WTasTttZyTJdvlkEm6T7P/leTGgKpl1J6QKdj4JDGRQxHlpAkX+UXOJiaY4Cd1YA1YAg+unaIx+Xx1cig7xSWKQsqesc5uf+2Y398GXepW6saxWVfGZarz8+nHI5rVps0x05u2P+Pnun6ZP7X5fOn3Xiemmq+6VTlh1p3RYmv3YypUCnUo8apJHa9LpBGL7YGME3cc+9rH0qle9SjuiWM90hD3mMY/REWKzUG5rOuXe+MY3ple/+tXp05/+tHZ8/dmf/ZmOjLv2ta/tXn3Q4feKV7xCJ0YE3uY2t0lPfepT9b12XO9MA8v12te+Nr3mNa/RUXl0Kt797ndPT3jCE7RTkZF5s3KsBHiX3imnnJIe8IAHaIcedT784Q/X9VBjx44d2u5nPOMZ2pHHewbpWGX93/SmN9WOyH2BrVt3py0X7UrbttmxBpjH1kVXcjDGaxlYafue37INDQ0NDQ0NDQ0HFdbL9dARmxfShrV8pYzLXZFamJdTsvkelf4FfG578P1JUlgKX4bUCwaXOq/s3HxVu5k6u7RC9aaSye46RJ7sT2vx2+35xC9+Balc/kqOtItmSJGHm+kh8ReivKjHhEix621l+ddOgNI+JLXgl0vk04K0SwpxYRda9R+R2ljlWquU4WhMH/lKqSNRkEJqrhI/KbNMai+kjgRyjhSa7XCNl5mOXJHtCFd/WVRG9rDJkJqfUSuZhz30LrHJZCNgjPMLcUaYBLfHh/UlozmG7Oj1sWO1nREJa4S7hK9yjgxuI26ch3R7GVfbbcSD+4nUUSYT3EaIoA8ZfkPxS+KyvKwD8mt7fX3EesmyiKd+RsLoyBKRjHRhVAnSRpmI3rmOcEGPv8rOL+xlHiZGkuiIEkaKMIIEzqiTYgSJjizZwEiS4FFGv8bidfKRJ1muShs3rk4bxQ+5acOqtMmlcmzKZdq0xvwouz1PotNpYxePP+XNIjcrXyVly7NZ/DbjhxTdIaLjxijToYesk2ltOuzQtenII9alS15iY7rkUetFbkhHHbkhXeKIDenIw9elIw5f302HCWdCL/LwwyyePDatKcrkD251GY+ytEP4IZtFx+S60o4/9k0bY2JZmEpe2mfpY4o8sm1kfeq2YztRRo5NYrf9wWTsB1bupvCnzA1o2x/nm9jnY6p5OYWNc9Yem+S82dCwL8BnL+dljjnOBUceKeccmQ6T884mOZcxcpHPTf2s9m8afPWwEca24+oNa3iW/s1ECuqX9X3p4QIKhZ0Dgu9h8pfj1S4Hi5RXrVqttk5PDr63iZ3vWcL1G5Ea/Ptcz98kgfb9bdw+pM92Xxlw/d5J+4Rby+PPmPrhrtJKQL9/Kg99X8YfULlAR5tI3x7xt9vrjjhpEBspT/qjFvy0PooeGXrTNlTg3W5nnXVW+rd/+7f0+Mc/Pn3hC1/QTiZg212On7Vr9X14jH5jVB3gGoPOJTqbAt/+9rfTSSedlN72trel9773vekrX/nKRC4mRvLRKcVjOcnDyDPyXHjhheq7kjjnnHPSW97ylvS6171O28foQd6HRwfkVa96VTkHLL8Tj45FOjnpoOQHlGPg0aQsZ3RqMkIvOk1rMOrxox/9qG4bOlHpfGQEIo/vpM37CvWxxZ9xzrWyHu3EpLK219xk8O4v2ytubMBezEsemvZozYaGhoaGhoaGhkVDvnOmdTxSafVC2q6/AHZDQx96BW5fvxV6QVBKt0/olyqlMCtfIPy14MLtXCho0e1crJjWfRXo3UURNpSmJ06l/HGh1/cHdMpFfuOW1/zh1hnYR/hrF6GGeGLVy4RAb0YKXm/Hh1HZd/u7tSj6vH/zJKyho722XqzMvRvjHCssij4ibBWdMAuis04n7bjRR4HZDTqmeCxazU3GZHaLR3IhbZ00cPWX/PjYI8PQE+OPHcMuXPUaV0zYC31IfUxZnqzNmptOmilSH0M2IO1xZJJjxG4+5kcnjpWnTNpREOVCPzS5nbx0FGlHkMSvuNy42juNZBLdVBkTvNaVUxknk9VlnVxMLFvWxRR+vanwC13lS67cKUdZ1hmTltl/nJeTdta4zOs6/KsY7VREst19sn009tVymvQpbbrv5Mni87TWHldXT9pxyX4oZX1MXthkf+c45fjtzlENDQ0N+xf4nkHntXaWyzl7rZzH+NKz079wWadQIXWm36Ds24vo9TuXf6VRvZcNeIW3SBWlgygKzvcky2cxYZKzqcztx1hUUIQIjNsIaPmyVI40p93eIFsE56YSuF8UZcbShdm+t9n3Mw0t8mmcdhyKPwLeswuEszxo1EU7LoOEljwU8evspNLvuaLVPjq18ucdJOoH8/rgmr/g5CRWVxCSxzvKZ5dsZ75D7o/YV4/WZIQaI+ze/OY3p8985jP6Hjs6uxiZF2D700lD5xKdYR/+8IdVT4cco/J4zxyg04kOvA996EPpq1/9qj7OkhF2PBKyBPno5Dv11FP1HXAgHuHJIyOHsJRHa/Lozve///3pTW96UzrzzDM1973vfW/tyKM+HoU5Fjsv6Jg7+eSTtY4LLrhA1xuP6aSTrsSOHTt0/bCe6Sylw4/OuRNOOCHd6U53ci8Dnavnn3++jtT73Oc+p8tLB94jHvEIHY031vm3N6DvyGNUsx6jApmZlLmdkLJEz1G5r+X+ecQ3NDQ0NDQ0NDQcEKAz74hNC2nDOvmCyTdMAZLiPBLMtMdU6EMCLfsE9gWvZbZLI/vcyy6zPfP55Lj/HPliUi7+FJzrDQbn3Bjq2VVyCYGX+emFRc8uE7ZVXCTbjRQduQVXu+kpm38/P512yIhTQ9rlv87u6rVkUpYGKKeMTi62qJV/y0vdSAnxfOYfcbWs7dZeyqN2KVDmh5uMSlu3eiFtXLcqHbJpdTp885p0icPWpEsesSYdKZLy4ZtFf0hMwr18KKOCNjJJbJ7m4xaLXGNl59jhTNqRtMGmzSpt5JKVzV5Oah/Vx2SxTNFRU3aQzSPXr+P8ManPUn0GOmVWcKIjlO23xybfZw4m6E1Nbm4IuHFU3jwqy6WfSqawuz7zORF5iIrIKEddIJeq9gDaqCNSV69WWS9DQ0NDw4EIvrPwmXn44evSJS6xPh1yyFr9nOP0xhlOR/RTlvOeSpScT/Uc6D4k8rJOlCMOP9W5f0gx6iQEv8htE/nxoX1Sr/qaVF/R6/dE9OIY79BTe3w+a96YyIk+JnJ42e2UdUS7Svt+xvsiVUY+zR31oXN92NXX7JFPde4nwvwkr+ljKuJF8iMr/byhjE7bK1zLxu0dnsU68fhyVD4/1KLfbq1ce+2n/Xf7HHTOnXvuuenLX/6yPvrx3e9+dzrxxBPTt771rTyaDjBqjpFhjD4L0JFXvluOzive5cZIMnK8853v1E4rOvRKMJKPTq3vfOc7rkn6qEjeM7dSOO+889IHP/hBHR142mmn6f5P591xxx2XLnnJS6qdTsxyoj2MCixH1W3dulWX6bOf/az61MvCeqOzkPX2H//xH9pRx+Mz6aDkcaBMjAqkDTwik3XDugS8H2/oUaLU8cUvfjF96lOf0nVO5+r1rnc9fZzovuzEy8jXngYkR3c8+lufQsPRLk6sd5XB96bUuZwP2oi8hoaGhoaGhoaG5UC+X+qICi5Id8q1wq7uPqrAvg5PysC89sC8fJYMVHpu8rJAgeC1DIzZJ6T4ipjfv5DRvp5+Sr5yeRYptSRFZPBs57/O75yqw19V4SeS97boO+3kQql7Rx4Qf7FzO940zLHLhRN6Ung9u/UiVLOrXjvrnOsdFOIKfzh5wx+U+cZktA8Z/kNxWr8s9KqF3TrijRFM+qg+79CKTqcYzdPQcLDBbrZ2O3fwUjeBOBjxoTzgW3bETWDARobRGskfdYikbXYTuXXcNTQ0HPygI4iRWxs22khj7dRak3TEno7Oj9HHlOMHM8UUnBHZ69aTqz/pj2wG9DppjEyVnlHaJq0+RhEyMtwe5cuPd8xm5U5PG9YjfVLdlCnieaRapzfgAAD/9ElEQVQyP1rqPYpZJuw6In3ANjF5vl6eTUjyr9bJHtvc1+GTy6Ev7Jt4PHJpq8rGi6loL+uNjr399XNsX43IY1TaT37yE+1w+9nPfpZ++tOfKmcEGR1IfP4zIoyRZ3RQ0VH1gx/8QPXXv/710+1vf3uVkYt33jH6LWLWrVuneTZs2KCdZNTBYyjf+ta36mgzvsPwqMiHPvSh2tFWj94LzDsij04y7G9/+9v1PXyMMmSE25FHHpmOP/54bQ8dc3Ss0VlWTnS4MWovRtSxDhhl9/rXv1476iizLFe84hW9tpQ+8pGPaEcenYCsN5adTlDWIx1ylD//+c+nd7zjHTpakQ5EOgqp4573vKdOl7nMZTybgfbRAUmnH22/4Q1vmH7zN39TO/L4MdW+BH2QO7bvknXTfb9k7XN1mn/4pXxSBpZqX7KUhiEbGhoaGhoaGhoaVgQXbk3pIn1ptHzhlG+aE1J89ItozZvcJzI2DnyXlJEl51fBXDJwYRn+Q3mG4iJfSHtMJo8w6ecNCBU/8qOzTjTMIekUVHf4KvF03vNDT0HjuVlf2SvJDJH1lr7i1k74GlkEfYTVOh69Z7+cbmi4OCGfDzggBHEMl8dz2HoInfuUGPR3lLahwy3by7yiQ0t7mLhJ19DQ0HBxB+dLbrwj43ydUZxrAfbhM7N9tyqhvkM5K4TdztuUu+9XlEvMyrVY1O0LHrUq93LA2tnHpEZQ+NX2Xo6y3FsXld8M2Ag+G1G+P+Lnu3+aPrX7fen0XSemm666Vzph1Z3SYelwt+45sG/T2cTouec///na2UanGx1fdFjRSYeOTio6q+js4l1vdL496UlPSo961KPS1a52Nc1FJxoddK985Sv18ZrsK4x+4114dLzRCcbov+9973s6MQIQHR1Uf/VXf5WOPfbYNDbijJFtr3jFK3RiVCAxT33qU9O97nWv3jalnXSCMTqO0XLx3j3y0hY68lhmOulqHH300emFL3xh7lCk0+0973lPesELXqCdg6yThz3sYekv//IvPcIeTUqH4Utf+tL04x//WJeZkYrE07EJqIt4pu3bt6uOjrnHPvax+ljS8AvQ4feMZzxD209bn/CEJ+j7C695zWu6x77Dtq2700Vbdqcd2+Rw9OtHPSdIO/X4lEMyrjc5OehVLocth+qipBQ836hfD2GYRBuR19DQ0NDQ0NDQsKLgkS9rVy/oc+cXcU168UD9vXxevkelFJzbBUpcsMBwErNQ3ZZMDr0Z4lwvetxuvp1jXe5oxEcdZujm6Ct/h9WNQbvYzIIORB2aooupoRdrFHo+UW8Ju6ij0y4eKcljH/Wdd+PpGxoOSuhxU+z4duybrtQHsoaDMuyVXxz7NSbqclnq69hg2LkZxo3OoXY1NDQ0XBwR50Yk58/eebY4V4Z92vlzzDaor87VJcy/b59W73Ixkdv5PHXmz5wB39o2uP7CpsXZ9Y3BHr3ZRuTVYH3Qcce73a5ylato5xWjyehkY/QcnWa8F48OODqq6IjC/9GPfnS63/3ul65xjWvkzjfWL4/IpJOPTiviGFHGyDQ64sjBRGcbnYGMRKMj6zGPeYw+OpK4se0zz4g8RgqedNJJ6eUvf3k6++yz9bGhsY/RIcajQsnDhI1OvnKiA46RgawLlok283hLOiWxs3x0Nt71rnfVnIB1wbvuaA+gbeRmosx6RLK8jPLDjzoe8pCH6DsB6cgsl5lOVUb48d5C1t0NbnADfadfjCbc19B35O1gfQqRdatr16X+4FT+dGlkhtTjVqb4gWrwvSplJ0A2LAE/+9kv0pve8q701re9N33prLPTFa9wuXSPu98xPfxhD0hXv7rt9A0NK43vfvf76XWvf2t6z/tOTN/85jm6rz3gfvdID3nQfeSDo3uBa0NDQ0NDw/6AC7fuTlv4sd7Ub6TLlIFZXBBhgZrXWKx9uf5LzVfLwLw8LgmYx0g5BRdjXKy4LscLRw5dyBAP9BffIsM/LozgepEnnOsmu1ASHXbXK5zjT93RBuXosSvzx2qWduH2y0pVV1Kd1XfYTgJ1Uaxfa+9wi447tTc0XIzBsVMiH5t+cGR7yCkHTZ0rUOrr6Gyr8oaem1NMDQ0NDQ3j4JzJxPe1gJ5VObcW52DFyHk8zvs1BvXkdD3zqgZFfJ6U5bE6Fos6b0bkL3WOnp8g87JNhY/aC1sdX/qCYPhNtCsQuiJvG5E3DtYhnVx0hNGBdOqpp6avfOUrOvqOzjvsl7vc5XSi8+26171uus997pOOOeaYdMQRR+h2CNDRR2cdHWA8ipM85CU/65/OLDrsyEXn3a1vfet0wgknaIcWtjHQqUjbmOgIJPYBD3iAvvMu6qcTjPfQ8X4+6iuP0xJ00tGGGjxW8+lPf3o66qijtC20m8eAvvjFL9bOyOtc5zrpgQ98oHbEBVg3dNLhe8YZZ+gIPdYbnYC8347OuHiXIOuOd+LRZjogWXf1MrPuPvnJT6aTTz5Z28+6vtOd7qTLu1LH9XKwdevutHULowy7YxDEcVi3Mes5g5Um1EN8D8jWkbdE0IHy5Kc9P5322TNd04EOvb947pPT3e92h/1ix2w4ePDpz5yRnvbMv9b9r8Yxx1wr/f3fPCvd9KY3cM3+iy1btqbnPf/F2iE5BjrEn/+8p6QNG1buBbF7GnTu//ETnpM+evKnXDOJl/7zX6f73+/uzhoOJvz4Jz9Nn/jEabr9z/ry1/QHHoEDcX9uaFhJbN+Z0oU8tkKvP6Z8M11RGZjhx1dh/b62SL4vZbS/5rWcZXepLpU+hw7483jMeJdc6VfreQxmxME7fw1QE11xpZ1OOR6HWeZxF61HLDLzeih6XPjzbzM4Nzc8uJBjy1VKOvvWr+2PvLO6GhounuC45dp27tsH4Tdw4EzLEbaIUjbm77lzjHBuarZr8IaGhob5wTlUf3xVnWv1TMr5NPQzzq31uTc+MybOyeSbkiv8J9ozJWYelG2J3NpGLUlZdP0aJ9sAVBdtqezZf2AZcp06F+4SYNO2VPkUVU7QOvKmg/XIPk2HFY905F13vKONR0sCOu4YPXelK10p3fjGN9ZOKUajDa1POvMYicY75egU5JGcjILDlxg67a561atqpxaSTq5Z+yodc3TUMdFxxqg5OtYue9nLukfS+njXH3UN7hcO2jD0Lj4691g2OtdoD4/E5BGgPKqTUYqMxqMTjpGLNXisKKPwtm7dqu04//zz9R2BtJvlpdOOtrL+WF5G1w2tO3JQF52AgFg6FukM3B9AR96WLbvSju3d9qLED1W1zHaUMiyOz/gBagD/IV7LwFLtWUojSv+GOXDhhRel5/z536f/efO7XDMJOlX+/WV/10bmNawYfvDDH6cnPPG56eOnfMY1k7jrXW6XXvTCP0uXPOoSrtk/0TryWkfewYSf/ORn6d9e8f/Sa173ZvmS9WvX9tE68hoaDBdtsxF6+YuoFPgmOvpFtck9JuMddTGiLjZG7Yc+/EPPO+GQzGp/08vc47yoUq1Ijw8713103qEt/ZG9d+K5XgO9No1fkIt1iS/juMSxCy58DVx2+RNDC7/I1HE67zasW0irV5Pb8jY0XJzRHU8cKXMifAcOoKE8ta6MmvD3nKU+OvD0pktDQ0NDw6LA+bTuzOudT9FzjnUKqjOzYugcPHpe9pwl8J34PHBdKZeCMrbMJwXVMVdeoOagjBFiUjARG7LOUcY7Ruuxgvpr+0yT1siX1P25I++Xu3+eTtv94fS53R9LN1m4Wzpu1a3TIekwt+5d0PlE59u73/3u9LSnPU11jEp75CMfqR1QdHjNWo9sCzq36FSjcytGxxHHdli/fr12qI29E68G+eggZIQbZXLQlnJEG3baPgu0Yaj96GhXCZaBTjUk77JjmjZyEEQ76QhkuWlrtHfW8rJs5XmFNnHcLfUYXmnwjrwtW2RbbLNjjAPMXucu5wb506MONdtbj0HTywIV/siO4z/JZQqEXQsDGLR3fP884vdzfOOb35l6ox58+ctfSyd+5BRnDQ3Lx5lnnjW1Ew988EMnpzPO+KKzhoaGPY2zv/bN9KjHPCW97F9fPdqJ19DQ0GHjupQO32QdJEC/oyJN7KfSOresNIeU2ZL4kqW3b0IfcthuFyLG9cLA9XHhEHbelYcKHnMdMceAONV7iEzI8EfSCcdIObW7H0Vk5EPDtREXeBN+Ep/zZ+lGSs7pxCv5hL8K/LQwYUeQYbVcGR26aVXavGFBLkxlP5ULM67BGhourogbL+UNl/rmy+gNGXSV3o5zPwBHQMREtipXmYe642bmYDsaGhoaGmaC82fdIdA7X3N+neMcPjdG8tT5aVfollt3/Rmx3HzELzpDLIt9+bVy0Q7N6dMEDqDPuM0Lh6YrLxyTbrxwp3TdVTdI69NGt+x90JnFiDVGjgUYEXbkkUeqLPf5MbDv0OHFiDJGzzGCj4kyI8zIPW8nHiAfHWHxmMqhDjXyYZs10RFJJ2I9kb8G35cucYlLpEte8pIaO6sTD8SjO3lfICPxWJfweZaX5aRO6mHa376r6VEmMx2Bx3HHH9ew8kcrkaaXZYHLdS3S4sw/7NM5mpKrg/FaDto7fsB15L3t7e9Llz/6pnttesaz/lZHD5X4xje+o6OjZuE73zkvbd26zVlDw/Jw1pe/7qXpOPtr3/JSQ0PDnsTXv/Ht9JSn/eXgI5YbGhrGsWa1deZtWm+dJHwZLiWY4DHNwXPZJ1DryglM512Xk/GuPMhlthRey1iWWh+ys3v7Mq+l2Sf1MsmFgv6KkMuDrDde5osLB5PG1S4TfBUdXt7pVUubWbxx808LkSP8ZNJsovdJdeKLOzP1E6VJz4eb8pBdvZmLE5l79ogXzvX7BtkfD920WkfjreZRmpgaGhrkNCHHj08cr/XNxbBlVPZAHVdCc3s5gHdMgZrTntaB19DQ0LAysO9kdl4NTJzjBZkNndcHdJGjl4fz9sC5uz6fExO6aF/dnqWgrgfMnbdsj5YWD62/asPU+sWGfSWWfW9glfxdduGK6Xqrbp4ukS6Z1sjfvgLrms4n3sv2qEc9SiceY6nbr9oGs4A/x0c5LSVPIGLH4kv7UqYhoI92z4syZ0wHC/g9qC4Py6XXqCLljyMNWXLWm8oFWX9sf4bvuX1vyQOuI6+hoaGhoWFfgx94vPq1b05nfO5LrmloaFgsGJ132MYF7djjmpQvxXZtykVqxX3e58N2lWHHnHkt3S5BPS5zK5vs7BV3Oc5l6vHp9lrW/swyp1zaB7jKGVyuCPQXwRRDht1G0/X9S6n1OVffKt5mctFRyNCbv0uUrg97d0u/iIv8YpUwKbs+qhB9T6odx13VSLyQ6qL73yEbV6VN61eltWvk8iiqbmi4mEOPH0fctCl1EwjbwEE0FmfHaO+IV13P33mpoy3lDbSGhoaGhpVBnO/r82s+B7sun5FFjyYm1Rfn68Ugx1coz/+U99Z5v6x3HvTWl8seynyLWYbw3YvLvlzQ4bApHZKOSpdO69J65fsSjHi75jWvmR7+8IfrRLmhASzEYSnHF9enKjnW9JoRnVyDyh97sJ4TZGJkXujVfy/K1pG3BFzjGldJl7n0JZ2N4ypXuVJav35yKGtDw1Jw7DHzfdBc+1pX81JDQ8OewmdPPzO9+S3vdtbQ0LBU0Ily2KaFtHm9XdzZtWl3qefaEblCdqm0x7PdZbZXfKbU/2XYp/hTKO1L5HJFkDm/Kgy9jZjTQXDZHlJ/fcjoOJe1nZnqrSiT5C3rcRlc4dzCRI8/Em6hyvnnMir4dGkY9rcbIbwHb/PG1Wn9WhuF19DQ0CFuFoacekNzim0sbkg/qHMZsHPI5E3mhoaGhoaVQXmOLc+ynI9nnbvxD795z/MBLAtin3VmH8s9C0uJGcRK5VkM+Lw7wD7z5EpBR+L196J9Ax7ryCMwjzvuOJ0ufelLu6Xh4g5G5MUIO/1eyflPuF5Dsu861+NPDn31408knLNB+HUSZckH7MoK/Zy8deQtAVe96tHptre5hbNhXPMaV023u+10n4aGxeAG179uOuFWN3M2jNvc+vh0wxse66yhYXn4p39+5eAjh2MaevTwxQE7d+5KHz/l1PZOvIaGFcSGdSkdsXkhrY1355m4eEiZ7U3JLw2Dc2EwpGeknOrDjoHJudrxx8A/ttA7j0m0OiKOC4+ePiTF4OLT8e4mTc9vitT6JUuvXWgqSVvoxNu0YVVav1aYVdvQ0CDg+ImJGxpxHC4FQ7GRG3DoRVllHIwu6/hVom8deA0NDQ17B3q+1ZvWguJ8HOfx8gxdluMMPfYZEvHTQI76XB8xK/UZMJHfZQD7tLom1kGxTINRZa6B5R+tC98B/4b5wbqlM493uzHN8264hosB/NjSIzmOMeXxbry+Xf+KkXj+RTbzTo7pC7uyQj8HZ2odeUvAoYdsTk94/KPSzW92Q9f0ccQRh6UnP/Ex6VrXbCOjGlYOl73spdNTnvTYdPWrX9k1faB/0p8+eq7Rog0NDUvHL37xy/Sls852No7jj7txev7znpLe9MZ/TY/4nQcs6uXHDQ0XR6yWb6WHblxImzdYxwrfi+eRQMtMoS846OmWOYHl8HpipmWXe4NzQWBcJKPrUIvkJnl+x537YdQy0i8kgivczii3GMkX8ejonOMHi1nn5fDry64+nTw/k72/AIXberxrF5c4ip69k2tWWwcej9Kk3NDQMI64KTn1hmvY4kBzDMXUNzkn8oukBK/j7fxknXjTbqw2NDQ0NKwccmce593qvAyyprKV5/jFgIhZUeVnx2LqYBkipheLlEntppn0KRCfQcihTyMiyqjw13ock1nnwEBbGhoalgE9Nv17ZRynHNfVCD0kR19wG6GnRZupkaIp9cywB6TMWkfeUkGnyav+48Xp2c/8k3S9Y6+tuite4XLpdx56//TOt70q/ea97yrrmJXc0LByuMXxN0lveN1L02Mf8zu5Qw9Jx/J//7+Xq72hoWHP4qc/+3n6/vd/6GwYD33IfdPrXv2S9Jjff2i69QnHpWPlc2I1vRQNDQ0zsWFtSodvWkhr19j1qlxCT5VWqvQF79nnkRI0yF2StLRnXttH+Gi+aVwKi7IHN8ce59tpyW1msuR1PDMb8Ga8ttv77gp/K476S4COArSRfa7fNek/ESdL2dMLl1Sd3WVpN7lLO4s3rmc0XnuUZkPDEDhupoHrWz1y6uvcig/lqXWDPi4z8JGp7MRraGhoaNi7iM48PdcPnLsDY58hi9K7jnnYV/LcX+bq5fVlC41+3vlUgjaNLU/49iO65ShR+8yFqi0NDQ3Lgz6RRqZdcjHJpMeqH+P5WA+p15TO5Y9rX3sajXHNVdg1Xv6C13Kp9nZXcRk46qgj0+Mf98j0wfe9IV1w7unp1E+9O73w756jj9WsT/YNDSuFK13x8ul5f/6k9PGPvE33O+Qzn/7H6QpXuKx7NDQ07En87Ge/SF/56jecTeKQQzanBz3wN0Vuck1DQ8NiEaPzDtHReX7jWOZ7Rdb1Ba/lLPtKSgqLsQefIuVyQGT360IkWpMC9+PGzdi78FRKrRqtJOKN2/dhdVI9dPdu9yeujEdyZaK/gLS4bJ+QEV/lmSLXyk7FSDw68bgX1dDQMA4979oBlKF8N8ecABlT5ac3MSoM6SZQ5dHcgt5okIaGhoaGfQLOwfyoQlGd05W5rTzfo4kz99jnwKC+zi98JT8DIleuO7jO+xhr9ywMtrZeBsm91PwNDQ0rATkm5bjUP5d6nPo5R//4Dsof16jYKjtc5tnPuPxV9tBnf//L9uDFvOShOSgvY1/wN89Kb/mfV6zI1B6H1tDQ0NCwGBx99BXSJY48wllDQ8NysF6+gh3ho/NAXOoeUJKLdGXBR+yhX7acnY8Lho4z0s6IcVUVnJsMlb4n7R14wfVCA86vEtUQfi6lYJIS3t5eSjw/M+xStPDCP8sFmdAj+fVk6Ifkbn2E5sYNq2V/4gJMTQ0NDRXGbibqTQtHzwN9dUAN5ZjQwZnmOBj1JkjrxGtoaGjY54jzMT+u0PN3nMsd5bk+Svpdzctg7HOmp4/zfeWLj7ahmAByLG+N8Bv0D5vOxxH1zsI8LZrHRzFnnQ0NDUuAHPu7eCwM54CFuDo1PRypZzI/RxgPGXZE9+68STnpL4Vh7vMxflB25B1z3WumW93ypisytcehNTQ0NDQ0NDTsO3C/IEbn+SvY9Ho2JNCyTyBzV2SubHm8nsCQzHZpRJ93ZeNudz2zIVnbx/3H83GhELyzmz8zfXwdehTKuWQAHuf6LNHrTR0l6q/5KMikkn/0cKS55Il4vSmi/1abvfPO7TIzGbyT1rrKTrGQa9fYSLz1a7v6Gxoa+hi6qRk3TXs3PmUavAE6ggnfmnNQUocUsy+SSfStE6+hoaFh/wHn44nzcnFe1xI20ZXn9PIsPtdnCDk8T4AcxJYTmCufo/xMA7o8RT3UwTQN89Q3f4v6mJqbdjY0NKw4dsd5QI8x+04qGuWMwoujUvXuxzvy4ocN+n55PXO4JG4PytZD1dDQ0NDQ0NDQsN+D0XmHb15I6/K780xS0rJPHeciv+LQzG2asEtQz565yxG7FnXW9+v4LHuf13JWvp7EVtophF7fAUDZRuLJZYHqQwKV2AfePRdS8xScyx6y5fz6noEiruJWlDl6EhV2KXZxlYz8WU+9pV+K5dulHYsb1rHPyGUPC9jQ0DAX9NgsZMbIgaTnp8q35EQt9hDk5oiO/GhoaGho2G/Ajex4xGY+yxfnez33z/jSNfHZIhjSaZ5KnzvfHCUfzDGA0m/eGDDLN+y0ZvoaGEGxXD0soo0NDQ3zQ7696vHFsRuTcvmL9+ZxVGa9S0bwdf78R5yN7NM/l8FXSi5IYmEHDt729velx//pnzkbxjvf9qp085vd0NnBhV//+sL0ne+cl37xy1+lHTt26C+gV61anS51qUvou9M2bFjvniuP7du3px//+Kfp3PMuSDt3skPv1Bsla9bY865ow+Uvd5m0efO+eS/Uvlw3YMeOnelnP/+FtmH79h29Nhx+2CHpSkdfIR16yObel479DZwO/u9Xv07nnftdXY9g69ataf16W3dr165JV7nKldKRRxwu23216paCLVu2puc9/8Xpda9/q2sm8fCHPSA9/3lP2ePbbQycsHkX2re+fW5ve/Ko3aOvdHnZry45sQ7w/+MnPCd99ORPuWYSL/3nv073v9/dnS0etOsXv/i/dM6556cLL9yiunIbbdq0IV356Cumww8/VNq7vJsf//TPr0z/8OJ/dTaJldxGe3O5lovTPntmus/9H+VsEsccc6307y/7u3T1q1/ZNcvDtHPL/rRe9jXq81f5GcV6uqqcuw477ND9+hy8Epi2v+ytz8O9gW075HN/i3yV5TutcP2C3eTcUlccx4LIITs3aILnzj7lts45jvp6ZvxG0PyJr+0qRafxsk9yzJJHpdq5ESN2OvFEkePwh6MQbcknpNjp44Mzbd6wur0Tr6FhBPPe+CyP1TGM2gb06ut1g16sl3MnXuHX0NDQsNI42K8LwLRz93KgN7l37nQmqNalMnRSf/68QVXIoXN8b5vE54XL+CyqZYlefIVZ6yK3q0Adk3nUM2YXRKmXoyxX7a/rmoY1q1en1TJd3O8BNDQsB1su2p0u2iLXj9vl2JPrUzt/SNn+beYqJFe7XD3rVa/882NUva7VC9C+X8n1uCd35gMyEP5amETryFsiZt3gvv3tbple9pK/SUceebhr+ph1I/hpT/mj9KQ/fbSWL7zwovSBD56cXvv/3pI+c+rnVDeEQw7ZnG59ws3Tox75oHSL42+6rI6WADdFTzrplPTOd30wnfKJ09KvhM8CN6/vfc+7pN+8913Tta551UV/sBwo6wZww/Rzn/9SeuN/vyO9/4MfTT//+S/dMoxYN/e7793SNa5+lalfMmrsqc4vvoB97evfTv8r2/hd7/lQ+uY3z3HLOGJ93ke28R3veGvtoFwM9teOPE6H53/3e+ktb32vblPKY7jiFS6XHvLg+6bf/q17pStc4bKq21MdebGfcRx+UPb3ae0KHHHEYenOd7xNesD975GOP+7GM9fjPG2fB7POfSX2xnItF/Psq/NgMesFUC/ntLe+7b3pwyd9fOa5hf3xrne9nR6TN77R9ZZ0jpu1rHUHZZw73vf+j6QzPvfFdPbZ39RtuNhlXQ7imGU9vfXt7515/lrsOfi97zspPfqxT3M2jBe/8M/1XLAUcJ55ytP/ytkkLnPpS6ZXvfIfZZse65phLPaz6DYnHJfufe+7pHve/U5L2k6s58f+8TPTl7/8Ndf0UZ+/Y3/+gLTtK1/9RjpL4vg+wec5+8ujHv3k9IMf/lh9h/Anf/x76elPfdzEo875Bnvh1t1py3ZXDODDHz5JvjM83dkw/umfX5jufOc7OtsLqL+Xz8tXUHIBEjwuSPjXR2FWdpUZ3pFG0Vx7dr2Q2blLCuqRj7F8uaHBBDqPsrlldR9W5zjEaP8ZLMaG9avSRpl4P17DymIx318b9m8M3Qpg+w7eItBjtb/th/xqHRGqKfQTUWWM1MH1Y9vP9h7aum5ouHhg8Ny+RJCLjjyuCXvnkKJcn1lKv2jJ0PlnQke7Kx0+Q8szlC+Af9h7sREzkG+oDtWNxIR/qe3lKMsDbRmqbwitI6+hYfnYctGutOXCXWnHTjsc6aKLH6TWUo9WKSP1KBUdstbvadmO+P0cX/zSV9NDfueP9Qb7tI4qwE2x93/go+m3H/JH6bGPe8ZcN8XHwE23V77qjelOd3lQ+qPHP1vzztOJB7jB9/+95JXpjnf57fT4P/3z9O1vn+uWlcW+WjeALysfP+Uz6YEPfqx2Ov73m/535o1TEOvmdnf8rfTEJ/9FOu/8C9yyb3DWWWenx/zh03Vb0a55OvFArE/2jXvc++F683jbtm1uPTDxk5/8LP3t37003emuD9ZO+ln7CHb87iDr7u9e+DJZJxe6ZeXAl7hTPnla3s9e9V//Pfe+y/74lre9R4+R+z/wMelDH/6Y7rf7Aw7W5VoJcBy9/R3vT3e5+0N0GVnWec4trD/WI+vzN+/3e3p+2lPrhe13+hlfTL/zu0/QcwfHwYknnTL3NlwpcP7kPHr8re6dXviif53r/LXYc/BNb3qDdJtbH+9sGKee9nn9UcliwTnjU58+w9kw6OS69rWu5mwS8VnENl/MZ9HHP3Fqevoz/yadcLv7ple88vVLav88YH/m8yH251e/9s36eV1+n2D5WM5pYD197/s/cNZBvi+nzRsWEu/Po4+PL7foVMq0Xeo//bTp6/iWtzwu3fCGN8gxQxMY0scEhvRjE7Ml8RFZ2wc5Fx/OueRAMlIzOBcocC5I1L+w63P/0bnelBQ63rOX/jLpy8P1skPqpQ5k2NGjUq11wJWxTMz6vJIEejmm9etWrhOPGz5t6k8NBwfGbhaGPm/rGX5TIT7qx0Q+mSaiijyU9kQnXrn/tmlyamhouHhgJY93csX5uvd5UJ3Tla3EuaasQ1DWGblXcvnmRV7GAjXvYR+0saGhYQQcj1y7xkWogONXz2siOccFxx4SdO/Ik0n+4rhXf7843ROydeTtx/j0Z85Ij/uTZ+sItcWCERJ/+Lhnpi988SuumR/f//4P058+6bnpuX/xomXfmH3HO9+fHvTQx+mohrku9ubEvlo3gJuvdNywXLM6EKfhzW99d3rAA/8gves9H97rHRHUR2fBAx/yh7o+lgNujDOi5KlP/2vtDDsQcfrpX0gPetjj0sv+9dW9G8zzAP+XvPRV6U+f/NwV7ZjlBvi//ttr06Me/ZRl7Wfg82eelX73UU/Szo49dcN+Xhysy7US+MY3v5Me89in648T5u1UHwLrhfPT057x1+mHP/qJa1cGO3buSK9+zZu0U2a5ozeXCkafvekt706/cY+H6Xl0qSCWHOQi5xAufamj0h3vcCtnwzhVPofOOed8Z/Pj69/4tnbCTcNd7nzbtGnTRmd90GH3Z899oW5rtvlSQI6/+Mt/1O3Jj2NWEnwe8LnA58O0/ZnlYzmn4bOnn5m+8IXxz2zemce783iHHl816JjiG8d35TvMaTM68m59mxPSJY+6hPpHXC1J2tMHd5ntc0opLIurlELPPovLl/6Ik8sAQdx0ESaSx9Dy3QAV76ALe3Akdp4aYkpyWNFm5k8e8ts76nbro9jh4aePHXGu/pmYxJzr1XcPuL1oD7OelGAkdvLQqcvjNJfbiceF2r64IdTQsF+BY4CJ42svHA97qhOvoaGhocGwkudEvZG9enUvJ2WYymIKaBldlB21b8n1RjkSfWXjcyP8S5Q+9RT2+MzRH7QVfN4p56n0e2OSmdbf0NCwdOj16E6meMe6TFzz6vWvcb4DqxSovrCFvXxnHkemlIxzceqy5rWcZQ/ZOvL2U5xzznnp5f/2mmXdzD3jc19Kf/68f1hU58KPfvzT9Kw/+3vtXFop0Bn4xKf8RXrHOz+gO+Zysa/WDaCT8ylPe3566ctf7ZrlgXXzlKf9ZXrNa988eiN5pcE2eOf/fjA949l/O9fIjXnByKGnPuOvdR86kPCpT5+uIwvHHhE3L+gQfbJsy2984zuuWTrYF/7jP9+Q/voFL1l0x+I00OH413/7z/us0+tgXa7lgmPyk586Pf3eo5+cPnTix127fLzxf96ZHvPYp6Wzv/ZN1ywPfGF581venV6gI1BXbvstBowWf8m//Gd64pOftyLnL3KQi5zkrsFFEqPFrnmNq7pmEow6Z4TbYsA2P/W0z019nCQjARkROAQ+O57wpD/XEW4rAX4U8/uPeWo66SOfWJHP6Z///Bfp7/7hZfq5MA/mGfl48sc+PbiNAnxhZnTeYTo6Ty5whZ9xxufT2WePn9uvdrWrphNOuKX/ig5Y3ITkgnmI70tJYRFc9rosbQubzH4i7SZJJ0u7js5zvTn17bCw6yNIxB+7jvIT5/Bz144L0V2utIe/Xqa4XbP17aHncin00oS0acPqtHaNKpaEfIOkoeFiiHLf18+DmKpjYuizAt3gZwixHt+zU678uRm6UmjHckNDQ8MwVvLcSK7oTOuhOL/ruZ86ZdKyTLPaMPF54vE6KTU5+LkzAmJK/ygzZ+I77Fwo2mClRWBKHaPLgn7etjU0NMwNHhzDkcVxzHXrqgU5l+lxbd8h9U/Ob9FZH/b8fZVDUwQs7HqkyvEa8fiXf8ZBybu/CbvPgw+cbRv2BzBC4MMnnuJs6eDm3H+9+n/meuwhN8H/6f97hb7DZqXBTV8eZ/bVr37DNUvHvlg3YE90cgLWDTfG3/XuD41/cK8gGM34gr9/6R65Ec++85+veuNe65RcLhgR8zcveMmKPRKQzsDl5mIfYF/45395lWtWFtz4f/s7379X9rUSB+tyrQQ4JulMWs6PE8bAeY4fC7CvLxe82+zl//bafdaJx3nlP//rjelF//Tvrlk5kJPcQ+euK13x8ukmN76es2EwuvQXv5i/Y5F3Un7s49NH4zESkBGBNfgs+vPnvWhFPgdLcO565rNfoPvjcsHnJO8tnBfzjHykXeecO3vk49o1KR2xeSHt3H5h+uxnT3ftMG55q+PTlY6+opbjzDEsrdPLSkuQMpuLL1l6+yb0Ic3OaDgkFwB9OzPRuV2lFjo7v1IMu+YLu8qOxwUGv2jUONVZWetQCbWLkrQbWeWjqGXXO++k6TWy0q9bu5DWrZEW2NXOosEFV0PDxQFj35d6+hGfIUzExRRcReVTABvv+lnywVuhHcsNDQ0N07FS50m9WU1HnufjfJ7P98W5Puvxk4ly2YIcU2BIF5hmo03z5ivXA6XxrAU8T51vWpvmweg28XUWoJ7l1tXQcHHHrl1+rSrXo7s5vvQamJ49US7IJFJH2okjnfwmza5Hn0rzg3OEjtvRlFwdCj7F7vPgB2VH3pe/8nUd3bDcifeH8UigAx08QvGsL3/d2Tg+fsqp6S2LuPG2WHAj+Q3/s3+9S23edbMnOzmBdub9/UtX5AbqNHCjmcfirVTH1RD+503/u+KPaNsTYF286MX/pqMz9yewbV792jft0c4S3lm1ko8BnQcH63ItFyvdmTwE9nHe/3igjZYtwYXKnuwIBuQe+kHFPI9+POOML6Zvffs8Z7Px5a98beqjoRkByEjA+mJuT38WsR+yP65Ex+9iwHIed/Mbp8tc+pKumQRtYj3Pi+9999z0mU+Pj5TcvHlTusMdbpvWr1unnDUdE+hzuqZK3pXn4jKbh9dSr9kH9CE7u7cv875kj0bGO+/0AiCc2d+ReLkq3okX/qa0ybjZYwreXWjwC0Tz1wF5FMmlk3ig46KICx3KXp/md5nbU+mR2uRST1Hk2jWrdDTe6hV4L15Dw8UJozcOA26Pz8f6c7LkY5nqmAB6Jh7Nlg/ohoaGhoYDDjoqb+g8PnL+B/rZUNjHPit6qHyGPsPmyiPoxXrMYj6JiJ+nppmfs4uE5pP2zrucDQ0Nk9jJIzXpd9NrVzmm5BymT5jhXOYXmuhtRJ6d34LrpSq+4Sd/HI1hz1z+wr5SktYddHjWc16QfutBf7Ds6bX/761p+/btnvXABY/u+vCJH5vaKUmnxpve8q49PtLipI98co+MOlkq5lk3fDgy0melHmE2Bm6gvvJVb9yj75n7xCc/u+IjCmuwTt//gY/s153gbNN3v/fEPb4uFgvaxfskp93gXwnQscNj6vYWDtblWi72ZmcyHT+Mip72aML9GbzTdJ6RxIccsjnd4fa3Sk97yh+l5zzrT3SifJsTjnOPcZD7Zf/2Gn1XYY1Zj37kvHfyxz4118UU50Ye6TttWW572+PTVa9yJWcGcr/hv98x12fRFa9wufTbv3WvvA6YHveHj0hXv/qV3WMc7I+veOXr9/qjaq99ratp5+U0fOrTZ8h6u9DZOFhXrOMfTnl06S1ueXy67jHX0S/YEqEypo6bnOCSf5C77Ow2jdplVvJa1v7MRu3YSl5LKfBMfy4AIPEuO/Q2Mz1Fey+Al51jX3B7XJYoKeJClnl1ZB5F8kkeJHk0hftTDn814dezV1IC4h0GvoCq37xhlT5WdanQC7iGhosB9NgpUPMMP18EOEamxY4dQb0I/D0mYsk7+Fi2JaIdyw0NDQ17F3rzOj4j/BxMOX9GhBSoruDhH8gxjpoHQjtmH0O0tQfPsbhMHZYatxxQ576ot6HhYACH/PZtu9POHXKdG9epoozzk54j4rzAtbH+CLWz6x8xHIXBC3tcEHcj9Nwuf8GXKg/KjryDDUcccVh69jP/JH3mk+9K537r1HTBuaen757z2fT50z+Y/vIvnqo37Gbh82d+eepjvxhBxYi8aaAdT33yH6ZPfuwd6ZxvflrbwXT+d05Lnzvt/enFL/zzmTcJeZfQZ8/4grPlY2+sm29969z0X695k7Nx5PXz8XdOtGWedQN4z9oHP3Sys5UFN2U/9OGPORsHN1L/32tekr7yxY9o+2M7f+trn0zv+d/Xpgc+4F7uOY7Tz/hi+vGPf+Js/wOdpm9687ucTceNbnhsesn/95e6j7Ovx3Y968yT0ste8jdqXyn88Ec/0c7uWbjvfe6W3vHW/0xf/8rH8/Zh+upZJ6c3vfFf013udBv3HMdpp53ZuyF+5JGHpze87qW9fHSATMPDH/YA3S/KGHKQq8S+XK7lYsOG9envX/DsXnve+bbpo8KOOeZa6eMfeVsvpl4vfIjP25kc55aTPvSm3rk3jsnfe+SDtANrFni/HY+AXElQ791+4/bpmU//4/Sfr3hReu2r/1nPIfZerJUBnY9veOM7Zo5a5Nx04gf/O73+tf+SnvSnj05//EeP1Iny/8j+w+fErPMXj8dlZGc9cnyeRz/SycS+Pgvf+/4P5PP2NGeTYJ3+xl1ul9b5SLEAn0X//ab/dTYM9pW/eO6T00dPfHP6//7x+XkdMP3Zs/80nXziW9L/vOHlM89bvEd11neCxYLP4999+G9p+/779S/X8+fRR1/erfONfPz4KZ+Za7TgPI8uvd1tb50OO+wwv/HMb9sMfT4iuQEwxGtJUWdjfrPsi/CnwEy/4Pf99FeBUrBfD8qFiXP1UwdmwvB3rscw/0zuz68UTe9cZiF19F74Oc92S52xG5tO7i8VIWmPt6qnN+n6ys4/s43rF9Ka1aFvaGgYA98/Jm5gFujZxHdeRJTewCiQGfqBfGj03NTQ0NDQcMBj7h9lzPismfgsEZ51xFIeiCsx7bNuGuqs0/LU7Rzzrf0Ui2nfyLL21ktDQ8Nc4JDZtXN32rGDH7rK9ePq1XLuWq3Hrx7DHJocVpRdMiJP7fKnKpycD9tl4vpY7fzLX+GP3bXOB6TOJ3n71ryfg/fyvO3Nr0yPf9wj9T09a9asVj07ADcWH/2oh6R//qfnz+yw+s4556cf/OBHzvrgxP/Z078wdXQA+blJ++QnPiZd5SpXSmvXrnWLfVhf5jKXSg958H31ZvWsX9QzIm8lRjrurXXz4ZM+rjd3p+HmN7thevtbXmnr58pXnGgL6+atb/qP9Fv3v6fqp+HDJ50ytWNxqfje936YvnjW2c6G8chHPDC98t//Id3xDiekww8/TNsfoEPjxjc6Nr34H56b/uHv/8y1w/jmN7+jI1T2V5xyyqlzjQ5j33rTG/9Ntxv7eHwxZb3QKXO/+95N7fitBM4997vpc5+fPjqLkTUv+ae/TMfd/Eb6aLgShx16SLr1Ccelf//Xv09PfMKjXTsM9vuf/+IXzvYsDtblWg7m7Uy++93ukN737v+n55brXPvqvXNvHJN//fynpTf/97/peWgaOMe/4Y1vX5HzC51NdA59/KNvS6/6jxenJzz+UdrWO9/x1ukPHv0wPX+sFD57+pk6Knoa2H84N/FZMAZs//D3z0nPesbjXTOMd7/nRH0fYAmOeT7beOTlGOhkOvvsbzobxxe+8BVdpjGwHY+57rWcGRjF97Z3vHfqZ1F8TrP+6RQbAucwRha+6j9elH7jrrd37STYV9729veuyL7Cj1j+5Z//Kn3sI29NL/ibZ2n7bnub4/X8+YD73cO9DPOMfDz1tM/NvGCd9ejSG9zgeum442+u5ci0T6XMBqUVJ/VTpOys+gVf11GlD86ouJKHnb+Q9h4A6xQMe/ijjxF7+KFUHnqX6i8TBR3/F1wunFRmu0nx6PG+JJ5fNQbvJKPwNqzjAowMDQ0NszB2DuWzrmfjuC9Qx5V8KGdPM5KLOldyNF5DQ0NDw75BnM/j/D75qTAF8Zmg8/mgvgOfPQHaMfTZFCg/86bVOyvHENAuZllmYqAe2sXTNnbK1NDQMD84pC+6aHfasW2Xvwe+ePcdo+y4nk3GyxF1GiiHoh6NzAo9f6W+u5buZN8fDOkLqfM+Z2rfmvdj8K6YZz7j8XrzdhpucfxN0u8/6sHOhsFIuLH3IzHaYeZIh9+6p76/Zha4Ufo7D72/s2H86te/Tjt27HS2NOytdTPPSCI6FF/0wj9P177W9LbQoffnf/bEqTdPAaMgvvb1lX8/0Y9+/JOpN4G5Qf27j3jg6A3gAJ2U97rHnfSm/Ri42bq3H8s2L2jXqad93tk46NSk0+iQQ/qdSjWw44f/cvGdc86b2qHODe7fesC9ckfxGOjgefCDflP3zTH8Wo7DvfWYxYN1uZaDeTqTOVf83d8+O1356Cu4ZhhcQNzwBsfoeWjaugEfOflTy36HJZ14z3/uk9Mznva4qe80Wwnwo48Pn3jK1P3nYQ+9X/q9333QzP0HMMrt93/vwRozBj4PeV9pfdHGoy555OU0nPSRT0z9oQoj/T71mdOdDYNOrnpU66xRfOAZT3+cfubNg8te9tLp2c98vI4eHQPnycW8928I7I+MvKPDjuN3FuYZ+chIO0bcjWGeR5fe4Xa3kO8rl9Xv2VwXq1zEBJbD64mZll1m7lPmLmdx+6IPtwuKuADQL/7ZiVE5DIzrOPa4UEClJvRuz3nQ+xTxwXXi14dejr41fpsY78hTf3Khw+6+oOQ2eX3U7rq+XT4b2mi8hoa5MO1mJFB77eMHVh3b414ezY9eprCrlLywle7EG7up2tDQ0NCwd6AdZEij3WdDSAE6ZcU5W79zzgviInZGXP3ZpHX7lOG5mHctWjzKnItYmkWhV4eU6czTH9Y1NDTMBO/F27p1d9q2jcdicujHdavO9HrVzgcm46kzCuwy6dFmwcpLveYTf5n37cGXKWXWOvL2Z9zrXndOx80YYQHYMW55i5vOvKH645HOqtWrV6WHPOi+6S3/84rRiRFl+M2Da13raum617mGs0lccMEPln2jfW+tG0ZXMMpiGlg317j6VZxNx6UueQnt8Jn2GDxuPn717P5okJXAFa94ucFtG9M/vuh5E+9kGsNhhx2ajrnuNZ0Ng+28P2KekYkn3OpmOsJoVqdmAD/8iVsOeNzd0LaJ6bnP+dN0yaMu4d7TcalLHpWuM+U4ZMTRtJvhK4mDdbmWink6k+lgoaOFc8a8oDOeHzhMO99xfqGTYznvsLzPb95Vpt+Yq+NsufjpT3+evjTleGVZH/rg+819rAJ873Pvu049D59++hfT/1UdQXQC8sjLaXGMtPve93/obBLnnfc9fQTnGNiGjPzTL3wFeKzmtFF8MRqyjpuGq131yrI844+y5AcZp3129o8epoHHvl7/etdxNhu0f9bIRzrAGXE3hnkeXUpn4ZGHrk4b13MBzPdwu5mQpSincYIGuctZvJa1fUlcCsHZC+DxHjlujGQ7DgW3kXMjdn6RSLZKH3IynvOKXMQQF3b8Zbsq1184FnmsqLNoa3Bk5GGmeVwfEn86Ejes5ZGfol8GFnPsNDQcqJhrP8dHD7QOHGvTMJS3jiAHfjmXyzYar6GhoeHgAef5+EzInwMD5/6A6gv/+vOm5hMg1uMDg59JnmfIljHNVmOG74xWLwv1MrBsO3fs0A69meuroeFijB07dqetW2S6aKccM379qRY5puTYidF4WpZJO8nx8WMrdByBEalwG3o9DpnUnrMbx6+QmrPg89rbN+f9GDe+4fUm3pEzBm5mXn3OzqQa1HHTm1w/3eqWNx2dZj2eEjAKgZFt3EjfsrX/fqGVxt5aN2d+4cteGgajDW5z6+OmfyGocNOb3EDfQTfUoRHTvKMqFgO24dC2jYl9YNY65UTyy//7VfrGN7+Tvj/yONL9Hd+94PszH5V6//veXUesLAb4E7cccPN6aNvEdOyx157Zoc4HB4/D4zikE2R/wMG6XEvFD3/4Y12OaaCDhY6WxeImN7rezMcbMyLvV7/6lbPFgU4QOsEW03G2HJx73gXpC1/8irNJ3PxmN5rr/aM1eHTltEeRnvWVr6Xvnj85Up1OKc75Yzjjc19KX/rSeMcjj4Wcdv5hxF/9gwrOu2d87ovOhnH8cTde9ONMOeZuf7tbTe2YZFmW+s5JRtrySNzFfD6CWSMfZ3VGz3p0KdvvWte0jsKN6xbSEZsX0lpGc6nGpbR5SXxfSgoF15FwqhSssnfb2a8J5SKDXwmKKaTGFTL0u1UpFw1Zb3nZpmoKaUUyS8n8tT7Zx+Jxl8SKxf3FZol68aovJTncYdAuktF4q2T7NTQ0TIfeDJBpLvhxB4ZiSt3Q0ZetXqcd+8WNXAGl1onX0NDQcPCBczufDUyc6+Pcnz8Bis8CoPbicyfsOa7wL8sKeKWb8FkElhIZyzo3ymWtsJS2E8PjNZmWs+wNDQcjOCQYhbd9m43EY9q5k8NQjkMORbFz1Nj1bTfxY1Ety5/aw4eSSocFG8eU7Whk8vzakCreWMdDM2H3eWjat+f9GFe60vi7fmrQAbNuXffupD2F6KzjF/Fvf8f709//w8vTwx/5p+m4W94rXfnqt0g3vMld0mP/6Bn6uMo9ib2xbvSRowM3ckvc7KY3TJdbZIcPj2LkPWBDHRoxTRuNsKfBhz+ddV//xrf1EWaveOXr05Oe8hfp3vd9ZLrClW+WrnPs7dLt7vhb6fVveLtHHFj4wQ+nd0AyEmqex8gOgbhpj6pbKUSn1llnna3vVHz5v74m/dHjn53ueveHpite5ebpute/Q7rXfX43vf8DH/WIAwMH63LV4Bw6rXOKjhU6WOYdBV2CDrZp7xgDF3zvh+nHP/6Zs8XhBte/7l49P5133gXacTOGd7/3w3pOuvzRN13UdL0b3Sl95KPjj00ee+Qyo5E5f0/DyR/79OCoczrEpo3GY7sz4q/+QcXWrdt0JPE0/MVf/uPgcs6a7nP/R01dvxd87wf6uNql4EY3PGbukbYlWP5ZIx8ZccfIuxrzPLqUkYtlpyeH2WGbFtImf/KnftFeaSmfq30+p33JUvLJBUCtt+fzT8pcv8yy1F8jSlnziF11cp5WB8vd+ZtdeUgcxT/yoOfCIzr7ev4FjPftfC8Jv1LSF7h+rXdGNjQ0TAU3H1YC9U1COz47Xd/aIfRIJlqjj+ZtaGhoaDiowJmdz5z4bMhn+vLzg3LJF4He51B8jiwxF6g/1+bCMurLsQM56s/q4LpOfQJDn+ncS6EzD9nQcEBBDgUOh+HJvmf2dbMnDgNG0+mjNLfsSr++cGfactHOtGP7Tn0vHo+j1aOI1zjEcSM6rUubFHYIT4cRjfhIyaXp1TvbpUy+Qt9JERrXcSnMx30e/KDsyHvn216VLjj39GVPf/+CZ8/1TpeDGTwC7pOfOj294O9fqh050VnHzb8/fsJz0j//y3+mE086ZeY79g5EXHTRlnTe+Rc4GwYjQdau3fMdqHsSnLDYfq97/VvTHz7umen4W907d9Y9+GGP0xvE//Pmd6XTz5g+IuRAwfnnf99Lw7jaVY5Ol7r0Uc4Wh8tc5lLpmOtMf+ToUsA7Jb/29W+l//jPN6Tf/b0naicEnVp3uftD0yMe+afpr1/wkvTO//3A1EcQ7o84WJdrFuicmobrXPsa6XKXW9wPBEpc4xpXmfp4TUaE/fRnSxvVePnLXSZt3jzewbLSOOfc73pp72PokctcNM169CPv1zvn3POddfjWt8+Z+qhmRooNPYZyns+iPYWf/+KXSx6Rx+Ocl9IZDWaNfGTEHSPvanz7O+elj31sfB0ziv6EE27urI8NPjpv3Rq7MGYeEyh5PYEhme2y3/R5VzY+bK8l1+zTeEj9oi8XAIyG670DT6T+upCRbqLSUXMi7Tn+SON6qaAKEzaTixm4TNh5111OTU6P0RF4KGXiQkf9UblO33nnI/5iUr0IsyMlX5bkDR525O60RrbV6jyasqGhYU+jd7OTcskFfWbQ4zP89AA28Hlqo4QbGhoaGg4qcK6P8311/u9uyuu3zYzy80U/H7wc6H3+1KjrGkHUO4ReW1wGhjrNQORiHjHhq8tQxAVHk8tD9moKW4lSX/rRHu7t7di5U6ep66zhoEDs02z3vTVFZ3GUS15Og/qBtmr7d+9K27fvStu27Uxbt3bTNuSWXdoBt2ULZZP9Sez1dNGudNGFO9Ovf7Ur/er/0O1OO3bw4wK5Bl21moNHr4k5RBa4qNVrUzmO4njSol/sApE60lj9TM+fSvUvON1sPS5/ek0+qV+qlEwNDX1wMPHotT990vPSjW72G+m3HvQH6V9e9l8HTUfOSmLzpk1eOvDA+59e87q3pLvc7SE6ovIZz/rb9L/v/tBB2Sm7GBx55OFp3RI7Z3ln2MaNG5wtH7yj6iUvfVW61W3uk25/pwem5z3/xelDJ348/fznv3SPAxMH63KtFBi1u5xzC7FHLeLdeosB+/feeDfe/gAewzuEWY9+ZDTzGdXnJV9QeRwk+/4Y6pFi+wPOPfe72pm3FCxnH2Y9zHpELCPvGIFXgvXO+h/D7W57i3SFy48/Kpx+x0M3StuL0Xl6CSzbz8q17Nu1qDO3hz7zWfY+r+WsfD2JreDyzZ+v/8blex4cOxcE/DpQuV5M4WTxohFXKTMVepMWz6R+lZ1oKtOX78vFmeWQiarcz7hNdXxIbVpPTyD5rPOVZWpoaJgNPXYWibEYPe7k3DEVdawfv0Tp1DrxGhoaGg5alI9Otq9w8hlgdBRhn8u3/oxZIqITjM8opviMKjH6WTjyOVjqKff8qpjhDFMwUmeAtvLdeyedeTt2pO0yIenYQ6cdKdjlC3Z0+A1OEVdPQz6lbmwqc+zliXWQ18OMKXxr/1pX8iiX9r0+Da3zxU5jeeq6YhIb+5TuawNTqVc/2edCaice+6LrkNu27ki/+tWO9Otf70gXyoSEM9Epd9Gvd7ptZ9py4a50oeiYLrrQ7THR6acdf3QMWgcho/L0OpdJLiI5ijiqmah7QS9QXSftskF19r1Vj/+eFF/KfiiGPkbi0Slp+T2eP73WtTj+livbN+iGHi644AfpSU95fvqNezwsvfmt7576yK2GAxOMgnrHO9+f7nHvh6dnPecFM9/V1TA/eITrUUcd6Wzp4LF8PNL0Dnd+YPq7F77soOlcPViX60DErFGBDXauHMI8j37kEZrlSLZf/vL/0qmnfd7ZJKaNFNuX4DsAX273BXiE6bSRj6zj887rziGzHl3KKNU73+m2c40S7Ebn+Xd0LsLVUsvaXvEJOcu+WKn/w3YpyNd9uaZgrqpszyPoUIndRuS5dD8bWde9Ww+9xrmd7JpfJvxCr3nDT+OkoL9ARE9RI0Tv9evm6PKqzFxVzt3f56vXLLTHajY07EPUh54doQ4/7+QbIJR1bjowdgO0oaGhoeHAR68Dy8/7oCv550hh60H02Bf1SbGEz5X4TFIsJr7w7S2ro860Vz/zZJlYrt6IqLIjxadsmzZJnjwN2Rcxaf2zpmjnCk6LqV/9Yh0N6Qvey+nrM8pDOXr6eprHh6nyizqjPcuaxrZxpWffQkenWNbVE/ZiUv+aV36r1uxO23fsStu2707bttk77bZLeceOmGRZd/j77pRzvyZ5eZf7yH6Pfqf9blV/KMoh4WcTPVYpc30rGh1lJzrsphEvvQYO5scuE7lUz3Wt+ed8lX7YPofUeXCtveCdffbdjIaLDU4//QvpEY96onbgNRyc4FGpL/rHf0uP+5PnpG9+8xzXNqwUtm3bnn7yk6W9eyxA/NOf+Tf6SNODaYTawbpcByoW857Riys2b97opUnMevQjj9AsR4Yxyv3jp5zqbBIn3OrmU0eK7SvQ+bV+ff+dfXsLs0Y+8ojYU0/7nDMbCTnt0aWM8Lv2ta7mbDbke306dONC2rzBvjbHZf5ekTIb5HNKWhycbli5NtILJuUhQ69+ckHlUlRqr2VMwYnVeuTCwpQmNQ96dO5nEnun5+KKsuUxmf2Vc4FXcmYd10487xRsaGiYDb0RsQxwTI6htOix63IU3JBYZnsaGhoaGvZvcJ6Pz4KhM75+Vmih+7wY+uSY69PCP1OYT/Mf/WyKz6QlfjZpvSvwuTazfSXwjWkE5Cs7UcrOmJmTx8/NiynqyZ08Az6D05Sce2uS2YRu2jLITFpdtJtyTKGr9cXU69QasPemgVx7GrnOYgq9zHp6nQZiwj/zohwTP7bl0k7XhVxRMoKN0W/6PjvR6ag65bZ/xTozbhM6OjhVD3ebGFSneiT+XGiKvxhdbxee2FRao9WG1INcZdjxpa0dH5N6ZS7xmqLQT0idBwcl7+ytI69BwQ2w5/3li/XG2LxgNMLxx904PfIRD0x/+9fPTG9/yyvTmWd8KJ34wf9JxxxzLfc6uPHrC5f27qB9AUaX/Ndr/kcfabgY8B7Au/3G7dPTnvJH6T9f8aJ08klvSV896+T01Cf/oXscXPjZz36Rtm3f7mxxYB3zPqulgo7WF//Tv///7J0HgB9Hdf/f9aJTs2TLlmTJcpF77w1TDIZgIBTTA4Q/IRASIEAoKUAgkIQaQugEAoQAwRASiunuNja2wbhgy5blIsuWJVn9pNO1//u+mbe/2fnN7q/cnXTlfe5m37w3b2Zn97ezu/Ob3+zSpd/9obfUx3HHHknPefZF9LfveiN99T8+Qb+69v/od7/5Gf3Ry57vPfYt03W7JgrMLBrLuQV5NyXe72Y0xsIFxY8nxaMf8SjMIvAITQwy4cZvmG8+8VjNohnuuJZiULDZ98lNJHhE6756hHQ9Mx8xyxHnF+xn7O+yR5c+9cInUG9v8eBsEV0dRPP6MPvLDeilAkjZiwIo1XmR1AtkmI4bfSj+x4RV6Skd3QKxq/R2SfHliU3tGk/ochRnunZcWLKu9tAfYIwvn44auXjFji/+K3pXZyuEYRg1wPlRvoQYA3F+aMky61yPDeIZhmFMf/QRyoXXoRrXjMJ8JTTmrfeX7h4f9al3fbmrGPL5qFKll5QbllV6fUQaytEQEtrjNAYW3Z91hXr9S/x4ISHWJSixLZRBqMofh0SeHLE9pQdSjwchsuXq4m2Z5CDpXs+2PQS6tyEt+8TV7tOS8TiEaXEcpNIaCNm2BmT7AcLrGpcQ+YOsHA0x0g6JOjpRGn4A4NolOomuTTjp7HCH5L4gF6XpAHvTPdbX5xM/9EZZYvYdB0n3+WVmXuCncdXTUvNX7O49805H+dhC1fEn61edg9qble7Masxo8Li7L/77N+iW39zuLWmOPupwet9730Y/u+y/ZCDnbg4YvMMgHgbzMKi3/8L9mn6/2GQD74I6eGn5rBXMahtsctBnb3PTzbfK51wGvjC95PkX09e/+km6+YYf0QOrf0VXX/5d+tIXPkp/+abX0DOe/iR51Nmc2X18DuETyRRk6dIDfSzNffc/SBse2+S1xli/fgPdedc9XmucH//kCvqPr37ba2nmzZtDr3n1S+jSb31eBs4fvO9G+im3yc/82wfpz17/ShlcWHbwEuqbVfzl995mum5Xs9SaDXfX3ffSI4885rXGuffe+0sHNPBDi/3mz/Pa5Gb5siU+lgbXnjX3XE/rHrx53MPznvsMv5Y0eBQmHolZxFVX3yA/DNi4cRPdcGPxYzUxiIcZfkXUcy367Kf+MbkNYw0///E35Mcc+4paMx+vuPJ6unf1/bKfsb+LOP+8M+nUU0/wWuNgUKyvm2gWB1z60BnBDbpKdEhCvZbkyJj0WEo6R+TXiVBZ4geGcbr75WKgiyIblOliy+nO3xXkoliICb+K9L9+zH69yKLF6xLE3+VLrT/UY5nVx+fDLyixmjaucrv1YAyjIaQtNUDKP7vzD9JiL/EpSme7fOExRfsQhmEYRv1UnevLrislaK74upS8rrEtYU2Sqx+uTywQGskvZUTbiXppWUpd173E9qS2EZaaddR8kI0GJWHP1SdOD0LNrVXfENal/NjugbUoSF6N62ei5YTleXtgcen6+WheDQmyz1zTIYN1ZJ81y+wYAeoDHYH1XFlhiEn5IGjdNa6+iAdpsl/VD0H9aoSq+jFYi1+TEMbh4bwYX4ecrQA9rjo64Mn9S9ZhyyR3AKWfK7rzl4BMzuDWxdkRxSLzSQStj/RjpRDtZ+b9uCAXkMbr16C68/Eu3teVD82nYWXwl36zz8NB/rysV1dp3WCDVt1zH/30Z1d6rRoM7nz0Q39Hl/3ga/JF+7HHHlk6kDNdZoN0d3fR0qXljzrD4Ngjjzb2hTtm22AWwXXX31wYwkeyjQcYbMRgStmX+xc+5Tz62Y+/QZ/4+N/Tk554Dh100CI+kaYHZVHe1q1T8/GIiw7Y38fSxI9rawTka2RWa8i27TvkMyrjZS99rgysYkD9nLNPlYHz9vY2n5oHswrx5fa+Zrpu11g46KAD6LRTT/RaNZi5dcWV18lMrkbB7KSyxwuCxbz+hQvH/i7HvcHy5UtLZ2StumcNbdmyb44HPArzgiec5bVqfn3TrXTn71fRrb+7k8/rN3lrNRikxgy/Iuq5Ft3B551mjpfJTj0zHzHb8fY77pb9XcSTn3QOHbD/Aq81D2bl4d15XZ3csYGB74MmjUSkhh6+4869Aw8Kdwpgh5QkjTm7+1Ejp3t//g8kftUItTq98k481qUWrjzIsB4iOd3piHO6/7VlBdalVlwftnd2uHf3GYYxToy6Vq/IlwwJXCsMCBqq+7Ihj+oigzKL+pCGYRjG9EEHAcrO+Nn1BtLHsaxcMZjg+hGTu14hXsf1BXnkfpdllh860hAVQwW5z/WhFlV+vvxcPVNoOstwLbk1wieoC3JogL0qeP9cKPINg5Kw57YtsAuqh4EprF8iSPmJoNscBkXiCTtsmdTgdc2TsxdRj2+tdBCm6WdTRq3yQJju/eVYi/Lm9guI9Xrx+XRfx4EXLh74xIQ2HBsIauvgPl57u3vEprQFX0Y+yGo4VNKzd7rjzzs44dOhoEgOmg4kLrjBMfH3rS6b7ecfHQOrrAcxr2f+UKS+rg7oAMMExIPztUq/WdNl6dIyvfJXle6XarGBPIPuXrW6dIDn1a96EV3ygmfJY67q4Y477i4tbypx4gnH+FgazGLEe49qXpgDbr7ld/TyV76RXvCi1xaGX91wi/ceH7Zt20G/v+ter1WDWXbvevuf15z9ojy+eWtpeZOZJYsPrPno1+9+7zJ6tMEBWvgjX7M8xm1m9X33e62ac885jd765tfSggX1DcA88sh6adv7mum6XWMBs+EOO3SZ19L84Ie/oFVNbOctv71dZimVgVlOfX19XpvcLFq0kI468nCvVYMBsptvuc1rexc8CvPss04tHGjEgOwvL7+WLr/iOm+pBjP6MLOvFrXe7Xbtdb+mh9c94rXpRa2Zj9j2//vBTwsfXYrrG96PV7lRHxsopq+7hfp63KCSXv0bkrxI6rF00Wp7lXRfoOPGPm/Pp8sCG8ASvzispOMf+6c6P2bASX7Y8KtFsTtd0nXmnzhKktPR6eEg0uUSoflykiOuDNXTEiVhgYE8wzDGkeD8GPdpkn2cxPk0tuRyRWWM1/nYMAzDmNzgC/TwCoCzP/TQlrzOAFwroutFoS9Q38BHvmiPygj1XFrklyJ1/YJFrWH9sjjLLJe3YRmGGC1T6g9DUG7dpLanjm1sGJRZVC7q38g6G/CVfdNI2Z7SY2hv0US966WZfbJXSHxe0MTiPxMk420jGKRzuD6i6HDkuJtFh+B0+Tx93On4cbPzy9IlOdDZx9ldGlqZe+87p8OmUvq+Xpf1w8R5MTNPytF0+c90eQpNoOM/ewef6LKEQ6DDEupBul+qbj1hg9aufdTH0qw84tDC2TExj23YRJf95HKvTX2OPPIweSRXGV/+yn/Lo73qYcPGx+URg0VfOIJFByysOYDYKFu2bKNNj2/2WjVLlhxIBx54gNfKwQnvmmtvrDnrZ7KC2VDHH3uk19Jce91N8i5BzG6qB/jBH/maBbPMygZHD12xnObNm+u1cvCuvst+fPm4z+yMQZ1rvU9wKm7XRIP3dJ1x+kleS4Nt/NBHPyvnjHpBnn/6538r/SEFBp0w+DQZ38eWAufDskEc8OnPfqWhYwKzif/09e+gxctOLQx/994P0549e3yOYmo9+vGzn/9P+srXLvVaNZjRh5l9tcCPD8pmceJHJZ/93NfqPmcBzBQ84+yLk9uv4UeX/dJ77ztqzXz8+S+uof/6xve8Vg2On1qPJm2GznaS2Xnd8ggQ17fQAEp1XqT0WGpQPZbobzjddfKho2W7X/0h4r5AkfcBcLzi76R7nr/6OYmOQ5bupXYc1C4JrOOrmWxGniQA+El3SOIiJd35iF9OutKFKB0pWb18gN7RDsUwjDJwv+6+pCgm51OHf86HG2nsj5ZZq4xJ+wWTYRiGMe7oOV+vDblrRCPXA58vdZ3J6YgH5SIt9gcpmxKnxL71XMeS5ZesM9xPxV553L21C9OVss/J4P3j5WQCdUoFJdYz+LPGkdyB96DLI11Yy45vll6XIJ4IGORzNshR9G05Lw4bffpM5akxlYA1uTjW5dIFny46AvrQyO/LdS4uDX8iOWB7Ku/ei9L5D+mhPlbpamIYJTz40MN1nUDxyMiP/8vn5Uu16QIexYVHcpWBRym+7e3vrzlLCIOc7/+Hf6Gf/LT8MYOnnHJ83TPjxgvU7fHHt3itGBwH115/E/3zhz7tLVOPegZRAAZc/+GDn5BB0DJw3P/Lv36x5jvgxsrahx+p60t6PHf5f7//E/r0Z7/qLRPHr2/6Lf3utt97rTkm43btDc477ww6/bTigRmAc8U7//qD9MCDD3tLGrRLDMrgPFTrXadPuuDs0vexTTbweF889rfs8ZrY5ne/9yN1/aAC7fXDH/scff+HP/eWNGefeWpds9BrPfqxDAxSXviUJ9Q1qHrQgYvo/PPKZ+7hHIRzEbaxFrheYZ+h/RWBAbDjjiv/0cPeAPsH+wn7qxmeeuET5Lw/EfC9tLw3bzZm5/HHiK633C1xm4TUkOleVvR8eixjfywK0znIc/dRKfmVINcPST6dTc6Hg9hdAZIOfRi/OER+b4cVIvPLJIz4pSNU5InTWaIcKZVNkGLXEPjJryFdLfN2J1sCXSrKEt5t6FAZhjEmpC3jfIEgDa0GoU/s73UpMyZOw/oMwzCMmQGf8/XKkF0HUtcKJUgT//DawfGSnEKtdCBfvKMsX7bEJebSYlK2EOQtyw+ybWcQi70kFXl9fi1Tw0yl1r5vhvEuM3ccBZ8zSNlq0Yj/+O+d2tSz/4q2Qa1SRlAOdC23vR1DVWiTbt/hT95fJ/1bZ0NH1/VbvU9ghx8rKFXK4+wuzfsgXdfs8nE5yJPpFV+R7C2/O8X6xYtBGgrxfohK/Xxw+TR/RUr5gd6stIE8oyb4pfsvLr/WHZAJYMeXyG/4i78unXkwFcHJ5MInn1/zUYx4N89zX/Aa+ti/fIHuf2CtzBwCaKgYJPvGN79Hz3/hn9Cl3/2h2Muo9b6kiQCDkZ/9wtdo06biWXvbd+ykL/z7f9FrX/f20i9/pwL1DKIAfDGOzw2f3/r1G7I2gM8VM83+53s/phe+5HX0b5/+D7FPJHg835e/8q3SQS/MxPrHf/4Uvetv/ql01me9zJpV/uU31ofj4R3v+qAc29hfn/nc1xp6f+K+2K7JwNIlB9ELL3mW14rBDMRnXPxyObfcdfdqeT+lsnv3AP3mt3fQ377nw3TJi19X+o4wgMGwl77kuXv9/DJWTjzxWHrGRU/yWporr/oVPfu5fyyDU9gn2DcK2i3aL9rxc573x/SlL3/Tp6R5xtOfJI98rZdaj34sAo97rPXITAWDWRf/wYXymMgycC7CNn7xS9+gh9auy65FAMcOjqEP/OMn5XpV63h51sVPnZCZbM2A/YT91SiYUX/qqSd4beLIZufF785DVBaRPZO10hvw56C6vIMOEml8vQLZrxJh4gB3SH3kUZYOgVFJWJ3JzeiTdDZLiitHfp0Y5Kt6911OalAd5eNXkOiOhHaWLopKeb1iR+fOMIx9DDdI+YIDqAzILIk0fU+JYRiGMf2Rez8fj8muI0wYDxErrhsF6TFYFzyLykN90DfU+1L4QYbEeiGcN16P6lo+0HWIDilWR+hXF9H6xoui/bVPaGB/6P4r24f1bFucP9Rrla9pKb+yvI3ai8jW0US+8SJXlj/eGyH8jNra/DaRny2HFiN9TtcvFBvSC4I8jYYDlypB7bxwwac4NUhjY6jjT/ywwPq534oesqS4X/Bm+STKf/E78LQcqbuzBHaV6p+QsqzWbSDPqPmuJgzavOJVb5Iviv/5w5+mT33mP7Lw13/7T3TBU15Az7j4j+hnv7ja55heHMr7549f+UKvFYOZWx/52GfpnPOfQ8sOPUMeS7Zk+Wl00qlPo7e+/f20evUD3rMYfIH8tKde4LXxY+HC+bT4oPJHZ379v/5HPsc3v+U9uc/445/4Ir3sFX9Bp57xDHrv+z5Wc4baVKDeQRSAx0Li8zv59KfT0kNOzz7XY098Mr3hjX9Dv731Du85NvZfuB+dcPzRXkvz0Y9/ni565suk3YWfEdrl81/4Wjr5tItEH6/BrkOWL/WxYnA8fO3r36E3vvndUi88clWeR+2ZjNs1GcANwtOf9kRp87XQc8uTn/pCWn7YWdljDw9deQ4989mvoC//x7fq2jeXvOBiOvOMk702dZjdN4te/rLnSbstA/sJA1jYJ9g3up/QbtF+0Y5rvdsTg52vePkLGhrsrPXoxyIanSm2cuVh9KIXPttrxWAbMaB55jnPyq5FCDh2cAyhLdU6j2Mg8znPepocp5MB7Kdaj7lOgRn1mFm/t5jV1SKz8zDJUs+CdUleNKUHsvqdd07ixh83/W4mnusIhOmaL8wv77vzfipdus/P5SBJ/UVHRHSfnukcRtxMPw1iR1msyO9jcnYvUQf82hJxmHiB47F9ijwW2DD2NdmXEQVkadLomIR/9oWkLD3w0TwBVV+UJXyEkjoZhmEY04vsuuJldq0ou44EafF1qfQK4vPBp+z6B8JrlsTDdSJw/qIyqq53IYk8YTlhaqr0wnoX2T1a39y6auQJSfnGtiKfetYT+oR5NJ4LkV39lDAt/izCNA0yuJKwK2EcQEe56od4qCMooa1WiP1jPQ5KKi0MWj9eZDalSFdbqKsNxPayoGSxwKaEfjkSdvx4VH5A6juGsm3SJxxmi86e87PxxO46k7oPRErvEXXSY6SSLuuUp8LAjBl0zo4/kRzwVBhWvM7lD8PfrdO9I8/5u1pWpPR5+Q/5sB61y/q8nZeRVHtCyjKvI1hv2JD3wNX6lT+4/lc30yc++e/ya34NmIFTzwDVVAYnnec+5+n0qldc4i0TA76kfs2rX0ILFsz3lvGjr6+vrsfpYdD2vy/9Qe4z/vBHPyOzpqbbIMrFf/AUetYzL/SWfc8BByyko4863GvFoL2h3YWfEdol2ud4c9ihh9ScjVqLybhdkwW09Xe+/Q1NzeZqlIue9kR68xtfQ93dXd4ytTjl5OPpVXX8oGKsvOkvXk3nnlP+CMuYZh79iPfdnXBC+QB3DNbzokueVdfg71jAtegtb35t3e9N3VucdtoJDbUV3NdgFl9hx2GC6PCz83r87Dxdu8ZTAYucLdKxSOpeYoFfH0qnh2/0w3S98UdUbv5L0sPyILU8Sc/l8/4IsKNcpPkQxkUVI+fxNpeOUkNdA1ux3iq7C/Z+PMOoD3zZ4L68KAbtN2xRtfylETLqFfsX5c78fH7DMAxj5iBXgOh6gXtDXBFqXjcCkKfMX9L0OuPzx/2ARvsFtfwlFevC+jXABDsj29ngOovQsuIQE9qL/EJ7UYj9sG2hrrbYLxVCHyWMl1GUHzRTnhKXF+pFdiVlq0Uz/vXkUb/Qt5ZeRL1+RYQ5tZzS8vzxAyox7gq2cT1kMM/Vx8f4vtXpaueFxIHqkFlP1euIV/yxrooM86mUV1UEOneKRWaB6yZ+UgrD8fAdedkMPNH9elQfo+SFDeQZRCsOOZie8uRzvWakwGyAv3zza+XL8IkAs0De9Y4/p7POPMVbxhd8AYyZfrVmtMwkMOPmbW993V4ZRKkHHGNPv+hJpe8C29scfPBBdPZZYzsmJ+N2TSYw2PA373rjhLZNHON//c4/l9mRUxWcw/BjCvzYYaJA+X/8yhdRe3ubt9RPo49+xPvu8N67RsHg71+/4y/qejRwM0z0tWgsNDrz8QlPOFPub/YVvV3u3XkygUw79QWy0fSkzhE8Kgg6bvGhx+lJfxi8Lulex68ToUtp0BGFPyKSVvGPJRY53ZkqepV09ZB0+ZElL2I/qcCojPEZhlEbfJFQijQuD/ui/YXEuvvyoEJVOiPnHhdNol+AGIZhGDMDOe/7eEjqGhIj94WBn8S9HsargN1fa+L16GM1lSxecm2Kr1v1XsdStUvaojqmys8sqbQ666N+9fobk5/42Nmn4LjiEB5fyWO55PjD1iC0cP+ZW7/Twn6imHyK6P4cEcTD4Pq6+XRXXt6PF1U2sbsauD6w2iDRVxWzO5+MDA9LXNJ8Oi/Fhj61DPlh9yAPOrvwwZ+XqseyKN0G8gzq7Oykl7z4D8dtQOPCp5xHL3zBxV6rZnjYvwByioEvwf/xH94x7rO45IvTt79B3kc0kRfVY485kl75ihd4bez86Z+8vHSm1fBI5d1Mk5XxHkRBOZj11Cznn3cGveB5f+C1sYHZQX/xhj/2WpphvuCUgXPDC573zDHvn8m2XZMNDJr8y8f+ng47bLm3jB8Y8Pnoh99d16zryQ4GhTGD8Y1//mpvGT9e9tLn0tvf9meyjmZAPjwqsx5wDGMGHwYnmwHHyb989L1NPc6zDFyL/v7db5nwa1GzNDLzEdty0VMvkHPYvgSz8+Zidl6X/xKD9+uESUS8zrf5ouNzlPdRQeKXg62tmS5Cfl2Yzy+z8AJdShN74Id87Od+rRjYExL5tT6ZXcn0KF+g+w300Zam241hzDTQ+Y/P5Y2c20Nf+eLCo3FNly8ZYGM98yrwr3/thmEYxnRFrwuZxCK6pkALrzMhksYB1jgtR0laXLaW6azlhOuM43EZWWp4jVRgK6ijXDOD4I1OjoGsrCZI5R1LefuSeutdjx986vULUT2011OOAt+kf8JWb7laZr3+oMoX7SCRv6hcsUV2vCevFe9S5zjeTSfJGN1zBi8qdXUtj9uSpvugj1UVm2+fcBKbb3uaLuuDnw+uS8xx5PJSZ9pB6nbKj01ZSnmBv1Qn0HkpEutR3aUG6ZHutOp06w0bwngNaGAw8O/+5s20fHnxr+A3Pb55yr5nDY8a++iH30N//mev8paxgf2NL9lf+YpLmpoF0ggoH7NNxuMRoX/zrr+gF7/o2e4EVsDatY/62OTm7LNOpc/82wfH/AhJfJbvffdb6ElPPMdbGgeDAeMx8xNfYr/7b/+SLnzK+d6SZt269T5WDN5vh+0ay7lhMm7XZAIX+HPOPpW+/MWP0VNrbFsjvORFz6EvfO7DdOTKw7xl6oNj6S1v/hP64PvfQfPm1f8euyJQBo7v97/3r8Zc3nHHHVnXD2Iwcw8z+MbCihXL6BMff598xuPBSSceS1/64kf5vP6cCb8WjYV6Zz7ixwP1PE56b9Hb1UJzevF+N7mnF3KSb/zzevOycqPPKuv6bjxNj9+F5+wqnd2V4Dom+ILBvePOlSp+sOPXhaIw8EEc+QPp8sd2X2ZoRxQR9ecESAls4wVcsWkSDMOojXy54BsY4kB1laWwj+RS30SeZHMM/Opaj2EYhjHtia8HVdeH1PUitEU3gaVXF/UL/BV5/B2j10Ug10uWYQgJ6xrXG3m1rLDMEM2B1NBD9DryC2VpJWj54XpiUtsUoz5hmsaLyh0vwvUUrbOoDponC94maWGI/XzAdmd66BfkVbK0giBlwc+HjMAucc3jbWEZYQAqQZbmdRCmK6FfFvchRHVJg1Sbr2+O0BaVE6Pr0iC2yC5PYJHHtLBAC2IdrRTuosPO68R63bHp+5DSlxyR8mBHH9b1fX0uyECHH/I63Uuf7rqgbmad82KpOiTqqnZfnvqHdq/gX/TQH9ZmdBvIMzIwoPHlL3606S+SL3n+xfT5z3xIBgVnzSqe1XDnnatow8ZNXpt69PX1yqyQb/3Xp+nMM0721sbB/vrOtz8vM/z0hmKiwZfgGAjBF9fNfGmNmSCf/uQH6E//5I/4M+6l3p7iz/nhdY/Qrl27vTa5OfXUE+hbX/80veH1r5LBokZBm/n3L3xkXN5dhZmfH//Ie5qui34h/4fPuYi6ujpLZ6+suf9Bvia4S0IRuJBiu7B9YxlkmmzbNRk5/LBD6Auf+xB96l8/MKbZedhXOD99+J//lg7Yf4G3Th8wywrvy/vJj74u59Fm+cPnPJ0u/ebn6E/+30vH5d2B9T76ETP3cC4eK/hs8Rnjs8Zn3gy4Drz9ba+nr/3HJ+i8c06X9j6ZwX6rZ+bjhU8+Tx6fPJnAIN7c3hYZ1ANYakCvJK+nJT6eMj2UIryuHYBcOuuV/OgweUU6Cs4XodKpEjeJo/eAHxO6Xhb8XLrzr0j3/oDIzgKKpGf22A8ROPoOm0/fS7dKhjHtiO+Jcuf6MO6Bf9VdFPsV3VvBmqX58mJf8XFRwzAMYwaRunbEfY7C64PPW3T9aRQtR58QpvXIalNjPXG9Fdg1FKLrUr/AV/OV5kfdCuonZUKGIVGW+MW+avMBxD7oJ+TSNI4F1ynnH8dV13jKFvqHcQ5AJdBY6AvUP/TN7S+Np/ZjbFM9DKE9JPQpCUGtHCkb0DyK1+XYTYRsHxTYsjSF41l7giwJqbyKrkOC3+du6Qg/h9xnooTlRumtba3Sj1TgChd84tJnZaRMDu67dP+5c8Cf/Ge6I/R3T6VxOi+cn9chse7YTyax+HRI7ZaKnYPM6PP+2DL2dDrHnY5FJT/+mpXWJTZyHHvskfJF8te/+sm6vrTHl4AvfuGz6fv/82X6+EffQ4sXu3f+LFxQ/i6mX91wCzfGoOFOMdCozz/vTPr2Nz9H//vdL8k+qGdgDF/O49GLV/7yUvqXj72XDl662KfsPfCF9Wtf8zL62WXfoL966+vrmmmFWSYfeN/b6f+++2X58hszNmb19sqgZhG/vfXOKTUzSt499c4/p5/9+Bv0pr/4fzX3Cwajnn7RE6WtoM1g9oeclMcBHEuoyw//7yvyTrB6jq3zzz1DBoAu/dbnsi/k8RktKHkv2i2/uZ02b97qtWJQFrbv37/wUfrR978qxw1mxcT1OvWU42X2V2dnh7fkmWzbNRnBINVz//Dp0j6/8Z+fkkeb1rOfcLy++o9fLOej/+PzMc5Pe+sHAvsKnD9xHr368u/KYFQ9g596Dv7lz/6b/u0T75eZuOPVbut59CM+l1NPPcFrY0evRd/7zhe5jXy+7msR2tWH/ulv6KrLvyP7A+e/qcLKlYeWPtYZ16tzzz3da5OPnk43oCez8/g+SO6EvIz1WFb7cwh0HMlOdxLpzugi7leCrELCBws+/tEhcs/vB9w9QHnyM0SWktcVIesXO+LsLekusUpm+QvSJdnVQ3UsXDavO5Nb8P84NVXDmNlIe/INrM5G5ZqhzwOKygjs43VtNQzDMKYf7l7PXzP8dcMti68f4XUo5VHvdUfLif2hwVarlDFd38K8XI+GykLdfP3CIAT7JgO2ohAgZdTwEcp8yuKqazxlU+J4KoRpSpjOoWrfINRD5Dumz3qcGWtNwn3SbFly/NXYJ6FPyj9r9yGRju9VcKTzWcL5s0QfEbPrKvldHtUh3R8jfV1v44C+bd4/Svf2LPDKXD9VdReX/LKs+PNC1qfvvgNSHv/hBwOwYEvczEBfDgf8NSt5ezhmGAXs3j1AD61dRxs2PM4HIV7gOErt7e3SsJYdvJj233/hpH4M195kaGiYNm/ZSvff/xANDg6xPkR410xraxvNndNHBy9bQrP7ZtU88e1tcHLBoMd9ax5M1vuQQw6W2XczjbL9sv/++8kgwnjM4qkHHFsbNmykBx9aJ++YHBgYoK4ut+69XZfxZLpu13hTdm7p7e2m5cuW0ty5s1mf2b/Nwe3M9h076aEHH6at23bkrlnYTyv4XDZnzuxJdw4eb8qOl+nQrr7xze/RW9/+fq9Vg3do4n2HU+Fdarv2cBiQ23J/w9+8dDf2xekYrCvzg50bRy5dkQ4D/1Xnc3b3+M7ADh3rQ5mhjnSO4zfQWX42Sikc8e4C0sWPjbDj9NbV2Upz+9I/FBkr0/28YMw8tN0p2h5TxGk53cdzHkG6xiRPWTlMa1ubXJMnEmvLhmEY9VN2bRgv9nAfX9cj52iEUHcRL7zO6XEaQAz2sNaZHxPGy0B96uk7y3oS+6hsv2laoUeqPC9j4vUUbV1ZfcpAvnr32b5kqtRzOpIdW7z/U58AUmEXWednlPQK8o5wJ3DbliEaHEKp6CkCXvqqoOnCmtkViXqrLw9ZWnmZlcJ23Sb1iestqmyQaFhUdIwotnIEEt83oLIoEzqbZQ6eZPGS14Wsmt8lOX9557yXWfmZ1IgXUojDBvIMwzAMwzCMSc/WrdvoLX/1Prrsx5d7Sx7MlP7SFz5C5517hrdMfob53n/n7lEaHPYGENy3C9kNfSQVr7uOAKTTQ3/tKFTs6M60+l8PVqdrB2YUEnYAo9rdItMruIG3KrPg0iqwUu2UIUk+A1bd291Gs2dNzCBAvR1Pw5hq1Orqx+k5PYhrTNo220O/LBba4OPj2rpsIM8wDGNyEV8DJoKB3dHrVvg8jTN17nztbZB6LcnSA78gR95eEBdQXpQebrf6q03SJeZJ7KOy/ZalBesM/RGPaphfX4KsbrIsRvx4vaFfuO6xEu87UK+tiHD/150PeeDn82bx0AaKdMiQVF4Q+ynqF6bHtrL1KEV6Km8I0pWUX5gOtEyNxwRp+nko+Dw0R1Sqw/vr55eh6/Tri8tVQjs8oY8Mj9KWzYM0xBJGKSYY8JKBPO6kuuJVsh/KwELeAYFBNXRjfXuT9bg6yjq4PPdqCddeZN0JiQU8cnYus/KOvGrd/YAW63X5ULlc/oSsVY9Quq0zDMMwDMMwjEnMbbffRVdfc6PXqjn/vDPkMcBTCfyQb05vC83qcjfvCFhoPKfH0gcsJI4F391X+XGnJ9SxcBb3MnDXKULHxqWLPytOR4GwcfDpokOEug+iorzQhkFDzLhDVPRKmuoaQh15Yn/DMGqjX4KFX4bV03zq+vLME37xEhOX00i5hmEYxvRGrx7Ja1Rgy9LH4xpSUgbWE9ZF4hyyenoZooMBhZSk5d7x5UEs0/z6M8I48kQBqRrEFhP6qx5SpEf2rL6QQcjWy0H3S2zTeBjUHtddy4gDLyrBOToJUjZQpEOGQW0xsZ8GpcwWxotskS7HXsJeFUJqpTOyf5Uyf47r5xEGJdMTeSXmj93M6rdHPr+A3OeqRDrimN2G9oI/zKCVGOvyigeBbZLH2xGHPwc3SOfKgQ1PKGrBe+x0kA+jgd63TPLC/XMc2y52qYtDJHQtj6VUDwvoiEPij9NkOxCQk+3Zu/W8Xo90W2AYhmEYhmEYk5Q9e/bQT352Je3YsdNbqrnwyefR3Lm13xE4GenGu/NmtVAHJqtwp0c6Sl7GeijlXQH++fsC3+BLuhpYh4JfHYo/JPtDOhsnIz8kLyA5QX71iNl6MruPSw/Tq/zVLgrWF6cjzt2OTNdysI58fshM9/UTHeUahlET1w4rshbyhUQTZOuRZTWZvc56GIZhGNMXd49Xfj1AauiRuz7VyluWjnKCskLfWnUC+gV+inqvobFfUb7QirjqWbyO+gJ4yT53agVdL6SGIl2lD1KmswqpfRf7gGovR8qu+VOhWbCvw/0d6yBlAym/GM2bSqtFnE/jcVmxT5yuaFqcrnqYFvvFOlBbHJLAHqRn/qJViPNnn3F4POHYlf6kO2+4fiv6r64Pq/Ys3Qfk4YXvc7p86oNX+WicF1lc+ruBjsCLvM2vvyidE33/GL7uaTfY8Nz74PHHUspBECe4+vLw52WRrtIG8gzDMAzDMIxJzZr7H6KrrrrBa9WccvJxdO65p3ttaoLZebN7WmhWTyv6Qa4zhIQSqY8EcTf2HFW7zIqrdJ4yHYZAyq8T8StA6CJRCtLcQuyQIqBzukjVqyUG3fJ2RLl+me6l/DKSpfeXjh3/h/md7qKiGIZRSvwFCUi1HPlywIck3h6nq67rwVJikV9m9xSuxzAMw5ix6LUhu7bIspiiK0l47Su63qTKRr4whEg5PiClnnWDWFdkHT6upHzFL7DnfCL/eFtzeYvKKEHz58rxxPbYJ4w3gpYTB6UoDkJ/DUXE6ak8oU3tZbralDitVlBS9iI9JvZTQnucHsdTemirl1o54jLDozdL88c0Zqo5UBeXnvVbOWT9SNiz4NOkqJFKHpaVgDzo8zpdZvwhSFEuzgus1dtV9+l16E46XTuyzsJRSNbdeit6+Od0l1aJaW7OK3HDMAzDMAzDmISgk3rFldfTPfeu8ZZqLnjCWbRk8UFem9p0dxDN622hznbfweFFKGWmWqDLjT16Aqzg14ih5H/Zf6EuXQHvL18AaHki8Ytb/8tjpENK1PtLbnz5L0b880J1SO+RS+eiMbMPutq9zBy8zX0h4cqp6Cy5boZhNMdYW4+0Q98WgWuf6VKL7IZhGIYB4utEppddP3Df6hnPqwy+aI/rI1++pyipX5ynoITcdiiF66sD5NX8YTmpeCjDoIRxJWUDRXljW6iD2Banh6TypmQM7BqmO/tyG+N9PJaaZOUEbUz6rgzfcYp0sB/bpacKM3xG8aJ5UZyO/ix3PF3fszIjDmAtrk/sZs/B7iRmyDGZjrXG0uXnXrXTfZ3dYzRZ55D5Y8Yd4tK3jsuRXjU0SXfvq9cZeqEf8Lpfqm4DeYZhGIZhGMak5bENm+iXl1/ntWoWHbCQLnzKE6gNU9qmCfgxIWbn9XXjl4S+c8SLUKL/gEeHiIml6KI4iRt96eggQfxcx0HT9V146IBgz+XepafleYOT8s8LN4NPguhI1w4GE77bTtYvLllQXTJzcO8zUH+HSOje4GS2BsMwJpqw8Wnw55tGkS83DMMwjBmPXg/quS7kfIK4vzrliMur97oDv9xgBMdTeWGXNI5LYB+Ng+ocvp4oS4Pi1xfm0fIRCvFpoR+WRflS9nr9QupJD4n9VU/ZaqE+sW89eUG9flORsWxbve0jBmuM14p6FNYEddR6ssRaZc3ejpQsb9RG3PYFM+bQIfY6erR4153K7N13kgf4/LCJqjryw8/NyIPOCynH+amp4p+XiLr1VKVzPzrUeeF0/HHd3Xqd7v/drEJRXD3ltXqiqz0t/VYZhmEYhmEYxuTj5pt/R1dfU/xYzSdecDYdufJQr00vujrcu/MwOw89H3Rx+DaepXvGvvzYkDs+KqULlJNy28/wMrQjEuv49WCgu+DzISGSsr5Mx3q8Hb8+DOy52XSZ3cdBpuPXi6EeScMw9jru/IFmWN0Ia30RVCvdMAzDMMrQ6wiWVdeUJq4xek1rFF038ktocSVhWVYL+KlvRlBvxHIh3CbOp3YpBxJ2rQvKRWA9lxaWsTcI16frL7LVCoxui2yPlxoH9aQVBZCyl4UQ1eP0WAe1bGFQUmkIoEhXwvRaQQbHIhso09UGJB59bjn02FSCuBy3cb4gnrUXtqE95N6Jx38yd43dMbNO/sRnWPrFmR+HcPUVu/PhRWCr6Lou1WNZmC7r4JBFEPMS9WApfyq5HNRf3mgh6a5e0JGu/kXSBvIMwzAMwzCMSUl//y762c+v8lqap174BOrt7fHa9AM/8OvD7DwOiEvPhO/lIaFCokMW6uLW2ur6Bs4k0/yydHEI/NEjYInfNsqvASVdZeAP6aLV9lLJkZxekfLlRGjnFWc6VNGl+2IYRhO4dlSOfhGhuKbovkSsReVLjIp3Fo/KNQzDMIwicO3QUERRSlmekPiaWG++EORBOcgJKcHdxFaRlQ8ZrEvz5UAZGkSt8nBoWUF5KZA7DCC2aVDCeEjKTwLq6Ovi7uldCG3i76US+maB7eHnEeZAPNaVOK2IenxitGzNG5eR0uuxhdSTHhLqtfLWS9k6YuLPLbTxQvQY9RMiH82rPliGNunTBjoctO+LgHgrZr354Hy8ry/LARtEpazMV9JcXHWRgR775yXXya0h0yHdScJJ5K3MzHN29a/05QMpy2rdBvIMwzAMwzCMScndq+6T9+MVcf55Z9Kpp57gtekNZufNm9UiErhf7blb+vAdeGGHIW/3g2GRjm6BfB0hdkj/5X3mF0p8ucIShtCOgEf8BzqkW7//BaP8+lDTJVHyhP4iEWUpv1KE9LphGOWgXYVfgAG0HwHnhHpBOT4aUmXjMuP1GYZhGEZI0cBMvcRXmezL9kZpJk8C2R5c/7wekn3RH5CyZfi0MMSITYPXi/wzu4/HVFsqSB4Xzck4T9JWUheNqwztKcrSJoK4PqrXY4sJ/TQoRXYQp4UhJJWOoMTxVAhJpSMoRbaYlC1E0xvJi3bWyp1Bl6z3t6EckTRph/jBp39XnqZLpxPxIB9arVO9XyiRBxL9U8yQUz1OFx3/gV2easN/XsKOLq6m5+y+88taYJd/0d078ySX90NiRUewgTzDMAzDMAxj0jE8PEI//8VVtP6xjd5SzZOfdA4dsP8Cr01/0GGZ1UU0u7eV2tr9L/LYhj4O0iCLdB91HQHuEEjHiSUc1U8ES0T1nXlYVEkNdenoAFZs6Gw5eyVgxp1EJe5mIVb8KzbDMIqJvwzJaWjrjVDDP0v165QvNlJwujVdwzAMIya8blRdQ6LrWUjOt8a1ajyoGmiI9HprUDRgEVOvn1LkH1sbLtdLUE9OlN/oOiYbqfqX2cK0om2vZS9KV+rxi9Pq8W2kPFDmL3B6qi0k89Vot5KK8lr87Do+AiHllQ+Iex1xzGQbkR+hIl3X59fJQt+t1wbp30UndvhxSEp2cKIgXaKBLn1myGA2oHPK6TqzkA1ZugCJunN6/l161ZIXNpBnGIZhGIZhTD4eXvcIXXnVr7xWzaIDFtLZZ53K97S4qZ05YHvxzrw5PURdnbzt3GtBxwVfbKDjg70BqbqmS1QWgb+XbsbcCAfY8ulYZFJ+RJhOr1+Xf7H7ijqbTy+SM+1zNoxGQVsJUQ0yn1KDqK3F5YLMI0hzbdWFjERewzAMY+ZRdN1Q4muNavHdn9wPwncv3RfG9cJam70njfNlWryOovIL7PCPA+oNGaJ66BfbwngqKLXsSuhTFnhRl03sDZQbhozApp9vLt1Tl82XU0ZReq18SpFf7qjxPvWUCZ/8EVdNykdtqQB0zfDTIMd2FHLpAfFnIU9zyfqm+cALCRKHLxacDTPaxAd/vn/bwrq8Qw8BaVGZvMjpceBFDR0m3q5MZ4m/WOf1+2rKQtIYqRf/qV/mH+kqeT0cMwzDMAzDMAxjyoBbeHR0BgZHadceomHuG6BjgBt7SHmJdqC7DgAU6TlkdtGlA6F+geS0TPddhqQfh6L15f3YyhHVBeRjgy/epUOHB/7Z0NbWSn297dTb3eacxpm4I2kYU5G4W69Hdd7qiH0z3TfAMD2XFiCat8GnrEy0sbaODmpvb3e2CcLasmEYRv3E5+2JYFd/f3ZuxlLXmNmC87bEA1+RrBflwTLcgqqyImJ/RX1T+wNpsIfliR/0Gvuv1v7N0rksqZuWq3hd/bQuEpdlGl9q0gf5U/umUbCORkuJ6xWWEaZpvF7C/RITb2u2/d5f6uB9ispQUnVTm65F47EtpqzOoJ466XpCUjagdQFIT+2XFKFdy47zZoRlwIf1cDsK8wXAZ3h4lLZuHqShobBOnNf9C6NSFgKXq1LWWVlXft2IOV2I9Qj+dHjRKuX54kXKukRHOkcgQVU6/3uZ92eBx8yw7kwcj9IzXSJeBLrNyDMMwzAMwzCMKUTYqcLsvLm9RF3teO4+dwpG8Hx9Tnf/mZRH7nu90lHgbgoG8aBz50DSIX2683cdDV9kYFfp0kXPSXRQQx1+0hPJ7C6i6T5IOkfEt1JVwzDShOcDEH55IQ2oUbi8LD8j5fm4Eq5R1x/mietkGIZhzFzcfZ2/v4sovF7gmsKh7Bqj5YIwvVnkeheVk1tXTI111qqTpCOEZcfrYR2lSEk+LcuncBwpGpTQJnb2Q97Mp858mqYSYO2hHvrGQeuKZVE+kKtbDeCrQfVGwbpS+eKygcQTdrVB5uIRmk8DjifxjdD0GLWHgRc+NcjnZaaH+PQiwnypwAvvGYHjMnXcFvkHhD5h3JWm54xRGmaJrqHYIUc4xn1YySEvVmcbfMQD+Soz8ODjivHliYz1SMpKIFWHJdR9fkhvl/WohRWZoZfpvA8h8ad9dY7LDEKvS33hH5VbtR6upNMNwzAMwzAMw5jUlN26Dw4R9Q9wZ8c9uUOAt+s4YOE6AnifAMpBhwmu+igQ8UNHw/shXfOjBDZnOqSWp3osXTrK9esL0h2uzMzfS9dRUjvea9BCs3rabEaeYRQQnxeyI9q39ZjYFrZPRX00TeO5nIGPSKe4uJeicz3abUaeYRjGpCI7T08gmJEHwuuSE5XztcZFhnGtH8dhhZbzDRAtsMXpCqxaTrj9sX9q36iPpMXl17Eva+3vLB1ll/nG62bisou2PyTMU49/CpQhOevJz75YY+G6wm2otz7Io75hfgB7mF5EmY+WWW996iVeZ9F66ql/LcZQRu64CuNaXmhjmjmO4jzxjDxZso/0SvHePG+Uo0ns/BcU4aKV9l1UJ5dane7U6jyl24bCZEDRnauc7tcBw6irY1YnGMUuigxMupl6+JdFpod+kDYjzzAMwzAMwzCmALnOFBN3KDowO29WC3V3wtfd8yMSS33fgDwOc8RP1ZN0Lk9+DejKzfJleVSvLd2vIKEjjkWUXqgjH69fbM7ufrVoGEa9ZC2G207pFw8eeKRaGdrfeFBPHQzDMIyZQXZNgIyvD4nrTniNSl2XGrnCpMopu0ZpWsoHP3zLKClDqedaCB/1yvkjXiO/5K3hk6KZPDkayD/GNeXR/Z84JnLUSp8osN7Uuuupb1FepSitVr5mqLPMMR9HAdL/8/1V1kTKu+3wa1X0FcUmjqLjHXjyHjxfVZnhpkHsFZ0XmRS8HqdX6b6cTPdBdJxZ+F8ZbfFpDMb3MEMQfgLLykw8b+ddp7rsRSyycvPSBvIMwzAMwzAMY5KDzoB2kFRmHYTIPqu7leb2tVJHO+tsEytLzMRraW1F1OneLg6wo5MQpEs+iSIfvhwQJZOt+KVgoKvkmlXZZaZf5KdSejiZXlm/i7CQpWEY9SJtxrchPU/UoqydoYyqchLlahk5X2vHhmEYM5bUNajmdYnT5bqDuF7HauUJ0PvhIjQ1vp9OoWmhj+RjHRaUIKWwruXCXlxiMWG9NQ4pQTQP6hIE1K0qL9JqgBxhvmZI5k+tGzb4at00KHGe0CcKyc+rlk3jkZ/WXiTS4uDRdPUXAj/Ycz6QvK3ZZxEGj/pV2VIE+TOfwJazgzAtJLQFPloXSI1nwaPbIwF6ZKuF+oT+YT5dE6S85sH7uT8Gcel7uqGsVu6zIqDvqr7Ijfy6Dufv4xINdfiLc6YjyF7Avgj9YYuk+Ae6SL8R6GVLn9vbEYNE5WBvxTb4fFJf/Hl/p2Ph0jMpS/7jBuBXYxiGYRiGYRjGZEQ76alb99AuHQ5G9V173OM2s16Bl9kjPPDrRhg1HQtI2CGjfKHM8ilsl9l3CvxCPQfsriBXV8QdLgcvfVYMGPb1ttGsnol5LJ/uM8OYqsTnheyITpwzYl3wNk3JfFhW5ZeF94/ySYuGDfmcSUAba2tvt0drGoZhTCKS14NxZtfOnXItkrOzP0dn52q1B4RpTrDUeqo/pPoxWSy0BfFawBf7oixPvK/iPBKXGMd9qLcG4/E5VNUliBeh26BxRfPHaWFZYXoO+Pr8IOkzzmhdUnUKbVqnImK/sKxaeScDug/KCLcxtb1hfuihLU5vlHryokZ4tOaWx/dkj9ZENlQV/UFXZ1eO/KA0aGWIcQ2dgrpCcOYWzI4b8Z68QD1QDHQ2e7s7t2Slw4//VI9l7J/ZIVE+JC9RC0mXelf7Q8orL7wuT8thWVS+SC4M0jAMwzAMwzCMSUp4y+46IK4zpfawcxT7DnJHaOfuERoadh0AdBgE9hvFrxhH3GM8kA/pRWUBSXdRIetwMFl+pwqiB3Yn/TKzQ2qHxcVgd+mj1Mb16ettt4E8wyggbqdZm/RSif1y+Pbooj7mZaZzW0mlSUztQNNk6bB35BmGYUwuSq8J40Q2kOfPz1gjYtBDG9AzuNh9msR9PavsAaIFtjg9RFPirU/lwT4K7fE+07SifYlUpCBUl55nb3weuo6y/VNGKn89ZZb51Fsn9QOxL9Jq5TcaJ9znY6GRzwZPz5SBvEF8pi4vaoG6yEw2xPlPyhx1vUggk9yklcEe1FvWzTr/J+uRsDlTyp7I78lScj5uvT5WAQq7SX3h7nX5QWzCHkq3BwzDMAzDMAzDmLSg46Cdh1RnFTYNCnygt7fh3Xmt1NPJRtbxzgF5jwCckAe65IVBTGzDuwa0TC3f+7N07yKQBNHderlOgS4mSN/zyHSkc35UQAb5YEd9fHlO4DeSrs+iS8Mw6gNNqm6kAebzZOeX6DwDxKJ50H4lVkFtYoef9zUMwzBmHnoFcPeF+WtC6hqi4FqTvPtLXFNSfrKuEpAa30unCH1QZt15vF9Yi/IauXwaQupZZ72kym+EovrVKrPMp578QP1SvvXkN8ZOav+rLbQXxYuoahs4N4TB9xulv4o/ltIXHR2Gs4TsnXp4/5z8+RRfBtB31aktTNfAi0Id6wz1MF3fy6e6C1Bdmlt/1it26aiBpKNfzWVzYio9lDaQZxiGYRiGYRiTHNzMh8jNPQftHMUShHkQ7+lqkQG9zg70EnyHi+3u0SRsUgmB5/ezDh/RvXQl8jKyu0XaLpK7JRWdI1J2bHc6qtHi35XnNqGyHYZh5AnbuWuv0pDqazVR3hSZR0E6rOkUl7euehiGYRjTlvA6pWQ2L4uuI3WB61PBNaoIeKfqVYT6Qur1MrxupmyN1ikkLi9XrmHsY4qOx9je6HGr3sgn73b3+UXnDiJszu5sueA8kYB/HyrpDk33wVlcUD+x+/RMR9fYvZMPZ4LMHzGfjpAtcZ4QiWTnB4kZhZpf3u/HitPdX0UPbL58tdhAnjFl2L17gN7xrg/S4mWnFoaPf+KL3tswDMMwDGP6gJv/8MsDJbbV+lICs/Nm9xD1dpG8F0A7DCKRV/UR/WUh7BU/eYBJoEMRH/wKUnQxORmk+6izI+J+0CiGzA4VUcR9cGs0DKOIuP3XOgckifNxXEpVqeuIyo7PRzFZapTPMAzDmFnoNSZ1z5q6kuSuSeG1JnXdKSmnkBrXrzJQt9T1DzakSd01eDu8NQesLqWcWtdYpV6/fUHuc6yBbofsr2Cb4njKL/QBsU+YHvsqRb6xTSmyN0KYPyxP46GupHzi9FAHoV8qHcS2lE9IYTrb8akjvehYF5vPj2VWEvIM+6e+4N124ujaVD44u8PZXBmw+XQOsMsMPfe4F/GAdHaWzuJkzu5lprPA02M4jvVk/uqnOtbF0vWxK+nIJE+70RmBSEZ5/OfKE4uTPr1It4E8wzAMwzAMw5gCSIcInQEf1wCb2lOk0nq7Wmn+rBbq7ETPgtNZoCOB6XCQmJ0nHQXYxeDT/Uw5CaKjDmG6mALdpYtJFjow4HT3EnKOyAw9Z4TQ/C4JMcMwUoTnhIYJ8oT5C88m3kd9xS+y5VBbKs0wDMOYEeAKkLpGlF03qtLU7gPI7m+RxvH42lV0bwxrnJasSwDSNQDkD8vQeKqc3LpqrCcEnvla5uuhoYgwrV4/JbaldA0hsT0VD20xoT30i/Ok4uoTpoWEaaFvaFdSNpDyD22NhjC/EsZBkV9MnK56UZ4wPfZJ5anb5mV47CIuuvfHUgLrOT9pK1ofSNi4T4rZa5nd5UNP1WvO7vO4Ipzu7OznHvfi9UBK9rwdvngyTGyHFBJ2kVxHkXDhOvgt8X1r5yfbAX/V/XpUqt1lruihxJ4wDMMwDMMwDGMSo18YaAdBvxQIbSnUL/RBHPY27gn0dRPN6kbnwPUZSH5t6NeH7gIkEiIp6ar7XzlmeibVXglYCZKdPS1RHBfq/HgpdsMwksTnBAHxqOHk0pXApumhX+7cAntUhqQm8hmGYRhGjnquEXzN0atO0TWl8BqF+BiuQ41cw7De8NqLAF3LyNWLyenwZaEWlam1x7a43BCkxSG0x3EQ60psU139U3lAUT6QyqNlaRhvxrvMiahjs0xUXeLPQvWy9aWOXXiHeSUgIWhnYdtR1Bd29z529AdHaHh42OvDUgZycG5Zt5bjAma8iTGyVwIvIt0/JkZteMqMn1nn0r0dcRDocbp4iEQMNecYl4eZeEjP3rGH9AIpe0M2MG9XaQN5hmEYhmEYhjHJ0U6OdBgCws4PiPUUYRnw7+5soXm9Le7defJrQp+I7gIropfJ7FeOcTrs8h/YY71McmSUA37WaBhGY0hDqo9UC9MvJTLqLC88B8XnK8MwDGMGgutCA9ekkDhXdo2Jry+qR/bkdQi2lH0M6HpUxtdC6KENQNdaZCnw8X6aFtYU8VBvhqK6xPaUX4oyv3ryN8pYtj+1/1J6rXWoT+hXyxanjQcTUX7dZeCz1c++ns858tHjJtVGW9vc7DYJ5N7bru+oc+XA7paZnwaZURcHNyuPo5I/TJNSQh0ysIkeBNE1nf/yOoO+NCRs2LQgvTIDr5JPtt775WbmybLip9IG8gzDMAzDMAxjioLOT9gB0i8LQnK6j8Mm+ZCf9ba2Fprd00KzurSsSseipkQkqfNCftWodl43B6hOT0sXXP2kDOiGYdQP2rk0qNoUecXnkZDwnFPmV5xiGIZhzDTCa0Lq2lErXZErUJAeXpNS5NLrvDaOBbl/jdajum4XZFW9w23mOLTivWDENPrJNrtvx+sIaqScen1T2zTW+ibzh8dqCk3HMe5DI/tbmoa8Iw8RzGbj9pDplfaV153U2XS8yNmxIaJmupPomaquAX8iVc8kl42+rabnJObfoXjWsLEi8376jjy8h17t4hqk67vznDWfHzYbyDMMwzAMwzCMSY50IDzo/IdfBCgaj30zEOe0nI0R3efp7myleX0t1NVBrqPASeIdSWTJdA2xjiI5kulBUL/QH3Hp8HBAZw0ml4iIYRi1yNp2cA4oAueJMq/wPCJ4vcqeIKsHS2u+hmEYBsiuHnqNqIP4mgMdueUaVsf1qIrg+rS30TrjGqlSg3fIgtYOMheHv1MF3QPhnkA8pcf2kNgnDiDWlZSPEushRfaYuDyVcZD9gn1ZEnT/IQihTeNeFzheFWCWJOcrOkvMssrywq56YHfeDNJDyWAbRE8E5E/ZOJarSxiA7BfEgyDrAZFdQ1aGuPiyfIAtCY7bED2WA/SYV8L2oAE6BrPghrU5u3tajBvMQ35IlMD7HE+F8X55yb1YPzMvs3NI6pFUn9gO6ewsQJyOctUufrAHM+zUj4POvAPYS0XvyoslL7ibjL1kGFOA3bsH6D1//1H62te/4y3V/NVbX09/+abXeM0wDMMwDGPqo50claEtRm/tVYb+QHNAy/JzWqpDsHvPKO3cjU4WNMkhMtYh5Z0EgY5fT/qfIwZ24HVZp/cTCdC5jMphPzwKZXZvO83qaYfTuJPaj4YxkewaGqVdg6O0ZfcIbe4fkfgA2/B+yJ3c7gbRDAK6+NDvaW+R91p2s+ztbKG53a3U2+FkV5vzw7GsbV0aanBsZ3YmjMeE+bM4yvFx2FL5Y1tYDvK3d3RQe/vEtGHF2rJhGEb9pM7l403/zp1ybs7Ozv48HZ6vNZ6yCZouS6bAL5Wu5Mrz16WYnE8TYH+iDN2vWl64nzU99EuRygskHyQHSCkLCSHso+nyrmtv0/VyBJbM5qKuFM0HtOx4nYroWj6jZVSBdQTlA12vIuvwZRWUIsg6XTRD82gZipQT2DIdUv2CemlOiUf1E7/IFuZJEe+PXJm+PPHwfnE9QyRF0zlNdV1HlhdpPp5Dy0v4abwqL/KwHvqlSK7PE+Yp8ot9hvh+eMuWQRrme2O2uASBj+uoClJnH3c4B/HDomqV2OeVQlx5FV1BFzb0C4EVxVblDfaTHMl+3VpHZw3apitA8kHHQDBm6kH6rELmr5J3UphuGJMWG8gzDMMwDGMmgtt1vdnXuN7Cazy0gThd8V0GJMApkxWPCsiHgYX+gVEaGHR5tSwsRRfp/Cq6l1IuuizIV52OpdjZMMJWlKN+eKiI5mtrbaE+G8gzphjDfOz27xmhTf0j9PDWYdrG7WjbrhHavHOEtnPYww4YtNvBAfFBDjjedw9xXjSogI62Fupsc538DpZdfjCvi+2zWPZ0tdCcWa3U3dFCS+a20aK+Vgm9HZV3XqbOD0DaGUJgk4qICGwe2IrsoRQ0zpWwgTzDMIzJRepcPt7si4E8bFUuP5PTg2uTEvuPBd2vKDPcx6Eep4GwDkWfjfpIaoEPEL8gHe+8Fj2yZzpLlCwpKT8Am0d8E+XoemV9wPvI9gY6EFtYRgEpv1p5pR5MrXyhHufJdFnkywGaNy4jLD8kTgvzK6m8mp7KW4vMT9cRlaEUrTe0xz6peoE4X5FfSOiDgbytWwZFVmqo8HEaGGVdEsMSCWF6mFvTdel051vx0xpKqZgdp2h2L102XkZ2J3mR/U6VF3DzP3iVViZ+7JPLzxHMLvT5YKpKd1YbyDOmDjaQZxiGYRjGTAO36mHnRjtHKlOE9jAvcBojnQPuaCPKIVVSWM7A4Cj17x6l4WjCHMoAgavHGyByiYi7WmDtVdlgGUX3SVNG5cXmNiPPmOwMjYzKYB0G7dZy2LjNhS27RumxncO0k9N2cNi+a4T27Kk+8sdCWxtRXy8G+1po0exW2q+3lRZwmD+njfab1UYHsg0DfAt6MBCYP3doc86dT7J2XV1PtYVpKRsQnQPaWHtnpw3kGYZhTCLic/ZEoAN5QJYajySIz+GZrr6y9KTyc9AtKiwLYLvL0ieA1L7GOtWuca1H6F9Wt6LPUPJwGlKROxvIC0nZlCgtVS8lVz+kq6/qntR2lJWnadBT+6No28sIy0qtB6TKTaVpWXGZqfyKlqNo/lQ8pMheRrwuEOZP1SUE6aGtKD30i/PUWgeIfQYHR9yMvCHudLI7kpFNJB/NGO8SHUc2/jlUflCKx21W0llk+TEsJ3okdQac6gIrWX4OsUShTscaIQOdncQvKNfNtAv98uWFMq5PleSdCGkYkx4byDMMwzAMY6aBW3Xt4MQdo6Lb+NgPqM1pTJBfOwYxcfkj3EvS2XlIyToUvEzOyIPkMnLS2wE6O7l8HNFVOj/3BUQbJ9iMPGMygkdiPrJ9mB7cPEzrtgzRhm0jtG7bMK3dMiwz73b2Y+R7L4CG49uPa0+uIfX2ttK8XjeQt3hOKx00r50WzeX43DZayvrsrtas/YGszXupuqaLb5QGUjYgOge0MRvIMwzDmFzE5+yJYNfOnTg5S1yWGo8kSJ3Dxaa+svSk8nPQLYrLSpUdU4/PWIj3t64PdsRVFtmKiMsFmleJdZCyKan8IFWmpoGUroR2RdNTZQG1pcoJbWWE/qn1aDkpm5JaZ1yWxlN51aa+SsoXFNlBWfkh8bqU0DcuN1w/4iMjeF9d3pbyi21AdVCWNwYDedv4nhoz8iqNWuvcwnl8LCzfSxkmy8yVdJDXKsR1QFnOVJTD5alspywlzkYnwzKTNlZbuQzuCGPin76hwhXFS6mE84ulDeQZUwYbyDMMwzAMYyaSul0POxBAOyGhLU6Hrn0BVrBEgpMJUuuFbc8QybvzuG8Hi9gh8RJypwdlas8keoeeG2iADOzZTDzoFbvNyDMmE4Pc6V7z+DCt2zpMD28epvs2DnIYoke2DNMubhf7Br9eNCONMJXzgiypu7uF9p/TRsvmt9HhC9toyfx2mam3nCUe0Zlr8xxXXa3SItUWSZDLz4jOAfWwgTzDMIzJRXzOngiqBvKA6gmpdUI8d05H3F9PMt2T5eegW5TLy8R6CNKw3jKf8SReV/g5qL3MFtcz9C0jVXYR8G223FT9isqrp05h3tA/joe2kDBvqhyQygc0HYT5geph3jgdpNah+UL/IsJ8IJUnLCtcr9pDWxmxX1FetQG1x7YyvQwM5G3dPEhDeEa9EkS1GC0PS+mSMqmBPLhp1WFB0OKQhjxB8Y6gruofSyU3g85vp6RjpWys5Av8IDkCF+THjD3Y3XrVW2N5GTzw0zAMwzAMwzCMyYR2CMLOj3QQcOcfAD20hfEwb0Zoi8oqA2V1thPN62uh7k4ug3UpX6Q4eIkOCZcLXWUu3cmWFn2HF5TqdBhFGMY+ZmP/CP3qgT30w9t20X/duJO+eO0O+sp1O+jnt++m+x4d2oeDeIr/ggBNyTUeadoI2oZ2cx0femyIrr17N339hn76wjU76Ou/3knfv30X3fDgAD26fVgeEVqLmucXRny8X+0SDcMwjOmIXi9wpUBMgl4bCmSSEp/SfHVSdC2bCOJ1QdegxHoMtrlou4vyxv7qU7SesJxQhv5hXNG6FdUvpF4/JeUf1kHTw6B1RlwJ01RXNB7aitByNei6gNqA2hTNV4s4X4yur6gstafqonk1APUL7WHemNBX/dQWEuu1gLuWyzExiN7qZRB4IYNhCHGapHP+nB7EkzrWIXUI0oM6qI441ul0V2mXjn8XZw9WuK+LH7t6u/NnKUvebz4GOxTpG2t53i5SllKiYRiGYRiGYRiTlbhThLginQRvV8L0EPi5zoKLN4OWjdyzuolm96ATw/Ubkb6HLMRFZucxI5wGCbuXMk4APQgKcrn8oQwcDGMvMjg8Sqs2DtEV9wzQ937bT5+9Zjv92+U76PI7d8uA2MA4v+uueSrtudKmnE3alMTy4JFFG7YM03WrBujL1+6gz1+zg757az9dee8A3b1hkHYPFm9brfOHtVnDMAwjg68JRVcFvV6krhuwwaqhCL0mlfmUIetJrH8yIPfuvn6Iq66E9hC1x6TKKfKNKfMJyw2DoutS4vRUnpAwPfbTskNbGA8J86uPxlGObke4PUpoC+2hTetSL0VlxWjdtA5KaEvlA3Ea/ENUr5U/DEocj9ObRaqUbRsr8mSXERaSIHYEvPZBdSfd3DzRvU+WnumVdMnPeTIdkm2QoyMVO/5ExroUxn6uUJfO+aUeorNEObINKNfb+Q97KZRql/VqeYHdebE/r0TSpzN4JONDa9fRhg2P8/4blg8Kj/WYO6ePDjnkYJo1q9d7TgzYxdt37KSHHnyYtm7bkatDb283reA6zJkze1wO9nrYubOf1j2yvmp/dHS006ErltH8+XPlEUYTCfbJtm3bac39D1F//27uSA7xOls4tNHSpQfSQQcewPXp8N4Oe7SmYRiGYRgzjdStetk9I/zL8iAtzJ35JspMlQNS9p27R2j3Hk7juF8TJuWhy8W67xCLNY+ks1HzhRJLyDa+R8SjNXu77dGaxsSDw7vfv/vugU1D9ItVu+mW+/fQ7gG0Le80adE6akXDY9vbdCPCBund8GVJX28rHX1QBz3xsE46dGE7HTyvjbranYNk8fnD8wDi8Xkh01mijdmjNQ3DMCYX8Xl7IujHozWZ7OzM5+n4XK16aM/ioU0lbIEdwAaLblFYFsjp2G6vw677Ic4znYg/63C7gW570TER7ptUPmN6UnQ8TCTuHXmD/h15fHzl6oDzh48Ksc7uma362Ky2uFVoStHWlh3n+TQuAYXAFtZbfCRBVET1HXkw4eyFXq9KTYdEeiin1EDe6tUP0J++4Z10552rvCXPH73s+fT373krdXd30Z49e+ja626i//jKf9PPfnG190hz/rln0Mtf/nx66lPOl7zjAXbr2ocfoe9890f0nf/5kdS9jMMOW07PeuZT6bl/+HQ6/LBDSg+SZti46XH6/vd/JnW55Te3e2uapUsOoqc97QJ67rMvopNPPm5cB/W0Hv/5X9+l3991r7dWM2/eHHrB855Jf8Sfi+4PG8gzDMMwDGOmkbpVD+8TNV1t0ENbKr8Q2xP3nqm8sQ26rmcQ784bGKXhYUnxA3TqD8X1QNBNEV06K/jlZEXPJJcnOVm2tbXS3L4O6u5qg2XcCfenMXPB8bZrcJQeeHyI7nlsiK67f4B+fd8eGiqZmTZZCNthBbW5eB6vq1mbAJx9vKud6NhlHXTRym5asX87LZ7TRt3t+IoBPy52v3hWsN78uh1i44B62ECeYRjG5CJ13h5XuPz+/n6JZmdnPk/H52rVQ3toiy9Vkpby5ZD5Bukgp2O7o3QQ55nq4PMNtyn8vNWutlhPkfKZbvvMyFN2PEwU8o48DOTh/lsPr6weOkgHXCR/CEJxfU1nd1Kzw+Q8Kqifyyc58ukcxO5XVJWfg+rwET1sIxzcg2pQF45wWuwvMwEjPV5fJrnwSumTnHoH8jBYhAGfy358uU+pj9NPO5H+4X1vp+OPO8pbmgOz/z7y0c/Rt7/zA29pjEuefzG97a1/SgcvXewtzbNp02b67Of/k77ytW/Tjh3ulzCNgMHNt731dXTcsUdmB1Ez9PfvksG7f/nXL9KWLdu8tT5e8qLn0Dve/gaaM7vPBvIMwzAMw5gx6G067sGKbtn1/ixMD+OFeWNb4j4vla+oHkDT+geIdu0ZpVbWsxl5bMcSLliTDt+5jgrnhc4L58dSFvw/MkLt7a00BwN5nTaQZ4w/OObwGMkNO4bp7seG6L9/00+r1g66xCkDtoKXLCptvvgLPHEEvp2JBDm7i7e1Eh27vJOec0wPrVjYTgf0tVBXm2aEW14qontbS2srtXd02ECeYRjGJCI+b483uIfbhYE8PjdnZ2d/ng7P1xovsmktNVXSEr4hsS2nY7vryGMYM52JPkekkBl5W4doiCXaqbZKVxfWxYC4m3SUb7Z8voDOvq495xIjLcSV7Rx44VVFzkItwSQnPYeon9fRlw11pI8im1elclF6ODNPy0NUl7F/23sZlzL52bx5K/3gRz+nDRs2eUueE084hg4+eDG99a/eR1de9StvrZ9169bTFVdcL7Pj8MjNRk/iQ0PDdOl3f0Svee3b6Jbf3OatjXPn71fRpd/5Ie2//0I6cuVhTc2IwwF+xZXXy8DnT356Je3Z01xn9L41D9L3/vcn8qvLk048tqnO1xou401veQ995avflll1jXL7HXfTzbf8jlYecajM4vvdbb/3KdWce87pdPZZp3jNMAzDMAxj6lJ0Lwp7nKZ6qsNV5a+dgZBAL+u0xetVwjwdfLvY0cb3xsNsx6sAYMTCu+RLh5YuUx2RikE8DOhNBEXbZEx/9gyP0mM7Rug3D++hr9+0ky69aZe8N24qos260hRrHNeanLmhABYIWRmuvPW8T666Z4Du3TpMc7paZLZed0cr4ak/qfYTn0Pg08b9yIl+fYO1ZcMwjEkEXwuGBgdxcq5cahCPztWqh/acT2hHgJ7wrVgqNiXWw/ygKt0wjH0CXv+1e9ewuxXFrSk3Tdggw3tdeXcek+ni7iJIwVnHzc1T3Un95WhsxzkgpwcSK4GUH6AG9io/L0fF38/wwwISKb4cmFpRcVGcn+qaXiSn1UDe8mVL6Ne//i1dfsV13tI427bvoBu5jDPPOJkOXLS/t9YGA1T/9qkv07v//iNNDVbFoIwf/+QKauPODh5v2cgAGgYU//vb/0dvffv7af36Dd7aPBgExGNKMdPxjNNOaujxo/fcu0YG8X51wy3e0hwYZMXn8uijG2SWYRE2kGcYhmEYxnQi+3LCSyAdDfRYfLxh4jyBXjaIhzSsr5514r123f51x0MjyMOrgQKJiJf6w0TRIV3U4SOYEdTV1UbtiEwATe1DY0qDH77iPXi3PzpIX7lxJ33zhn5auxHvDvcOUw53DMfHsrS71OFd85APzgM4J/hCMMh589o9tG7HMB04u5Vmd7dSm09LtqMgra2tzQbyDMMwZhJ8/Rjcs0fOzdnZObguKBqXZWTP+amELfbzcSXMB2I9zK9U+RiGsdfBoN2egRG+V3ft392Gom06XYPqmVQ7pNgQjews0PmstkMimrJzACxaMSsvkV4lcRutOveJWzB7EHExQ3eDhqLzvXGmSz78+3IScloN5K265z66e9V9XmseDOZt27qdnnD+mXUNWmHg7Av//nX65w9/2lvGj+t+dTP19fXSKScfX1fHB1+w/N/3f0p/8+4PNfUozTJuu+0u2rmzn84+61Tq6PDfzJSwYePj9O73fpSuufZGbxkbW7ZsLR3EAzaQZxiGYRjGdAM3/KlBNLWHg29hehJNd70i7lxU7i91HSl0Han0cP0x7W1Ene0t8sJyN0iS+m1ktczK9HWyGXnGeICjanB4lB7eOkz/e8du+vJ1O+UxmlN3AM/Dh7A7inGOkEiO+g7xwCnIIC0y0Af3jNKDG4boyvsGaEFfGy3obaHONny14NtsAuS3gTzDMIwZBt/DDQ4NyblZzs7+HB2fq1UP7UkbguoJ35DYltMT/iBVjmEYexc3I2/EPW4ScLN03UKno5lCL2yvnOZzekLN9UIdvrws5sD9bF536f4slvAv0H39Wriy8uc2ghOdDmQbvK75JJfLKoR2yIm9k57CfP+HP5dZaLXAB/H9H/yMPvHJL3nL+IOysY6yL0kUzHz7x3/+t3EfxFP+46vfpi9/5VsyeFnGnj176DOf/Qr95KdXeIthGIZhGIbRKLj/03tAjYc60I4MJGyQoS0EnYkMxDGCEZSjZRaRWn8ZKLOtdZTmzGqhnm6uC+t4HB+k/7miREVCeJltg0gxG8aYwOG6c88I/fye3fT3P9pGX7t6B22aoo/RrKKqTULiXCBNKNFWYWQRm2Odic8hys6do/Txn26jj125g1ZtHKLhRF7DMAxjhhNefzRedU0aHxq6VYzqUHStMwxj74P3xmlfEH+tgT4qL8FzZD4+yHvsIKrsFZsogqZ5P/nDrbBLd0mV9Az19TLUWfE6hJPQYc/K8Hb8uA0xzMjDTD+dmZdJ8WPPSE6rGXnjTU9Pt8zKK5t9hve1vf2dH5DHTpbR1zdLZotd8vyL6UlPPFvKPevMU+XRmQ8+9LD3SoNHW97/wFo65+xTacF+8721mofWrqO//tt/prvuvtdbisGsuuc/9w/owqecJ3VB3VDHR9dvqPk+vVWr7qMTTjialh28xFuquebaX9MH/vGTTb+br1lsRp5hGIZhGNOJ7Kbfo7rc3AdpiOuX9bFdER9E9MuLIC0XD6hnsC6Jz4f8Wge8N6+jvYWGRzA7j20F6wSS3S3Ez2bkGWPl0e3D9KVf7aT/uqF/yr4HrxbSxqXp6TGN84STedCuWOTM3iZRKcSBeFUb0XKJHn58iK5avZu6Olto2fx2mZ0Xg3rZjDzDMIwZBl8/dEYekCXH43N1lh7YkzaVsKV8ZVnRQzKbXt/KfAzD2GfoO/IgAZolfneKd+Kh+eqtJNqr62dGt6peQqAEaddI5wUG6bQcSQ/zZ/68gJ/4B/ZMttDI6EjC7sh0LhQSBn1nHhTx8ysVj0DCnuUvklxpyCnB6tUP0J++4Z10552rvKUYDEr90cueR5e84Fl02KHLssG4rVu30c9/eQ195nNfq1nOMcespM996p/osMOWe0sevMfuPX//Ufra17/jLWkwePe2t/4pHbx0sbfkwQDcRz76Ofr2d37gLWle99qX0zvf/gbq7Oz0lgrDwyP06c9+RWbjlfHUp5zPdXkdHXfskXx84DDIg0dXfvbz/0lf+dq3S2f1PeuZF9KH/ulvaO7cOd5SAfsYg5uY1VgL7Ns/etnz6RlPfxIddOAiasfzlxg83vSmm26lL37pG3TFldeLrR7+6q2vp79802u8ZhiGYRiGMbUJb9XDe7f4Ft51RLRDk7/Hy/lqHL2g+HmCPn9M2bqKEB8fB7Hv7j1E/QO+g4OlT4ZA9cWdFxAYv5szu1MG8yaC1D2xMb245v4B+uaN/fT7tXtoaKo/RjOBa5NeYcLmpvZ8G+S4qvmGWtFz/hGj8U4clYH6E5d30CWnzKITDwze74668fmmg/uwGMybSKwtG4Zh1E/Zfdx4MMr3mf39/XJuzs7OiEfnatVTdoTwcpX5BL5Zfg6Zb5AOcrpud6IMwzAqTPQ5IsXg4Aht2zpEw0Nu3a4OOBeImgAJvm+aOwuA+HzDaYlNqmr/okY2ptZ5Ipma5XHbAXBG1F6w4JNgx3/mmpDTckbe0iUH0ac/9UF6+UufR/sv3C/XYcA77445+giZkfa7391Jjzz6mE+pBuu56GkX0PLlS70lDx5jiffilc06+5t3/QX99TvfSPPnzfWWaubOmU1PefK51NPTU/o+uUcf3UBnn30qHbhof2+pcM+990ldHn98i7dU86pXXCKDb9g/RQdfb28PnXfu6bRkyYF09TU3Fm7bukfW0wnHH02HH3aIt1S46eZb5XGgtWbjveB5z6RPffIDMiMQ+yD8hWZXVyetWLGMnnXxhbRwwX5040231jW7z2bkGYZhGIYxncA9mwb3ZX3+Hk51TS8iS0NZkJFvcc5qwnXGSB1ZhilxvaDJ7LwOzM4jCc6KXE5meVAer8dm5BnNsGtwlL706530zRv65b1uk2kQr6OzhebNbqVDD+ygxfu10dGLO+j4ZZ10yvJOOmlZF51wcGcWjuK0Qxa105IFHbRgbhv3GzEw1koD2bsnK+B4doe0tinYRFTwzSvXUEHdTUELAC6OH04/tnWE7t04SCOtLbR4Tht1tfv1c2hrb7cZeYZhGDMJvocbHBx01yVvwgUpPFfXiudsKtUW+VQ8Ax9PrAtRfsMw9j3hjLxKH9LFMzVAm69LihwkDTYNFaGk2r9bT94RftrPjYqowD7ZTDwFhQUVd/lj3QF7XH6sT8uBvA/8wzvooqdeUHoyxiMq582bS//3g595S5rTTz+RTjzhGK9VwMXoK1+9lK7/1c3eUs3LXvpc+ss3/YkMStUCg43HH3cUbXp8M912213emgez1DBwduopx1dt23f/5zIJReARmu/+u7fwNlfPoItB2SuPOFQO0KL3BGJQbeHC+XTeOafnBkoxM/Dbl36frrr6Bm9Jc9HTnkj/8L630wH7L/CWNLJfjj9aZuphYLEWNpBnGIZhGMZ0otKBcfdo0oGI7gNjG+KxT5zuI06OMygftS4qHXak4115XR3unXl4/bKrjvuyxz2CxIH3IthAntEoD20dps9cs52uuHOANm8f2WfvcGvlrtK8Oa109NIOOuuwLnr6MT304lN66fkn9NLTj+qhJ6zopnOXd9FpSzvpxAM76JgDOumo/Tty4ZgDOugETjtlcSeddXAXXcB5Ljyii55xdDc94fAuOoLTDtivg0Z5XS0cdu3G6B7OA64OkLnDHHHVU43Vn3ekbSAeZpa0MIOPsx2Dedt2YTBviPawcuiCdhnMQzk2kGcYhjHD4OuCDuQBWWo8kiAVz9lUwhb5VjRHmA9kur++hfmVOI9hGHsfDODtGRiRH6pJ2/aBNUl3zTS0AwyA4d1yYR7Ws7jz4hjJ+/dyfvnAC5cOP7XDwreweJddlu7tKlshcXrhe12xBOsBToedy+DzkNwTyy11xQ/l6112tl5N938Teye9D8AjGi988nnZjioD73k77dQTvZZm48bNPpYHM99uv+Nur1Wz6ICF9NIXP1dmuNULfJ/zrKfJY0GLuPnm22h79MjLHTv66fbbi+sCXvzC59QcNAvBwBn25RGHr/CWam699ff0WDSoisdq/vbWO72WBmW+/a2vk9mS9YC6vOKPLpFHlBqGYRiGYcxUdMAuHtzT+16VSFff0KZ6JTfj04sI1xVTlCbr8vEUcb6uDqI5vS2EJ6yPjnLHDckcMq/0agyjkF89OED/evl2um7VAG3r98fUXgL9csyaO2tlF736vD760HPm0z/+wTx64zmz6ZLjeum8Q7rosIUddNCcNlrU10YLeltpPw7zultpTlcr9XW20KwowIY0+OzX00oLZ7XSAZx38dx2OvKADnriYd30khN66J0XzKEPPH0uvYfX9+IzeunkQztp/txWqVNVc4WOEDZW9QnOGzkyPbT7uM8zPMx95W0jdNntu+hLN+yg1Y/v3XemG4ZhGJMbvTcto+geM5W3yDdJlF/Lq6dOhmFMPBjIc+/Hc/1ZSNU1oL+INE2Xnqd/951Lh4XliPpJsvPnssRP7GLM5AgH6SnjfCAmnw5F6jXidZ/fOWUSr4DH4+dRP4xEan4BQtI5wuVL3bL8zh6+e8/Zg3TRRqffQB5mtc2ZM9tr5cybO5cOKXhsZi0efGgd/e6233utmtNPO6nw3XplHHP0Ss5bPLh4x+9X0cNrH/GaY/36DXTnXfd4rRoMVmLQslGWL1tKZ51ZPLsNj9C8774HveZAXe5/YK3X0lz8zKfQypWHea0+ZvfNokte8MzSQU7DMAzDMIzpin7BgA4B4vEXDtJRiIBN7fDP4qEvfHw0JMzbCFk9ZVlCVHYb90pm97RQXw8GHTiNe1tSEi+kyPzmGkYhP7prF335mp106wN7aOduHMc+YQLBA0qWLGynp5/QQ295yhx699Pm0mtO76OnreyWgbZl89pl0G4+H9+9HS3UNk7HM4ppb3UDfRjgw+Mssa6TlnTSs47podedNZve+7R59IYLZtM5K7to//mY2eryJonqJeeA8FwTnXcU2cfBjkZ0684RunrVAP3njf10yyM2mGcYhmE4wvvLontNvdeNU1P+Kb9CkD+4lml5RfUwDGPv4poo+q1O8jJosqo7Q5YOBf58TywS+SUdw17OZ9TPsONFocSsuoqOaJSOX8YFepVEPfxMwLy9oqNevnLBDD+XHuspiS2aViw7eAlvG29gHWCmV09Pt9ca46GH1tGOaGZcCB4BetSxF9DiZac2FI476Sl0+RXX+VKqWbPmQdqw8XGvOR7fvIXuvHOV16rBgNsZZ1+cXF9ZOHTlOfS1r3/Hl5LmgQfzg3Zbt22XOhaBgbgnXnAOd3YbP/RqDXIahmEYhmFMN/S+Vr9gkA5A8GVDaC8CPuonMvTlOPLWd/dcTrgejuR1JtZT4FGbmJ3Xidl5MPBChvTKsxmGcNndu+jSX/fTvesHaWBw4g+aOX2t9MSju+nNT5pDb7lgNl1yQi+dfUgXHbGwXQbVMItuvAbtykCzQrPWpt3JK53f3UpLuQ6oy/kruukVp/bRXz1xDv3RGX103MGd1NtTuz9WX78a5xAnQ1AnDKT+5oE99MPf7aLVjw/5FMMwDGOmUM9VpAzNX6ucsvTctayu65phGPsM318sDPiTuJu9h4jqbgYeTN4mHUgX1AaHLI60QMeMPKdXynF6tdQAXQMvM4ll5o/TDpdZmdHnfrCKGXiqQ8Z6Sk67gby9xQMPPuxje5+N0UAeBhX3FfGjR9etW+9jaY468nA66KADvNYYc+fOoeOOPdJrhmEYhmEY0x/pAHjiQbz6vmTPI3mCMiQuHYP6yTouEakvShqtI8rFjyn7elpoVjd++egHGRsrxpiBfOO3/fStG/rp/g1D8s7FiaKtnejIJR30yrNn0V9eMJtefPIsOndFFx19QAcdNLuNetr37sGqbREia5aIBG0dj+c8eG4bHbuogy5c2U2vPqOP/vz82fT043toIdtzaBlMqp07EttYsNm7B0dp3ZYh2rhzxFsMwzCMmUbRlbHsPjG8BmmsyL/oamUYxtQD7Vzaupe5gD+W0kdkyQsfIFrdu+jg52fGxYEXkQ6Ti8uMPFlDxcaLaom/QOeFSBlk03T/J+l8gsLQner6LjydgRfOxIMdJaoeSxvIm4I8vO5RH9v3bNiwkQYG9nitNn19vTSrt9drjYFZfN3dzc2gNAzDMAzDmGrgC4yskxCgeu4LjsIv3J1/Vk7ohzhsvjxF19sIyJOrg4+HtkbLxLvz5s5qoY42LiMo2jBChkaIvnVrP33vln56YMMQDU/QeBEG8I5e2kEvP30WvZLDRUf10OkHd9GyuW3UvZcH70Kyti3xquZcBd6zt3JhO529vJOee3yvDOo9/bgeOmBe8NWAb7fFbTZskL59hu0/AinDJemGYRjG9KTWmb/W/WtMmX8RzeQxDGPfkbVZlog7PS81LiGz+xlt0N1L8Sr5OMiMO1hUD2b0hdK9kq/ankm/zqQuswLRGWFdT2HyyoiKn868C2fgiSsWoquMyuc/G8ibggxN5E9MG2SYe8pyoO4lDjpwfx8zDMMwDMOY3ugXGLjXqnxR72blxfdfqS87wvxVeZCGAFuirLj8MpK+UX2q1g9Stgh0enq7W6h9bzyf0JhyDAyN0v/c3k/fuamf1m8edh3vcQYDeMcs7aCXnT6LXnbqLHrG0T10woGdMiCG2aPjjTbNMNTGbTiakzQpzVSSuYPbFB69eY4f0Puj09yA3qL9KjP0ittnWC4q6aOGYRiGMYGk7ndr0UwewzD2EWivvsmi7WqAMS9duuryV0N3M+58PthERu+045v74nfhSeZAr8jRUJf8rtyKvbIezMDTmYPQ8ZfdcXu9SNpA3hRk1qweH9v34B2DzbzvrlkeeXSDjxmGYRiGYUx/9It0HQirNfCVAp0EDRkoR8uW5cRQVGdYYmuZH/pDhhHSPzhKP/j9LrrUD+IlDp8xgeYyf04bPffEXnrxKbPo4mN66OSDOuW9d2MZwEO5OJ7b2lokdHS40Nnpguph0DRNb29HcOWEzTqjgZ2BAb0lvJ3nreiSAb2XnDyLnnJUj6wnVzbK9MG1azH6EBPbxrDDDMMwjGlF7n60gML7x4QNaIl2tTGMqY+2fwn+ntLpIzKrzsUjP29jq8iqNP+HxFCP/XhRoktFAr2SHksNLSJhDtL5D7MBJd3VGBUXVBd/2CNpXeIpyMIF+/nYvgfvrevo6PBabXbs6Ked/f1eawzM/tu9e7fXDMMwDMMwpjdys19CrS9CqvLXKC+kni9ZlDJfpKXS1SKdFB9i1FZ/TYyZws49o/TLe3bTt2/qp0cfH9+nleBwndXbSk86spteelovPe+EXjp1cSf1deKXtN6pATDYhoCBN3SbXMCAXKg3EzCwRxLc4J5bR2VwL93ew7YWenS0ttDi2W10waFd9IKTeLtP7KUjD+qktugVehU4NwqAyLXfMG4YhmHMZFKXzdQ9X0zRvWXKjvLKSqxaXx3rNwxjH8HtEzPPMKtN+pFyFkF/UnV3n6vvyIsDL/Af6T4gdxDHDL0szQcZWovzyzoTunOs1mUbOKo6/oJ02cbQH385HSKvq58N5DXJ8mVLfCzNq15xCa2553pa9+DN4x6e99xn+LU4Dj54sY+lufAp59Hvb7s8WdZYw1++6TV+LY7Fixf5WJq77r6XHnnkMa81xtat2+j2O+72mmEYhmEYxswAN/LNEObTLzmqvrposuyJJvvSRaVheDCId+2aAfr2zf30yKbxHcTraG+hww/soOcc30MvPnUWPfPIHnmEZiPNBL4YTMMAmA66Vc+oc+kI8G+mfLcONztP1+EGCHUdmPFXu2xtYdLm+B+v+8MMvecf30vPP6mXnrSym3p5H2Sgvk4IyF9jFYZhGIaxV6j7rtHuLw1jcsI3rtprlf6rD04XDy9DO0sOuXfkFcmcf1CO6E5qyOziltARK9O5PqMjmEVYeRcepNw4ex3po4R0SNULyuM/G8hrkuXLl1Jf3yyvVbPqnjW0ZctWr00s+y/cj044/mivVbP6vgdp3br1XptY5s6ZTStWLPNaNTt27KQrrrxOZtc1yp2/X0W/vulWrxmGYRiGYUxvdCBOOg1MODCHuNpTxIN/quetjpRtXIjq3yxjzW9MHzCI9+uH9tClt/TT/euHvHXs4FCd3dNKZxzSSZec3EsvOKFX3h/XCCgDA2du5l1l4K7eAbVmQNuonB/c4F5722huYM8NGnLHX3r+lbYUVqfSxnxZHLo53+lLOunFJ8+iPziuhw7Zv73ySFFIrFD+i9on7EVphmEYhtE4qXvC+J63LibiomwYxrggbVqaumunWT+WpYbRUdhckHRvV79sTpzaEeRGNvQX90Dn4Gf6qR5K71xlz0m+4UYZoqOsVHkEHz/DEOkYnsOMQ/5z6cXSBvKaZNGihXTUkYd7rZrrrr+Jbr7lNq9NLPstmE/LDi6eIbhmzYN01TU3JC94482iRfvTIcuXei3ND374C1q1arXX6mP7jp307Ut/KAOB4wFm92FQ8PIrruPP6mYZ6Nwb+8cwDMMwDGM8wH2LdAY80GveywT+GQ3e/zR0v1TiqynhNoRk9oJ0Y+YxODxK92wYpO/c0k93PzzorWMHA1z7z22jJx/ZLbPwzlveRd2YllYHODxl8Kxq8M7Z9xlcMdQNA4j5Qb0ag4pRAr6H2H9WK70cj9o8uZdOOriTeroam6FoGIZhGCH7/BKSuIgV3Y8ahrGX8X1a/EmPkZumzGzzdthcvGILA7K4eJQ+wgkIgQ3vqQt1hIru8ld0jkvh+XJ5EelIF0+REsnq7Azyp7r8Y+HsuXTokbSBvCZZdMBCOuXk47yW5tOf/Qrdc+8ar9UGg0t/+vp30OJlpxaGv3vvh2nPnj0+h2PO7D467bQTvJbm37/0TfrVDbd4rTZYx/v+4ePJOmj4f699m9Q5BO/MO+nEY7yWBvvkQx/9LG3Y+Li3lDM0NExf/dq36dvf+YG3NA/e0fdPH/oUnX72xfSc572aXvaKv6AXvOi1dNpZf0Bvfst799rMRcMwDMMwjEZxN/+VLxtUB7CFIcZ1FDhwmuRK+NQiXF9N/LpAqj4htdINAw/zeGjLMP38rt30uwfyfaGx0N3RQoct6qCLj+uhl5zSS4ft1+5TysEhi4E6N1Cmj8zcN4N32n6K2hHsSMLgog40os6oOwbq6gF+Tzykm15x5iw6+9AumhU+brRgvYZhGIaRooG7yYyxXGnquc9s6B7XMIwJxPdnMWsNbXe00r91bbkST70nDycL9z49Dj6dF/gP4qF/Xq/M5PPrz6Xzjb6fOSc6fL1UH8mLZSpdJJfB5xvV5czDC0hNd1KWWX6VNpDXJB3cU8O758oer3nLb26nd7/3I3Tv6vu9pRgMMH34Y5+j7//w596S5uwzT+XOV6fXKlzwhLPoiMNXeK2atQ8/Qn/HdcEstFoXKAziffHfv0H/+V//4y1pzjj9JJozZ7bXHG1trXT2WaeW7hfwk59eQe/86w9KvcpAXTCI94lPfslbmqe/fxd98J/+lf71376UnNmHgcLXvv7tDQ2+GoZhGIZh7AtcR8FJjcfEA32C7zjwohLqpGg9SeDr19/MlyPI09D6jGnN+h3D9OM7d9NPOYwXvV0tdOzSDnrxKbPoBcf30pyu+rrGOoCng2IYINtXhyraiLaVonaWPw+4+ussPZmhx3q99V8xr51eceosOufQLlowu1Xy1of7WsQwDMMw6iG+puW06KJVdP0zDGMKws3btWk3862lZZSlS3JnAugJKflEY+neOScG6CMcsnK9PwdIDapDwifUITHk5nT8e3sske40rj7qz3WQd965dOJtcf4s2C43x0F+vEvPvSNP/apl3bfeRjUnnngsPeOiJ3ktzZVX/Yqe/dw/lgG93/z2Dtq9e8Cn4LMcofXrN9A3vvk9es7z/pi+9OVv+pQ0z3j6k+jcc07zWp7DDj1E0su4885VMgMNM8/wOMlt23f4FBwPo7R581a67MeX04te+mf0D//4r6WPscRsRKwv9QXL8ccdRU+64GyvFYN1Pe8Ff0Kf/sxX6KG162TmnYK6/fLya+lV/+8t9Lfv+fC4PFLzf//vJ/QfX/2219Jg8PWr/3lp1axHwzAMwzCMfUV4v6Vf2EuHIohrCEndp7FROgJZKCGZv4Aq35Kyw5RUvYFum2HgvXi/WjNA3/ttPw0MjP2YwKE6q7uFTl7WSS88eRadzbIekC+cgVf6iMq9hLaRXFtBpepoO/hBMAb0OnjzGxmMnMf77o9Pn0UXHdNDS+a3U0fZNwpBNcb+yRmGYRhTmgYumrgPlHtB1b0UomtcrfvV3DWyjuujYRj7EG6jMvcMM9OkbbuZdwrejefslXSRYoeHz9uaSg90DkldpPuVW97uyxNTaHdyVHWUx8swHTant8o5DXbUT+B4q65P/Upk2W23UYPZfbPo5S97Hi1dcpC3pNmyZRt98UvfoGc++xV06MpzskdTLj3kdDr59KfTW9/+fvr9Xfd67zSY4faKl79AHl2Zor29jV50ybNqPu4TA2KYeYbHSR517AVZXZYsP42OPfHJ8rjMG278jfcu5iUv/kM6eOlir+VBHV/6kufWnJUHMCMPg4ZnnvMsWnboGVl9ULeXv/KNdMWV13vPsYGBwcuvqK+sq666gdbc/5DXDMMwDMMw9h3SMfBfOrjOgSO0h8AWBkXiyB/YhKDMmDC/EtYhJF6flOt94zzQ1JIqr2q9Bes0pj8DQ6N0y9o99LO7do/bIN7c3lY69/BuuuSkWXT8og6fUg7yVWaxTfJDEu2noILVbQuDk+5Rm+HgZKrtA7X3tLfQJcf10gtO6aVD9m+nDi4jyWTeT4ZhGMakRy8jVVel6DoVX26KrmP+IucVwzAmI9yrlDaMgFlqmAjldE6UGXqIVHxccD6S38c1wNeXmrNrWqjj5wOhrgF1QGClKi0LbuWRTevkykA6kDjwPkjHiQznMpmZp3mDdPzZQN4YOeXk4+lVr3yh1yaON/3Fq+ncc073WpoVK5bRn/y/l9Y1gDYWXvWKS+i5z3k6X//iS2WFs886hV7+0ud6bd+zbdt2enT9Bq+Vg0drbttWma1oGIZhGIaxL5AbdtzUe2K9EeS+TToAokhcKCgP6ym714vrAd8q/4KyQXGKK6vZ7TSmD3j//N0bhugHt+2iOx8a9NYxwIfn7J5Wetox3fRHp82ilQtrvw8PhzQGt7q63GDXvngHXlM00H7Q1vBLZwxQYjvbC7YzPicg+oTlXfSsE3pp+f7t1M77KQ/ascZ4P8bnB8MwDGNaE35RHcqy+8sM9i29F4zKqP+qZxjGZEfmnnEblxDGudmrLn6hXeM5fxe8c5AW5nUz7cSPA4bycP5xqvpUAi/gkbfzXyskTkRiq8wIdH/eHzGWrvxiXcoKdF5mug3kjRG8Ew4DW6959Uu8ZfxB+X/8yhfJrLtaPPMPLqQ3v/E1EzaYd9HTnkh/+ebXUm9vj7ekwXv8Xv+6V4r/ZGBocMgel2kYhmEYxpQCN+yhDNEvN1I+cqMf2TN/WXrwbT3sQV4F+VJfoMTrVZJftkTrVkItmY+JyzdmHo/3j9D1awboNw+Ozz18X3cL/cFxPfTsY3tpQU/tbjAOQczCw+AWBvMmI8l2UkfbCT3Cto6snbLNrXUPWp6/rJOefXwPrdi/o+qdeVqVrvZWmt87SXeiYRiGMWHI1SW6LhXd++XweWLPeu8PS/3qLMMwjH0At0/89FT+/LnCSadnIUuHFC8vMZtNdZcOWjiOv8xPZ/DB7mUWcIqQqNMhs7MGdJWaLmU66ewj+CUDauKySHlBuhjdbENIOSd53b0jL+2PPxvIGwcwqPXOt7+B3vjnr/aW8eNlL30uvf1tf1Zz4EzBYN9rX/MyehfXZ7wH8y58ynn0/r9/G+2/cD9vKQd+f/3OP6/5uM96wfb82eteQUcfdbi31M9+C+bTsoOXeK0czGzsm9XrNcMwDMMwjH2DdA68xBcSqS8lNA2oj3QkArsiOgLKhYx/KR0Q59cyxwOUqiXHdTQMgNl4N63dQ1ffOzAuj9Ts7mqhZ5/QS886pof2q2MQD4NYOgtvKhyiuXak7TuB+mGPIqZecTvEwGV3N29/MGmxqK3Cfv7yLnrOCT10yP4dgV/wubHJfw1hGIZhzEDCK0B4PSm6tihIDT3GfC86TveyhmFMENxGMfMMLR/nBw1Or8yek7/MrhICPizjdA74Eym6KwtnhCw9CKrXI7MZdF6X99+1YvYc6wBdbvjBjvRcPTi4SmR6lp6QNpA3TmCg7S1v/hP64PvfQfPmpd9j1wgo473vfgu9/71/1XB5GMx75SsuoY995N102GHLvbV5MID2hte/iv714++v+T7AmCMOX0Gf/Jf30wVPOMtbmgN1wODkJS+4uPJCyAbA+wzPOOMkr5Vzxmkn0vLlS71mGIZhGIax78g6BQUgTQfZ9MsNzaO2WBcg2SZRWVaT+TLI3xDIG+Qvo2bZdZZjTB9uf3SQfnHnLnrosSFvaR4cXc8/sZcuPqaH5tcxiKeDWJN1Fp4Sts8wru1aCduX+sUtLpffg2x4b14XhzI077nLuuipR3fTgfN1x0X18NIwDMOYeRRdA1LXH0WvX6FHw/ejMciPdQbrzdZTUhfDMPYOaIX48ZfMTOM2mb3vDn+BFF+Ravd5EQ8CLyo6PEYqOkDrV33Ey0pwM+Yk7uuT6T5AD/NBd3GO6gpa3Xkne0eeW6n4ieQ/dxbyScjp7bG0gbxxBI+TxPvyfvKjr9Mlz7/YWxvnD5/zdLr0m5+T9911d3d5a2NglPfiP7iQvnfpv8sgXLOz8554wdn05S9+jN71jjc0PUCJGW7//vmPyMBkM2WcdOKxnP/DMjjZ3lb7XRYpcGHGe/2e86yneUsazB78s9e/su4ZkIZhGIZhGBMF7l+yTgGjMiS2qb/a4y88pEwfZycReQ9HnK9hEustItwGjUOOuQ7GlGTLrhG66t4B+t3D4/BePObJx3TTuYd10dzu8q4vDjd9T9xUOPSkLQdtJyOyhT7apuJccVvL8mCf+MeLxrnggnxh3gsP66aLju6huX3Y14F/qp6GYRjGtCd/dXEkr10J4Ffv1SO1niTZ9a2So976GIYx8ei9JcY13D2m0+UP6qjTK2h6JW84c0+GyDI7x1uDuGSv6GITqWXx/SwU76cy81Vd6wBbqPMfG6gFjxpBkiw4QMX2eR1/chbiBSRyqT2WNpA3ARy8dDH9y8feS1df/l16+9teX9esOPjg3Xa//Nl/07994v10zDEr+TOSj25MLFgwn/7mXX9BV/3yUnrfe99W12MuMevu1X/8Yvrf736JvvrlT9C555zmpn+OAQyM4ZGfl//82/Tuv/3Luh6Pef65Z9Cn/vUDdOm3Pkfnn3fmmOuAffGPH3hX4cDmU59yPn9ufy+zCA3DMAzDMCYLqXvCrLPA4AsIjZfdPyJNfL1eRtmXGmXrKCIuT/Wi9Whdy+phTE+uvX+AblgzPo/UPPWwLnrmMT20bG576XGPQxqDeJiB1sThvU+p1R7D9LA9IaZaYTv0EvumuxtfingDg3icr41tTz60iy5c2U1dnfm+W3oNhmEYxnQmu854CYquW6lrUexZdL2q+xpTcs1s5v7WMIxxhts42rnOxEPrrki004ruCNL9ayNc3hEawQAa/JDOQfwkigV8WWp+TRddCsnsQiBju/wF9mwmH/+J5DpL1OtyYgvTq2RxeguvRNKNiQO7ePuOnfTQgw/T1m07+EAaloOpnXtEvb3dtOKQg2nOnNl77aKxc2c/rXtkPW3Y8HiuLh0d7XToimU0f/7cMQ+a1QL7ZNu27bTm/oeov383DQ0N8Tox4t5Gc+f00SG8T2ZN4Hvqtm7dRqvuWUM7+HPp6uqiZcsW0+KDFk34dhuGYRiGYTQK7ptwnxjKELVpekjsywZ0BZwf0rxMdQjivFVleXS9qXUpqbyw1FMmtqiT79cm6j4t3mfGvgOz8T571Q766R27aNj1xZvmuGWd9IrTZtFR+3dQe8mhg8MK78LDozSn4qGQbHfRhqhPWXvLCHzVqqUND4/SwMAIS2/wHmF+xDfsHKHv39lPl+Fz5DxHL+6kN120kI4+oLmnzdSLtWXDMIz6KbomjBfDQ0O0e/duOTdnZ2d/npalxiMJJE+go6aqiT3yFckhu24F6SCn63aX+RiGMeHniBS7dw/T9m2DfP7gdXOblHad1aPyg7tke83ZOB6oEk1sDrKgt6mucHHFBJk9tc4RWar4SUmiOio61iaDckF54b6W2qSysrSBPMMwDMMwDMOYpKRu1XHTn7LDhjRNj31CPewbgLi0ovJjYCuqDxu9yPuEnsl8Hk1DXjzC3gbypj//efNO+u7N/bRp29hG8bp7WugdT5lLJy/uoE5MEytg2g3iAdiCjQl9sjYlS9ZVhuX4OGxqzfzZ5gbz8J4PsWR2BXG8K+T3Gwbpf37XT7c8sIeOXtJJb3qaDeQZhmFMJnLn/gkAA3kDu3fLNSk7O2s8OF/ruTs8h2fx0KYStshXtey6FaSDTA+3ucjHMAxhos8RKTCQt23roNxvSovkhUyek9aNfi7iBe2VbbCKJ8el9rwIXf3kuIzqcwXSs1Jy5QHVlYqnI0vXcrEPOS7lcrSVI7hPBigTXtClviyR7lIdWp7KiekNG4ZhGIZhGIYxocjNP4cQ+RJdX8bNaHrYERML7EHefCn1E6+/CKxfQ5ijLH+9ZRvTg9seHaSb799Dm3eMbRCvvaOFXnF6Hx1zQHvNQTw8MnKqDuKBsbaRZnJjv+ERpNhvReBLiMP366AnHdFNh+zPO3kUa5qiO9kwDMNoGr37rNyF5uO1qPfKUXeZuG76YPeZhjEJ4caM+0i0TrRR+ZMm6yTHAr06iEeY3iqKi6NUjWchXxYMVXpQZkWHrOgicZOs6Qg4MbGObUJXHCliEjM01fkvp1fStTwn7R15hmEYhmEYhjHpkZt5Ds2Sy4s4ehMIjFvmSa2v4fV7f82nZabWlyIcfDSmP9esHqB7HxvyM72a5wlHdNGZyzppVvSOthAckhjEa2/HMemN04k6204tr6Jdg0G8Wvuui32OO6CDzl2B9+XB0dqzYRiGMUbG46Kt9792n2kYkxJtm07ih6CiYcGngIpeSQ8lx0TlBQfpeWo64urHIZdP9RFI7oyoDgkvsVd0JyNd39Gnuk8XS6jjPMZyJH6XHv9ld8w5e0W3gTzDMAzDMAzDmKToIBg6DtJ58HEljKcG2sJ0kPNBXMuXpUPXFecFRetI2TnBR/LAM/RO5jVmFHesH6Q7Hx6k7bvGNoq34sB2euYxPbRwVivhB7gpcLhhIKqtbeoP4lW1UWyQBk9R+9KcqXautszHyxDsw46iwTyff3ZXK52ypIPOPGRiH6k5EQwODtKmTZto48aN8o6nmM2bN9Njjz1GO3fulFnQyvDwMD3++OP06KOP0pYtW6QcwzCMmY5cKgquR/VQlLP5EvPYvahhTA7C21K0y9FRvdfEwoWKvaJnkkNOFvln6a15PZMpO7LHfk5KkNl//K8z8zKbk07nNGyjTxfJf2LyMkvnv1jaO/IMwzAMwzAMYxKD23W50Q8ouoUvu7WXNOkERLA9lStVVj026FJfb0/m8RKk0oHaUd/Ori57R9405jPX7qDLfreLtu5sfiCvq7uF/uTcPnrSod3U057+TPFRywBUR4s8InKqk2w7avPHdewDHSlqrSqDdbWFKZInSAOI7tkzQkNDsKuNI4HPAKf1j7TQ7DldtGh2h7dODOPVljFId88991A7pm0yKHflypU0a9Ys0e+44w4aGBiQQTsM8h177LE0f/588bv77rtlIK+ND7ShoSE64IADaMWKFaIbhmFMJqrO/+MM3pGHcyTOjdnZGfHgXF0zHtpk4ctK+GKpWxSWBXI6tjtKB3Eew5jpTPQ5IkX/ziHasX2QhrlLIC2SF5gN53D371qt6jbL5wdJhz39Q9P4HXnxO+kAsutZy5Xk1oX9UfYOO5xXnM4W7wQdvRtXFU2HXilP3pGndg7eWQjtkNOg+2IYhmEYhmEY0xe90dfOFGSqY6LpRWR54BeEolzxOmqVr0i+wDdV15Ca21IjvzG1uXvDIN22ds+YZ+OddWgXnb6ki7pqvhdvegziFYL2ErSZovan1lS62jIfDnH7d/poen8GZXZy+oKeVprbPTV2OgbodBbeQQcdRPvvv7/Y1q5dK9uMWXqPPPKI2JcuXSr7av369eKPGXgYBOzr66ODDz5Y5LZt22jr1q2+dMMwjJmFXg3CK0i995MpKleXcsayDsMw9i24t8oC/gIdZ4FQjwPSW2X2G993Rnb8hTaxO5MPLiLv6PMBusblR6WI48/bRFcplcc//7Fvxc5/mOEndixhFs0NzmldkZL553WVU+Nu2jAMwzAMwzBmKOGXEYhLp4BRWQ9ahuQI8sEKLVVS/CVIQ+vzEtiXKUYZv1g1QGsfH2763Xg4LBft10bPPqaH9uspfqTmjBjEA2hvjbS5Et+yUirnoXi/Vn8A4tPA+WNfgll2e/bsoe7ubhnIW7BggWwrZtfhXIYBPQzQHXjggZJ+yCGHyGAdBvIwoNfZ2UmLFy+WNATkxeCeYRiG0Th65Ri3K4jdkxrGpEf6u3wXCqnB3ZW69qu6pPHfiMzYc3FI1dkh88NUvDCfpPsg/vhnu1svzN4vJZ1zpmtwuvw73Us3DVDzuXS8Tw86zm1cA0l3SvrdeSrt0ZqGYRiGYRiGMYnB7bp+aR7HlTCO9PgWX3XNywYnA2JLXAao1xaXn8ynskaZqDO+HLdHa04/Ht0+TO/70Vb6/cODTQ/ktbcRverc2fTso3uoveAQwUeMwaaODhefLpS2Pb+hsQ903QWakvPhuOpqhX9mC3w1ji9AhoYoe8Sm2NWfQzt/MH2zu0VOJOPRlvFOO8y4u//++2XADgN7/f39dMIJJ9CcOXPouuuuk8E9PGoTj97cvn073XTTTfJ4zYceekjOVYceeqg8hhMz8e677z6xId2Y/ITH90QwkeVPdN3B3ljHRDGVP1sQlo9H9SKM9Zw30XXGozUHdu/Orkey1HhQd40X2VDLLIX10E+BDVbdotgnlSemHh/DmEnsi3M+Hq25c8cQ33+5Pm+lDtw+fSN3TRXnAkjUs2ITH8FFcs2a/VCamrI8ISkbU3Z+QEpWbuSn9U/ldza+d0YfiKNQxZ2DvFtPC80KZ8EFuhINwzAMwzAMw5h04HZdb/41Ht/Ch3roq2g860RAz3oLLGSZp2wdIUV2LRukfNRSq1zU2Qbypiff//0u+to1O2n91mFvaQwcEgcvbKd/fuY8mt2NR9akwavOpst78UKSbUdtwXEd+iEe7idNyXxY5vw5wF9tcVkqMRA7ODgqX7yImRfqOZUG8vAYzXXr1snMu66uLrFhhh7ec4dZeFdffbXMtDv88MPli3QM5N1www10/PHHS55wIA9p9957rwz4IT2F23eVUexw/04UE72OvbENE8lUr78x/cH9EM4rYz3nTfSxHr4jD8hS40Hds/QCG2qZpbAe+imwwapbFPuk8sTU42MYM4l9cT3M3pGnA3lo1XIS4PbpTwZoqVl7hchV0zlIXrZXNeucr6ZXnBCTV+wFNgVlSrpTq0Balu4j6qv1DfOLjStZ0Xnh8+i7+EJ/YAN5hmEYhmEYhjFJwa2664i4W/YwHhLbtLMANC0rQ5Ye+LG9usTqMlPrVQrTUHZcjpdKUV61Y1tsIG/6sXPPKH3wp1vp1/ftoQGON0NPRwu99JxZ9Pxjer2lGhw2nZ0t1NbmDdOEsvYYo75Zm5Il67KI2j909Zel84/LALENM/IwmCfjUmxTz6k0kPf444/TmjVrZCDuiCOOkBl5q1evpocffpie/OQn04033kg9PT0yww5fpONxmqtWraJjjjmGHn30UZnRh8dtzps3Tx6pibJ6e3vpqKOO8mvIg0E85DFmBhN5vZnoa5mVX85ULD88n08E4UBeVnvEg22pFYfUWsKS+aR8OWS+QTrIdGxzlKaEeSZ630z18qcyE7lv9sZ+L1sHjuEOPH5inNgXx1HxjDwP21xLxblEIgx8VGEp0SyRoy5dhBD6cyxs+xxaxLH6ntX5cZpzEpugxbFUF3nWPyQvZBs4QWou6ao7l4rE+c7/4A4F5RNF2kCeYRiGYRiGYUxiim7X486NxnOdkVS6LD3eN7WOlA3E9qRfYKvy56B10JSy9WN7bCBv+nHT2j30kR9vo0e2NDcbr40Ph2UL2+kDz5xH87rTxwY+WszEw4y86fYxJ9udgrRgg0NfxJES5s6VxXHV1aolwa5B2g3i3u7S3ay8ocERiYuNw1QayNu4caM8DnP+/PkyCw/vxsMjMzGYd9FFF9GDDz5I99xzD5155plyXrrzzjtlvZihh3flwXfRokV0wAEHyCM6t2zZQkuWLJHZfCmw7zBYGDLR56SJLH8q190wZhp67p4ohgYH5dHEIGu53IbDdlxPXMlsUZrasdQtKi0L2x3bmNBvIvcN1jOR5U/052oUMxn2Pd7xO17si+3p3zlIO7YP0fAI7lddq0Y10Dyd9O2UJWIVOyTOL8gBqfncjwEkV1gOdF5k+Vyyz4+kSj5IjMvhVXrxTLlQgpydfZ2u997BeiKp5erGFPnZQJ5hGIZhGIZhTHJwy95oxz/0DePoCMSkSk2tq16b4O1F6bAWlRduK+I2kDf9+OgV2+kXt++inbvTx0ctZnW10AvOmEUvOq54Nh5m4WE23gQdOvucwrYXEfpJ+9K4yrAcjuf8OWT+URqIbfgFtTxic8jZsJxKA3k7d+6UwTq83w6Dcdi2TZs20ezZs+noo4+W2XO/+tWvJA2P1sRMPdgXLlwog36YnYdHcWJGH8pCPszQG89fyBuGYYwH8fl8vBnkc+GO7dud4s/P4Xla4ylbBnTUkyVSNF1rLpq3uaVLKy3TE9qxL1Qv8h8v9kb5E72OiWJvfAZTtWywtz/XiT5HpKg5I4+BvXRfBOlZbo7EOZxLopyEXetStt4sm640UY6A9MCMs5sM9uk6kKjlRNIG8gzDMAzDMAxjChDftuvNvlLPbT08pN8AX3REfJ5UzkbKrkrXclnG9VTUkkwLbMhvA3nTi627R+hNl26mBx4bco9hbBDMxjtkYTu97w/m0fye4uMCg3jTcTaekmo7MbGP6rpLoOV8fBy2MCf8xRb6MrEN8aFBN5gHM1Km0kAe2LVrl8ym27BhA9e5nRYsWCCz6nQwDumYlYeBO9iRDj+AQTwM7mF23n777ScDfvquPcMwjMlEfD4fbzDbeIDPl1iLnJ39OTo8V6s9Z9N4YAPQNK0luCfMbBx0i8LyQKynqMfHMGYSE32OSKHvyMPsNzRouRtFXBs4t1NEW/TRlWpX9HzgpSaJxkro7lycnyLpgV101XjhBt0qaDrOSOqXS2eDH5rLpWMG3gjv33gmnsrYP5P8oUAahmEYhmEYhjHJwK06OiLxLXtoUxl/ARHm0XK84iSAjfV86Y54nSHhulP1EwKfmNCSTA9sqHVnV5cN5E0jfnbPbvrUz7fT5p1NjOIxc3pa6Vmn9NLLTpi5s/GUZNuLUJ+4XamWKyPwVau2ELEFvhqPbRic1Vl5SJlqA3mGYRgzgfDcPRHoQB7uNeXsHJyjw/N1Kh5KrSUsmW8qD4fMN0gHOR3bXZZuGIYw0eeIFDojT3/oV10HPp9wc023WST4qPfLERXl0hPl1HpHXpyHTbl1qUvmygsd6RMN5zU3vBdL/HO0UE7zbo1hGIZhGIZhTF1SnZTYBj20ocODENoQl44QAuwa4Ot9Qso6bmFaXJdxp6QextTlytUD1L+nuc8Wh9zCvlZ6+uHl7wBpb0e78Mo0JdlOYQvsKZ+J3i34kTRmTU73/W8YhmE0QIP3dLiE6DVMLyepEsruWetlPMowDGM8cP1YyBE/mueap/ZvnRwdxfuYnV9FVn4gmPn5dJVAJIcRP+2vkl/9+IyDuPfLS0QjuzNi6crxJyy1j6Besi4Ynb+c37yUdPXLlVctbSDPMAzDMAzDMCYx6CTEA3UK7Jqm9lhXMjtCmBaUrYTrC4nLBFW2hE8RqfJyFNTDmLrsHhqlNeuHaHC4/uMkpLuzhVYc2EELeou7spiNh5l40/3wCdtprs3W2HDd8/XuHvijrcbtteg8gYKx/1sxomcYhmHMeOq54us1Jbu2sEQ8vJKkriqF1yLDMKYg2rf1Us4DFTsG2TTdEfkj5v04wiefigzTYcvnc1IDL6qkkLBDjkJKequXrPPNMOzyVBmWLtn3X5DOAefGXDnQUYLXRarOf8W9H8MwDMMwDMMw9jlyUx99gQ5d7WFarCuZXToBLJzZdToK/KXzEFGXLdCTdeFQXUoJqKOPGlOfX6/dQ1u3Dzf1bjyAd+KdvazTa2na2viYmQEHTdi+snidGw7v6tbJlOQP2zrWl2rfSgsG8tq8YhiGYcxMalyTUveVem2R6wykD6DoqlPflc8wjKmAa/uVVq/3nHJqyGbkufRKmg/8h5l2OmMPfxxx5eAv9E2EXF4OvKjEE+vjRUWHA3dwwnScmyo6p2WzDJ2NF5W4S8jVU3WVNpBnGIZhGIZhGJOQ7Iae0S86Ul94APgWpYFcGsrV8oJ1hMA/XD/QDkXZemLgG/tDS6+1QtU6GlinMbm59v4BGhj2SoPgcZmLF7TTOcu6vKUa/NAVM/LskHGEbamutps4J6RylZaF8wQLTMizSXmGYRgzE7mP9NeU8FJQ17WIgZ96xjKm7L4yt77ENc6YueBwaPaHZcbE4dqs70PyZyTnAg1ij2wauBPAS46jv9rK96CiwdmVJ2nlAU+TQF7VeYH/TJfg65ilq85SdASUw6qccfxpR+bTBf6ybb7OMmsv0126eHp/J21GnmEYhmEYhmFMSnADr4Nn8mUIoxKEcaC63PhzCIl9Q1Ippf6JtHh97OQj5WWBqryM5qmV15ha4NO8c90gDTX5WM3erhZatqB8mtdMeDeekmo7ZWh7qpUrbndln1ZZG8WsPBlURXymfCiGYRiGA9cHf+4PrxT13tuFfvXlqAO9FkV1sGvUzGT7jhFav6HJX5cZE4a0/dERcu/I035wKMUrYQ/T9R16mAWHgT3Yg/I45PJ5Hb7ip+ki4RborKqOGXZh/kyiHPjBFacXtvEWOen9cIMs+eHJuvyxrukVu8uPPxvIMwzDMAzDMIxJCr5YiIMS6wC6dCrQAYgJfZEe+ORLKS47RdX6EC/wjdH6grAMXVfROo2pBz7eh7cM02Mbm3+s5sLeVjr74OLZeGCmzcar1UZS7QogVpQzVWbResrWLzPy5MfHOJ94o2EYhjFzCK5BY0EvIbn7zQSpS03yHjW6KNUq15ieDA0R7R6wz37SIe2T7x0xO83PjhO9luQ/jHqJjl+TQff55VkR3ubSo/xhYBuOChcN0hlndzqk1FHq6X28XSUCZgbiprgVdWFfSD3q3Aw8XZ8rD+mSn/9iaQN5hmEYhmEYhjGJwZcLGorQjkLoozaNc6JL5w4CG8SuxCUXrU/LC6my+XXVIl5HWE5mZwlrar3G1AKf6F2bBpsexGtrJzpgXhsdtX+Ht1Qz0wbxitop2k2K2DfpFexAjUEm11NEWAZHccoxDMMwZiD+eiBLjQfXiFrgyhN618pb80ql+aNy7D7TMCYRuL/FH8sRfV+d1zU4t8jOf9kJQ3w4eCl5fMj8JfjyOfAi8wcuWvEFKF51zQOJWXTq47JV0rMZdggy487P4oMfOkauUGeD9PXFn+oq7ZbaMAzDMAzDMCY54RcMGpcbfA4hZV9E4Bd+8sVFNJKCHHEulDOmLzUSecO6yjrrKZ99kCveTmPqMcyf4dX3DdDQSHOfZV9XKy3dr53aSg6btrLEaUhVG4Jeck4I44WfQkFba/Z8gHeEtJY/DdUwDMOYrvhriiwT15da93e48sBDvVLeKKOhKxTWGa3X7jNnHnoY4J1oxuQC95yYe4ZPRqTo6JtKqtM1RLo7a7gyJO7tMu8NNq9rgE8W1yA2RJ2u6WW6vI9Pdb9+qFCwbrwDDyluxp335eNPZ+TFM/EkP/+prtIG8gzDMAzDMAxjkiJfTvCNeyg1Lh2AEsIvJSQfBvBgS+SreFYI8ytFtqq6BH6aphIpmlq0HUV2Y+qCQ2L1Y0PU5Dge7dfbSscc0O61anC4zMQZeTnkV73jsAN8uWHpqbZfD6gNfkNgGIZhzFzCK1PD15Ma/rhfbKhEu780GBxWOG7sHmXygc8F77RzoO9bkWi+OIdocPZAZrPdIjvekcd/VXaVHFSXIKbAzgEz6UBsh9SAe3Fesh31gMTr8kZoZBh2/uP08B142Qy9QMKu6bG0w9UwDMMwDMMwJjHSKfBSB7fUpmjnQe3wwy//FB0Yk9zwQUBZvryxIF+g+PXGpOxYY621FpVnTE3wae7cM0rrNw7LodcM87pbaeWC4sdq4nAfh8N5aoMdoG3bE7YljWNZuqsSO1LPPSEpW4amqShxNQzDMKYhOPGHJ//EhaD0OsLI9Sr0KbmJ0JS4zKr8JWUYMwd3GNixMBlxLRZLF1wbrvzIM5Sjoy5eSccMvlb5fEVHutjRD/ZSdZYa4BPaMz2QMmMOHpG9kh7Z2RdHGHR5Mg4I0mWWHkKsI2fgF+o2kGcYhmEYhmEYkxS5gfcgHn8pr+mhH0Ba7CvB6wLSY1tAXCZI2cJ6ZAT1CuuRIpVeTz5j6jA8QrR60xANDjX3mXZ3tdCi+W00t7u4+4rHaiYOz5lJ0HZSbRaMR+uyNmoYhmEU4q8Rch0awwVarjXB9abqyhOlh+SugeoT1QU+RddKwzD2PmiproeKJf9hpppI1SvBzbRD82aps9okVEqCksqbCryosokdJXG5vMjZs3RI5+Rm1cEUrG+EbQBnGvFnYHO+FT9e+G2o6PLndRvIMwzDMAzDMIxJDr5gwM17/EWD3OAHsoiyLylSVu0s1IPWLUdJ3nrLNaYPwyOjtGrjEH/43tAgeD/eAXPaarwfz0eMsVFwnmgYa+eGYRgGaOB6kLtfDa5Has/SPCnfQuBTj59hGPsUtFJu7dK+9X1yTueEUa/7mWz4y3xaYHN29+5DH/Cf+SBUdCSGabxgW+yPIFZJl1xhWmB30sUxfw71QFxm23EazobiJ9LlQ/3lSTqciPRwm7PyvLSBPMMwDMMwDMOYhISDaaHUTkOM2ovSc5Sklw20laXlCMqP6wK9zlKwQh8xpjJ4L97arcNea5y5PS20bF7xSB0OsZJDetpTs70nQI5krqDNhena9qvWlWqj1m4NwzAMUHA9yO4ni64X4bUmiqfuK6MrU0PUfW9rGMaEg/YoAX8alzZaS0qMzwcVuwS8a0+SQ3+IUIePD1m6mxUHxUm2AegqNZ3/WrxUHRmczlGcoOALJF0l5+Mo3pmn78YT1yA9ljaQZxiGYRiGYRiTEPliIvjCIoy7jkcxYbrmARJHKMiPfOF6QmqtMwXyNJqvmTzG5AaP1nzg8SF0Q5uir7OVFvUVD+ThR6yJQ3bGkGsv2sZL0NRan0eYXnjuqWPH1/YwDMMwph3h9Si4dqTuM6t0L0E+ZfxJ3fMahrFvwKlC2qSfeQechO5n4SGIrnbv55fQ5ZTj/WDDu/Q0Lv5IC4LqSJfZfH5dmb2GHIVE+Zkd+bk4wdld1KXrjEKpZpAvpyekDeQZhmEYhmEYxiRFB7WkQxDoMXLj79PC9CJ/dAZUug6DQ9fTCMnyPc2Ul2Os+Y1JAX5punZjczPyuB9Mc7pbaNGssoE8O04apbjVlrfpkML2HdnrK80wDMOYViSuJVXXDdZDW3j9Gfcre8G1rd5rnmEYEw9ao8xQw1+VxDvwQj2QsR0F8QL+KFXTw7j6hToM2TpyATP0qt+RV6Vr+fL+u0Q6Arz8u/FwnuOULF11+IVS0vnPBvIMwzAMwzAMYwogN/8RtQbK4vRcGT7NdRjyNLOuIprNZ0wf0I/dvqO5gbyujhaa19dGfZ3FxxFm5BmeRNs1DMMwjMlG6v5QbbiSJa9mBde4lNXuPyc3N947TDsH7J5lrOzcPUq/vH2I7n10xFumNmi1MvOM2y/acDYLD39lUgL7el3eTZfZK+VJ6YE9DLyQ4EScjnq4R4CEdtGDMnUmX5jeGtigywkLOv+plPRAL0q3Lo9hGIZhGIZhTAOkc1CA/IqvgS/4i8pK2cvW2wzjXZ6xbxnmw27TzhEabvIVeRjIm9VVfkzYQF5E0NbDdq9tq/4zQUDi/FF4TmngXGMYhmFMY5q8HuzNO0G779w3fPOKYXp8m1eMptkxQHT57cN097rpMZAH3P2l67vi2THuNKJ92SLJsZz0dg5pP5dWsVd0/COey18mfV6n4113Uf5ceqAnpXtXXlG6dXkMwzAMwzAMY5IjN/4R+OIhtodfRoRpmT38skI6BGMnVTeUretKptfAvlSZPgyPjNK67U2O4jHd7S00u7u424pDxQ6XYsarLY3lXGEfj2EYhhGTuj9U21iuOcbU4I77RmiXzcgbM2gyA3s4DE6ffenuXd0sNCfFylJntqme8uOYT3cRJzEk6Pwq6S3yaP5UOSw5VKQ7J0Hm7V6yOdORHzregYcY7D5zpkPFjMFMr0ipJ/JHdpU2kGcYhmEYhmEYkxB8mYEOgesU5IEt/AIkjId5qr4kgR76chxa9RpcOTFV5ZWBshvxD2g2nzH5GB4h2tzf/K+E+7paaGGvDeTVzTjsEG37YSmp80Ehka+1ZsMwDKMesmtN0X1gjWtR6bUqkQZ/u+c0jMkF2qQG3EVWS/GK7HjnnNqdRKQFo2g5P5/OC5FqFz3wEx39F+eHITaXHKZ7yWbpUwe6k17HqSfUoY44Xd6Vl9kxjMfROH8gbSDPMAzDMAzDMCYh+mWE61Tkga3oywqklabLwpUpfpCilZOqB0iux9uK6lA3Bes0pg54tObGMQzk9Xa00rySGXkz+bGahe0raDdF7bYeNGdTJYy17RuGYRjTh8Q1ofQeMUgrugal8ofXvKrrX+J6KPfBM+x6NTg4Srt2o6/gDYYxmeDjUtskJI5Tp7vZeKx5u/5wNZDZDLtWSecIF+fTOeT8RWe1NB2dDNX9+sVeLUdDHcUip+oJ2cIdmFZ0YjgOCb2SP/JXnf9sIM8wDMMwDMMwJilj+RI+JPuiIgqw1bsGyV9CI3UtL8mR1deY0uC42Lmn+YG8rnai3k47DlIk29w4nTPGDNdjktTEMAzD2Nc0eG0qvOoH5YTXwGbvEmrd205Hdu4apcc3D9MwfmllGJMMmXeGts1NE9LpsGPGHYJLd/ZAIozgmEbc+fKikobAf7FN3kmX0+N0J0dGRiSo7kL1OjLdb4vT3ToEL1GW+ks80OUPMtBV2kCeYRiGYRiGYUwB9MsGlbi5j21KSpfOAOJY+I5Bo8TlgqzcRFqzhPU1pjboU+/Y0/xn2cbHQof8wjbNOB52U45m21yYq552llqLtU/DMAyjbvh61cg1C9cY9a4nl16RwnVUrS+x/pl4LcPYw3Dzry42jAnGnSvkL5NiZelmreWC2DVwdj9TT2a5Qfo0lXByvqpXyuRFFndqxdbKfREE1V1wM+oqepCOLfGzArVOEjALD+c38fH+XrZyeTgjiSWRjj8byDMMwzAMwzCMSQpu4pX4ywakxTb54sPnCeOKaFGeIlJfbqRs8TqEOtdRRLaeMZZj7HvwEe4caP5z7G5voT6bkVcF2kiqPdZDrVz1lBueZ4qwT80wDMNQJuqaBVLXm6r1QW+yDoZh7B1we4m2K0FaP+JIqdz3isxmuandebt35YV27x/6QXIYkRl8FX/YqAXpkimzO3+XnNkjWXlHHkze7jM56Wb0uXfiuXNWPr0+aQN5hmEYhmEYhjFJkY5AhNpCqSEGtuRAW2BLffkxnsTrT9UzJsuTqrsxpcBDNfsHa3/mzWKHSETJDkm1vdT5IWUrarfJ80vkax+RYRiG0QjhtaXoGhL6TNxdhmEYexO0ZfeuO7R9SF6KCuntIv075TK7l/ouuyp/1vmv4qfpFX/Y3Lv3oEblcCiTlXfkwVTsB4nZgnrO0nfjyUw9MSTy+bpBt4E8wzAMwzAMw5ikyA28l6kQp9VEv2CHRCei4Mv5IlLrSJYR+CE9zFdPPRutlzF5wafd1d5CXR3NhY52oraCXisOpbqO+2mIbnfV9qPt1NgnSNWQYrzbn7VmwzAMQ6n3GqNe43YNcTcNXjGMqc/wCNHW/lHatYdoWz+JnOqgheJdd2j3OFfIX0LizCB6HAI7ZtwVpaUCL6psceBFlU3DCAeO8FqkdhWbxJHEfWK/XUDyjeAnj+6deUDTNfAiKwuhhRcut2EYhmEYhmEYkw65aW9xj9FUGRLa1CeMZ/4sEYu/wlBbvlSXP0Vd9sgnzqNaUVlA07ANXV1d2XaNNxNVruHAbLwfr9pFdzw65C2NcdJBHXTR4d1eq6atrYWDV2YYZe0nJPRDPDzikZIrB3EOYncWh/eJywolyOKaxqGttZU6u7snvK1ZWzYMw6if3Ll/AhgaHKQ9AwPu3MwhPkernrKrDTXU1Mwv8BdfHxffIA3EehH1+k0HNm8Zoe07RmjxgW3U3r7vtvuiv95Nn/yzTlq5dN/MMcJ7AjdvHaZdu4kOXjw1byQffnyUPvy9PXT1b0eot4vor1/aQU8/qT1sImNios8RKXZsH6T+nUOEcS20y0odKhuF7Uu22ZwNcX8GaeF7X7yvLodLi8txd8AoCvY4j7ejTlG+Kk/vJ6VpNfCH2YasS4q3Z+VBSHpFr0rnHQKzYRiGYRiGYRiTHL11DzsdsCHAplLtSi7d2wRvKyKVVuRfZWe9Ztkl61c76m0DeYZRTVn7UmKfrF3JknWE0MfHYVNr5gtb4KvxlI0jTnDAI4S6bCDPMAxjUhGeuycCGcjbs6dy38nn6PA8jXjqvK32rHZcz8w38Ne8WIZbktkDXwHbG9uYKr9pjg3kOabDQN6DG0fpfd/aQ9f/doR6uoje/rJ2uuSsjtRh3hQTfY5IgYG8nTuGXJv2TdYN6uEeFI+ldE0ZDZ/PCpKuTTuTLlGcsnExFBf7sWxlB03HnDhXPkpmKSVUJDKl7Fk6JPuEdoGVVl5gdl4qX5a/RvmQ+6a1GIZhGIZhGIZRE3Sgwk5U+GVDmFb0JUTsn/NCWlB2TLheoOuL16X2IlJ1E++COsdlIX/R9hnGTKeqbaD9BG0oTC9rp+NK3Ia9NAzDMGYo/loUX4fqui4V3AOGedWjmWveXrs2GoZRF9L3w5+0Z0hYW2XQzekYoIvfhZfXkd7qdQT0gnP+HGJd/LN35EV+Ykzbq6W6crwVQ3hYv+9Dc8AP3EKJP0ifKdOz8gLdBvIMwzAMwzAMY5IiN/AMvmTQAFvZlw7qp/EQaGJBxwFx6RzwekSrkCof69X6hKRsSlGaWovWk4H0hI9hzHSK2jg3IB9xhOnatrCEtahlpdplbEv5FFG/5+QA7ynZunUrrV69mh5++GHauXOnT3FghsmaNWvogQceoMHBQW91DA0N0dq1a+muu+6ixx9/3FsNwzBmHqnrRHxfWHoPGckyUteZsOz+XSP06IYR2rLVvYfKMIzJzcjoiJxDVHLMvfMOf9A1qM7pLDId93KYAYc/d4Zw9izE78/zgRduPX690OP0lJ5JXm/4jj/RJd3rHFA3xOW9eCzFGxIBaYEep9tAnmEYhmEYhmFMcsq+6ABy44+b/QDk0XxxHJ0BhJZEvlqMh79atE6FIL2Wj2HMQMI2naOkfYZtsbBVJcpNlVi4/hSN+O5jMBB3//330zXXXEOPPfYY3XPPPXT99dfLYB72344dO+iyyy6jjRs3yoDdL37xC9q8ebPk3b17N910000ywLdt2za69dZbJb9hGIbRPHoNiu8na11XQn9EoRddz4ypx+Ydo/Rvl+2h7btSn6ox1eE7R7l/1Jl38hdI8YntrVh6f7XhL/SLAptzOn7kipl/LTrjL0jLZtAFQfVMYgYe4r5+Yuc/HKVQsZDZgvBzK8+kbGvCHkobyDMMwzAMwzCMSYx0AhKEdukw+FAEvsDIUsMvQzhP2AUWv4Jy4i9RCqnhV1xLR7YeyHrXaRgzjGR7RNstOQ8A5CpsVYkyi0rD+us+J0wRMBNvw4YNtHTpUjr55JMlLFu2jLZs2SLbipl2++23Hx199NF0yimnyPs7MeCHQTwM4EE/4ogj6IQTTqADDjhAytu+fbsv3TAMwwgpu4ZoStk1SKl1XykTX0Za9uk74YzxpX+A6MrbRmj77ul1H9IsuPXr6576x3fu3nLUzaB1Kgbi3Uw2BGyv81N/lmjo8i49r/NfLl0kx7wOsMdE5wDp3sUnRmfXfBxkBl2g5/Kpjhl1apcTD0v+c+vx5fJfzu51mX2I/F5PSRvIMwzDMAzDMIxJCjoCGgAG2DQOqQNuqYG3ME8VsKXsTDODeFV5Csqol6w8yDGWZRjTlbDdSRxttKSdTgRhHbJzxBRuswMDA/K4zDlz5tCDDz4og3SLFi2SQTlsnw7y9fT0SEAcs/SQD4N2nZ2dNHv2bOru7qb58+dTW1ubzM4zDMMwapO7rnmpZNc5T+hbF+zeYA5jEoNDYfcAHsHoDQ2CazrKkNeuTQOwGXN6pv7GoF1r28b8M3xOTnUz0irptSRmtuFzjuz4z3QWiIndp8fvyMvyFeheyusqoPsZeZkdKwCajhDoSA/fmYcZeWL06bG0gTzDMAzDMAzDmIS4jou/2Q9QG6T6uM5oviebsiMmutoS5ReRqosSrzsrv4Dy1IgaZRmG4dugttGCNhO24fpbfpqqNs+UnSOmChjEw7vtMGCHX1739/fTLbfcIrPqsM2QGOSTL10YDNzhnXnwhcQAHmblaVp7ezsNDw+Lbuwb8Lnh85nIgM94ogIe94rjcqoGtIuJDBhEx4zYiQi7du2a8IBzTKMBx0TqHDydwPbpFhZtabgPUj65axIcOGie6XC9MsYGDgUEfzmf+vAh3TYNtsW1UQ68PXIWgGSb/OEzE4nZa06q7kIl3b3jTkp0usrg3Xh4F557H159QUqLbZGUGXWQ/i+z+3fu4czjdBdUB7ifYKWyzYh7qaGFF87bMAzDMAzDMIxJSXjLji8fUnrZbX3OXxaydJ0FCFnmKSovtpetF+UXlqMykR7aWrmuXd3dXht/7MscY6pS2vY8sU+t9saKF9x2JebPGYzYAt9YB6KHPhxa29pkgGuiGY+2jPfj3X777XTkkUfS4sWLZaAANgyonHTSSfQ///M/9NSnPpXmzp0r68PjNB999FHxv+2222T23qGHHioDeLA/8sgjtGDBAnk8ZwodrBkr8ecwnqQ+ZyPPRF9Hpup1aqrvl72x37GORtsXfkigPyYYCxPdrgf5/InBXNmPWBfLcJ9qPN7Pokc23AsKKd+I1Dq2bx+h7TtGac6cVuqbVbuM6czmLdgXI7T4wLZ9+qjRi/56N33yzzpp5dLmjuW1G0fp9Z8ZoM+8oZOW7td4GXsGR2nL1hEa4UvwgYvavHVq8SDvg/d9aw9d/9sRmtVD9Ik/76SzjmiLm0nT7Itr/45tg9TfPyynDKVSD5xDfJRJtl2xwR+y4u9PQS4pS3fkypFooAvOv/BcwYVnaRCYJio6B/7X+qsPlrlqwL2VrwWSz5kkf5Ce+XFhUA3DMAzDMAzDmGTgVl1v+sNOQNEtfC171heQzgHHVHp7TKq82Fa0zqzcVBleglrrsIE8wyinsA0ycRp0PQ8oOR+Oqx76SJ4wLciTjKsfh6k0kLd27VpavXq1DMwdeOCBMpCHwbqHH36Yzj//fPrFL35BK1eupIMPPlgem/m73/1Otvmwww6j3//+99TX10eHHHKIPHZzzZo1tGnTJhnEw6M5U4zXQB6Yquey6XAOnsrbYHUvZzocn0WE5+6JIBvI8zrvzNz+1Hi8j0UP/VSqLUzjOLRwS8LyNI6BKwzmzZ49cQN52J8TuU/Hq+wtW0dpRz/RgQe0UHs0fjXRx0TIxe8eoo/9aRutXNLc/sdA3hu/MEz/+qetMpAns5kaYHCIaNt2zIJqof0X1N7uid43zZT/0Caif/ruKN1wWwvN4tusj76uhc47pjtsImNibx4PyvZte6h/p7sv0tWjHtgmPCZTnjzJdreNbqBO9UyKHf1l9RNXJDjhJRYuX6UcTYAQ1dudObDzUtaT6Y5M50iWLgU7o6ajfytWrSRLyQdbbj2R5MIgDcMwDMMwDMOYZMS36q5TUnz7XuSv9qwTgA6Dj3OixGOK1pOyJ30DW5ieKrWsTBvIM4w0he0uOKZjn7K2JnBcdbXKeUNtgW+ZjSNOcMCA10S2YWU82jLec3fvvffKF4JHHXWUPErzrrvuov3335+OPfZYWrVqFT300EN02mmnyfpuuukmWrFihQzsrV+/XtIwaDdr1iwZyMMAJvLp4zZjsL/C/dcsE30es/OkYUw/xuPcUwiXvQuPKN21S64hel0KzyUaLzy/aLosA79EGSGpdezsR2ihvlmjMnNJy8A+KFz/JGO86rl1m9sXB+w/WjWQN1Gk6n7xe4bp469tpSOaHMh7eJMfyHttGy1d4N6l1gjZQN4w0f4LvbGAon1/x0PDtH7rKB1xUCsdzHXY2zy0cZQ+cOkw/ep3JAN5H3tDO517ZIce3mNmQs8RBWzfNki7+oflkZfY7/k6uA1z29eS2E4Y2J8TJK8zulyJTdFyQuCWsoOyNphLSfpJyRLTcor2rwzjhUVoVpY2kGcYhmEYhmEYk5DwNj3syMRxAL3stj5XlpchqZyp8uq1sdGLVMls91Ip9BsZkcdH2UCeYVRT1vb4wBYR+oRx/32AkCvHx2FTq7YQsQW+sQ5ED304TKWBPLx7Cu/Hw4AcHo+JAb2Ojg4ZrMO78Xbu3El33HGHpGF9kMuXL6fZs2fL7D3M5oMP0nDuwuM5MbPPMAxjshGfv8cbDOLhHYZyZvbn5/g8DT205dJDO4LqCX8sdWtS5e3YOSqDeZiNN6tXTBm5dY6B8SqniPEqf/NW3he8P2RG3l56tGaq7s/4mz30idd30MqlzdUBM/Le8Lk99CkuAzPyGt0/eLTmVt4XwyOYnVg+CFdU9mW/GaK7143QBce00ckr9v7jOafjozW3YSBv55B7OiUMvNBHTqKRZ5+F6Hz+wEdXafzeDecVZ0KSRL0P7OFmZTPjArhYlCBxLCvFa/kVVHfeXs9W7gcjnSZICmy+EmH+rBzNz8Tpe3+42DAMwzAMwzCMmoSdRtzsqx7Hs44A28I8YVypsiR8lFT+FEk/2OrMr/WPEXudZRjGTKOo3cSkzgm1WlW9ZU9HMDC3cOFCeVTmfvvtJ4NwRxxxhAziAcy0w0w9vPcOAX4YxMO+xaw7DOotXbpU8uFdeZjJZxiGMRPBjxnwQwicVzt8kDjbioKmd3Z2Uqe3qSwKYTrypeLt7R1cH7wTrnz9YwkoeyIDfhQzLoE/F1yzkmkTFPS9jhq2D+BpG0Rt7e5HL80G3NFoHNvUaMANEe6JUmlhKAKDgIPD7pVoxjiBfcn7HANssv/xh88Xf/gsMrv/zL3dxQHiEnG+sEK2wo4EJzVIWhAX3ZcRpusxprqGpI4urF+/DgpmPrIt7vzYynWCTytGI5GGFC/FN9BV2kCeYRiGYRiGYUxSpEPgwZfr2gkoQ33CL+OzPGHeGuWkqLXumCL/hkppop6GMWOpo73gzNDod05Fg3uNnhOmAvhCFoN0eNcdBuV6e/PTNzCohwE7vPsOaeE+wEDfQQcdJPnmzZsnX2AahmHMRPTcKNKH8HxZ6/oRXnXKfOu9pjm/vGetOhgTw47do9TRidlQ3rCXwev0dnMddvaPUr+XxuQAt5syA09aq/8LRkpxyLh7UraXSo5pPrXzX7VftXSBl6GdQy05IhL/TpfAdch0Vyg0JxERHXMIOer9Rkb5APX2WNpA3riziW795WV02S9v5ZhhTCUKjt3da+jGn7P98ltpQ2Pvjt1rbLr9Crrssp/Q9at3ecs0p9nPZPX1vJ8u4/3kdaOKTb/7Je+jX9KtG71h2rCarufP/jL78A1jyoGOQdGXDLEdvmEoJMwHv4LyS8uoB5+/9MuXgnWMed2GMc0p/fJxotp0hH0BahiGYdTFPrivs3tJo4jhYTd4t33HCPXvgrRjZTLh7i/dDDR5fKa/3dT7ziyd5aikV3ReBDq88/6hlBlxoV7gB5kdIRwXe5HE5DqUm5vB5/IBlJOyO13tkeQ/1afMQJ77cvWy+oINohnG+LF+A20aZLl7E6173JkmF1to3UYM4I3QlsfWOdN0Z9J/JoZhGMZEgS8lUl9MwIabe7nhLyCZBlsDX3QUrbspfJ0Nw9i71NvqrHUahmEY40Uj93zxnWXZvWZYarEf26Mk1Kfpe1hjSoOPHYN5w8MuPmLPxpw0YNYZ2qVKPKcSAjreW6z2LKgey1H4MpI/CFl6c4FQbsKO2Xj4k39xC/38lkkC5Ihsixx33ke2zaeLt7dDlz+vT7EZea3UNdc9i740zJ9DHT6HYRhj5OAVtHRWB3XNWUxLF3rbPmDbmt/QjTf+htZs84aMeXT4wQuoq6OH9l+y1NumOSWfSfF+MvYFe/fzWE933ngj3Xjneq/vS7bRmt9wXX6zhmPGVMPOI5OL8EsPxENdbu499Xw5op0BCeofxmsQrm9cKFlvPdtjGDOdZttJrZZcb7n1nhPG+cxhGIZhTEHia8a431eWgntoLA1j/Bgaxj3TvntEKNrQ0PD0usuS98vxArPQcD/qpLRg0d0MPRcwoy73Lr1Qtrj36vmX1Dm7/mmeKPDCxxHNp2kglJtIRz3c2+84jT+XXLqss5V9MF2PfbhOru5Or34foC8fMZEVfYoN5HXQgpVn0Bln1AgnryD3KmrDMMZM6/50/BMupCefexQt8KZ9weD2zbRp02batscbAnoOO4OefOET6bRlXd4yzSn5TMr2k7H32bufxw7aumkTbdq6w+v7kkHatpnrsnkbx4yphp1HJhf6JQdu3oHqjXz5oXlzhPkTZaXKlw5EqqwJoJHtM4yZSqPtpNH2W6v0wvL20nnCMAzDmFrUum7pdaXwKlJwfVFr8XVO11tJ17rMtHtObC62eG/d009ndu8ZpTbejZ3t+2ZfDo8Q7dztlWkDZp61ZDPc0D5dG4XUdEkJ7F4iWXQs3ew9GRmUhIR/KDlUdIjI7oyF6RpE52S1O53rghl4oyN8BoIOO/4jf/zJrMOKHqdPsYE8wzAMwzAMw5gZyM1/JLMvOFimOuDqGxLaJBbmK+jET3TnvrqWJSS2yTCMAupoL2jdZS08dR5JEfsV5ZvYs4lhGIYx6UncVzZ1r5m4zoSW4uuXe8dVUWo97BwYpT1DXpnC+Kf5UVubNxhNM8DHQ1srUfs+2pf4LHdPt19Oy4w3NwtNG6w7V6Dv6+KaXrHHErMk/Yy8IBT7s+SgugQxBXaRGEaL/DlkM+qgY0advCOPdf+ePMnn02WuoUiY8uWo9IlVdkgbyDMMwzAMwzCMSU74xQRu4qGnvqyQG/0ScunIj3K8GlL8RUg1tdbZDBNRpmHMGIL2G7blXNzLFM22vyxfdP4oW5dhGIYxc6j3+oLrVdKzIH/t6wx7jPFidPM9I/TAYyNem5rg8ox9CzkytTdln4P9hxlxQ17aa/bGBzfvrNI/lTiOWS9lpl6gp6XLJ0vYCoO2h0oQo5YR2MP02JbViQMv8E+jfECIjtK8BDiDqa/66/vxEOQM55yydE2TdF5USpvEbPrdL+nGh4kWn/5kOrGh93Rtolt/eSOt61lJzzh7Ma29/bd077ottGsYaa3U2jOflh99PB21qEe8UwxuWkW33rGWNvUPuIbZ0kpdvQto8cqjaOWBfdFoqF8fLaYznrySdjW6vsFNtOrWO2nt4ztoQPIwbV3UN29/WnH0sbR0djz2OtbtG6RN99xKdz60iXYM+LM41rffYlp55EpaVLU+z8gOWnvnbbyubbwul6+1rYfmLD6cjj9mKfXVMUS86/dX0xX376Ce5efSE48pehgqXyhv/BnduamNDjz5Qjr5QG9GvdfcSaseeJS27RphL8Z/LkuPPZFWLki8JXHjrfTLX68jWnIGPfmE9EMiV19/Ga3aMo9WPuNsOszb2ErXX7aKdiHf4bvotlvvpXVbd9FIJz7jE2s/bnJMn+kK2vHQHXTb6nWV7WxtpZ45i+nw4yYorxy74XYV2T1Fx8KBy2nl0Sso9VHUv0/8uge8/0a5xgAA//RJREFUmiP4nFZfT5et2kLzVj6Dzq58cBmDm9bQnaseoEe38efmqkitXX204OBj6MQjFiTeqRnux+bOGxkjD9CNP7uTNrUdSCdeeDLvxZhtdOeV19ID/bxFKy/i+lc3nhHevp/w9vUczG3lOLSV+DNpfD+duWA13fK7NbRp56A7Nnj/z9l/BR174gqaV12FcvgYWH/3XbTqkeA8Unqs8RbUPKe7drdlHj6D4EOVbdgl+Vbuvo1+e+862sLHd1dJu86ROl47+VhYvJKOPXoR9ZfVa7yPW9Dw+SGB/1xTVPZLsD/PXECrb7mN1mzaQYPYBTh3zj6AVvC5c0XBh191HWTQhuYfsIKOCc/5/jyb3vTosyxkJHHu6qC+BUtp5TFH0aL+8nN54+1dKboeLqVjTlyZPpdx7bbcewvd9mB47KOuy0ryVJO+9gQUXL9cO+qRfCu2r6U7bufrU7bdOFfNocWHHU/HHhzfq6Ro4Lht5hpsjInwdh1fgKRu3+XG3n+5UZSuxF+BVHuny1BqlZ/BttJyVNYoD79y7Oru9tr40+yghWHsa+K2I+cHvfgFx7X6FbXHKjvrsKlVSxJb4BvrINO9xLK1rY26J7ANK9aWDcMw6ic+f483g3v20ODgYOW+k8/R4Xla40W2sHa4F8yI/FWDf1gWUH37jlHatn2E5sxppdmz0j61eOvn99C5x7TR886bulPZBgZGaf3GYdq1e5QOOqCN5tTzfcME8PDmEXrjZ/fQh17VSYcd1FwdHto4Sq/71AB96c2dtGhuY2Xs2TNKj/F+2LBphNrbW2jB/FZafGBjn+ujW0bpSz/nfvH2Ubro5DY660jenz31HUvjxb2PjtBf/vseuu/+UZrVQ/SJP++ks45oC5vImJjoc0SKrVsGaWD3MI2MuL6tq4LWA+cQH83FART288awXbvtqJwrFOcSW/Vcglg+rexckaWoD9aZxTlw1G0PK6q7hQz6helqV79Q7psWu08YpNXXX0W3PbSNhrrn0IIFC2jOrDYa2bWJ1txyFV2/epf3CxmhLXdfS7+8cTVt2DlIbb0u34LZHTS4cwOt+c3VdNVtG9wXWFUM0tpG19e/mq6//EZavWEHDbb10Rysa8Ec6msbpB2b1tJt119Pq7Z63yqa2L6RLXTXtb+kG+/dQDsG26hvLtbH+Tp4fRvW0C3XcnmpX5v0P0A3Xn41r2sL7WrtzerZ2zZAWx66ja7+5fW0ut/7ltCzYpG8y3DXYw/QNmeqZmQNreMTK/UsosN0EG9kB63+1ZV0413raMtuoq45vt69bfK5rL7x53RF4ecyBgbX0vXX3EZrtw5RL9Y5t45BnDF9pkQbbruKrr59LW3Z00V9mred99kWznsNf3YPpI5bx1jy1k3/WvrNlf5YoK7KsdC6i7Y8fBfdeGXiWGhon3TQnPlI58+3G6erVuryx+mCBXOpzzmVMEI77r2errzxLlq3hbe3y7fhuX3UNriDNtx7I/38ittoQ+HB0sx5I6J1OS3aj+s+uInWP+ptIbvX0Sa/j7Y9/pCL5BihNY9hkKaHDlhWNODd2H4a2X4rXXH9Ktqwuz07NrpGB2jbo3fR9VfeWrI/Egyup1uvuppuuT86j3RVjrW69lODDK67ns+/fHwPuXPQnDqaY+7cNVqpa19bP224/xa66vrVfBwXMBHH7RjPDxmz5vqy+9wgFQYmRV9A8/l6lWN0B93K7XLVxn5q73M++KwGtj1Kd11/Bd2aOOfvWn199XXQt6FNfM6/lo+l7BzeOYfmy7r5mJJN1/OCy1ObXbT2livcuYs/jLZZfn188urfyNela66lVYXXlzG095ENdOdVej3kz8/XeU4nroer6cZfXJG4Ho7Qht9dQdffE+bBeXbY5bmmwbY0Fh67ja66FtenAerSz5XPVdwIae3tV9Mvf/1A8bGdUedxu6+uwTOYsANV1nkA8FX/0BfxVn20h7ex4iOuXxAjvoFPU/j8qXIqW5UmyxNsv2EY5ZQN4o0FlDAe5RiGYRgzi+xqVOc9Zepag5xyjytKpRy9V5RrlMTKwKCAj85gduwcpa1bR6m/f5Q2Pj61e2y45dm5nRoexBsvrrt7mK67fYR+fN0IXfbrYVq7ae/fJ7XzpuO7sPZ2otm9LdPkcamuP4v2ilYvUnct3neXpWu/V6V/t5zk8pLtqom/pmT5oLnZcND1vXyIy3/ml5DwTel8YMr9uNcR8G48NnKSs/uTmtjdO/Fcfk1XPSXb3stw9knPrvVr6GFuoLOXrKADe72xLnbR+jUP0/Zd22jz8Hw68uzz6dSVy2nJkiW0bPmhdMicfnr4kW20c8t26lyxhOYFJ/aRB39NV63aQiPdB9LxZ51DJ/l8S5atoMMPmUP9jzxCmx9/lDa1LqGD99MvS/36Bvpp+8h+dFTd6xug1TfdQg/vaqF5R5xHTzjtCFqOdS1ZRssPPZQOatlEazdupcf5hLts2QLiNuppdvtG6IGbrqJ7No9Q16Lj6ZxzT6IjlmF9nG/F4ZLvkUc30+PrN1HrQQdTtnm0iW675re0fqCD63kuXRDXs3snrX90Iz22fjftt2IRlX5U7fNpdPMa2rCtnwZnc97Ed7wD9/yefr95gOYsP42OWICtHqF1v7ma7tw4SB0Lj6Jzzz+NVi739ebtPfTAHtq54THaUvW5MP3rac06PojmLKEVi9I127z2Xtq0u5sWHMHb7G1spbX3bqKdfIXYM3sFnX7+GXTUIbzOxQvKt2+sn+nQDtq0eQ/NOuR0Ov+sY+iQMG/HFnpk4w7aselxal28LPh8xiEvzaYlKw4Mtq3Ivo3uvO4m3r5WmlO1nsNk+x7ZsIU2rO+necsPJPejp0b3SRfNPwjpS2jW9gf5HNBGi044j049Arb9K18sb15L927aTd0LjuDP3NuYkUf+P3t/AhjHcd0J47/pmcHgHFzEfREECYIgQYqHKEEUKZqWJdOObMdX7NhJNtfm2hy72c1+2Xzfbnb/+202+e9mk+xmk7UTJ3Z8xPcVm5ZE0ZIoChJFkSLBAwQJggBxA4NjMMBgMDM933vV3TM9jR5gZgAQA7J/QE11nV1dVa+qul6/V+/g7PUJBLNKiRaP4dBOlYbrGrBtWxVy5sYxNj2JEY9EfiUKE0QgXboyR1F4EnfGfVi0lyzpe4GeG7g5FYHLJSM0JyNrO+WnhgnI/bh9Yxz+nBrs2VlGNcIwtklq9RTwzSGnbj+Ote+Jtlkj1YfkGYDHR88cqsDWMuVOy8OPro4O3JuTkM/5PbEXjXVKOeq30jhSEsbEmAcz48OYL2xApe7Lt5XHdIXuFrJLsUPfqOIZ5jA/u4gC7nePtYhnqC5dnhpFWd98C0PM3zGOeWpZx+/2YNBHU2PEbijXevTbdMcHE+SXiXvV1IQwynVWsBXHH28TflXFWjuq9RmYxZyrFvuPPYE9PI5RnPpG9X6Tc/DOhFCxVetnhIUeXLg0CL9UhOYjREPaPKjSEPeZiZlJzETqUc9jtKsYVaIsefD2Ux+1V2Dfkwexg/3KTAZ5A/y3z+NC/zwiS+bdrdjeUILw+F3cGfZRG9ECxjCWp0/vAfS+2YEer4ycmgM4fqRNpQtdPx4Zx/iIB46aOhRrjTFzFW9dn4Jc2IQnnzqE7bWcRmm/Iv8AhqamMbVItFS+Mi2Zzz06JJi/FDoKwTc5hcVcnp8eR6vWrmJOdGCa5mTfrAeTNvLTz4lLkEy/XcUcbGHNoWeOMU2w28gwM7pFPL7Q3ogkevsTLwXm4PirRoI8RDk4zFBGDdF783NROR38hrpOMNaTBQubFlpfXqFPLxtqQrMcPxGdmPob8uAPCdaThjVYtGzBggULmQM5HEZYlmNrT2HFxmnt2syPEQ0Xv6p7mXANZnmwBNbiIpDtsiEry5giPk0ivPB2GPVlEnbVbwzjaC3g90eEdCILAHFdFKesjkmBbpmeFmYXIjh1IYz3PGJHSUF6mczMAd85F8Y/eyb19QV1TczNRzBP9SFJNuTm2FCQjGo5Ha4NyLh0S8Y0vaY31djovdmOMnfqz8Jn3PmpfzrsfNaa6pkknPTo+VT2rmEZH37KgUebpPsuFbjWCCzI1D7cwfgDVP2zaO+6+ndexY7311Ip15rhsGiIGk+BLp3e5vjCzZfLhSu2Zvj9WngLfxFNvZbEeli4tLiKQ/jr3eI6gb3JRp8Aht46hVOnljcdPWp0PWQ7ylsPodEgNuys2IeWCidR8RRGB1RPgVFcvuWBLLnR/Nj+perNnBXY93gziiQi2rtdFNsIJypTuZ88gLFpGShowIHtRhVYEvK3H0BDAV16x0FjxVKk+nwjl3FrQoZU2Iz2A0tVYXK69h1FkMLT6L0Ze7pAdxcGFoCchsNoNytn3X60b8unkWgAXd2m+rl0kNBQX041FYRnaEj108OL7iEvRStF7XZ1I3SiE12jNMoVNOLIo41Lyi0V8AZ1K0rtrO6sE31mdZU23Gg82JK0qrRVt2mA6q/qANp3GVXBUdqth3GE61n2xrVPFKtJmyQC3VS/84Ar0X22t2N/DbXbwhC6b6t9YbV1khI86LwxQr0rH43th5fQBqR81O4/htYtEuTp2+g06ywpjxsJUF+BYsoiMDVqkD4NoG/CRxmW0sSvtMnksBqkYWAUU1S0nLJaIcG6JqD6P7SnIr7NqD6a9jeIzXr/+EBiKVkdAj3voI8WLc6KNhwx5kdwlrYQnTYgh8fu69eSyjNpuBtxaEm/WwYD10RZeewwHfOorO1tlbCr6jbjsB799r7Sgh75aDjUBu6+MejuNz+GAV1DyYNj4GLmNxxAkwkNaX3GOzGA1RdzFF19XsqHaNZ03mUGXRsqaXxfeq9V0PvIdfQQkUlbWnFsr3k/5r7hDE+j54ZuzCTaZSk3d0WzoT9JKNvbhFLy83uSo6XVIUB/1TjQvnR+kqi/H26nuZJqzNtntlZJERs6Bz+c0Bh0emhuY5ie6WaMExdP/KhxVZtDYzHi8zKDPr+E0PJOEFeEJpMPY4XyWLBgwYAVaIZDjXQfRSKaNckzqbHAggULFixYSBLaXMPzizbrxM0+K8xvy81LnNQs9cM2ly1fgysjGFLUlAYWV5vT5sbUbAQLi6pjFXjhcgj/5ZuLGJpMvT7zXDY80mhHZamE/Y0SqnnjcZODPzFltZosrcYSckJqjWy6EhJr2nl0yiJWsUW4ZvhPXCuSbiJu1E/4xK4TGL6/SC/csfz1Z9lphn7i/TiOSM/XqqFrUXY5HB+XDD+GPl/6iV6buTdZC+vVPCU2hXlqdD2cpahIoHe3WiSQEQ4qboHhIXiIIJ1ljWhKJOiR3YRtVTlwRnzweFQ/DaneT2pC+8mTOPlkS0wSIg4ulLH+MwTgm1R84pDi/YaGPAjCifLGJiTSSOdq2obKHCcw54HyeAH0jnmprKVobEnMUsjZUS0kiryeJDZ2K5vAx4wFxweWbvhN9GLcz21Qiwb10Yb6x6kUTkrWkrDcrMqwpZpCZQ+GetdwF7GgFA2pHO2w2jZFPqpbyhISac7OJlRS8wQ9Q1jKBl1N2mSg9oUV7lPa3IAipxN+r6pTctV1kgKG+zEeoP5T0YSWhMJaEhqaq6kvyfAM9S7tr6nScULUoYInVAOThJk5HnI7SyrQ0MASL0F4RuK32ocmmLGRg9KaNWPjIZ/GNVP6yS4Tahb5oVZ+LOoDw9NUtnzUtlYn7AMobEGj4GiMo3dC9VsD5G9pSNCHzNE37KGyLj92SFWtqGVmlhHr0W/vJy3oUVCGRlN60O4nI6hbjEpN7ThJ5Ty607yU0T6z4MOU4pM++vswxvPucjQrVaOJ5t0lWAW9K/NhDqppvErUj6WqerCQanBqRJ0PCU67iD83MxTNK4YGHH6W2vep1rVjwC+D/JoWlCUqfG4Lmphzu0hzovFDgRSxoXPwQwqxicELePWaoXfzNdvaV3xamGYz+Drqpjgs3ca2MKofh8ZSKHnrbQ1aXvr8GUa3AKdV/Y35pAJxP/XaggUL8VhCW0xz7Kfz18eJ0rb4TQATek5Eg2bjgYChDBYNW7BgwcLDiWXnGxPEzVmqrUHMN/q5xWz+0SF+jkxckpXyeZAQliOqtFP6CIWUMwf5vD0LFtYa9LYqaFey0futcGvHQ7C/JM7LjLl1tnatDhP8zstxWeIyGq7F4XC9n8EoadT7CqPEjx5VoTP0w/+qrRrhjLn5SeLyVMP5GZmKxLOqbrqIpecr1dbcibZ9MhROlDYfxuHDy5tW7Sw1PaiyE2xDmsI7NSM2svMKqxWPBKjYexxPP30UraWqh4YU76eHHPBhtL8bXVcu4Pz5c3j59Gk8//wpnB9UpZrMkNL9vJieFU8Hd5XiY44K7Dv+NJ5+shXK443AO8e2DwMXzlPZEpgLI/Bzz/Ins7HrRkO5suE3oEltqRi9p2wYllZrbZBsuSnXymJRH3MzZoeSpQm78/62qcuNsmUZh9VwMy8pOINpo8jHatImBbUvrHSf7Ca0P0196FCD6hFDWnWSApKlYVC40D4456WnMmAVdBwPCXUVxfTrh2c49nxy7ximyde9hcqYXQ3WDhnHKMAQRifpKXJK0VCoeq0BHI61eKok+wA9X0MpszIC8HrWpm0ZqT2DF3PzzFBYaezQmFmJsR79dr1pIQ5pj2MyAnOj6LvVhcs8/p97GadPP4/nT53H0BoV0+ubFwyxlWjWvUUZ3/VIn961eSWE6ZuGuSzO9MDLK6zAPNGsivomVFPfD45explXzuHStW70Dnrg5+zuK/gcwuVbVfnwIIiZqbQGfBUbPAc/xOBFO0PbZDC62da+4hMLfDVcg97NVxxPpNWZ+BQxaPcwYrl7rDU45/XM34KFzYwlNMq0otH2MkgYmojm2aRCh0mUwYIFCxYsPPhIdSZItPZkJLP+XC69GTgPa535cIObX9pA7girGc3O2tgyZBa0j8Q0WlbecxUo/uzWJOb08dmPF62RCP8o0nvRcE5Df4qbLNWf21/kR39afJbI4/SxfEW24p2bHdH8ojaF690ie8UtDHMXRZDy3q2FK2fnxdv6cJGTwba6SQIEQ7yd6EKumXTGemF+AJfPncbzZ87i4rUe9I1MwzsP5LpLUbetCbWFBp1ZaSOIYJgsV26KkgIhCK1zMm/Ie+BJaLwIcLwk4d5WLcrhHe9DdD9Y7kPfGDMwKtAUZcyq5c7KBqtySwbBACs+20DclzaNl6BJDemmVftCdj6KFY/kcZ/6uULDTi5icgguCDV56wWpTlGv6ZvQ+rmMeyyOJxWjop7dbtSW5QCBKQzNiAjAxDimmAy2NNwXqZ7UoPWBnKTLFgz41Kv7jdTHjiVYj35738b81cE/cBnnTj+PM69exPXbfRiZ9mIeNH+U1qFxey3ca1TMpGnWZOWSPr2rfYNsn+l8FjO+JWNlKdqeakdzWT6kgBcj/T3ounIeL58+hedfOosLt1liNbMgh1bDZdyEc/ADAvFCoIPerW086CXyjOF6t7gms1YbFlrebC+Xp74MySKa3xqV1YKFzQLeI+CzW9j4gxEEQqnTjx5m9Gekqjh609GcdpWoBJwumfFk5RgWLFiwYOGBRpLrT32clWY//fympYpLHzf/mefGcdJZp1p4cMBdhqWlNgo+Pr7KZYPd4tCo0NaWiq1JsSmI+ZvbVIlEzkp07f2YHFo4/cXHVzTTsM1/QtqPbe4P0fvG4okz7jgO+xvsiHrNHFmbSE/+LIUn3tMVyTsOjo425NDnp5VD2PSn+Qtb57a6SQI4HVw1AczzmUr3A/IQLnV0YmjWgbKWQzjx7Ek8+8zTePr4ERw+vB+tO5pRbTyMJm04WSOYkCxI7dt8hzKw5DbgCKuEW8mc2KdK8q2A7O2oZdV73iF0qwwMuXcIHnqJdVc365gEarkXF5AsO8DpSqj8ywR0wyhFrQHuW5tKcGaplykj3bRqX0hVnd597OcKDQe5iMnBmZ1YVdxaQKqDEEzzetQzz+5hlM/lKq5AHTsJ7nKWYvHDM6hQpmfIQ6NQDkrrMo+NF+sD/qTHEacrBTYa1ZGopjVB6mNHHNaj397XMT99yMOXcK5zCF5HGVoOncCzJ5/Fs08/jeNHDuPw/lY076jGWhUzaZo16Rjp07vaN6RStJrNY0tMO5pEOhVSEZoOHcWJZyjs6eM4cngfWupL4Qz5MH6rA+durhEja42IQXKshuu63nOwhWTBC3ixqCdoGw9sa/5aGMO4MREN1/x1cY0w29TQ0mth2rXeLwrVbZYPQ7tzovBE/haWgquKmT6s4mhhQTm4nw/wZ3OhfxFfeWceX++cx4u3F9BxL4CeyRAWVskcsrA6cHtxW3EbeWcjmKQ14cSkjHF6AfKQze7vd/rxb741jZ/5nAef/NsJ/PyXPPitb0/h378wg89fnMMb1Lb9M/yFhYI42k4Aja74VzOMOHrTXWtXTK9GmmR3snSaeKSxYMGCBQsPKszmDT3M5hC9nzZ3xM0hSc47ZuBpcrPPR/5F4NLdMEZm1m63xMLGgrs0900LCoTcGVVKvB3zF1ei0rjuhG/Mpj+RhxaPtdawX1w4/bJbNVz1erfR0I9iq/E095JwNkok4WaX8BKacxR6ZbfW1FGNOnS9JL2ujJpb2GQ2fpcwQ+EuLgRvd/HZN8th9AqrFzuL68Yz8lJFfx9GaEDOb2zHocYyuJa0jIzpubVSs+ZGUYF4OniXPS9nFJdfPo3Tr11XVf1VKuoY52cwvtycIQfg83rhTVq/mISG+nKqbz9G7/D5YAHcHpkWG6u12/XqwpItN+AdmRJST3mFJnpW+TNXU0yJLyHWDKtt04AX48uWZ0hRbegsRJGRz7OatElB7Qsr3WehBx2nqQ9d6FPc97GfJ0vDoPAp0Vnc9FTrCQmN5eL0SHjuUR8cnoSXLJZqilbDllqwhjz/+ADF8mJokgq2xmo11w5J9gFq0z6WPEyk/i8ROU76VMnFtYAbeblcyyuNHQGMe03uuh799r6O+emjr28EQeSj8fFDaCxzLV00yNOYX6NiuvNzRf4r0ax3TBnf9Uif3tV5RfZhetkzHIPw87xGbaJ0WdWtn+ecOdTHq9G4+zBOHG2Gmx7GN9KbwgczlHMiepidX4YeVlZbOzQjBnwUFq/mo4A1moMtpASxeDdA7yc27lVEF/sJEA3jeMqVuOY3R/EFYZrQlyEOqj+HG+MsV04NCfN9yMFVFwxG4PdHMDsbwdSUDA+ZyWlZMIS8vgh8cwqD6NydRXzxjTn8Y8ccvvjaHP76pVn86alZ/N/fmsZvfnUK/9cPpvE/zs7iR90L6J+OMYQsrD349YMZd3ymDDPqpqi9+JrbyU/+QZpO+MwZIYlHcUd9Mt7qXcSNoSBGvWEMTYVxdzSEa31BvNkVwDfemMd//9EM/uDb0/iX357CX3b48Oa9ANH2GtCNCe2ZUWxKNGrRs4UMBKszG5yMoHtIxo1BxXQPy+ifkDFO4ylvmFuwYGF1iI7+JvPAsjNDorVigvlEi51ojcneHLbZp6NZWv/94O0w3tnAs8hZ6yDXozW1P9hI5n1tPUBvjtS3xG/Mh/ub6q+4hcvUph/F5pgsVUd/nEb4q9cifjRevDvmx0nUdMJPeEfd0bhLbL5UpPn0/poRtSrGIgpjsD//seSeklhxq7bm1uwle3IWVFRVozSLXpTHe9Ezr/oZsdCDO8N+BG35KE1K9CwxgovKIJzw3Kf5bgxFD+ZZPaqrS+FEEGO9PQnVCQZ67mCENynzSlXJOhcay3kTcBp9V8YT7jf6b53H2XPncLE3BUmEynqU0aMHJ4cwOkPP6gWc5Q1oMPTQ6voyKkUQI93XE2+Oyn3oGqJ7S6WobtRlkO8SG70BH0s5mUDb4F0jrL5NfRjqWqaeb/ZghJrHWVqNpadCrSZtMtD6wvL38XT3YToYRI5b2cy9r/28Su1To924rqmqXAIZfd1DRAMSSqsb131AlBrLUUT3nBq7h6FhD/XkIpTr+yhRWmUx9dJ5D4YmBuChbpyZajUZ1AeqiqjOfOjr7EvYBzDThV4Wr80pQ+MW1Y+Q7xLUCG8CotMYAWuFhqpSKiuNHT1dCcc8efg6BkyksNej397vMT89aGonHSzAZgr/raHYmXGrRX0DynneHe1BV6J5Vx5Cz6hJC66C3pX5MEDzSuL5UB6+inM0r3Vc1858G0Jnxzmc67iOcdUnDrlFyOcuHqY6VHyWRY6gBz+8/C3LEmjM8MTwDXYl/sBmvovqjEqRRXPiCmfbrYRVzcEW0kJ0gW+A9mKlbEjEx9H8NKOBrzmMU8al4PhqfhrM8k0Lah5aeTWsSd4PEbj6FhcVBh0zgGa8yjUzgBaJvPUMIGYYaebGeBB3PCFMz/HHITImZmWMMVNoOozbtBB8+/YiTl9ZwOde8eEPvzeNf/v9afyfN3y4NhY0ZdxYSA3cBiwlye01NSNjltvMH0GQ2iukay9uX2N9ZzuYXjleLITjhkIRLFBf8M5zW7Ka9hA6+4P40SU//vzFWfz2N6bwv1734dLwIs3hS1sxKdoz0CtjuVRG+rZgIZPh8UVwfVDGS1dD+PHVMN68FcblvjDRkWIu3w3jrdsyXrsRVuOEcKmXxs1JGYGg1dctWEgVy1LNcnMShWlp4/JIMOdoOSWa53gO5YxYk91mBj+Hlz8CorXARkHUJVWztZ63sF4Q76x8Rh1d60cC8UdOPsNOicNhiWwlH+6rUX/6Wxov3uY/vmbEhQsjfKNuvR09I49LzBJ4RCgsEaiFazZTjZKN4hZxhGfsrDz+S2RbOywJUYHWpiJIshfdb17CAL34xiE4istvdGNallC0tYVirw7ObKdoDO/Y0o1EebYX5zt6Ecjijb41QmUrmoolyDPd6Lg4AN+Sx7uMjlvTkO1FaNwZezrX9mZUZ9NL6fBFdNxgRoQeMnx3z+PcHR+QVYnmllTYD6VoLM8BFsfQ3emhOshBxTaTWt3ShqYtVFPzfTj/ehfVv+qvQp4dwKVXr8MTpnbZ3hbPCMyuRhlLEM324WKPoZbnKR3VQ6JN3HSw6jalFUZwpXqW3HHtE8Vq0iYJV3MLapfrC7c7cGkwIOq9WZWsXFWdiDVCEIE5Q6MnRCnatjPzxo++t86ha0ln8WHg0qu4PiFDKtqONiPXeD0gNYKF8uSZXnTz4XfuUtQabltRyUwFH0aujVHJXSiuTJGNl3I9pQ9X027U5dLzTFzHq5eW0k/Q04Vzb/WJ56hu3R3HkHRVlYlztnx9F5d8LOEfuIQL99aSGgm1u9HAZ55SPzMd86isHZ0jCJus7Nej367PmK+WPWW1yYnghCtLlBJjxjEzOpYEEqrnFWrmg4EldZ0YFWhpcNNT+NCbYN7tfK0TIzS+L22lVdB7ZQsai5abDztxjvoGSyY27G5Q712HihK6Coyg68bSs/D8A70QQnI5yZ0jWk0Dg2A0d102MORkTN/sQBczwxOC6iM4hIsdXfDED8TRvuSjOO6GFNYqicaR1czBFlYN7WWZbf2Ls/LCEA8zv+VgjL3ci3lKeScRN9G9Un2GBxHMoBPMuxlZSNqxykzBuNOYQFRFy9XSllwJeWIcXwpOuxiMwOeXMToTxp3xEN7uWcQP3/HjT5/34v/+p2mcub2w6vPZHkaIs+1YYpLajM1CQJG4Y3+u9+XAyxA2+S4bHt+WhT0NWcjPl+B0JqZJltBkxt7gZAhXBxbxwpUF/MVpH/5/L3hx6qYfs3T/dKG/ayJaXW68YCwfasHC+oMpYJ7o4K3bYXTcDOPaPRlDkxHMkV82rWPL3DZUFSmGr3PVD9h8RMcDLLE3LON8j4xXboTx9p0wRqcjYhy2YMFC6kh2faePZ5xHtLC49bBqLweOYzYnrTSPWTAguSa0YCFtKDSpvPOKM+4EWB6N/XitrPjp4y21tfBYPM1obiUfJU+9f7xNV2yTUZyqv3Dr/NnmYHGp+POmWES9hxJPYUsuTa/4i3Pv2ZiEa7b9Dwl8k0yHf7QXg7NBLM5NYnx4EIODy5ixRRRU8VlTIiVGewcxiwLUNFYiV/gZMDWA254FZJfuQF2J6kdwFNWgMDiKEc8kRvt70Tc8ionREQzevYmrNwbgpZfrnNqDONJSGG2stO9XWIDFoXuYnvXg7p17GJscxwg9y91bV3H9zjj8WbU4UA9acIZQUNOIymjG6T6fA8XVhQiOjMAzNYr+3j6MjE1glOr2bvdV3LjnRciWg9r9R9BCC9oobHmorJAwMTSBmclB3KF7j3nGqKx3cefGddwe9UN2FqH5sYNoyNalSwIu9yLG7k5idpErthJtLRVqG+phQ1FVJaTJYYxPezBw5w4GRycxNkLl7rmBrp5hzJq2C8OFkpx5DAx7Meeh8g6OYXJMbc/uIcw6qlGdN0svu9ko3VGHWFeYwsBtDxayS7FD30FWwmrb1F6FHVVBDPX3xddzVxfV8zxkOFG66zG0lek3+9cg7ZK+lMg/FxUVWZgaHsO0x6QvjC8ofaH9EGq1jf6064TuFplG38gsfBMDSrqROWRXlyrlSUDDtsIqVNo8GB6fgWegJ9bmfXdw48ZtDCudBQePtKAwrrOkS1crwYY8/xh6J+bEy19+zX5s2+JQw1QURDDTN4rpAJXNVYFdu83un7h86dRTDEk8dxxcKKtxY354GFPTY9SmunGE2vRG3xQCshNFzU/gUJ2B2+MqQa5/QKj88/Tr6JjGn5tDs3DUVCNvdhYBI92lVe8MJ7Zs4f46jlnvWPyYp5U1uxY7tizA46Nm0Pe/9ei3q8gzMXLhH+vF1JwXI0NjmKC+PhkpR4WbDzZbeRxT5tn4Zy/KX8TgvWn4eMwcIPoZJ/ohGr917Tp6xvxw1R5AQ2QIntDS8QHTfURjPoxTuilKNzyfjerS5R/EWVKG7NlhjM3MYCxu3r2Fq133MBMuRHNrMWbHqKDuGjRWxPJLn96dKKkpxMLQkOjHS+fDGSwiB9UHnsCeYq5LBs1FxTZMDEzAS32yt38EoxO0XuA2FH14DmE7jX+H96I0GX6suxi2iX7qe14MRe+vjKV3PEEU1mxBZHZ+yTMrbWZH1fYqms/70ddrnBPHME9jjXPLLjzWtoWeNDkkHkdWMwdbSBdi4a4Du3kDw+hvhDE8uukhfpdHovz1myp6LPFnty79SmVdCZze4TDMl2uI1ZZvrcEMPGbasQksKm71g05TcPGZ+cPMHqeDDNlZZMoL7CgvlOAukFBWZKcx3Q5nFr0A0lAWDEWW5Mf3YGmvyTkZQ9My7oyFcHU0iAm/jBqaS7KXYSZZUOtPPfdugdqNJe/Yzwxae3E7ZbvI5NiQQ+9O2WRyyM3XldRme6qcaN/mwvFmF55ocmEPLaobyx0oyJcQpjyClH9YlbzjfsxturAo01oggmFm0FIbXh8LgnkOpXkSXNo0RkimNfVdZDWtzxsT9nWkYQ2ZRssWNh4hopH+cRmX7soYnFLUZVbQQnBnlZ3elyU0lEmoLpaI3iRUkGG7itx8hn9tCY2dbqJTGlcXgvSORkuxSV9ESPVNEo0xc54ZgQ671e8sWDBDmIiEz4GKUgiN0fpxWrs2jt3CbfRjY4gftcWvAtO8CPxRzSKtfXJzJVpTmsdZCS+8HUY9jRm76mkC3iB4/cAr18PYVSthe2Xq5eA1Cn9kxOD1RzGNealikcbRAK0XXbSmZJMOWLXxqQthvOcRO0oK0suDT4/4zrkw/tkzqa8vePzmuuC1tp3GcD6KJS83tXJcvCPjam8EPpobmmpsOLjDLuaMVHGB8uFt8H0NduSnuI/O4D7BEuaHtivz1mbHwkIYIVrgci/l2lCk0aIOna2se+P96UJzM+g6jrw1/yi0wFgAXy2JFgWNYfSbOJxiUBkUuTs9YrmKELVQ4p1btaPQXxOM99tkLSwjMOOBx7OCmfLC8FF6mqCFW+tRnDjchLI8J8LzXiX/2SCceWVo3H8Ux9rK1qgS3Wg92o7msny4bHzejfIsvkUXiuracPRYG8qy7HSvAHzGT+DThVSG1mMncHh7GfKdYfjUuvUGncgva8SBI8fQVm7ydLlNaD/RjpaaIuSwajxRVi/m5RwU1bTg8FPtaCpIo1ayt4sFM8Nd3ZxYnaCUj6bHn8KR3bUoYokwr1ru+bBol6bDT+N4gnaRyvfheHuzaE/41fb0ycgta0b7U/uQb6S1VWH1bVrUdgxH99BzZlEctZ59NMDnFNWi7Ulqu4YcNeZSrCZt0shtwOF3HUVb3TJ9IW7ffhV1UrkPh3aUIkdS080YJYTMICF/ezueeqIVtUX0vAG1zWd8CDvzUbb9MJ4+TvdcGyJOCq76MrVv0/0bzNQqVqOkUCmQi8/ME1cpIK16WgWcFdhH48gh4zgSiPW19iazvkbj697jaN/B6Zgc1b4g56JsRzuO7803peFVQd9fbbGy6vuf+Tp2Pfrteoz5LjTvb0O1OzZf+QLJsm4SoLAVx8SYSX1Vox+PD4GsItTuUeZAh4MqLeCDsZgV+w6huTQH0qKSjheYKyMHtQeOK2MXdZvwnDZOh5C7pYnaj8aUBGo+V0XvNB+2HT+OA1sTz4f7Kgx1yXPhuw6jidrQGfZF2zCa5knj+LccctDUTnOu6JtB9f40ljqonmksb69eoR2L2nDsSBtqC11CfbQoxxy9neQo7XTi0Qa6QwpYbhxZxRxsIT1oTDXjJoN+wZ9o00IPkQfZ8a8GCthfn4LjLmHOEczyNYMxpVleGpYLe9jAUlssgccbLJr0nRkjiJlALpcNubk2FBaQcSsmP08xvBHBprbEjqd2uPDTB3Px84/l4VeP5ON3jhfg3zztxr96jxuffDwPR3dlo77SAZdh44BVOPZNhPDazQC+eWEef/HKLF7oXsD0QrJz0sMDhYEH0W68KcQbXLxBpO/aTDq8ccgMOje3GZkCta1ymYnHzDwyvCGWpZqSPAktNPccrs9Ce6MLTzVn4727s/HhR6g9H8/Hvzzuxr9+ugCfbs9De7NLMANjYCnACO55wnj9VgBf6pjDl6gdr4+F4qQsk6PoNKAbKywKt7ARYPrjc5yv3QvjSp+MkakISonuDm+3i83SpkoJNSUStpBfEdFiIY+nZPia/ZjZV1Niw7YKCbvrJDzaZMehbXbB5Fugsbl3TMaVfhkXe8O4S9crSdtasPDQI8k1pIZkYsethVV7WXB0E1rdTGtRHmt4bCuIm/MtWHhwwG+sPFxIYswQLnIna9NLEtGIcGvn46kSfYqf0bA/m9iZdmxYiE7v1hvOUlhL/HU2jSl0FQ3jk+3i4vEf2RLflyXw9HH1br4SdsxNeW+iEcvCAw4vOl8+h4FAKVrfc/ghVsnlweUz5zGEahw+sS9FRs5q0lqwYMHCJkD/eTx/zYP8Hc/iyPaHm13kuXIG5weB6kdPYJ/uDEoLDw6My3RewCdauuv9OZ4Gvb92HQ3leORnlqPZfZK5dxQGP9P8NHuFfO12O7KyEujxXQPo62sjwIwgPkttIaBIyiVi3rH0Fgs1sbHTGyb7sXRdOlgMRzDtlzHlj8AzL8MzG8bN0SCuDAfRNxJSY8XATKj6Ejuaq5w42ZqDXRUOuAxftD+MYOar+MqfJSepTo1dWbRbFktKKnVoV9tsrbpcSI5gis/L84XRP8kmhDf7A+gdDsUxFpiWivIlbC93CJWdTzS6UFUQ6zxxNKhes5/my8XV4ujjLudHF4pFhiVqs1xmH7CtLTaali1kBrjrsbTH9QEZ9yZkoQllR7WE+lJJSH7wN2jpgPPx0pg5Mx/B6EwEg5PKmZW8oV5VzB9PSCgvVOjcgoXNAP3YvR5YDAQQCoWUdac6PuvHab42G7c1f33pOJaIa4gv4qrXWnx9ntr19IwM35yMLbSWYel3I/RpEuF3P7OII612fPjJNBdfa4B7ExH8h68u4lefdYgPE1LF2EQYg8M0mBEK3RK2NaQuzcYfLnl9Mty0rihIUxpicErGb/31Iv7kn2WhqSr1QZPVJZ+5EsYffTmE//mbThzYllpd8NnTXBfjHlms08pK7SjnIyRSwGdfDOIfz4QxQm3yzGEJv3zSiVbj2TlJ4K8pn1maW37mmBOVeo14SWLAE8H/8xXqE+914LE0+kQirPf4kAgz04vw+5U+KkDF4KLYbLzOVt5/RNGoqgRji2wlnKPG6s/G3Dg1Hh89J5xaPJ2t5Kfkw2tntkV6+hPJtfjCU3c/copwg809gHmHVNxYegpdEo8CZMqI3VqmxnC9O+pPxoKFzMBID0b9gLO8wTpXx4IFCxYeOgTR+9ZpnD7dgW7DuYkxyOgbmaLfHBSbSYxbsPCAwbipYPZCpcXR2xxPM+w25mOEWahZmmTyioLjqXHNyr3U5+EES92xFBcbVlOkZ+Jx9bH6RZba4o2SvDxFeoslt5zO9Jl4jCy7DeX5duwsc+CJhiycbM3GTx3MxS88kY9PsaRei0tI/GnNzRJ6rKbx9LUFfP51H75/1Y8hr+4l+yEDd+lAQGk7/0JkiapSbhuWvuN2y1el7lysgs8RJYs1AWv025InobXCiWdbsvGR/dSG7fn4NLVhc41TqFrVCjbtk3Hx7iK+fXEe37rsR9dYUDAC1wUmNG/Bwv0Adz1mtjETj6XmeILjs5FbaxQmW7pMPIaD6LqEaJrVce6ulbB/qyTU7PkCEXQPybjcF8btERk+GhPWi7QsWHiQoK1V9TBbZ/ImPM+3M166WM38sobzr4WNxYQX+PKZEOZovP3bU0s/QLOwmcFMr9ifcAvalRA7004NFQE6W73WpPGi8XTp9LaSnyItp/krhhYL6nU0vnCTM84ds9kIKUK+pj/NP8pcFF4xf3ZrZ+KJKFF/tVw6t962dsEsZAxGhz0IIgcV2ypUHwsWLFiw8PDAiYYKN8LBafS8eQkDs7rdbIEgPDc60OWRIW1pREtC/csWLDz4EIv5ZaAP1zZJohsl+rQrbIasdB8NCeMludlill6/sWPc5HkQwI/EDKC5uQj8/oiQ9NDA1cGMOmbgaaoymSnEUl38rrcecNALY12RA081uvBTh3LxqcN5gqn35E6X+OJaayJm6F3sW8TX357Hdzr9uDURWj9mUIaCma2s+tRnwnxlSRz+0p/bTGu3tWbeJQLfozRXwpGGLHzsQC5+9vE8fJzasqU2K3qGjUxtNTgZxulrfnz5wjzepLb0BxO3n77YiR7BlD7vxwNbsGACZqJ1DclC3WUW0R4z3Pg8vFzX2vVJ3l9jKbzGcglt9czQU85F8swyAzGMawOsylMW52RasGAhPehnFl5m8FqJJepWml9WXLuaBCe73rWQOZinsf7ybf6QCrjQZdw3uP/IoXWWK41TTb75Rgidd2R09cv47vkQxmZSX1PzMozP007n/pkIemsVa0s5Igubrgy2Er6SzdJumk0XS8IVo6xjNaN6xPlFwwi8jibHkjC9oR/lmp+FbFazyVCC9OljbhFZBY9G7MU/8fEVYzHyLGQG5D70jQVpRVyJ5kLVz4IFCxYsPFSQ6g/hQEM+pIURdL72PJ5/+RzOnz9P5hxefuE0zt/1Qs6uxoGDDdYCxsJDC+Nmg1jgm2C9NiUS3S8VrD6HzQ1m/PCGFDPxBCNIVyEs8aExgjQprvVi3pmBu01htoRd5U587JFcfPqxPHzokRxsr3YK1Z4aRqbCeOGqH//49hwuDgSxoDt37UEGb5TMzytnGPIZdBo5cL0x8zWH2kyTwGMG3kahwGXDk1td+MShPHyK2vBoswtb3NqXzMD0nIyO2wv4xqV5vNEXgI/6oR6mdJ5gTLE2QC1kCvyLwN3xiJDEYyZeS7WE7ZV28RHEeoC7fhHR+64aCXsbJLSQTb64Myrj6j1FIpDVpT1k3zpYsGAOk3nFbP5Yfp2ZeL5JmswsehTgqr+f60sjZv203nVtXBm4G6zBK00U2bQGTEfl/OdfDOGtGzKu3IrgSy+FMORJvVD8XsFq3gvo/eGBAFUBjw38xx1V/Jm6FUm6mJv+aJ0r/jgq/WnxFQ/2V9zCFoa99W5dPBPDEnR0scRfb+gn5ub4ZOgqzo8l9xQ3PS/bunDNbbRFOP1tINlasBCD/1Y/PDT4uMsbsf6nJ1iwYMGChcyEhLLWozhxuAlleTQbBLzweDxkvAg48lFa14ajT+1DmbV6sfCQghfwvMGx3CaHFm6MI14MNPC13p0Ay90nWZjlYbyzaZwkyrcZIRhBzMSbXyqFx2d0sDpLZgSx+syN2tzQo6XMiY/tz8MnD+fhXbuysaWQmUFK2NSsjJdvBPDVt+dxcWARgQecmcdtN0dtx+0X1rWdkMKj9soEBp4RCkMvSzD0nnskFzuqnHAxQ5aaip/nKrXbNy/O49WeBXFWohH6FjUbVxJCjfdg9wgLmYRAMIIBjyyYaE470FwtUX+3C4be/UBlkSKdt4eMkM7zRXBtIIwbgzImvMo5fRYsWFgZ2vqPf+NWgks84qEF6eep+LUk+SeYlJKe29YAU3PK2Zr38Zam4KrRPu653zjXFcZ3z4UxMwv84M0wugZkWkOqgfcJXP+Z8JHFhIfWlnP8kRjgmVTOXk4V/BhBmmMeGIk8ahjlT7jI8PuvsFS3sh5VzsyLuYUtGjUWzgk1m41G63QlfoWEnRpfuLVw1uerSgBq4eynd9NPnFszUX/NT6Z0lBe7OS7rCuYrJZydMt1XCY/FV9Ob2NZWmIWMQM7Oozh58iSONFtsPKAU+06cxMkT++gqVawmrQULFixkBpylzTh07ASefZbGM5ob2Dx74igO76lFvrVyiaJ07wmqmxPYt0X1sPBAIrqhEbcZEY9UmF4cU7w8MDidlr/4XRmp3Cuat0malXIRL0AqUrpnBkNjBDETL6zjmWjnqbEaTbZXc/bdesDtsuHdTS783ON5eP/eXGwtd0Sl81jV5juqqs23+hcxZ5DselAg2o7abcFw9hVLULIUHktQujKE+SroTkczTD/bSx34MLUdq0092JiFglwqKD0HP9eNoSC+Qe338q0FzCwoHTMRzZn562nVgoWNANPkuDeC7mEZfhqD6kolNN9HJp6GLIcNOyol7K1nSUBJlIvPzGNVm8xk5LJZsGDh/kGbn/gc28Ain0tM83iAN++FdxT3c5156kIIw9Px68CHDd85H8I//jiE3oEI/ur7Ibx1i8ZHapd0YU9jrOeuYS1fMhPcLEyRQmqN/8jBTGftj0MVmjWzyUoQrhk1xpJwtvmeSr9gd/zZeUtsMqZuoy0Y5oo7ZvOlLh7HMfM3sa3tMAsWLFiwYMGCBQsWMhS8CSEW7+q1Bs2Pofnr/RJB5MfxdYZTKznEoL/XSlgSV5c3l0mEG+M8ZBCMIP4Ke4HqW1cVLL3FUlzMCMpyine0jEWN246PPpKLjz+ah731TuSpKnw0Zt6Xz8/hQv+DJ5kXZeIFYm3H7cSqNFmCMtOk8ARM6I2l805sz8YnqP0e356FwjxlK4C/Rr47HsI/XfHj9d4A5teQ2ZDB3dnCAwLu6jNEn6xSk+2qYoWJdr+ZeHqUF0rYp6raLMm3YXgqgiv9smDqTdM8oP8YwIIFCykiwXpS8zVbC7Mk/YxXho/ob3qGz6+MzyOZNW8gSHnTtLnaD3a+8XpYnINmjQNrA27u7BzVYeGBgJA7I/pQbPEr1qosLce23j/O1ozqFnGN4dqf5k5gxN1N/M0M/cTZwnAO6rUiEMjXikRftFziWpHE4wSaH49g2jUb+olzW4w8CxYsWLBgwYIFCxYyEGLxrgNvTmiGw8w2K/TQhxvzWgmJ8jbLZ0lcs7SJyprgOaJ+FJ5q2TMNrIZRMPFMGEH5eZJgBGWaFF4isHTeyZ3Z+NThPBzcmhVl5vF7KEt2sWTeFbIXw5u7zTQs23a5kpCg3EgpPFM6NdCLnn74uq3CiY8+opybV6wy8xj3PCF8+9I83rpnzoxNNCYk8rdg4X6Az8Xjs+j6J2TBNNtZrTDPNhosnbe71o79jXZsLZewSDTV2S/jcn8Yw1My5lgq6MEYJi1YWBZRalyruWKFfPRznjY/yTSX80dHYTLMxDNK5CUD7wKtVx0RMf9byBxwE/OHcKmC0znsNqFZgdfg6azDt7htKHED5SU2lBbaNvQDkgcJ9KYraFezEWFb86cIwq07d06zNSPcShvzj+JWbe1PhLMdb+hHvVbP34sa8/hs6If/Y2lZetCmvN+KcIKQKKQ8+Yw99mPJPwb5inSC86e6+VLJjl1KuPhTbYuRZ8GCBQsWLFiwYMFCBkJ7AUjEPGN/thl8nSjeSjCLYZZXSljmvnE5J3i+qF8S5c9k8GYRS3OxyiDtKfmReCOoIE+CK2tzPuKBmix8+EAuDmzNQq5LeQB+1uvDi/iH83O4PhLCZuflcReMtp2uOzodChMvKwPaLl063VnmwEf25+KplmwUsppNArdf70QIX704j6sjwSXtt+oxYROCnzkUor6sPxSRwH5zc3OYn5+neovfEeYw9ufwYDqH3VhIGnwm0OAUq62MiA3U2lIbKosya0CtKLTh0DY7dtdJRGs2DFJZ37wlo0ucnRfBYkiNaMHCA4rozLGOcwjnvBrKT2atbEEBf4AQpgUCM0fD5EiHKZoJYE0KeXk25OdLyMtRtCukiid2Snhkh4RjByQ8vktCMeW3GnCZrK6o0LIivaZIsCln4TGd0w8FijPvBNVr7778YQyHihicWMTnuoyetyfiKfkp6UREnTtmK/cjN5m4+MLNHd4QLmy6n+YWEnccje7HBKKG8w+vGcXz0Z9oauVhhVtE4ucT4fH+etti5FmwYMGCBQsWLFiwkKFQXiAUW280aNe8CWHciNDHNQsXMPMjJIpvmocZ+N7qpTENu2JPYA59miTvmHHgqg8EIkKlkx6CEZQnCWZestWZidhfnYWPHlDOXMvJUh4kHAKuDwbxxQs+DMxs3h1q0XaLgH/BpO3yM7ztuGAJCqenq8ZiBz60LwfHd2UjnyUr6Z/br2c0iC+8NZew/ZIaAzK2cpIHb7bMzs5icHAQMzMzqi8Ec25gYAB3797FnTt3MDU1FWX0cdjIyAh6enpw+/ZtjI6OYnGROpKFNQfTKJ+Ld2dUxhzR6dYyPhcvM7e3mMm4q8aOw9vtaKBy8tlYN4dkvH0njLtjslAJajH0LDzwSHJeiK5xdetIAc2hhRP085HmG+enxlV+yV+ELS1H9J4WVkRgMYLZORp352mO9PHZg5uz7lgaj7Uq5ORIyM5WNCykiooiSWimqC6xCbXOvEZcDXLz0jvv70FDlF7jzqhTKZcCIxGlrfS2Gkv8MTgds8pEcg4XFyuceafaWr7kjA8nw1J18e4EtpIYNlbboUrhaeH8fCIf9mOo/ppbhGvpVX+9bTHyLFiwYMGCBQsWLFjIUIiFu87Wwxhm3Ihgfzbsr5klubC/ermm4Hurl6uG+nybCdwUvH8/Oxdfu0ISjxlB9KK+CR9rCR6pzsLHD+bh4LYsZDmVBwoGI7gxEMTXLs1jNrAuvWtdwW3HglTeWf5yV/UkcJttirbTF5pgNnZoaChy4Lk9uTjSnA2Xrv16R4L4ducC/HRtxMOw4cnP6PP5cPPmTVy5cgVDQ0NR/3v37qGzsxMulwuBQECEe71eEcbxuru7o8y73t5eEf9hqLP7DVZNyeo0J30RVBTZUF/Gas0ye1Atc9sEM29/oyKdN0Xzw/meMM52KQy92YUI/IsRhDaphIsFC2sK3dzFYyhL3BhVWWtja2ZT/oMFXh/Ns7YCHq/8EeFOFZZaYQvLgd9MlT9Fgk5I27HhP+o7UYk5IZlHUG0lnCZQGhA4mH0E1PgRtoWf6lbNEnfUjy8VtzHczC3O8GO3klqRBmSJPDL8cZgmYcjxFXcsvZIoZos/Xbjethh5FixYsGDBggULFixkKHjBrjHjNMac5q8PM4M+joYIx+cLnZ/ZBoiW1ohk/ZJForRx/qvIf6PAAjqzPn5xUz0IvAHlznRprjSwt8opJPPaGrKim2w+fwSvdwfwvet+IX2ymcBtxio19W3H7cVSlBmv9ohphQuYDF2paCp14Lm2HDzSmAW71n4LEbzWtYBX7gTSIz9dos3Y1VmyzuPxCIm8rVu3qr6KlB4z7g4dOoRt27bh4MGDgmnHEnuhUEhI71VVVWHPnj3Yt28f3G43JiYmRH4W1g48prAkHjPyCnJsaKqQUO7eHFtbTjuwvVLCsV12tNZKyM8GZuYiePN2GC9eCeHCnTAGJ2XMByJYWISQ1GMVovzM6ZCiBQsbDf0coF+Ppgqek7U5aq2xmnJZSB2ztEZMa21h4aGAxH9Ek5J6Th1fsy3+xBJXfR9W+5DiL34VCTg1Hrv5V3GL0Hi3avRucXadeq0YDta7jeHx7qXpFbdyNp7yPFxGJVvFn8PFn/YSxWno2URcjmmwN8dqx4IFCxYsWLBgwYKFhxC8iNc239nWrsWLgQ5mG/T6ONo16+8XVybxV4LZPRjGsuihL3MqiMtzmfwzEczEY0ZQSNG2J8CPkJ9nE4ygBxGsZvMn9+Wgaosj2lxTPhnPd/rRP62riAwHbxTyF+ZGVVHcdplwJp4RS2h8hQImotXWcic++kguqstjHXR6XsYX35iDx6+0n1na5e+mIHXq31jweDU9PS3UYtbX1xPNxuqEw8bHx7FlyxZl84VQWloqpPe0M/OyqKOwtB6jsLBQuJkhaGFtwP3p3oSMvnGF2c7n4lUVJ9MTMwvMgHxkqx3vaXNgT52EPOoy8wGgdzSCl6+F8Z23QnjpakhI7F27F8Y9j8LcizL1MoCwtPndMvffbEoYyq7NKca5Re82pewE89jKoHuL+6def5wsGIoI2guGFXsjwOUI0f1FeWgs0FXnpsLcwuYtu4X7A2WsoL7OfyzJptEtkT8PAVo4u/maP7QS8TVbCyfDI4beLST01Gv2j0rKkVuRqIulF1acO2bzveL82S9qczoOUW3hr0rhcTr2U9Nz+WQO0/JjoxSac15iW4w8CxYsWLBgwYIFCxYyFGJBT0i0Aa8hbuODrtloafUQPlrcZfI0u5+Wrx5m94jCJL6GxHfe3ODqCIaWnq2Wl6ucxZGgOh4IHKjJwsf25yI3V3nF5LoYmgrjL8/NiutMh9Z284a243bLzcn8tou+/LPRFVZPo9o1/8Z8FTAz7xOP5CIrSxk7OCozY//hbb+4NqN1kY+J/2YGM92Gh4epH+eisrJSMOf0yM/PjxvXOJ7dbhcSeWyz0YPPz9PO0LOweiwsRtA7LsPji6C6BGgoBRySsom31obbjdt1vQxLajqlIHZVh/HevREc3SmjtiQMd44sPgSZmI2gZ0TG5buyYO59vSOEFy+HcK0/TLQZRCCwKCRClzOs/nWzGr/fv26G6ZqZ7+tpmMG/Xob756aDOm5G5yGDrUHvNp1dVj3nLJ3MV5rHWJXvjy6G0X0vgleIFq8PbMyYzudpvnojDM9MBD/uDGHGcAbz/QY3aaavjR4ORCBxOzwgbSGYVuJhyIguTmtw7eHIzeSqvJOyZBvbqmQbX6t21E1hIje2IyI2ZaDaargmKSfSCbfip4UnsoVknd6f/YSbfRQIWwTpwnU2Qysfu6MSeqrbzLb/IUGktGAhaXhw+cwruNQ7j5LGSuSqvhmJng6cevMqJqQdqKOF/qqw0IvzL7+BK33zKGqoRJ5Cc+uAdOs3gN7zL+ONK3cxX9iAyvUroIWNxEQnXn71Im6OS6ihTu1UvS0kD8+VM3jlYi/mixtRmdEDGGHiMs68cgm9/hI0VmRWYeXZAVy5cB6Xr93ErdsTkHbUoQQy+i68hI7LdzDj2orqwodlHFrr8bcHHafexNUJCTtWPXlZeBDAi3b9JoPm1vuLBb4Ks+u49PzDLwo6PyO0/FfCsnFMyqZBu3Oy99BLxaw1kilDsgiFAK+Xv6hUPQi8r1/k5pc91eMBRZbdhtJ8RV3MlXuKKkHea1wIRLCjxonqgngGR6aBy8qSlMzM08Bt5y6QhJ2J0NO1AHcyNuxv0uG0vr40hFX+2cQ5ed7FCO6MKZXAUgdDkyHsqHKiitrPrA+b0g/76fx5Y8J+H8RR14KWWRUmm9bWVlG/rGKTx5/y8nKxeX7p0iW0tbVFGXasTpOfr6ioCGNjY8Jmw+B8mGnAEnw5OTnCTw/OX2PoaMwdo+Gw9TRmzJ+1NsyUMfNP1czOBXHpbgSDUzaU5MnYtiUEd7b5c63WBBa5/sOIyAojdq1NKCQjJPOX+Mw05/k2IqTyeNm3rRzYWhZBDV0X59uQS/6SZBNqNn0LwMhMREgkzi+EkZsVQRaRFuehN2HKm+mXp/q1BmUPOcLzsiT6/lob3kCVYYeLHoxpb62N3U4VJmUhJztLSMyuh7HZXZS/S0jnrodZy3XLeoL7Oo+borS6MkfnIrLNnkXz10J4fmZpeaaDPP5YSJdGi6f56PPTrvnjKt+cQhP8sQrP607DmZr6dEZMzwN/dyqEa70RjBL9tdRKaK1Lj7g+fzqE9x+iOaWImQaqZ5IY8ETw598P4U4fjQHDERxqkVBTqqy7kgWvc2Z9PObwh0oSClNUSxxYBHw+WayVsrNtQu0412kq+NYbIYxN8DiiuJ9ss2NnjYTsFPKZ8EbwtVfC4jnc+cCn35X6zhh/MLEQoOGA8uAP7tLBG92yODt5Z7UkJK1Txd/+KISAqn3blQ28/1FHSlLmTF+BUATj1CZP7JTgon69XF/eDJj3h2js4HWs4haMPe4r7Ka5R/DYhJfagYS/ZtMF2ewU8yHZS0G+5gEGxEfS6lW7XSJwPD7KQkMsvvIr1G8SuHwM4eI0XF4yHK7P33g/G0XSuzMbsg8D1ztxe8gLvybLTBNkfkktWvc1ozQR3UbTTVM6xUvKKUJ1Uxt21+VbYokpgxlN5zGEahw+sQ+lqm9Gghl53dMoaj6J9ibVL130ncep6x66cKH60RPYt0XxXnukW799OP+j66C5Ha6awzixN6Nb5j6DN8W7Ma26VsKa9Jd1wvTVl9Fxz09XRWg+2Y4MLWZGgxl55wexznS8RmBG3ltDQKbRtEzjzWkab2hOdblLke/MR8PhVlRo4xctiB+ucWitx191zCpqxslMHYws3Ffwcl28FJgs2/X+2nWi5b3eP/Z6QUiQt96Pr7UXmJXiRkF+WjpjuN61bH5kS3a72LhaL2jPtVrwRtP8fAQ+Mho469Ji5Wy1hwHcbJ0jQfyvs7O42a/sTPCZNlurnPjcJzP3wwQuN29OTc+o75gEbruC/MyXpFxCP5pbV2gtjmlciqf5s0qha8NB/NfTXgxPKMw8br+Whiz8j+eKILE6Il0eZvlGr3V+zMTLWkca1rBaWl5YWMDt27dx7do1wajjZ2EmlNPpxM6dOwUD7wc/+AHa29uFSk1mOrz00ktobGxEbW0tzp07h+rqamzfvl2k7+zsFJI/fF5edna2epd4aBvdZgjJNjio/nnzej3A+XP7rlP2CEeUjeq1yJ83XN/uldE7JlOZbTjQKGFbeWbT5mpBs6cgI2HIzao1x70RdA/LmPQpqkVzsiAYCjsqJXH+XjzWp3400l7PuudbrGfTrnf+mwH6cXu9sEjjJ3+QIOqaOoxxjNbcZv5stBKGQhF4Jon27TaUl8UvqEQ8/Riqy0vLd2omglEaO1httrvAhroae5SRx/VgvL8RI9Nh/LvPhfHWzQjy8oF//WE7Ptye3k7yM/8uhM/8th1bK2L35DIk0x63R4Df+0IYvX1Afg7w337Vhse2J1cOzp+ryTNlw7iH5xWgsACoqkitH8zN2TA6oTDA8vOALSUR5C79TmVZ/PxfyrjWrYzrjN/9OPD+gzYUmXwMm6hubg4An/oT5Tmq6Rm+8/vLt6EZeN036+N5KoKiQvN5eCX87+dtyM6K4OR+qkvlG544rNSu7/kDO7yq4L/bLeO//0IEexsUdzLgvssM0cVgRHyM5XQ61uydKZk+uR6Y9ARo7GAmbXzfVsoTP6+Z0m6cnxaf0tKaJB5afjF/7Yn54xrqXYpDBcfjMijxlbRGRH24rNw5tWsGpdPuFeFGUyOLfIk4WcIvWud8H06v3Yb9OS1Z8aXKZMjjuPzKWXTem4ZfyoWbFs6lpW7k24Pwjffg/I/P4joNzEsQly5fSVeYD/vCNAaunsWrneNIj1wtPHSooxe0PCdc7mrUZuTmfx0aa/LhdLnpBXK1m8ijuH7+PM5fH1XdDwiy8sVL90qmkBYkmYqibXUodTmRU079UPWzYOF+Q+4dEky8nLojOHHkMA4LJh6jGNVlNA4581FWWSx8Hg6s5fhrwUI89C9RvNDXXgA0xF4oYnH1cYzxGXof/mJQfw89jPlwvERxjdCXJVGapPKi9EufIDPB55boVWpy9bFKxoeFicfgZ95R5sBH9+XC4VRajr+/HPGE8KOb/ugLcqYhTHPagqHtsl2bVB2qocCJ6EzEorj6cP4KuLbIjpOtMaYTt9/tgSAuDS+K66SgyzNT29wMvPnFDLvnnnsO73vf+3D8+HHBlGtubhYSejye1dXV4Ty9J7H6zcuXL4v6Ywk8ZvbxmXosodfV1YXu7m6hAq+srGzZTTVm+JlJDbHJZokkJ0sQKSo719pkOSQ47OZSUWthWMqTmW5cb6s1t0dkDE4qHXBXDfXTElZBZR73QTHMAGVGq8POErOAm+aTreUSTuxx4MhOOyqKFCk9Vr35RncYE7NM0vo8RHWtOTjf9cpbwzpnv2nWFZsZPDayJC1/zCBUmdJ4aKaCVK/mNBqXrnn8FGnIzM/NRyVz9SpGNRNVmaraRsPp+AwqRpgmMv5og+/DYXxtjG80LKWrzZVsh8LpS0uL9MH49NoHHSsZwbBUy8FgZoBZPKPRys7QX6cDY2oxVpmM/8sZI4R/grmI5yqeX5ea+MW1eZyVTBbNtWRnOYXUfDrGQQM0l4U/1jELz8vLW9bEjaU2ifJZOY3esHrv/LxclBSxm9WjZ6mZbV5oVUJvneKPr2Qhvqm9hyq2+NO5o7Z2Fh35sJ/iTxZ/jBZ1q6EcT3dGXswWofH+ZOLCNbfeFsnI5obV/MlXnL1HRoxD7M8x1XBxNh7HIpshnl9Lr8VjP9W9SVRrBtD7Zgd6fTa4tz2O44d3oqGmBjU19WjYtg1V2XMYHZ2ExzNH4VXIV1PF0kXgqjqAdz3Riq2crq4B26pz4Bsdw/TkCKZd21Dz0Kj/Wgv4Mdo7iFkUoCbTVWtODeC2ZwHZpWugWtOWh4qGbWis37LOz5xu/dqQV0F9u7EeW1ZdwFHcvjKAKVvBA6LWbQoDtz1YKNiK44+30djB40diUxYbRDIPzhLqF9uwtboID9G+4JrCP9qLQXrRLajZBKo150fRO0SFdddklGrNyYFbVIcOlO9oQWUc41sdh7Y1oOKhUu+7luMvQx2zskst1ZoWouAXZV7ss20G5UVheYi0ZDRb+KnGiOXulQySSbtSHC1ce5FfL6zmOTUwIyiwoHzdq4H3GFh90xpkv6ngkJQN6MHZMAb5qw8CM4DY/cE9uRlXH0w6wWAEc7qzZqjLZbRKTQ1L6F5zJ6hkra8v1wQuO81pWRJuTYUw4VU2FXj/ZHxBxlPbXEJCTIORdhKNQ4KGHeu/cl0tLXN6/aYhM9O47G63WzDrOLykpERsjLIaTX5eZvIVFxeLdAUFBSLd9PS02Djm9wqW0Ftp/OJ8zc3ybbVacP6ZDpbYeOduGLeGIwhSd9xTJ6GpQlHBthnKv5bg5+WxlRl7Bdk2VBbZkEP1MEtzz/hsREjs5bpsyKcwCxY2GjyG8VjJY2ggZMdc0IG8XCdcWXpGijLOml0Lk5UlbMnupDGV5xE7itzkp/qzYcaFQ73WbM1o+QVDEubnlbVajktCaUlWtBwcZ8l9DSYQtuPMOxEMTkSQRTR2dI8TbY2xtKmYf3hJxk8+mYUthYqb8zfGSWSm/RJeoHJMzdBcnQV87LgTVSUrp+c5iA1LOPkXbEK9Jo8nfKZxSZEzGp6MCYYloXkipKrWdBc4kO2yi3ZO1nz7fDhOtebRvXbsqnPQ+GWeD9/X6JeXLaGxxobboxF85jddKM5PrQxs5LBNqLXkj0JYRejSOXhl82Z3REh3ttTa4ab6NIuznPnbH4XjVGv+xGEHtWl6ZdHMZoffzyqo1bUR/Ymz7cRjxZ5RC1Oe12gr9aedd8f+IiwaTi7VP5GtXNNvnL+yno26ySyxOZJm86X2y+F8pUQQ8ZXz/Mils9mfySJh/mR0y/AMhrcHfVO0aitowIGdRYZCS8iv24emUvJd9GBoWPVmzHQr6XIbcOiRivizpHJrsf9AA3Igw3PnGryqtwULFixYsGAhSWyOVYQFCw8cxGJeB3ZrfsYwDdENdrY1s0Yw3bxX/RJt7OthVuZEz5Gp4LMc+Cw4DfxOlpPDXymrHg8RuOWq3HY825Idlcrjj0yHJsK4MspfxQuvjIGQxgvESIK7nivLJjbLNwuiY4BGN0nSN8c20hozCqqp/Z7bHdOVxdnd6A/CG2DGXiy+kb6jeenyjM99c4E3iKuqqoRUnQaWrmMpvT179ggpPT7/jjdKGbwhy4w79t+1axcqKyuFn4X0MDkXQcetEG6NyAjSGMtMvG0VkmBeGbrtQweNmccqNffWSyjOs2F4OoLLfWH0TTCdWrCQGeCN76+cC+PCnQgWQytLb/E8stRf3cA2DZNgJ8Ob4GZhbBQVfbH5ScvH/F5LjY0nRh2STWdmGBKVR3NzXqmY6GOQcedxHubxzI1yvxjM4iRh1NQifRp5GEG+y+ZjBmaeVZXaxEdzdVvSXGybZ50aOI+1yMdCFKr8mbDFOpMl6cgW/qqtuPn9QnGzzVJvHD2iix9Np7ii6YStmmj+qlFYaXwdH48Nf5zAAUb/qKGUdKHlIPz4SoOQLFTjatKyQiJP5+buJNJxmM7WzOZ4tZyaR4gWwO6yapir3pXQUOomO4gFVbcsY/TOKPwUVrq1BRy6BIUtqGMdtv5x9E4oXhYsWLBgwYIFCxYsZALE4p3AL7HatbaITwb6l18tD7MXYn1u+ryN9+G0mjFiiZ/qNotvVnqzPJN9zo0GM4IWF2NnfTDsdkU148OKbKdNqNh8pCHGxODzO/7xkl9syGcKuIsFQ6z+K1Ym7oqsEtWkS2YsmFYEvbDhgusKr6ctjaZiT2sObr+WcgfKS2LczMCijBdvBeBnsahkoN2XbDP63gzgcmsSGXowM4+l71itFUsK6MFxNZVXGoPPQmrwEz1e6Anj9a4w+scjYqO6rV5CY7mEXIuJFwXXg4u6Zm2phIPb7KjfIsEzG8GNAdli5lnIKIzNALN+5aOeZMHjrympr3oA4BkwPo9NOUdRmVn1rgULDxqY8gVJiiWtcEVt/uez7titSdzxX4yhraUXv3G2GhJ1Rw3iGerMStO79UYw4038NSMgGPSxcujzi6anP42Zr7m19MoIxRko/vpw8UeL+ZXW8ZsCgZtnceaOD0XNJ9HexD4edP74PAYW3Gh+9giaEgxw8u1zeP6WFzkNR3C81ZTdR5Ax8PYZdI6FUbr7WRyuV72XwIvOl89hwO9G07uOoDl6tEAQnluXcf2eBz7xFSPB7kJ+SS1a9zWjNMFHekFPNy5fG4BnPhD9clVy5aO4vBGtrbXIX/JMPeg41Q1/zWGc2O5H5+XbGJrxQ86qxuET+6Cc2iNj+vZFdPbryiI5kV9av2xZ4uHB5TPnMQTOtw2ukW5c7+rDlF9Wzhukjpjjrsb2PbtRW5Cg4oMedF++joFJHwLapgfXSVEZGnctky5hXVajeWczKozpejpwqnta1y/0kDF+/Rwu9vkgZ1fjwJP7ULHs8+ufW6tPhq7e99jRc7ETvR6fUP0BmwRXQTkad+9DY1GiZzJCf59m+K++g9tD0/CLeiJCzylGw642tFQsZWt7rpzB+UGg+tET2Gc4x0+e7sHFK326/iTBmVeKeipbs9bwan2ZwcXPtzf21PLsKLpvdmNI14aSPQfu6u1oM+2fWvly0HzyMZRyP+yjdlyUUbSjDc67nRgPl6L12cNIeLbrTCdefn0AfncTThxpRvJHuCptNF3UjJNLO8LKkH0YuN5J7eCldtDohvp5fjmqW/bE6k+HhM+q9UVR137RVm0ObpteeOaCCg1Rn3aXNWL3vkYs7TYJniXt/FSY0KSUU4TKrbvQtrUIvR2n0D1dRM/Tjvga9GNA9FFd3VA/KFqmHyRGivTNSLttzOkkcRkSjdcqveZwe1SrdZEcvSqQ4bt3DZ09Q/BGx1Aek2vR3NqCivnLOPPWEGCgP4GUn11X1sdKdWOVWbuaQU0fUJ1xiOWRqH5jNNGO6oFOvHN7CNP0zAweO4rrqK/tqjD/YGdVNJjG/Qjy7ACuXaV51EvzqNIw1J5uVDY0o7WxNF7Kn7Bcv0p3Pk97zLLwQCLRkl28IFCYFq65tWuG5mabfdilhBB08Y1IxX+JH7s5byIgfZn00HxWyo83ytfzzAetntIFM/F8cxHBqGLQ8IS8XJswDzP8VB/negP4ox96EQopdcNnzn3206WoKbQLya+NBjNh5/0RoWaKwV2BpfEK3fzCLLwyHmb0o4c+PFHcOH/1emYhjG9e8eOL5+aEm/2rS+34Hx8uQklubOLitKb30GyqSGZosSq09cZqadnCxoLXSP0TMnpG6D3dG0GI1l9VxTY0lknCZgaz1cTm4OXxpC+CrkEZ9zwySgts2F0nobYkpZexTQltzLHoPzXEjfvrhAU/v0fJ+M/fWMT2KgnvP+BAYV6sT2ptZmw7drPRSshrCM+kTOtBG8rLYh9ImLW5WV6T0zJGRsMILEbgJtpoqGV1lGoEglk+eox6Zfxfnw3ifJeMvHzg9z7qxEePpPahBqu+7Z+I4J//6SL+/c84sXurDVsK+CxRNUISuDUs4199bhF37tJz5NnwtX+fhboUaJzXPGMTYYyMhcVatbjIjvqaFApA8NI4MzwSEmsnVkFeWWZHXopHanzqzxZwtYvPGlTc//WXnXj3PrtQDZws+HxQVrv8X74axHf+IHaubypgTRrTNNcwQ7SMtfylgT/7pyByXMBzhxyopnkqVTzxOwuYoXcIhrsQ+N+/7sL+bemVZa1xP8YIM0x6FhBQ9+IEbUb4PZLfJ+mS/cRbLDPCuIwcR2eradjNzD3tEYS/eqGE88etSjolH2V9IeLzBUXU8tH8hbcIVv1FLF24Ehjn1upQxOMLDte5zWxmULJ0Idum4WQ2P+RxWrD46MKN0hrFi5lqvgWyXPmJN64JUlG+YAYE5qYUD1PQAqiGN+1kTI30KRutZpjoxbifYpfWYrs2jlDZrr96Budvj8MXdMJdWopSMu6sIHzjPTj/0svoHFuao7+nA2fO92B8Lgh7Lj0XpyvMhz3og+deJ851dCdWBxocQMdrnRiYCSHXzem0bUpaEF95GR239GVxI98RVsry2mWMJ3w4c0xfP4dzl3rhWXQhP5oflX96AJ2v0XP3UYUYMd+Djh+fR8+4D0F7fqwcdqoTD6Xr6ED3jBpXD3kaXee0urQjv5DTUV06uS57cfHcq6Z1mQj+njdVJl4l2h5biYmXBKh8l1+hsk/Mw5Gvlo06V8A7gq6Ol3E5hbIpCGKgg57pnhehbKUPuPPskP0e9F58FR09JnWbAPLYZbxMfYb7k7NALRvlFZ4bR8/5s7Gy5RWKsNLSfGWTOitfdZeiuCBWQcHRy3j13EX0GtrQBT+mqX+ePdOBHp10bDxk+NR+OC9x/tT22bWo4414eQqjfYnrydM3rkjZ1m5PgYm3ShANX37lLLXDNN3bFaNhKoCf2rbn/Cu4RAsqc5g8q7Hg02rbLDiiNOSKBOAd6ULHK6nTZDr5ydNdOKfSZAA50fbMDXsxdKMDL18aot5oBj96RB+lupFyo+ly1H5w7s0eukoS6dD3qtrGBGmO1wqCal2kQq9+9L11BmevDmCagu156lhPg+g8zScXXyM64nnMDKt59ohPGavG5yHxWEVzS3L0RHVSrN4nmydWCS61nUpLC3Xn0y6PIM1vr3YOwBtW+wzPbbIfnrsX8WqHSZ9ZZTunfD+Cf+ASXuZ5lBvGpc3BubAvTGOo6zxeeSP5vr2q+dyCBRXKywYv32PQu/naGM7gdNEXCM3WxzVJo0GLb0Qi/yXgvJOMa1Z2M79MBD9iKBwRUl0aeEPgYZbG05DtsKG5zIH6ithml38hgtfuBrCYIVJ5rBJVY8AyuNu5aH7ZJN0vSo/rQS95TglHtmbBQe0oQPcYmQqjZzIUbb+E44HBP0EsCwYsUF9kEww/XHXGz+pfBC71hnH5rozByQhK8m04vN2ORxrsQm3ag65Ok5//HXr2L58N4n//KIg//X4Qf/V8EN99K4TXusK4zlJ29CI35o1gYjbeDE8pYeMzysYkm+GpCLooDYc9SOAxRzMaePxjY/RPBTN+hQna0R3GK9fDePlaGGdvhPFWTxh3RmWx0a6Xurew/kjYkro21tpbPzSs3AfiB5L7sd7kjxRYyvi/fz2I2fkIPvvDEL5/PoxplYHzsCPLCcFMud/gD8r43mwsZA6Y1SWk7QStKnO/QqeKnzLmqzE1f124qT/Z4k+4ycckPGYzzMPj/Mnow4UhV1w4dzKymako3Jq/ztbUAuv9jW69bf9DgrjPZoQcgG/sDt556xrGAkBObRv21+QpFbcwirt3p7FYUIW9dSUiuimkaQxQvEBWMXYsFy8/D3OD9zDjpRvV1aPU5OOL0ZtXMeCzo6LlAKrFjmYAvW92oMcrI6fmAI4facPWmhpx6HX91u3YWhLGxMg4xkc8cNTUoVjLc6EHFy4Nwi8VofnIMRxqbhBpauoasG1bFSTPACZmJjETqUd9XEGmMHDbg7m5WXruRjx69DBatlK66lLkcvDMVbx1fQpyYROefOoQttdyWerRsG0bivwDGJqaxtRiBbaWr7Sl68do7yBmg3OYmg4if+ujOPp4q/psSn5VzmkMT/jg80xCqq5HSXRgDKDnwkUM+m0o2vEkjh3agQZ9OpsHAxMzmKRFaH19KWJPR4vTC6/iFi1EXRVteOLII9hRz+moLhupLt3zGB6ZwuSoB1JVXex+UwO47VlAdukO6JuXN1bPdU8jbKc6fuJRbBUVtBLU50YBahorlToVUOrdPz8FX1YN9h97Anu43kXZ1GeanIN3JoSKrWVJbJir9wnMY1YuQUv7URxU+0B9wzbxrIPDXsxNzyKrsQZFosMr8I/2YnAWKKhpRGW0gF5cfes6pmQ3mo48hUPba6N5bSucx8DwNKanA1S2Crjyy0RYTU0Io/RMCwVbcfzxNuFXVayWfL4Lr79xD/P2fNTuP4Yn2hpRL9LUY2vTVpSEJjA2OYPx0XkUNVRC/3GOUj56rlkHKvc8gSf2bUctpatwE4nlzmHw3gyYxOLbXsMobl4dgM9egV37q5NmGihQ2mghu3R5OjeBp/NNdE2F4ao6gHcd2RNPw6ItZjBD7esm2tSXablnFRB900/t6EN27X4ca9fyrkejSucenxdTIaLJMn2vSfAs6eYnj+NKx3VMBCW4zWg5m9rlTi8mg/xilI3SHURfWtK+S7hwbx5ZlVw3sXRbm2ohTfRjYnoSs1nbUKPvpKZIj75X1zZGOklzvNbo1U91Gy7GzlTo9eYbeGtwAeCPCR5/Ao9oY339VmxvKEF4vBc9Qz7xMmJ316CxIjbqpPfsallpjph1KPfcx+NBXYW5+uklcKG4SrlP3mw/1SHNd3ufxMEd7FcWvY95/Wr+fninQyhuOYKjB9Txn+e2Bjfmh4bh9U1h1kV9pjBWUatr59Tvh5nrOPf2IBbsbjQ+ehSPt25V2kWbgyeHMT41jmF/ERoq1DUHwfS5VzmfpzNmWXgwIRbvJmB/bcOCbS2eWXy9X/SK/Tid6lxTcLko/0R5G7cuEj0jg1/m7Ouoom65e68EltgN0NolqH7xwlm5XDYhefawQ1QrGe+ijCv9sU+CQvRu+tQ2F1wag2iDwF2U282v+2iGu1l+nqISZ1NDpb/VgJPbJRu6PCHBwOM8OdtCt4Rd5U7BqGWsuGlKGfH5RUYVlGuN1dDxRoEZA4OTMrqHZPSOKdIaA56IYGQxI4bVJHr5Yy+iGT4PiPeBHjTwBvesn892ozoYl0Wd7KyW0FxtR02xhHwaSx9k9XG+hQgu3pHx9dfC+P7rYbx+TcY7PTKu9cq4QXVyoy+Cd27LeLtbxhs3ZJyj8LNXZbzaqTNXwjhL9usUfvEW1eNwBEGq2Byaizw+4N6EjOn5CLKzaG4is1mhrXM0Y0Qi/5XQO0b1PCgLaVBmlLJkI9eXMHMRTM1BSIhOUz/l7Fky1FJpmBxCoZBot1evh1FSADRX2UU/1KC1l77d9H58xesslpqfpfGQJU9Zat6pnr/LMGtzY378ERFrTmCJNF6jFdE8pmccmeWhx1wggtMXZQzSGM3C5Uda7WitT74T8Dj3yo0QvnNWxiKtO8amIyjfAhxsssOdgvYG7pvPXwpjalqph489ZUdhTvLpebrmuuS64EfOyZbEnJ4KAqyFwicjGFLqktdMWSmOK996I4SxCaVeGM8+asfWcgkOe/L5cF8YoXo8S2PiJ46l947A7c7rPi4/r3fSwRs0NvM5fTxvFaTQFhq+cjYkpAt5iVRcBJw86EDFivtnDzb8/jDCIZneFdX3SPoRS00b/UTIwZ58yWEM1W20adVKFzG3gD5eAsSClomkw5LsRGFVQ/9Ma8a37bgxikK19GJNLdLHYMx/E04/rNrrFE6dIvP8GZy92ANPKB/Ve47iWFtZ7IF8gQQSJAZkOxWGgd9HOS8HNy0meavTi9E+E71ich/6xuiOORVoqlT9Rq6jZ0qGtKUVx/ZWLFHD5SxtQXtbJZzhafTcGFV9KavBMUzToJTfcABNRlVyUj6a9jeIzUrvxAAomgncaDzYslQF3IQPLEHgrmg2qPGSULa3CSxJ7PcMJC8ZQDOqs+oA2ncZVYzRgnvrYRzZRqWUvei9GXs2yAM0aVGpCxpwYHu+oQNSuu0H0EATPLzjGNA/3Mhl3KKFlVTYjPYDS9WQOSv2oX1HESSqy7j7mYCl0zq6pxFkJl77Y2jSbTSvBrKci4ZDbQbJPt0zzY9hICWxCycqWw+h0dAH+Flb+CbhKYwOqJ7LYhw+0fCVaDbkJZXvQxMfDOv3JFm2AHou98HHZWs7grYlYoxOlO46gsMNOcDCEK5dN8/UWbkb++sM7U9tq5DYKHpNpJDkvj6M0aIhp6IJFapfypjuVsaO5cyZy7qxgBnLRO/OSrQ8YkLDWlssTmFkTPU0wPRZo5Ah5zXg0B5D3jo694+nQJNp5Be43S1UJTor2sxpuW4/2rflQqZFrxFTMz66owuldca6yUHT7jr6lTE1dk/1WwZp0ffq2yYOaY7XUch2lKdErwO41seS5PlofGz/UnXCzlK0tLeh0q6q24zDap+d6HeXyT3vC2TYqY4PbTXQhLMC+1qofrnPjOr7zGqfNdX7BdB9tY/mSheqH2lHi3EiZVp6fD+qXRRzsBu3E0lMqlj9fG7BggJe1Os3y7XFv94vZWgvELoXCTOkfQ9dvsnkYYwT516hjBsJ3hQK0Qu4Bt4YSnVD40FGHtXFY3VZsOv2WG4PhzC3qDCFNhK8OchMA60c3M0Es2Qjpse1RBIVyz00mV6aRfXx2NZ4lZidg0Es6CRQLaQPPi/y1oiMm8MybpM9RGtRNv3jipslhK7dk3GxN4zO/rBgJmgaxtcTrNKSGUxTgomhGK9/7ducN3Fn5iPi2e7SMzvtNuxtkLCrVkJ5oQ2O9eX9bii4jpmB9LWzIfz190P4zrmQkKArLwaO7rbjvQftOEL2liIbb23h7gTXUwRv3Azj3I14c6GH+spQBHfGIuijeENTEYxO0yp6NiL6zFXqQ58/HcL/+FYQ3z0fEu252SjYuEZg2vj2myF89oUgPvtiEC9eCQkmnAaOv9Lag4NZ2o5p7B7VG6v1211rF5Kgj+2wY3+jci4jn0PIko+s1pAlRq/dCwuGioX1B9dymAaKeRonmAElTIKxaOU5LXGbrdRX1gJ8RuB9uI2FFCDW7E6bWPttFH77gw7s2yHh+AEJv/SMEzUlG1eWjAItyvVn4PEaXbE190o2x6cG1vtrRgvX++kM31c5cy/+7LxEhn74X7XJcFp2qveN+uvvSeMRu3lYijIsCdH46rW4Um3NvQlfU2KqvYSauix6hLAPQzcv4dpoUqy7tOHaXiuYXb7hpWqw5N4heGgxll/VHJVsGBryIIgcVDc3JKxoqaoeLBwTnBqJMg+kpnacPHkSR3fqpGb0yC4TKsWw4IOpQtCCUjSYqQh22kU55maGTDYMG3D42ZM4+VRrkpIZjHxUt+iYpwbk7GxCJS16gp4hDKl+9HBop2c7+WRLAsk0F8rEwwXgm1R8GEpdOlHe2EQ1ag5X0zZU5tAN5zzRujRCqJh8e4hy503ax5ZurK4GBWVoNGUKas8kI7io+CQFZykqqszLV12YR78ywkl1eYfyxdi8F0MmL34Njz5L/e04Eh4RqcdCL4YEI7YWrQnKxnC3NCqM4bFek7ZworTSjBXnwvbaUupPPozcXkJh6KU+IFOfq9yefA9dAp2q0ISm2K1jFpRi3wnqr0/vR7XqY4TSFgHMzyrueCR61hjyyxrN+7RG59TIqYxsqeXnRc8w13U+alurl6HletGeRjgd7BmA12OiZNDdiuNE688+mvDEwyjSo+/Vtk080h2vo0iVXvtpzghTsoomtCT6mECqRmsts3mMWOWzc1m1D07uO4gmqhL0tSo3RE3pd8TXggZTuR+NcaNMEgXVaKEXd3OUoqW+CE6nn787WBarns8tWCCYbS6Y+fHiXu8vXgQSwSwswe7CsvmshGV2LJbL9X5sqKwFuJisVlM7/43BX9RaKnpicNDLbJXbgZotMU6eb07GDXpvC2ywek3ByDMyYXVf+W9aGGh2ORpe6Wmz7DY8Uu2MY8QOTISFdAKf35EQqxk3HiKwBEBVsYRdNRIObrPjQCMZtsnsrVckFHKyFCbCTXqRu3w3LKT3WEpIk2RYLfjcJs77pc4w/vG1ED7zoyD+53eD+PNvh/AX3wlGzZ9/O4g/I/OZ54P48tkQXr0Rxt0xOe1yMEOSGU1X+8NCEpEl79rqJWyvtCPPxVtVDy4C9E7wTm8Yf/diCF99JYw7IxG0t9rxWx9y4lfe78QvPOvAzz+j2L/yPgd+4zkHfvMDDvzWBx34bYqzxHzQid+kMI7D5ldOOvCTj9uxr8GOcrdNSD/zmaU/uhDG534Uwt+8EMQb3WGhwnUzgNcE2nAToOf45ush/J8fBsWzfIHq8PMvhISqwr+hvvt2D0t1KpE5TaL1BI//zEhlJrJ3IYKmSoloTqJ3L4WRzDTZWmPHnjpJ1ONeMlVFNsHQZnq50hdGz6gM/2KaBPBQIjmqNrYZO/mjG2FoztavuTToc17VujUJZNOYnM46jyXxVguWBm0otyE7G6itIPcGMqAsrA2eO+xAQ6UNe7dJeHqfHSUFVpuKGiAyF2M/X+h+o1dinIi3xV/UzWMB/Rjj0Z8WHvPnaIZ4bJPRu3loSRxO99PctDBSvBV3hNx8VqjmZpvXTuzPf8KforPN4OfX3LHwmJ1olyqD4Ubj/sM4fJjNERx997N4+nAj3LIPAxffQJd2Lle+S7cZvwwWghDvbzn5KBUey0BqQAUfJOofRc+I6icQwO2RabLdqGjQNuu8mJ7lkTqE6Zvncf58ItMD8eFQYB6cQzxkBOZG0XerC5cvUNxzL+P06efx/KnzQoImIexOcyZZfROqacDn883OvHIOl651o3fQQ4s6NTxVuNwoW/ZM0Wq4eZc0OINpI1+GIAd8GO3vRteVC1QP5/Dy6dN4/vlTOD9ofDitLvPgrlJ8zFGBfcefxtNPtpq2pTzbgzffYSYedY+Gw9iXcJM2TSSq93QhSWuUXwOaWHxkcQSXz7yMc5euo5sZz+k0/JgXTGIu9woqQolWSpnfFvBifInEigQpAXFKDRWgd1kisR7E7Y8v3IZCYhVoXLbPrYDcanXsWMbsp/FEjR6HoB+ewV50X7sk+uvZM6dx+oVTONW9lHJjSPysGhyONe01KeY3pZ4luhIt16GUpUoNcG9rQJEd8N15GWfOXcDlG93oG/VBPZc2SawBfafVNnqswXidIr16ffM0wvOxlInYUwpcfMahem2KdJ59zcaWdLAyTSTEOtFgHJIc41zb2/H000/j0Mp8ahVpzucWLKSI5TYvlBcN9eWIwW7NMAxpE+W13hskmwn8EsYSeWwzWCsPqwVihpCFGFwOYE9tvFTXhYFFcRbYRoK/8tc2fBncfs5056gMQCq0qT31Si3AHwNWFThQxgs+Ff4FGfem+Zw8xZ3wvtZYsSKyiDaaqyS01dsFE6ulhky1wkzYQ25mLGjMBZZQ8/giuDYgCzMyLactnccSWe/cDeObHSH8zfMhfOaHQXyWzN+cCuGzZD7/YgjfeC2E778Zjppvvx4W4ZphxslnyPwtpT91MYQbVCZmUCUDjYnH577d8yjn4fHzN1VIok4eZHAdvX0njC+8FMILF8Jw0dD46aft+KX3OvDTTznwxE47tlE91JbaRH2wdNh79zvwwcMOfOyIEufTx+MNq5X7SLsDH3osZt53wIHHm+1C3Vt5IdDWKGF3k02cxfe1l8Oivb93PoTRmfsj5ZkuxCYoGR5OeKx59bos+udLb8u4MxDBJL0GsJrBaz0RfOtsGN+hPs1qajkup9HS68HPy5KvV++FhbSjQoMSqosV6Ttt5GKJUFaVV1VsE/XIzDxm7HF/HZyKCGYeq+TkvmxhKbjemfH5NRpLeodlvH0rjB/SWDGVpDRjqrWqxTe2tznSbzOXk9Uxbsz8VpIPPPOIHSVFwIeP2uFOQ5XjaiEz8yH96hM4SePTsX1Ec+U2/ES7HQ1lkvjwy4IFBYr0mXatSKzF/mLhMSPGfJ0/2xGhhjPmZrWc/Bd1J7D5fnQhTHw4e+ncxnDNndBWJPw0t5Dc07mTtR+I10xWeXZoK2+9+zB0W5WTyHYlpzJTVcEpJXnuRkNdOZyUwjOsYzPMdGPIS3mU1mJ7dDM8qH7hFITP44FnGeMzkdLyD1zGudPP48yrF3H9dh8t1HlzMRfu0jo0bq+FO62XzFK0PdWO5rJ8SAEvRvp70HXlPF4+fQrPv3QWF25Pi43ltYdBEm1+AJfPncbzZ87i4rUe9I1MwzsP5LpLUbetCbWFxodT69JFz694pI7FHrzZ0Y3psKIL2zfQiR6N6fsQoLTtONp3lCFfCsA70oeerss4//JpnHr+NM5e6AEL2SUFagiO6spJtiWCCLD2wKTRgIZyav9FD4Z0zHLv7SF4abgqrd1+/xkQ8jR6zp/B86dfxvkrXegZ9MDrkyHlF6GsrglN5YlkyDYDQsqLW3bOCrRFREPzxhJkN6L9yTbUFuUg6BvH0N0eXL94FmeepzHl5Q50DphI6i3BKuh7zdpmdeN1OgiyPh2aTbLNBO6SwQPdLw24n8+qjXG5xYp7DbA+87mFhxViEa8DuzU/bbNK28BYdiMjyTdw4/3WEvoSGMuqf65MBqudZkaeBno/E+dkWIgHq2d8pCp+sLsxEtpQiTzuctx2Wvtxd5PsNiFRuenBD5eAfvR0lWztMzNvV5UjLss7k2HBiF2WTpMcZx52cP2aMa/Yn1X9VZdI2FnNjD67kBJiRgOroWRmHjMjlDVschidjuD0lTC++JLCsPvL7wXxdy+EcKGbmdrAjiobnt1vx0895cDPPbPU/PS7HDi2xy7ieeci+DHl9b+/H8Rf/RPl96MgvvJqCC++E8aAJ3G5NCYeM0D4fMDSAht210nYVi6JZ36Qwct/lqr88o9DeOO6jPoKCT/7tMKc47Zda3Bfqdtiw07Ke4vbhkM7JTy5T0IL1Xdnb4T6QBBffiUo+lGmMvO0dQ2PNazu9auvhHBvVDnrzAg+75TPGHzrpnLWIo9yxvUFPyczwVmdJu9BMbO0leqHGXbLDWfcN5mBx7TIDD3urzSi4ib1Y2YIMk2mQosPA7jmWXUuM/tv9kXw+lUZ33kzLD5ISAqJ5pDlGioBmCnLzDfe9uWz5Yxz17JzWQYhT5VcLsi14WirXdD4/Yby0ZNN1CObdNZNH2234wNP2FFXxR8yOLC9ms/HUwMtPPSgkZvIn8/IozFAzAF0rbqVMV2xNbfR1ofTRdRfs6PhqjG6WbKOLqJu7VphYseHJeMW+enuQT/qNXkTePTR+2u2ZjS3Zm+KpVLQ74XX68dyH3i5SvLFBn9gTvsy3418ZqoFfFiOSSFP+4SElisvyU27yiZU5FCZxvrQp+br6RuHH06U1+tVsjlZkyVz99DKqiRXNO1oUhJCHr6Ec51D8DrK0HLoBJ49+SyeffppHD/C0kKtaN5RveQMqaQhFaHp0FGceIbu+fRxHDm8Dy31pXCGfBi/1YFzN5PZeE8VEpzaR7jyEC51dGJo1oGylkM48exJPPvM03j6+BEcPrwfrTuaUb3k4dS6DMzDRLAvKUzfZSaeC9UHTuDYduWsre6LXeLMwIcDEoq2H8LRE6xGU+lL+1oaUJoVhm+8Gx2vJ1kXqnrWANFkcnDClSKjomJbBXKI2sf6+1TGsge9Y1S6rHI0NNzvIcuPrtc70E0vo/n1+3DkaaIb7q8njhLtHMK+Xc1oLto42abVQ1W7uuBfgbaoJdRJZglya9HWfhzPMi1zvRxoRWOlG/aFaQx0nsOl4WUGYIF06Xst2yb98TpdKGpJg6xRMQ086P1Sj/v8rNoYN782ii7XdT638NBAv7kgFvEGJOvH+STapkg0xK/mfho4zGyDJFFZNCyXZ6aAtaToNxOFRJ6l5mgJWD3jzjIHJN0mzaAnJFSSbVQzC2lK3RKFu+hmZ8IKmuEHYbOGFctrxdZKZ5RmOethb3jDVaM+TOB16pYCG1prFYkgVpc4ORsRzAhWbzm3sHxb8DlgP3w7jC/9OIT/+b0g/v7FEG72R1C3RcLJR+341Lvt+MWTDvzGBx34Vx914l+T+R1W1/gTMfPbH3Di9z5O9k868OsfcODn3+vAJ0848PR+O4rzbOi4JuMvvx/EX1D+fB7bS5fDuDcRz9zga5YA6xpSmJBl9BwsbVhnpsP/AUTPiIxvnQvjjRsy6stt+MRxOz5w2CHUiq4XWBVfU4Ud2ysVSbLt1TY8fVjCM49K8M3b8JUzYfzjK4pE5UKSEpX3C8Z1ADPLuvsiy6ooHJmI4NagLCTBOHnMKG725zMDuR+ypB3TU04Kqlx5PKwotGFfgyIpy4zoAU9EnGPJZ+hZZ+cthZ/qPEhtFgoptWys64RMtET+OujTaldm+WVTG+fl2pCbY0NhgfJxv4aE93/AwY+djhBcNo1X+TTmC0NjijONc6F5XOIPVfhsukJqF7E1YsGCCh6rmaIl7Yw6/ovaShi7o2fZ6cKVCIo7/oy9mK2Fa0bkqHfrrvVuvhcbzW0MF3aicP09aQAiXyVMubkIZ5vBjy981Pj6cP7bFOQycPkczp3rwPUx1WM58KewAqUoL+LPE3zw0ERtDhm947x17EJxebKyIG40V1Nc2YOB28wCHEX/ONk5FWiKO3PIjaICur/sw/SE6mWKIPxeL7xzAZVpAfT1jZBvPhofP4TGMtfSRpKnMZ+yKi71Pnp1is4cuEur0bj7ME4cbYabbuQb6U1+M91UbaIeQ/RcZDkLUaRVb38fRhaB/MZ2HGosg2vpw2Ga6iIeal1iDt5hxccco7j88mmcfu26iRSmC5Vt7dhX4URO0wE0s/7G2V50dC4rr/lAYCkjnOrAXYrqxlYcftcxNBdyXYygN5mGJzrh47wC3nHBAE8IuQ8eQVorqWw0QWEzFBIbwG3uXyP9UEisCcufNrcO8NzG0CzVWEUrjuyuNpWc8cxtZnZwsfrBwwq0LN+Dx3j+mByAj8YUn06PpuTKh7uiAS37j+DEgWqiuiDGBu6poYmQJn2vadukP16nC3d+rhjb+czS5RAgQlpCaw98v9Thfj9rkmNc4HYHTp8+jQt9qkcCrM98buFhg54RFl3Qq9ca9P4azPyiYH9dGF8liBmHdJhrXIZ0090PrOY+/GUmq2fUwC93D4RE1xqD32lLciUUF8QqJ7AQwZRfRiiNvrEWiNBEzkYDl/GB+Bp8jepTT7N2opGtxTGJPLYHpsNYDKU3JlhIH9xHWQUZS+fVlEjwzivq/W6PyEJaSQ8emlgC7+z1MP7+dAj/5R8XhSRemNrtyT0SPvluO/7Fhxz4/Y878c+fdeLkfgf21NkFs0d84GYCvj8z3fjMsA8dduC3fsKJ3/+kU+Tz0accONgkQab8v/lqWJynx+ojWWqvf0IpHzPvrt0LY2hSFswQZkw+LEy8EWqLfzofwhtdYdSV2fCRow685xH7fVElymd6cV3Xb6H2oXEvi9rx/Y/a8YEjdlSX2ISqTZbMfPu2cv5lJoD7L/cZltocmgyLjc17E8mpAZ2lVwOWBGMoY5TCxONn43PxmC6YAcf9nZmo6awCmAmxo1LC/kY7akW92nDxTlicuXfPo5ydp5TAQhyoUoz1kmge0beLFoPnn5XUl5vll5VlQw61NZ+Dm2OQvnxY5zFmcqSzZuU6ZMNSeWynK0k9S/Sd61LWXxYs6MEkySMo06YyksbbIpzD9OHsmcAWV2zbzMMVmycX5fxn8Wcaj66EZR4uzshT3wvpSkQW4aodoQlYcbN0IUdS45K/TH5RUuC4xvSam/42xaqpuoS5QAGMDwwl3Dz1jkyJTTdmUGhQJHtkeO52mTOnZrpwjwX4csrQuEXxSgau7ZUoIts73gd/Xx/GFgF3dTOMrMDq6lI4qVQj3T0JpZ3k4as4d+4cOq5regQ1FW8OOBMwQPy3hkzO01sJQ+jsOIdzHdcxrvrEIbcI+bxBGqb7Kz5JwIehrvGEbeK/2YMRysxZWg3tFKjgohI74Tle890YMnk4pS6DGOtNXJeBnjsYYUZlXumSM7Tyt7Zjf62mfs2FxsNtqKQFbWDgMi7TYu5BxtDVjmUY4TkoEg1vUH+aCNmNqC6iYWO2D5f7E9ebt6sXtH5FTnmj6XmFy8OF7ZWCwjDe70df/xi1vBvV240Udh8QDIn+LSXqr/KQwsjftHCjqYrr1YeB64nHV/+tftGecfD14AKNXWff7jVNJ5XnU++iKuITqVdAWvS9xm2T3ni9CtRXo5QWzsHRntjZrkbQM1wfMBHZe+D7pQ73+1lpjKtgkpgdQlfCucGDrv5pBIM5fGznMliv+dzCwwixiNfZGtitMcrMwhhGRlU0FoerYewXnzqWXo9ETK90mGFa7mb30bAaJtv9AG+IsmFwUXlzaaUNpocVzORsKI/fsR6aCW+YKjJuN6NE3gPDhF2GplIFUyBvslUX2EUbMjj7MdF2y9zHUIa1K5EFbobKIps4Q29ruSTUNXYPy8KwZB7vIU3PR/DGzTD+8dUQ/vNXg/j+62GU5tvwrgN2/MJJO37/p7Lwz0448WiTXagUXA1K8mwin9/9kBP/9qec+Ln3OvCu/XYhYcFnlv23bwTx9XMhvH1Hxo17Msa9EVRQ+ZmxVFOyuntvFvCZhKfeDuH02zLyXDZ89Kgdzz1Kdb+Oknh68F1ysyBU8vHZe6x2sm8igg8+ZhcM3aZqG85cDONzL4So38hig/1+g8dj7rfMlH67J4yXr4TxT2+ytGAQL1wOiQ8vki0VM6KZ6cwqXK/0hYQkJKtz7B0NCzrhPs+SeNwPVwOe71lS9mCjXZxvWUS0wGc+vk60x/dhhuFGSp5nIpKpipXWfnrNB/o1pFXNmwsLRBv8IYPFyLNgBu0TC8VmCTa2+Zf+6FIbJ6L+wq1I4endwubBQdhkzMI5fyEUpkrxLQlXbB5uzPyj4WSEW9j8Uki2eDlU/BR/iqelY8OI+qtQ3YlsLmnGw7W9UTBdgqOdePO2b8mmsX/gEi7c89PbVxEatuk2+wub0cCSV/N9uPDOaDyDan4Aly72wU9VULpt9xIm3LKQGlHNX455h+i+U5ClUtRuN9lkrGxBY5EEeaYbHRcH4DMUnJ/nXKfytX7Dbk0tpxOuLL7yYqzHuJ0sw3f3PM7dCcRUVSaNOlSUUL6BEXTdWHoWnn+gFx7BCc1H0icDZTkhD19Exw1PfN1Gy+mjunKjcWdsp9OZ7RTP6R1bulkuz/bifEcvApTvElS2oonaMnFdXkbHLXou6gP6+2lwZBnOUJKqsa+NJYYCGOq8jCFjhTxAqKsopjpnBkUXlqiZJTronRANj/wSxUuB0huXqjt0oam1TmGQX38Vl5acgRaE58Y5nO8j/+xq7G5Nj/kmNVZDIbEL6J+SDedPUn/tu4CXT5/BueuJGclrglzlrM2AZwDjxhsFR9H5WidGiGZNeuymgWt7M6pp+OLxKDEtz8epwxJw16KcRZdm+nBxST+QMX2DzzWk/POYKbsC0qHvtW6btMbr1aAWuxtY76wPvW9ewsCs8YYedHXQM4Skpfd6CPplFPf9WV1o3lmrzA3vdKDLE08RLLXZ88YlDNGw6appjhuXlmK95nMLDzsSMew08AJfLPYNEPE0f+1an9Ykn/uBROXNdAgmnq7K+BEsabzE4HfYCreiSkbDwEwYgVB8v7tf4LbTmLAC3A8f0N2k5ZjliaCnSb4szZPgYvVzqvecXzmjKiHtJvK3sGYoyuXzuiRsq6D1KzXx7WFZnDvXTwsmZhr94ZeD+NypEGRayjzRJuHXP+jA//szWfjwY07BCExXimI5NJZL+PgTDvw/P+3EP3/OgaN7FYYen1l2riuMfo/SF6tp3c9leBjAHyucuxHGP3WEMT0bwTMH7Th5cH3VaZqBSZIZh4e2KQxUZpxd6g0LibJPPu3Arq0SLlE7sWTeuethoYJyPcF9lplcLKnIaj07qH98780Q/vcPg6Lv/u5nF/FH/xjEd86FcLlX+bCP+1c2vbcuN7zwVlKp2yaYdW/fDuGPv7GIz74QxGuU/5V+WajlZGYmS7auBbgsrOGGzzh8tElCLdUt09aVPhlvdCsMveFpWTBzFSlmNeHDCHp2rq90en5cmhTqMH6O0q4zoxHEGJxOZViw8MBD/UCV6EOxFZoV8mjkFlJzbNhP2JrbYKtGpFf91Vziwpe4lxhFki6xW8mfjXYdi0M2TXjCXy0v/YhrmV5E2K0fBjS3klafX8zY/5CgRM9g2ApQkR/E6Ng0vBP96OkbwdjEKEYG7+JO1w2aHGcRtuWgdv8R7CzUV4EDxdWFmB8cwvT0MO5o6fru4Eb3ALw0kebUHkR7c36K46cNRfZZ9I1Mi68IpJJG7K8tMsnDiZKaQiwMDWFqegz9vX0YGZvA6PAg7nZfxY17M1hEDqoPPIE9xbE3/6L8RQzem4bPQ883MIbJ8REM0rPeunYdPWN+uGoPoCEyBE+oADWNlUINmIIpDNz2YCG7FDvq4rgyBCpzsQ0TAxPwTg2gt38Eo6IOlbLcHJpD2F6E5sN7Ubrijqgfo72DmM3djgNb5iivPtwh95hnTG2TLtwenafFlhOlux5DW5kuw8ICLA7do0WsB3fv3MPY5LhShltXcf3OOPxZtThQDwxNhlBQ04jK6MMpbRkcGYFnatSkLr0IqX2gRf9SQM9627OA7NIdMFaJLa8c+f4BDE3PYHzSgbraYrFhnBjqcyOVelfgH+3F4CwtnuOeKRES3UeHBM9ldh9bYQlsRDcTXiqnrt4G797E1e4hzIUlFDU/hr1xDZ8L/1gvLTi9GBkaw8TYCCYj5ahwUz/NLkONex7DI1OYHqX2jvYl7qM30DcVgOykvtR+CLWGDeqk68FWBMdsHy16F7AYkVDSuB+1unbtv3EZo/NhBBZooZ6ojuKgtpEcwBSVdZD63HJmxl6DMuaxuEphm+7FuNeLoTu6PtdzAzduUjwUormlCN6xWTiTaIs4LNM3FaTY39LNz5aH8uIwxoenaGwYNKVlZ81BbLPRmLOQjdIddVCyd6E0dx4DwzQuj1HcQRqrqJ/wWHXnxnXcmVxEJLsa+w83Im/FATYN+l7ztklvvE7cTjokaBvnlnJkTQ+KZxjr70Xf8CgmRqkO797C1a4+TC1mo3Z7GRYmqbDuGjRWqLmn/eyJyjqES6dfwzs3RxCua8CW5QdCgeX6d6KwlenfpG+vJw0moqXcClRmTWGQ1hyewTuxvs1rh+u3Me6n2a24GU8crIV+iDO73/rM5xYeNsRvqC9lemluLUws+FUkjEuGYwmXFscQV5+PHvo8OU40T0N6DYny0SNRHM1fkiTY14lLlqjcK4HVagYW+cwXxc0fXGrqhiwsBQtv9XjCuNIXUwGxrdKJfdVZyN2AOguGIljUSUo47IrarTS7Q+ZB9yBGmk0Gxni86f79a37MLyh1xuY9rdnYksc7kSvkSfe3ryMNa0iXljcz+Jwhd45N0BczRARTZFDGt8/JWJiHYM585Lgdv/5ep5CAS6Qyc63B5dpRJWFPI5+hRO9rtH4XZ4lNRNAzFKH+YEMhvSCwesL1YChmEpiR85VXQrg1EMGRNgkfancIScqNAJNIlsMm1JrO+CNCBeXITARtrFK1CJig6xt3I7g7HhHnxrGaVVfW2rURjyPMIGRJtX66Ryfd66XLIXzlVTIvh/F6p4yJKYC7aWWxDduqbTi0y4aWmjD2bXWhvFDC23fCGKK0LFVoBM/D2+ttePZRO7ZV2HCtN0R5hjE5SwE0xvN5XMOTQCGP9eTFIxf3xbU4n4u/A2HmLJ876aR7MU3ymYN8ft7AZERIB3IclkDi+eYB/W4kDly/U7NBfPNsSJGApw5YTH3v3Xsdom8xEq0h9f6cdm4+goUFpY3dbknM1xo4Tnxq83z9NH8FgxEU5PMZefEp9PHMwGpZT1+UMUhjWAGVvX2XXYxxyYLnzDdu0Rrodkw97MGdEg42KepdU8H0XAQvXArj5CG7GP9TAZeD69JHeXDf5zMDuT5SxQLVJdMgnz3IKjbTQRfNVUwfjzenJxnO9chz3tlrMj5xLIkNjHXCG92yOGOZP6xJV8L95WthIdHLkr05aZw5+KBhfj4smF8s1SZokyXpCEzpCr0rdqIz8BSjpGXDKflfL20XtU0M/Sj3M/iLMOHPeceHs0fcNY2A/Cv+VD8lrfpDtMjvt9EwJk6ytTyUaCK14q9zr8GUdX8glbfi6LsOo6ksHy7ZB6/HA4/HC1/YifyyRhw4cgxtZgsiqQz7njpKi5Mi5GjpZnwIZxehds9RHGsrS68SKptQIYS8nCivX0Y6g+7fdvw4DmwtQ74zDN8Ml9sDbzBWbj63LQ6FrTjW3oyyPBf47CqO7/H4EMiKldnBq42Ab6mE1XLIbUK7WofOsFaHurI82Y4m083OxChrO4aje2pRlBWAT+RHbcIM0qJatD15AocbRCXp4Ebr0XY0czvaAtEy+BZdKKprw9FjbSjLslN9Un7Gh6O6bD1GeW5PXJemfSAhJJTtPYQGemZ5qhsXl0hMPCjIQVP70nrz0KLKmVeGxgPH0N5kbCcXmve3odrtRHhe6YO+QKyfOiv24di7Dhn6Ep/llaO044nU+5IRimpcQlY5Ghri27WsiLlsVA53UfISpIxFn/LsK5gZPttRQELDo9SvePyQdH1uQUJuWRMOP0XPSXXEpfPPmiqt3RSQilpwRBtf4Y+257zdLcac43vL1JjxkMr34fiTbagtopaKjlWUTqZ+UNOC9qf2IemPHVOm73Vom3TG61Uhh57hhDKGUhWG59Q69AXgKqQxlJ/ZVKBxjZ99YhxTLHjmrkDjshJmG4GNocGchsM4YezbM/Ni7VDdchhPPd6kjE8rYb3mcwsPFfQb6nzNRiz6CZqtwbj5rsVnROOyLV4E1GstXPyuDP099PfX+xvLYSxnMjDmkWngDUl9EfkRH/QN6dWAe0C+K74fzC7K0J8xeD/BbaeXyOP24w3CzQY9bYlrrVPqOqcZLXGq+NZYHjxiuPO0jQslez7jcFFstJjkZHJPC2sPrmYed5ySTby/DE1GBJPg3QclfOgpO/74F7PwiSNOuHOpBVNp8FUiGKL+4YugbzwiNjhZAiwni2jeB7x5VcaffiOIP/r6It7pDYuNWH8yRzxsQvA5bV89G8Lb3TKa6yV85IgDew3vtRsBZqAebXEIphPzMy70hFFZaMNHqM8caJZwbySCP/5aEH91Kohr/WEhTWbGOEsGzMyapL4wSH2z656M750P4f/9ehC/9dcB/MHfLeJrPw5jeIyPqWamnYSfetqO3/+UA3/1W1n4m9924fc/nIWPtzsRDgfFWPYrJ51oa5SQnxs/Zju4n1XY8KEn7Di6yw6XXcaTrRH8i5904MlHJGyrtAlJ4ufPh/H7fxvE7/39Ir7yalCooL01xJKs1F/HWP2mjLtkc3n5jL5UpyimR97QP9JsFxJ63PddDpuog7epv3f2y+JaY+Y8DIiOPQnqMtEakf31SUznMl1a7UrvF5+GN9YzBzwmWuvGzQ+hnYDsh4E5f98gpNmY/pU/mzjbTgTQH9M4u5UwhcY1m6+UX5aE0yT36EeoZ1bSq24RP2bi82GjIM6fDNuKtJ0IFG7NFkYk0oWzW1zy+MNxhIOvYulYMo+8uQtF81MSxeLp3DaKJNwWUoTch/MvXofHVYsjx9tSU81pwYKFFSH3nceL1z1w1R3B8T0WhW0svLj+yjn0hatx6MQ+mLP1LGxWBG6exZk7PribTtBLp0v1tWDBQqZALPzVTQlt2S42Nwz+mp8WxwwinnotoG12cDrlKg5meRn9RJ7qvZdA9TMNI2i+CcNVf5bkycpaHz20Wh2misVgBHNzNIYuKmXkzer8PJtQP2hhKRbDEZy+HcCf/NOM1i2wf4cLv/euAlSzxof7DP4ifdanFIRbjNutKE6zy+ZAItrRwxiH3fyket8l+ZCb/TRfPoftN741id7BoMoAjeA/PFeIR+udcOo2IuPyUdMzjdkdjnWjYQ3p0vJmBTMCmFnGjAiW+Lp+J4KmehuePshnrykfG9SX2dBaYxeMPJbGW++NRu4bi2Ggf0LGzSEZXqKzHFpastrBpgo7BidlfKsjhBffljHmUZh8h/dIeO5RhcHlcgLZWTSOkr3ZN0W5fb70ahBffFFRIfzP3+/ABw/ff5WaK+H6gKKSlZlWVcU2wVD73pthvPKODM90BNXlNjxzUMLxNjtqSyVqH0WqjxkQeiYE9zc2AZobmZHLKkVZYv36PRmX7oZx5a6M7rsR+P0svQ4h8VdZSn2jUcI+Mo9sVdTE6iHGIDKBwCLlFUR2djYcNJaMz0bwmedDePOaTGO5spSppL7+sWN2vHuvHbnOCBYCAYzPhNE9asfQtITCXEmoFn2Rnut8pyzKOa9K1WdRH+Xn5HKz1DFL1ldT2Z6j9mrfyWfpSUKSLl3M+iO4NSwLSUeu52qq5911kpAw3EhGzpJxf43BmgtuDszjZ/7IT/VNHtRQ22iM+i+fdqGpUnlwHrfNxm7Nn0vI662xceqPNH7w+Xg1NQ6UUN1p8YQtfnlmUqDPU7uenAqLub+KxiL9OXsMfXwzcJ/7j19YxOvXZdRX2fCbH3CKvpYseDz4sx8s4ounwkK9K+OXnrPj08edKCOaSwXMbP7dzy3iL34lC7V8fFIKYKbT2EQYI2NhIaFaSum5PlLF1LRMNBZBoVsSUn3p4Dvng+i4KeO335+F6jTOS2VVte/Q2PJfvhrEd/5g475G/o9fWcTWShs+3O5I+9zT//BVyoPGoA/SXKhJq2YC1nuMSISJ8QBCQTmOLmNliX2YlJBu4/yV+JzcLLYxj9gYIn7JsE8szkpjRTRUxFPSitUw318EqmPbCnW73H02h2rNDETg1jVcnwzA3XAIO0pXMatbsGDBBAGhem4y4EbDwR2wSGwdMd6Jsx2d6PVmo76yQDdF6TDTjWt3vJCL67C3Jokz7yxsIsjou3UDngU3ah9ptGjNgoUMhdliXv8SoF2z4Wuz+NG44lcFxzPzJyR6wTDmbXavZKDlnug+ev9MVK3JmyG8GcM2g4snVJDZ08vvQQfzfsZ8Yfz4Bp/NrKCKJp0jjS4UuO7/TubiIjC3EBFMB5mazJWlqIjarFjSj5l+TPq26ThghAlNstcPbvgxPauc58E4vjMbNYV8BlqC3NT7c9nWk4Y1pEvLmw1c+8xwuDMi4ws/DuGzp0IYnYBQQ/jppx342OMOEYelfqbngHseZlpQH3faoir91rqqmIHHEltjXlmoPmR1kiyJxQyL/Y0O1At1g0Bxnk0wbXbWS5hfjGBwLIK7wxE8/1YYP7wUEgylAD1bHvN8qYzMQOYNcP4yfz3KvZ64Oy7jM98P4+5IBO97zI6fOOxAhcp8yCQwE4GZVKxm00N9hvvNu9rsQi3rpI+eYzCCt29G8KOLYVzolYWKSO5P3N7cHCxNOU/D+rg3ggHqa6cvh/G9t0L4h5dD+MwPQ+JswM6eCKamlTF2a40Nxw/a8Ws/4cCvnczC0/voXrUSipfdvOYzOalvBBbhcLAaPjue2u3Ah9qpXp+w4xPHHfj4k3a0Uj52Wxj+BWbihXBr1IaBKTtK8+04sE0SffFde+w4vl8SzJg56mviw4QwXc/RfLBAd6LrIJ/dRzT140syuqn9yqgfVxbxGKY8c6pg2qsqlpCXDXjpHmNUV9PzikQWb/xvdqZ1InDdXu9fJPqOqdYsMVGtaTZ26/05LTPg/P4IzSW2hKo1tZnLmJ/m9lPdG1VramHGNEZwqJPbj/r6MweoDxGNpKICkafNt3rCuNarMLr5IwZWrdnWYEdeimuPGeo7L10J471ERxulWjMQUM7J5Y+gHnbVmue7wyilPsmSuPyRQzqwVGvGY34+pIzNXBXUZzVGGBGqMgbr/XXuaKDqjp59rVoithZPTSqgc7PF0t687kgEY3INWgoRLtbKio9NXTezW4w15BahdM3xjPnF5aOzNViMvLQQEGdHTQVL0fRoAx6Sc5otWLh/WLiDrptTCJY24dEGs/MnLawZ8nIwd+8uJqbGMR4qRlVZrjiXQIM8O4B33r6N6VAO6h95BGUZp3rRwuowjL6bo/C5G3C4scSiNQsWMhDa5oKesbUctJcCPYwbFDblDUV1KTDmzmmM6bR8jf7pQMshUV56f4uRt/nBkhoDM5nDyPPMyTjbG8APbi1gbC6MxhIH3LmZt8meCpb0ZdWt99euU+2l3H6nbvgxJRh5ip/GyOPNQA3GfIWb7mkx8tYG3A4+fwQvXg7jz74TxCuXZLjzbHj/ETt+72NOPL7DLph1zHRgtYl8rtPUnMpkmVRU+jFDjc+w01dXqlUnugD9cF9ght3QlCJ1dbVfFpvMLFG3t17C3ga7YN7puojY6GTG3lNtdhzdJ4mz2ViV4fQ00DsYwcv0TF86E8bz9IwX7si4My5jdj6CwlxlfOWzx7Q+yNlmYrMzA/IPvrCIS7dlHN5tw8+92yk2aDMVzFRpKLOJjxu8fhqrJ5Qz8k48IqGplvpRiPypHw0MR3DhhowfvBnGV18O43PPh/B3bF4I4cvUZt86G8Yb12Tc6lcYdzLNj8XUvk/slfCzzzjwGz/hwM+8y4nju+2oKZGor6oFSIAYTSs2r0EWFxcFU4+DuC9xX2aGmC0SxsLCIub9NKZPh9A1LGFw2o7SArvoh1vLlZvx8of75O46u5CQ/Nl3O/DexyQ8udeODx+146fJ/dzjduQVAKNTwM27EZy/JcPlArZXMtMz/Q7HfZiZ21zPYzN8pqUi1cgb+A+iikWm0/6xIF64oDDyuD1Z8j1lRh71o2QYeZqPPj/9tX9BRpDGK7Mz8hj6uEaw9BpLmfaMRPBIo8I0TglUFzxOBm0RDI8D7TT28Tl7jRUsiZz4vmbgckxTXbTTeJ9qWm6TtWDkSUROWbTmZcM0lQ7WgpE3PBXBuesyPnF04xh5LTTXsYTtaqStLUZePPiMPJboFbSt0qW4FldM64r/SraIqbrVVPHxRBw1b51h1hoHGf01Qz9L/DR/NvyeLS7VvIWfsNiHbJVooukIEp+7p45LIj2n5nCdLeLTn8XISwczN9B52wtbeTMOVNMMb8GChTWFt6sTt702VOw8AIvE1hsulJVnYWp4DNOeQdy504eRsQmMDg/ibs8NdPUMYzYkoaj5CA5UreX5cBYyAwWo2rYDO+osJp4FC5kKPVNOv+DXXzOWY7IZ/cSXgZof2bE7xGBkBi4H07jqPRLls1Lu+nQWI2/zI9MYeWduB/B3b8zhzkgQdybDmKP+xmV5YKDr14lokGMk21s5ix92+THllcVX0py9GSNPf98oyM9i5K0NWNrtT74ZxD+8GIZnBnhkp4Tf+bATP/uUU2wCauCq4M3AhjIJFYU2+Ijs+Aw9ltDrHYugZ0wWUkHBMJ8Bxmo3WVpPTbwCuC/MLkRwbyKCrqGwOF+tZzQC77zClNhWYcPhJgfqSpeXTuB7lrslHGqy46eOOfD4bgnl5YCPxlXPFL0PzgJ9QxG80x3BixdkfOHFEL5zPowzV0O43BcWDENW0ZhLZMvMy0zCF18N4jSVmQ9x5jPdDu9gOlEDMxTcHtxf+CxTZuYJiU6q463k99PHnPjIkw7UV1FdU33bHAqzMqAO56K/5dJbhRvYvcOGgy0SPnnCIZjLv/q+LJzc78DOGlZvmR7DipkuTN/c93g8CwaDWFgI4N7YPP70O7MIBxdQmhuk+TiMcaKLG0MSRmcdKCt0YN9WBxpXUB3IUk3MWGSJySIq45YCCY9Rmx3bK2HKH8GNuxFc7onATs/NG/ar6W9MExVFNqFulaUbR2cUyQxmbCWUbt6k4PbSM/IYxfTs6UrkLdC4Ixh5BTbkZCsdSYvDv1yPDGN+mttP6c0YedE8DOmM4A8iOvtkoQKWGXCpgLPeVWvH+4gWvvZKGH/88y4coj7GjOhUwRJ83D9TZeIxuE3WgpHHa11mbqr8iLSwWkbeQjAiVPf2Ux4feHTjGHm5zNBcBYOfYTHy4sESeeIMbbUqBG2q10zn7OS+LGz6i3OToX/VrUm+cUq9v/J+GpdOZysJEoXr/EUsXThdM/jNWjAD6ZrD+VcJV8qjZcbhfI6fEo/86FoL5z8t/RKbCiHiWUgWMoYunsHlUaBy/9PYX6l6W7BgYW0gD+HSjy9jBJU48O79qFC9LawzZB8Grnfi9ogX/qC60qaVWU5+Oapb9qC51GLiWbBgwcJGQFuqay8d+mszP81tBn1cAV1cYypj/oxEeSe8p+pvFq73WSlfZgBk3Bl5ixH45hWb4aRpsoBewvnrZAtLEaQX8o6+AP79t2Jn5D3Rmo3fOZaPivz1ZfCY4esX5/HXr/oQCkXgcNrwZLML//FkoRq6ubCEftit69f6cO1a2wzQEJeHeq358S9vpP7Gtydxh8/IY5Eowh9/pAh7q5xiY37JPfT5UVn4XCundUZe2mD1mF96NYQX35Ix7omguBj48FEHPn7EIc40W445wk3BTcZSQNcHwhiejtC1wlznvWyuNWbi8dl02TSOCUPXLLnH/pyezyLiM8WYseMPKCpptWbmfEoLbKgptmFruSSYIlyeVJuD+5hQ0anaF+6EcWMwjEs9MgbHgaFRlsZS8uVy8z14E3lLiQ37d9qEOsiD21iNYoo3XmMMT8v49b9YxK2BCP6fn3HifY/ymYUbW6ZUwO3JbXx1QMadUVmoAWQJy8oiG3ZUsoSbTcTR2l+D1t6iT6ntk04/MIM2voRCYTIhwbBjMzYTxn//TgjvO2jHkVY7ldeG22Tmg3yuncLEqym1x0mEpgK+7ciMjL8+FcIPOsKoLbPhF9/rEGc6rhbzVMdX+mX0UB1z+epKbdhZbU/5vLTVIG7cXweEaeA5e3UOv/tXC2IM4c5gdkae3tbAbs2Px564M/KqHSgpUtIzRFyytafR56W/Njsjj8O5HvTxEoHPk/zSKyFxNt4JGm/SxYnfW8Dn/pVLnKt2v8Efn63FGXlrgdWekcdzGjPAvvtmGJ/59c39IZZ1Rl48+Iy8MK3Pxf2ZNpeUg8cH9cpIu3Fuulb+FSzzOFo+sXFE/IprPZYbK5aEiLiUYzTT6I+ANv4YrxnL3ceSyEsZNhRUbcOOHdtQla96WbBgYe1gUyWEtlXBIrH7CFsW3OV12LptO41vVP9stm/H1voqlOZuzOLOggULFh52GF+gllvUm8XVjAbtOuqjuuNTKuC4yd4/kX8yMN7DDJZE3uYHn6f09mAQb/Usqj5AS40Dj9a5kLcBzM+usSAuDiwirJ6RVJ4v4ZnWHDV0c4H7sGk/XqZvp1rjTKdfOj8vJBq01B/al4Myw5f8UXrW35vLZ0nkpQVWjfmFV0L482+G0HFVFmeRHdsv4Xc+5MT7D9iTUsnH1cKMApdDUbm5vdKOqmIbinMVaQpm1PC5dKwik/NnaawpXwQTs4r6P5bcY8khZuLNE/kyo81B6fhMs+0VEg5uk7CrRlLOAHOlx8RjaMw5ZiDymW01lF9bg4R3tznwk4878Ol3OfDug3S/XXSvMrpPFjBLZRqfVFRynr0si3PcbozI4sxLVt95v8FMvD/4QhBdfREcp7J+iMrNdb6ZuiaXlaXzKqjcLJkWkhV1myzNOTwlUz+IIJfqlyUhc6m9ua3Y8JlfbJj5y4b71lo9t0bbvBZQ1gNs26nP2vD6jQiKChyYDdjR56HyRuzYVuEQ5+GV0zPESQynCL4t9+nmGpuQOH3rpowJL/X9QoVpvRowI4lVfGZRXXmpTscoX6Yz/mMVfZkmZZoOeDpYjUSeZnNaH9VRVLUm9UtNtWY0nvhVoM9Pf62ckQcUUHrun0bo45phNRJ5enz+xRA+2O5A0QYwbLhN1kIiby2wWok8nrvujkdwk8b/tWCubyQsibx4CIk8WmwIVZPqslOsL5lGVTdDH67319w27tr6cD2Mbh04SFnOLhMpEUQZKZ0YT8jWshBlEz/Rscb4DsxuDlNTJsTGUKwFCxYsWLBgwYIFCxaWhXFTwbjg1yNRXLb118IWvwQOIys+ZepYrlzLge9rtnGildksLFPAL4f6/UGuAnEwuwVTsATHyKzK9VRRlmcXDIGNAG+S8tfoGpiR4ZnffA2o0coSetFd6/3jrlVbdN6VQFFmfXw+HseNIFc9r8yITKbZzYRRr4y/OxPEr/6vRfzdD0O4MxjB3u0S/tPPOfHvPpYl1FEyE0U/Bq0EbhpmtLDEHasQZOmfJ5rtQu3hBw468HSbHe3kPrDNjtY6ZvgpprlKOf/nQKMdx3bZ8d5HHHjukAPvarWLc8a28HlVqgTfWjY/l5VVlrE6RmYabim0oa3Bjmf22fGr73XiT37Ohc//rgt/9utZ+Pi77SjbYkP/SAQ/ej2M//D3QfyL/xPAK9eJsO8jWGryRq8MVzbEmU3M7NmMJCH6CrUnS+E9vsOBY9TW9VS/rLSlfzyCs11hvHBFUas66GEVrWrCdQSPLWy0D3tskhMzC07ML2ahz+MQqjSzXSyF56Q+7BBn462GiaeBs6gukvDxY1QPRCOdPTK+dTYkpLNWAy4ZMwlbauyCnquormfmI7hI/efM1TCu9IcxPpvE2LwJwP1J0IH4WQplXlkKbm8tJC6leTaJvHWgeZJzNLnf/Zq7WMKTz1/kM+Y2AiwlGVKl6i1YyFhQFxVjPv+pNo/9mltiP0P4UlvJh0cGxa2aqFu9h8HQj7AVlc48hxvCOUeDn2K0MpPNZbXxeKOGGfISUNftUT8qKz+jAPsJKxYu/lTbYuRZsGDBggULFixYsJChEIt7g603Gsw2QjQ/fVphi1+CLv16Ql9ODeyztMQKjM9mtumy0RClMxTRYuQlBregV0hzxVBRIAnJj40AMx54E1UDnxXmW9x8Daink0SboYn8TaHG1adhJuydKfW8ErXTF6bIhN2YVt484Jr1EX28eCWEf/elRfzanzMDL4zO2zKqt9jwbz7pwL/7KadQ6cbMFZaAWg2E5BvlwXTA0j+FeYq0HjOedlRKaK21Y1+DJExbvYRdteRfJYlz71j1H6uK1KSx1oBXkjRY0ovLzMy98kKbkIphlYq/9B4n/us/y8J/+nknThyUxBl+HZ0y/ujLIcHQO3Nt/Rl6X34tiB++TmMIlfFf/qQTe6jumBm2mcH9JCcLqKK+wcym41TXfNYdq16dmouge1hGx60wfnQphNdvhoWEzfisLNQoxkaQtYN/MYLByQg6+2W8ckPG2708r0iQ7HZsq3TgSItTnENWkGMucZUuOK/magkfeMKOPU02nO+S8Y3XQqIOVgMevpmGqouV+n1kqyLVOuFVzv569XoYP7io1C0/802q3/4JxQxNyUI6djNAm07SHSo4fUhPwrpq189VK7dGjDG4UWDtBGvZN9PCRleCBQsrITpY8AenysdqckSmK9WQW29EPL5WbXBc0c8VPy083q2Ga/5J2gpUN5lYODvJFsF8f+Uh2CdC6+e4+NF4ilvEpJ8IvUiahSvumL3RQ4gFCxYsWLBgwYIFCxYSQCzgdXYiGJllereeMaa8LNCv5iY7Uc7GPBMhYTzV36zsep9E6Tkdh/GXjZkG/lIzrlj0QCs00UMNVo3VPxWOa/cCF6s9Ux33GazO050du7k/GMHQzH0QK1ljaLS1HK3qw6LjiWoE9GlN8uGD+AeobrT4nEVVoYQsnUSjhfTADKfPvxzE7/7tIn75Txfx378WwunzYdwdi2BbLfBvP+nEf/hUFj5w2IGmCkkwz5Zp6rTBWerVWrLUHjPMNJPtVJh2QmViBjU71wWXdUuBTTCY3vOIHb/1XBb++Bez8OxhCVPzEbzeKePPvh7C//phUEjDrPU4zfxtZmZ94UdhjE9F8JNH7Di22y4YpA8KuG8wg4klOVk688hOuzCsYpDDPL4I7o7L6OwP41yXjBeuhHCmU2FAXeplBl9YnAXHDKhRagOPL96wH58DyeF8Lh8zBC/fpbRkWPrvzNUQfngphJc6wzh/m8KHItSWvJ1L/ZL65r6tduwnw8xo7qvrQSPc/w/vkPDMQYeQuHztqozvvrk2DGKmK2ZOswQsS8myZCyrhuXnYKYe1y2fb8lSehd6ZGHevCVjZo43t9VMMhn0HEx3K61jzSCaUqQVzqSQzn3SSWPBwlphcjYixoDN/vHH2kEbxGk8V6+VK/WPBkexttVszU/8MRTpt5itiydi6NycTjV6f8XQr7B0/no3mbh0mltI37E3u+laSORp7lg8RXJPcQuo/ivZG/TqZMGCBQsWLFiwYMGCheVg3KTXbA2JNh708dlwvKghf5FOl5Zjx+esxBHxNggbee9kwFWsrzPeTNPOgLGwFMwMGpqI3/SsK7TDtUESeYU5ErbkxV6F5xYj6N+EjDwNS+hF514tLXG/vjYapCulrbjv85mCmjSlaf4Gv9WV4MEESy3duCfjH54P45V3wrg5RBXtAI4fkPCfftaJ3/tIFt53SFFzyRt8Gfg9Q0aBGUrMPKstteGJFjt+5aQT//lns/D4HgljsxF8/cdh/Jv/E8RfngoKhtFajNecR8+IjL/4dhCD4xEc3S/hQ485hNRiJjE81wpcx6zutDTfhoYyCXuYqUd1/VSrXZztxOee8fjAZ70NTSkMKJbau0r9/PJdGRfvKAyojpvxhv3epjAOf4fiXb2n0EM3mT7Kg6Xw+LxGZnwzQ62mxIbDTXYc3i4JtavuHEWylMu3nuB7vHufHT9x2AEPleelS1T222szb3C9uZxUtwU2bKW6ZUlYZpayWlOu5zrq1xWFNuRlQ5jSAo6vpMtU8LivrDpjYMb7amhDSRrLU78uNss209eS9xt8NmOhm+imUBJn4/G1hY0HrwfWWj31ZgaPG0y7ms3EHXMr7xQKbSu24q+zbYoNsuki6i/SaX98rRpxT72b00X9xFUsXJWu0xv6iblZPYuQrIvlScnJKxZHBBJkVQIvThJPZ2tGc2u2RbUWLFiwYMGCBQsWLGQg9Iw4RnRBr17rNzASQYuvQaTR0unzE7/pw7QshnsngrGMpmXOMHCReGNdV5ViUzfJR36owOq/BqbDmNOdQbelxI6CbGnDNrtLciRUFMQ+fZ4PRjBIZdxsWC/a0PLl7sz9+tZ4KI4ud5Q6keNU4piWQefHV5lIwxsNZjpUFdvwzKMSfuG9DnH+3R/+tBO/8l4nnt5nF+osBQPPqrqUwcweZjQ9tceO33i/E7/1IQeqyoBLt2R84+Uw/v/fCuJrr4cEoynd891YRd6tYRl/8vUgrvVGcGiXDb/8rFOo+2QJqwcZTM686cyMrXK3TUiPtVRL2N9ox+M77HjXbjsOblMYUHy2HjM283OA7CwlLc8JesN+QgrUBbhzIeJznszQYkm7w9uVPI/uUq7b6hVpQI7HKmLvJ1i17XsP2nFsrx237sn4zrkQRqbpIdYIom7pmQpyFMYd1wOrtd1Dz7y3QalXNnvJLSR01XQZC/2iiB5OnO2Zwi40p+b42dQ3nDTnsDSk/nxb/bzEVxyyfJ1kfI2tK7guXdQGOUS7LqJHti1YyDTwyCYk2QS9Che5Y/ZyZ+TRRdStDAoxdzSuzs0aVsQ9tHAyiLDNSVV3XHxFik5v6EfYWrk0t2IoOeegukV6JkQau7S8OJIIJ7c4J4+vdffU3JqdwhBqwYIFCxYsWLBgwYKFjYJYzBN440K71kMfrhkN2rW20cEvA8ISv0thln8iGO8VxTJ5LJc73zuV+28U7HZlM14Df20Z3rxCXesGPn/ulicUd4Zg/RZHVKJrI1CSK6GqwA5J3XBfWIxgZCqMQMikH2cwTOnOAD0txV2r9rKg7OeCMvpGmZGneNkdNuyg9stZSbVmqvd6yKAw8iR86rgTHz/qwDP7HXi82S5UaPIZZJtgCMx4MEOvtVbCTxxyiHPrfvfjDpQUAR1XZfzDCyH8+XeD+PszQXQNKee6JQs+z/BH7yjp3+qS0bLVhl97vxN76jf/uXjpQEjquWxCIk9jPrGayOYqCbtrFaYTM+QONNpxaJsdjzbFG/bjMGYEPkLxOD5LonLbMROLaYIZs7UlkjgbkRnc3LYbQSO857udynTykB2VpTa8eSOCb3WEsRBcn7mD65bV27LUYVGeTaiRZcPXmc7k5/LVUJv99LsdqCyz4cl9Ep49YBdlTwUsReYukJBLdcB2to75ZFwrilZI0DFYcwLPmXaTtcdmWHOuFfhR9caChYwDv1fyn2ozZSsjLP3GScspUnYiXLO1mHH+TP/6cM1fs1WJOA6L82dnzM30oncvsckobjUen5XHkngihvAU/kICj52qJF6UDOlaSOmR4TMBtfjC5hSqbTHyLFiwYMGCBQsWLFjIUIgFvvqmLRbzhNVsOCxJqeaVbI4p3XuZ8iohmxvinDzdhhC/c4U2GSPofoCZY5cGF1WXgl3lDrjusySFHtkOG4rzJeTlKK/D4XAEk7NhDPseEE7sCnSaLBUH5Qh6PCH45mP9urzIjqLcJM43VOnfoojEYMktVhPIkkXMmLCw9mBSYCbIYzvs+NhRB37nQ0584rgDDqrvc1dlfOVMGH/+zSD+7LtBfKMjJM50G/dGTCX1/DSMXboj47MvhPB3Pwrh/A1ZqO78rQ84cbDJ/lAy8RKB+zMzpN25PNYqfZyZcCyFyn1eb9iPw1i6j5lUmrpMlkrjfDJNwjEnC3hkm4RnD9kFU/fFC2Gcvb52cwdLQU/6Inj7ThjfejOE//NCEP/t20H8py8qhq9Zfak6xGYsmPYqiiR85IgDlaXAE7skPLFz5fMjjWtGdmZRnbOkoov6VCKJvOVzjcVdYXq0YMFCBkAhU0XKjW3FTQvPiBpio2sKU0LI0DWzxCSVzaWMI6rEm+YWknZKfM3WjNHf3KarZcIjZOLisTsqYSc8+T/ubDzF5ksuv2LHSeaJ8HhbeUILFixYsGDBggULFixkJPTMPD30GxhmMEsjoKWjcC2P5XNKjGXLwPmTtVI5Nyv4HYul8jTw197BFKQ6HhYshiO4NsBnrMWwr9oJ10oSXeuMkjwJtcUK94S7qNcfwdWR+HJmOlakcUIi+kuGKgNh4K17eiZsBHtqHMhW1WomxANK8xY2N5iBwGeOffqEA7/xASc+edyBmi02vNMr4xuvhvD3z4fwV98P4c+/HcT//G4Qf/NiEF8+GxJqOL/4ShB/+U9B/BUZjjs0EcH7HrPjl9/rwJO77Cszti08UGCGI6tubW+V0D8awbdeC2PAs7pxb5bmoPO3wvjc6SD+1/eC+Gvqi8ww/ocXQ/jymRC++opivvNGSMxXmT7K8iyRZY8IBm0WzRksSZnuWYbaswrbml8sWHiwQYOHWLuqZ92JP3JGhOQcS6up/uyphIpxIfqnC9P82eb8oufkqXGEMboTGO2cO/qJ8zcavq+45viqhJ0WxnnQBT9l1E85d0+ntoQl+YRRwuknes3GWm5YsGDBggULFixYsJDhEAt5HYxuDYk29qP+WjrVXm47PiGTQIeV4qycw8pI9KwbDd6M0ksK0HuakMjL0OJuCFgar2sshMmZmLRCkVtCQ7EDzg3WC8Zn5DVtiTWgd0HG233xkoMPGvS0tFLtc1RfQMbFvnjm5v6arOj5eA8qQqEQpqenMTIyImwjfD6fCJuYmBBx9eCw4eFhET4/P6/6Wsgk8Dlnzz5ix8897cA/f58Dv/YTTrz3UTtKC2zoHY3gh+fD+PzpEP72RyH8zamgMH97KoSv/DiEzl4ZrQ0SfvG9Dvz8exzivDILDx/4Qx4+D/HDRxxoqrHhnVsyvn5OYbClipn5CN68FcY/UP/6zA9D+PsXQvjeG2H0T0RQUWzDYzvtQv3urz+nmF+gflucZ1uT9VUmwLiOTHfNZ5YqmXWsBQsWMg0seSZ+FRpWJek0t2Jr61jNzZJqfKX4i3iqiUrx0Z8SJxamhevdionPQ2/oh//j/NjEzshjiTvlI1whfadK2GnxtLFKc9OPGMBibrWU7KY/DqffqNti5FmwsObw4PKZUzh15jJdJQ/P1Zdx6tTz6Ojxqz5rgJ4OyvMU5am6H0r0oIPq4NTDXQkPJTxXzlD/P4PLE6qHBQsWLDwgSMTUYzvRBkjUn18Q1hvavVRbvJQYsFIp9M9hlj4TwMUS5+Tp9nFZJZYllRfDbCCCV3oW4s4OfGRrFvKz+IVW9dggbMmT0FjCKvaUgvA5eb2jIYzNrZ2KtPVGInpfC7Ak5a2JEIY8sQ7tzrdjR6kDWRt4vuF6Y3FxUTDi7ty5g7GxMdy9exf9/f0ijOubGXQ3b96Mho2OjiIYVJidzPS7d++e8BsYGBBmbm5OhFnIPPCZbkd32fGzJxz4lfc58cvvd+AXTzrwC+914CNH7Hiy1Y62eurzlRIe2WbHh56wCwYeM/9+5oQT2yqs7bSHGaxic3+jhI8eo3nECXy/I4TvnuezVtUIKyBEU03PiIzvvhEWDLwvvhTCzQEZu+slIS36S9QXf4X65K+S+bXnFClSNr/wHqc4Zy5Dl0bxoELqi0mrVPUqBuM8pq351mJ2WzJHsnMd500LFiysBfh9lhleyp9wR20eI8gmOtb+lPj6eHRFbk1yTwkXnjq3YrPhIcfoz4JzerewyfAZdoqbraXhUbeIFvMXZ/Tp3EZbDJSqJJ7wJ6diq/F0bmvlYcFCRmAaQxPMwJMxPTakeFmwYMHCukBlbp/qoCsLFixkOsTXd+qmhp6hlehaD345SCYeBZgy1sTLRTqg/JJOmyBewrJmGOz2+PNa+P0uEEiz3h4whKkaPHMyOu/FS3Q92ejKiPPAcp021JbYUVmscGK5K07Py3jlTkC4Ny2YdpKgn5V6qY/68ZnueCZsW70TJXl26IUpk6H1zUQRLFHHjDj+enrLli3CvnHjhmDW8QbO1atXhRReWVkZ8vLy0NvbK9KEqaL42u/3i7Di4mJ4PB7BFLSQ+eCz2p5sseMTTzrwL55z4l9+xInf/KADv0Hm1wQDxYHf+UknfulZJx5tssPlVBNaeKjBZwCyutYTB+zwzgFfPB3CuRvhREubKFgK7/WuML7wUgj/QOb2QAR7GiR88l0O/Opz1Aepz33sCYfoazuqJBTmbI41kRnSHv91lSieXqsC3fxmtlZcdk7i6KmmsWDBwn2G8qECv52KP3IoVKu4lXDlOnqGnmbTH5+VF02jC4+dYbe8zX9L8mWbDJ+Prncbw8WZeOyjuYVDcfMow7bxjDwb5amc+cf+bCv+iewHl5E3ch3nz5/H9RHVvRZYjzwfJFj1szIS1lERtteV0gtBDspqalU/CxYsWFhfWF/zWLCQ+eDNBTa8cNfsZGEaV9us4DC+VvPVI90NDX26ZMopYqwUL82y3C+wek2njinFjLzFRf5iU/V4iMFqGd++t4jRSYUTxC29pciO1nInHBusVlNDbZEDB+tjO/KzfhkvdwUwH8zsfqdhWRo3gRZ/2aejOCyNd9sTxFs6pqYzy4anm7ORbWDCpjImbQbY7XbBwNu5cyeqqqpQXV0tmHjMqFtYWMDU1BR2796NyspK7NixA7Ozs4KRx2o0WSKvpKQENTU1aGxsRHZ2tojPaS1sLhRk21C/RUJzlYQ9dRK2V0rCz4IFI7a4bfjUUw48uVfC2GQEf/M8jZ23abxYNB9r747J+MH5MP76ByG88HYYJQXAR47Z8esfcOAX3+PA/q2SOFuO11SJzKaBWtb/j70/gdLryO47wZs7EpnYCIAAQZAgCBJEkQRZXMQiiypWFc1SibZlyZ6ypJY03dLIlnTaLU+rdU5bc8bW8cjdZ6SeVuucluyR5LYlu60aqVzdWmyrVBJdqmKJRRaLO7iAIEEQJABiRyKR+/Ll3P+NuO+7L754X365ITOR9/dlvIi4ceNGvCXiLZHx3hifStZ1871nC+eLyvVTsUmfbVuUzk9NVK+185jjrG5iXxf9mn4vLpFn/ZCb4xxAs0YAM/jqKeEX9fHNusJ+dEX5WRds5tPg+AZQvnlXd7wIvsDheJNYT6+HZcZfDNfTy/Fr9xne8GX5D7jLi/kmi6WweS3h22d2mmyj3n0P0eNPfIYevLknShzHcZaQnvW0MQYdx1n5yIV8BA8cbDxH+lBC8yCX5ER+6LAv9zmQRTSvtTFbeaBUZrQvZVbkbWaxlKeFspcL/ONlZ2f59Zo6mLeWwStpTl2epj8/XH9lPLbVpz7WQ9v720szupaTnRva5ZtvPd2hQnjV2anzU/TKqdXxrTy0k7StC7O0mdk2/6WRGv3522Py8BWgiJu3d9IDu7rn9VrNuedYPjZt2kS33HIL9fb20vj4uLxCc/PmzdTd3S2DdpBjgA7bvZMbP+R4HSfSenp6JA4wk6+rKwwS66s3ndbQ88ZqdBNTNZrmkwAexi2FE/vT+bTFchh4XhWOt4W8Yi3WeWJyShxmzC6Fg+3xiUY5zUzRzdtq9NOfb6N7bq3RG0dn6Nf+aJL+/OUpeu+jKRoanaLR8Sk6OzBF33knzML77T+dpA9OT9N9t83Qj3+O6L98nOiuG2vUTo32cw7H2qqA+0n0/1f4UmBDb5v889Ns2GtQPXe0srqznmcyxrSsVbM9ryEm+VoZx0PcBY4jhKYYZp7Jr6kfvztn5fyTL8zxcYVwaPhhhl3pl+aDH10xoy9xmI0HnxcluTpeiC3xS/JYT4SL9HCdKDP8EOH1ruuzb+qQxq/dgTzHcRzHcRzHWeXIBXxEw/aBg5XpBb7No1i5LI1OK48vcjZbYb75CpB/oTaWmI7OtmIgCGAQa3RMb0bXJlfGa/TaqUn68Fycjcebp6+3nb7n9nUrZjYeQF12bOqg23fVZ+XhlZJ/+OoojU2t7B1Y+eAxaS9zbYOYjff+xSl67qiZjdfRRo/fwfvODFgr2Xqs8DbbChh8wys28U282267TWQYLMBAhwWDedgGSMNsPjyYUbDtEW+2DxZ74GSK3fhkPm0x3NQU288MZiyWC2Xk0xbLYd8ulcOAzSRvn1zaYrjR8Une/vm0xXK5bbZYLlfefN3U1CR1d6I9BrtjvG3gUr3Fcs3sz0xP0u4tU/Tf/kAbPXBHGx1+f4b+x9+foH/5Z2P0n749Rn/+whj9/jfG6J99cZz+6FvTtK6rjZ78RBv9zJNt9Jk7Z6inPb+9qtxqAmeIqh6w8jyWgC40Z8f2rTlLJfsIihGTJ6Yv+FrVmTP4njS+U9o5z1EJ7LIuviZZvy4KrjFwbM7HrXZkHbAuCMcfWr5KMLsupECs6byUdUcM5wQ7w47jMRzSJWc9nvHRG+TTq+Saz8R5GXzIuT58rScO6eyCmvHxM+mYJRjSoz7/NO4DeY7jOI7jOI6zCgg3B2Ugg0sfQqhc86gPihBknK/q8YXN04zsAxDIYv6qByRV5YLV9FAF/1GMSTj6/B6rPTk1s2a/lYeBzA8vTdOfvTlKU3EwDANm9+7tpo9t71oxs/GU3Zs76PHbe6i7K1Rsguv81gcT9MrJlT2LSttIQzuN7ToE534Mnh+epv/8zhiNjoa82F83bO2gT9/ak33gZttqqTyWz730lQEelJ8/f16+b3frrbfKazQBZtxh9p2upw46YRYeZurZh+w6QAcw2JcDdnKDAgtx4+MTNDQyLrMJl8RNjNOVkQnZDkvldDsuldOZZ0vhervCuQDtYilcL/dTXdwQw3/yL77DYPRSOsxSRXtZFNfF7a6ng3q6w8zYDX3rxGHG7FK4jf29tGlDr7T1nNvQv57uvXU9/bP/sps+ebCdtva301++0kH/7Isd9I//bQf9m7/o4LbZTgf3ttNP/o1O+pm/vo7u2Zu3NZvDsbCa0FPDXGut5xDkR157igHaFyfiQg5K4UwFkN6K4wW0G+RzdbzgPzvQMH+X64NmczPFa//CeWq53K7NM3TPHr5+7synz+YwOLKTbTxwa+N66D+erBaHnRHqHeqO81Sq06qDndUMjkuApspnvfDjCHyRSiMOMTR8lYc+ET5OwPFbc5Aks+GCPuQhrrPs6vlDOsKyNHLULSSn+jG9FI96/EOdRc4Ovn5HL66q+Dj/ajriVj/127gBa94VTo0G3n2JDn1wQb63ILR3Uf/Wm+nOe/fT1vhPlEef/QodGQjhMj2067sep3u3xSjbG/rwDTp09BQNjnJjFxlfvPT20/U3HqC7b99K+n+Zrdtkq1dO0Buvv0unBke5AUECmxtp176DdNdN/Y0jp0efpa8cGRU7d7YdoZcPHaMLXB/Q3t1PW/ccpPtv2yz5CtuX2bbs6S7aeMMBuvfu3cTXCHlqQ3TizUP07qlBGuVOAbR39NLGXbfRwTtz+Y7Ss185QqM3PkSP391BR186RMcuDMm0ZzSGng3X09677qW9m+sZW94+Iyfo0Kt223BdejdXb5uWMXX+GNGRl7nOF+vbqH/rXjp4/z6SKhfbY4C3B/K2U9fGnXTgnoO0e0Nag2B3YPN+evKRfVFW5sJrX6PnT1JyHFygV7/2PJ2iXfTQ4/fSVpa0tI3kWBigzfufpFJx5hi5d9MFOvLqm3Ti4hCNh/tCau/h4+SmO+lec8wWVNmMzPl4nY1Wj7cR3rZ/xdt2upf2fPIzdOemKDfUzr5KX3/xFI13bKb93/0I7VsfE5jJC0fo1TdO0AW+SZX9jGNz/Vbatf8A7d+Z1tvsx09sbemYtjSUxWCbb7l+L925SG2oRG4boi/YtZ/u+tgOGskec8okXXjnVXrzQ9NPdvRQ/3W7S/1kmdb61paYbDw+pfzN22nvx+6qbGPLs60yLHF/XLtyho68fYRO2fbbtD+OfUlveuxym3iS20TUmvt+P8bb/TAN9NT7KMdxVibNLtPlQr+FdNUpdMMNQBHmhOJGIqXKfk5epSv2c/rsuHRJq8hZoA//lgK5MVoE+N6ZhkdmaCQOfsAsBoY2bcRNoojWDJfHavRnb47Rv/jaFYljW2zpa6f/1/dvontuCK8dXGm8fW6K/pe/HKTDH4TBO+yzvbu66Nf/L1uoLw7wrUQq253B6mhY10hTVI5BzOePj9P/+88vFwN5vT1t9F880kc/fE+vDOqpbuoDG+ZI8TAC7bdzidqwslhtGQ/Qzp07Rx988IG8UnPPnj2yXhgowCDTn/7pn9KnPvUpeQXn4OAgffvb36aHH35YdJ955hm6/vrr5dWc+J7eu+++S+vXr5dv6lWxFA/dFmtbVLHU9h2nFc4M1uhf/OkUff7jHfTJA5npwsvMfz40RX95qEbvHp/BrS1dfx3RQwfa6a8d7KSdm5e/DZX66yUA9keGh8X/kV+doH/0hU6666Z2meFt+xANpz7QOk7yqfncRaJ+vpbYZL4NAd3SljR5gbV14dKMvC1h9w0hz1zX/o0TM/SlZ6bps3e302fuau3CLt3GJy7O0H/7L6fp136yg27aVq7rfJjPPsRMuMErYVBi23Vzz79YLPWA03y2zVxZrDJ+8Utt9Nm7ZugTtxOt58tke9zOBeTDtQrumxaDq7ENU6anZ+jihXGamqxxv8nbgasgV5OoijRcbr9ofjEurVnkMT2Jl9ItMS7bOknHWCFEurQ02zeSIulsTO0V+hDU88KO3b5qF4P87byCpjoNdPxTJoZXMDU699rX6fn3B2lipps2XreZ+td3UcfUOA1duUgnT43Q5j07qY/Xe/LKJZroXE/r26dolHd8V99W2rKR4+v76LodN9AW+fxYsPfc0Us0Nt1G6zZeR5v6WadrhsZGhunKxZP04VAf3XLDBtnMrdkkGj3+PD394vs0MDZFnes3sk4/N8J2mhwZpIEzH9AHF9rpht3XlQdbLp2gdy9M0YY+vnE89AFdaeujjVs2UH93B02ODtGVCyfozNQOumnmCD39/Lt0caKN+jZuoQ39XVQbG6WRwbPybu0de7ZRw5fVRo7T8998kd6/NEZTndEub7f2yVEavHSGb07OU/vOm+i6coXoxLsXaKq/jwYPv0rvX5ming1h+3TVxvhEfIXOnzhBI5v20E5scKal7SMDN2/R2VGzbbjcsZEhunz2BF1ov5FuKldkDpg6H3mNPhiqb6MOXtehKxfoBLbRTTN05OnneHtPUNv6DVKHrpkxGh0epLMfnqHp7XtoW2ladrA7tm4r3X4TX3VlGD1zjE5eIdpw417aWQw0jdKZYyfpCm2gG/fuJIhb2kZyLIzRuq2387YQQwE9RrbW6NiLr9FHvE/aY/1lG46O0DAfs+9/NEmbbtou7aCgyiYzr+O1GXM53rquo210nssYooFz9fZbUDtHrz3/Ng1M99Cu+7+bPlZc6NZo4O1v0V+9fpqGJ2eosy9uh85pGh4apEunP6BTY5vp5h19pouM+7Gnhw/Dt1o6ppXRo8/S11/7qFxWbJtDl8/SiXMzdP3NW5O2N/c2VDBygl5+5jv03kXehm2d1C/H8XrqnL5Cl86fog/OztDGnkE613DMMbzN3vzmt+jNM8Omn0SZ3Kdd5n6Sj8mxjTfTjvKGbrlvnRW08af5+ByaoJmuftqwOez/jskxGhq6TGdPnqOZbTfT1kwbm9+2Msdbbludb6ct3VxubltVsYT98eSZV+mvnj9C54bL22dmbJiGBjhftj+OfUlnPHYHp6iLt8/mdX205aYd4ft289zvFz8s91GO46xMcFGf3jBU3UDgZqB+E9A4eGbzFSGMVizCTdp8b/Tya1JH1wk3pPKfiktA1facKzADSxOT9U2KZxS4B+02r9281pnidX7j9CT9/svDdOlKeEjT09VGD9zeQz/88T6Jr0S68Z1DPsRePD4p+w37EAOzN2zroFuu66SORTpOFpvs8YvKt1DfVAPZjl6cot9/cZivOcN/HGGb7NnRST/5UB/195RzaNmlviUpV2Iskza8SA+WqlistjwwMEDvvPMODQ8Py2Ad4vjGeX9/v8yEwcPH48ePy3++v//++7R9+3aZsYfZekjDN/WGhoZkNh/qhIFA5KsCOqvNOc5KYJD76BferdFtN7TTTduW5hphIdy6o50eP9hBX/hUJ33huzvpyQc66Z49HdS/bu20IfSFmCn8h98m+sRt07Rl/RTN1MLMIfzTBJzOJNJ4Sc59KvzJqWkZhGvvqFFnO6dFudWxDn1xGsY/Wk1NzlDvumAbclxnWr+ZO35uht49PcP7lejGLXkddbCXuzYeGpuhb7xO9MS9bbSh+rTQMrn+eTZXq7XRePwMcN/6vA6cXnsvlcNMdZSxFA628Q9ES+mKmcGL4Do722j/7m7asaWH1vV0Z8tr1WHbrmq43YyNTpPMbsOPj0Ugx2WMF07j1tcwZ8OAmMpFUNIx7UfidccppXhrztrjsMz0q88GtDqyj3g9y2nIhVvzMIgnNmy61gk/7lwae5eVxuVD9PVvnaDxTfvo0Yf3m1kL4SH0CyfHqfemR+kzd5t/zWg2E+n8q/S175yi8XW76P7vvpd22Aenk2fo1b96iU6NddHO+56g+8JbNAJNbR5im1zHrs20/xOfoH125glmjbzyPB06M049ux/ik7mZ/yA2B3lnEfXf8gl65I4w20MoZi318I3BOE327KVPPHIgzCwDbPfot5+hIwM12rjvcXp0v310fIEO/eXzdILXY/PtD/NJ085SwmzEV+n510/zNthND332oJmREWbIDKJCvbvo448cNNuH8737bXrmnQGqrd9Dj376zvAgWancPnzSe/4v6M0LvE3v/xTdZze4ruPMVrrzcw/Rnnol54Cpc/+e8jaiUa7W07KNetb10PhkD+196BE6UN+I9XXauI8ef3S/eQAf7C7GjLyCZsdQVZrIh/kYmKbxtuvp4IP3lmc28TF76NlX6MQwr+MND9JnPr69vq+rbM73eK1kPsdbvf127biXHr9/V8wzTsee+zodvsTrk5Rf++B5+os3LlBt3c7sdnj1GW67o+28vo/x+uqVUdyPHGrv2936MT3G+b7B+dp4Gz3SuI2q2545HufUhvhY/RYfq5d5vXccpIc+Xp6hNXnhMD3/4jEa4q1Um+5Kjrn6Nuu98X569J4dpQFYzTtIm+nAY4/QXh1Mm0/fmmWcD7Wvy6zTzbc/2rj/Z2lj89lWh//q63TsCs1jWzVB2ssS9Mcjh+mb3+D6dPTT7nsfpoO2D8Rsureep5ffH6RJPic9+Ol7aXtRaOxL8Ima3DE/3/3erI9yHGfFoZfquHjPhQHCaTrI6oSI3CBY6poBmzcll1aSIRzrIGHxynlsrKosyFFn3JTj5nQp0G21GEwns/IABkKu24LXlUXBNQx243sXp+iLLwzTU4fGRIbNe8PmDvq1H7qOdjZOPV9RvH9pin71L6/Qa8cm5ABF3fu4zv/8B7fQzZs7ZVB2paFtpLL9MQ1tL4mDWm1GZlL++Vtj9FvfuBJ1ZmhzXwf9zOP99MQ+voiI+Wx+hCvtq891QftdLTPyrly5QqdOnZKHz/pgDH3Qtm3bqK8vDEYfO3ZMvp933XXXyew7PIhTMJCHgT+8ig+z8zSP4ziLy+sf1Ojffn2SfuChzhU5I2+lk/bdiw7bHx0dFf+H/j/j9P/4wS6666YO6u6s99Xab6f9dxGP/sTEDJ07X6N+vhfespGvJYx+ZV7Ghs9dmJaZ5jfvbnzVcWojx9NvTtE33qjR5+7toIf3z+94uzI2Q/87H7M//N1d8n245WBicoYGBjDYSLTjem83TjVL3kdkqMUZeZNTeH0qg7bJ9ajXpC2+HaJIIrweM7w9LVwTw83MwJcMZUw+8VnULvohDjuaL9gp6/OSHXIF+zYddzmSovIiXr//RiLk6tdYpnqoh8Y1XfIn/sq+m1LODxF3/7Rxh33QDNpp+z37aCvLRi+coMEonY0Lpy7QOHXRzgPJIB7o2kH3HtjJqZN06fS5KJyNcTry9gle9tKe73qk/MAftPfT7vsfob0bWPPEYToS7msNNar176UH7UNjsH4f3b+nnwPjND65lQ6UBqgYtrvvzl1cKtEgr7+dmDx+5DCd4HJ69zxEj5QeqoN26r/pPnrkVrY9doIOH6l/yFyp1dbTngftQ3XA+W67n/bwetDIWTrR6ganSzQwxLXr2Uo3pxuc1/Gu3bwGtUt05kSUzZNarZ/2PpBsI946++7bQ7IVxyZp6x12EA9gne6iXWEj0gm7EVcUk3wM9NP+T9zX+HpCPmYPfvdB2sn3j+MfHaF3G46vlIUer43M73jj9nv3Qdq1jtfuzCH69lG0cm7LR1+iI5dq1L55Pz1SGkQ8Q6++c4Fq7Rsrt8O9D+/n/V+jgfcPs3ZK/5yO6drJs8TXN9S/5/7sNtLjavB8ue0pc25Dpw/TsctsacNeeuT+xtcsdm09wNtjJ3XEV0iWOP0mHcU223YnPZYM5gDN2zU9QEffMltmsfrW2gk6i421YQ/dn9v/us6D57JtbM7b6sQbdBxv65rPtpqVxe6Px+noq8dpCOecg48mg3igi7Z+7FF6aA/nHDtFb7yZ29qc92OZY36++91xnFVF/YYk3JwAvbHSuGJ1rb6Vt8W8LAj+HNGymwLb0GNXpd+sdK3/agP/CLKuBwOPUcDgVHR5EOsTBdcwV8Zr9MIHE/RX79bvLdbz9nhwf8+KH8QDuzZ20I8+0CevkgTYZ0NXavS/fvOKDHKt1F2obUXbe9H+5sDQxIx8F+/ffHtI7MFWd1c73bG7SwbxbHstymnGKj7gN2zYQHfccQfdfffd4uMbeZhVZwfk9u7dK6/T3L9/f2kQD2Dw7mMf+5jo+CCe4zhrneJsgHNLDCrNrvVy5xqRGLnqNGpmSIpq6Vy2yGxY10b/9fd2L9sgnuOsFjCMJTPapHVLrPhJnNsv0sMMRAzuwRn92MSCXnRBgIXEAfLV40aXbaXyenqYadeQLmlJHKOOKo8+vpEHH12SymU9oq/piOf8lX9HBbo6pKLDl09lHpjvoYc+/yQ9mc4Oa8LWex6nJ598gu67IQpSbthIuOQeH5318XVg7BidYdX2rXvpQOZbX4Fe2n/DZvYH6cLJxrXYuOO2xldjMj1bNwb5hq10U25vbdpI6yEfHaJLQcKM07GzUiHae6B6q/TevoukRskgoLBhO+3Nvm+th7ZvRI1qNBmnY89OF3YhV2uQzo0EiWXjnZ/h/fF5eujmKJgvm3bSbaXX9kXWbSepMuFbcrmNuJE29slGpKGLQbIS6dq+t/SduBLtu+jO3TKsRGeONw7MlliE47XMAo639u107yf20+aOGg0cfYWOXjhMLxwZoBq+i3ffPhkUKfjoFF3gY67pdli3j269oZe6ZobowoUoU+Z4TLfve4SPyyfpU3fkWiajx9WYbXuGOZZ3/MOzNIkBm30HyuttaL9hH+3K2Dx16gLn7aVd+/dUdurtN9xM27nYyUunqdg0i9W3tu+jR3hbPfndB7L9WH2dx/NtbK7b6qMLLJltW91JuzEIOA8WtT/m9nZKBjl30503VO0dLvPA3jBwevZYff8oXVtph50dHpn3fnccZ1WRDmrJhbxBLujlJqZRV8MlGTuxAFnMlyMtB1g7sxLzw04uXzNLWnauDisZVLezk2h9b7ne+O9nzNKby+ZbjXz7gwn6d88P01ickYgBzZu2d9KPfLzqwm1l0d3RRvu5vt97b/nq4sUjE/R7L4/Q0PjK3IHaTqSdqatA2yJy6FEK2eunJ+hPDo3S6JjmnaEbtnTQz3437i/KpO05204hW2Xt13Ecx1la+EqodA6Zy3UeZsp06FScSHo+SimlJ0XNlvdapTaNbdlGHWZmpOOsFNAqxXH7LPqLeKimcsxek1fZxnjqI19JLnZMnFWCH1+Hq/IiPcglj/jcdsyrc9XxohxnOBTi3HHNxFfuFnaMLhyqJekcVt+ma1z96rv3lcTN++KsnVfpa994hl5+4wgdO3mBRsO3yBfAJI1eOEXH3nmTXn7+eXrm6a/RU099lb4SX8PXMmcHScanhk/QC2zn+Qr3wplR2eCjw42P/TFy3Iyudb0VO6ufetJpGHSaBofhD9GJF/J1EffCaRqVCmUGIjq6Kh7Iz4eNtG8PZrcM0THexs+88Codfuc4nRkezwweLAA++ptuxa711Fuh0N+4EVccfZt2xVAeHWQYGTwdBFUswvFaZoHH2/p99PF9fHxMD9CR5/E6xB7a9fFPmNcABgYvXeYWO/t22HHPZ+iJJz5Fd6bvC5z3MV2j8eEzdPydw/Qq1u+Zr0s/8dWvxFceVjGn8gZpeAStoY82Vv2DgbCRtm9KrQ7SwBVsmSkaeDvZ5iV3lAZxThkfqfdvS9C31saH6MwHR+jway9wmc/Q1596ir761a/Q8yebbKwl2VY6CDh3FrU/ju2tZ+P25uvYvoe4CYd/eEhnwba3Z/IuYL8r6/ppSww6jrNySR9y4ALePri3TkG6upRCBl9uKvJYe0rOXjPUQrYe0W+G1mGu5S4nGBvt6cFspnKdrwzN0NRUjFyDfOfDCfqjV0fpSvwuHtixsYN+5KE+2tm/el7dtGV9O/3gvetp987yq7f+z+eG6Zn3x2hksrFdLCdoG6W2OktbybWlQ6cned+N0Imz9QN0S187/Y171tGO+e471CnThziO4zhrFDn/NF6bNotrCGcTvHJP/v8scx6rInfOy5G75nUc5+qDFgsnM9O0BwgjcCGN27T82JdZeFGvkBfxujzckEru+g/6SJNwmAGHn8zQi6/lTGfewUl5MayOF2VfS4pxzMqz+UJvE+7n4Xgh6ZDDR1zTNB0/9Zs/rVwxbKWDn36E9m/vp/bxQTr9wVE6/Nrz9PWnvkJf/c/fpBfeHZjjgFCNBt59nr721afo68+/SoePfkgXBoeo1tlPm6/fQ/tu2145yyPL5LSUXxsblPfhV7rL8x+4au+cywNpfPyVvdo4DebqUbhBGp9vheZIzy2P0GMHd9PmdZM0dO4UHXv3TXrp6a/RV//sq/T1Zw/RicxMvUWHG8T8HuuvLmqzPSVa9ON14cdb774Haf+W0B21b9lLd17f2DXhHckYnFk/z1lW82H0xKv0zFNfpa89/RK9+e5xOj2AQZn1tHHrTbT3tt20cdHGfyexW4i618nrOpuBfr1MzMv+UHa7191QwyzaRexbR07Qq888RV/92jfppTeO0vHTAzTI7Xr9xq100637aPemxdpYrW+rpWJO/XFsbz29rc4Zn6TxoRhsykL2e4SvBVbJRYDjrFnwYAFOLuJjvArVAVavuAmIYU7k+5O6bhU232xU1atZ7uo1qaPlN1vvlQi+i9ffh5uyKIhcHqzR5IL/EXHl8dLJCfqDF4fprQ8niv26bWM7/fX7eumTN3fzfozCVQCqen1/B/3j79ko38dTcK37L/5yiN74aJImplf48YgNbja6bcfalnQNXv1oQr5p+PIx3ncQstvc106fu6eX/ubHemfdd632EY7jOI6TI73Gy13z4WzcqTPIKq4Jc2cjawuz+TrxvymZ/H4uc5yVgbbZ2gyeonFYmmaYdYd48FVP47zUuOQDIY5Ze8FIlX7ex7ejpVwjb5yhl/iigzgkYYk4nJ1ph+5G1GLc+rmZeeLDYvRXzzO89s2078FP0ePf8yQ9+cRn6NGH7qUDN2+lrqkhOvfOs/TM2+H7Wq0w+vYz9Cy+tbVhD937ySfoye/9PD3xxOP0qU8+RA/ec4D2375lbgM+8fV0vXselVfxzeYevyedKrTYdMoDBFq/hx7NlN/gHr+XlrpGoHf3QXrkM5+nzz/5eXr8sUfp/rv20s4NHTQ6cIIOPfsyndL2topo8o/sy0Y73unUjEU/Xhd+vI0efUG+iwdql47Qyx80btiuThQyTiP4NtpVoPbRy/TMoVM02LmdDjz4uBy3n3/iCfrMow/RQ/fdyf3EroZvs82f+PrZiTGabQyn8ZiLedu30p257d3gHqF9IWNgMfrW2il6+dlDdOpKJ20/8CA9/vkn6fPf8wQ98ZlH6aGH7qM7b99PuxZtY7W+rVYEsb21/KpmXr+elkYoF7jfHcdZFeQGslQG3z54sDoAcetUBuQ7eTEMEKpbWiSM/WZonVKwbkV9zXquBlDdri6iDcm5b2qaaPBKGMxrcfOseL5zYoL+f98Zplffnwz/2MXgO4H33tJDf+fu9XyuWl37DuCS89brOunn/9oG6uqu139wuEb/y9cG6aUTkzQ+tTJ2oG0jpXZiDjDbxqzOi6ew70ZkEE/+X46Tunl977qph3704+upJ9l3uXaYtt+q9pyXOo7jONc6xZlDzg9zOxuodldXG92wo6Ph1eWW2Sxv3tROO67vxMksSupUnbscx7nKxPaJmWdolvB1dl2MhXTR0zgvS3ElxvGHdJnZF1yhn/gcaJre1FcHSQxjNh7qH2baBR/rJTP04FQv+jojz87MS/3y3eWKZJJGBwdp0L7rrauXNm7dRXvveoge/9R+2shrMXT6GLX2mPQCvXtqiG3spDs/eSftys0SOT9ErQ8LMtdvJHz5YfTyuaazV/DKuUFel4W/EnQ2dtJGfORv5DKda14hGkq37RIQ1nvIzMZqp56+jbTj5gN036OP04M39BBNnKUTJ2LySoMbWdVmHByd5Xt0iwi+Y9aMccx4Y3/9xszHtCyLfrwu8HgbMd/Feyh8L+/C4W/T0WSW5sYtmwitdbbtcOY1vPrym/TmAj8Idvz4ae59+mnvww/S3u09jZ1lbYBGFm33b6Q++bjaMA1+FCR5Bun0QFroRtq8gbdMbYgGzkdRltiXFq+0XcS+9YPjdHqCqH/vI/Tg3u3U07ixaIDLXRxa3VbjdG7w6rXPSmJ7Gx88J+2zktpx4iaMd3DS9ty3PhuY7353HGe1IRfuBjxsyD08h16qKxf78SZBdYqc0I36WJYtBnIPNtIyKjH2q8jZV0ppTfRWKlj1nm6+LkseOk1OXTuDec9/OEFfemGEXj0+SRNxYAv/T3bX7i764fvWU58ZBFttdHe20Sdu7qG/+9D68A9rDPbX6YvT9C+evkIv8LqPrZDBPID2UrSZ5MCybVZ1XjgR9t0rxyfCvuM/2Xc3dtGPPbie+pOLubLFMratVvUPq/dIcBzHcRZK1eVg6VovpXRuIfnubqWd6DcDz8VhI0fL17aO4ywpaIloz3JdG33MqgvxvF/+Vh7yq9zM5EMCnoixr+kNfouOFw0ydbzgcuBx2fJ9vLyO1BfhoFykiTymqeNFKd7wuHXlcYoOPfsMPfPsm3QuSkqs30z9eLo/PUmtDUdNhf845F48P+uuRqc+mOWBa8q6vbQDb00bOE6HzlY9Kh2lI9/5Jj3zzEt0bMlfI9lDe6+XCtHx16oHa0bfeZ6++cwz9NKxOQ1bzpmhoy/wen+TXngvV5N22r4BLzKtYReuMHppHY6tkUHKfnVOH7xfJSbPHWsY3CqonaI3T2B+0kbasWeW+aSLfrwu4HirnaNXv13/Lt6+reZ7ed9+tTwweMMu2to9y3YYO0rvfTRKk239tHVB00z1tYWd1FUxqDL6zile48Vjz03XUxeXe/ro4cp/JKh9dJTOZBJ37drKecfp9JGjTfK+zvvzGXr2TT2aF69vnZwIO6qz6pWTI0fo1CJurD03bOWeY7Zt9SaduEqzN5vC7W3XZj7VXjlOr2ZmmiqDh4/RBU7uvX5vyzOk57ffwVa69/En6clHfI6e46x0igv4DFauDyBUhriVqbxkC2E41jPSWSnZiFQ+AMnoWmZ7cFKsgyxXH3ho1Le+jXrXldcTg3lDw6t7MO/bH0zQv39xhF5jfzx+Nw6vvbrvlh76vz3ST3u3zvKGiBUO9lhfTxt94Z719Nm711FXfKUX3ozw4bkp+s1vDNGfvD5K5+W7vctHtg1BZuS2zUL/meMT9PsvDPN1Sdx3/Id9d+/N3fQTD/fTrVvrTzoz1huorIPjOI6z5sEZSM5Ccl6Yw7mB9bPa5vyi5585WF29F16Os0ZAe0bTlu/VcSzE4Yf729SHXvFtPMyAE3mM60/0wz+31uP4h1cso3128t09OL6HK76dlzhe4K8kg9N6wKDIYFtm5LGL6yRAF3oR9EghPerqusQ49G16PeeK5SbacR1Xc/w0HX6r8XtNoyeO0QWMuvX205YgCsT7j8bXmfVSD+4rxy/QiYZBjEk68/ozdOhMeB1OA5U2e+i223fxcpxOvfIsHb6QPPauDdGx7zxDx66w3R376cCmKF9Cem7bT7vWcV0/eomefetC8iC+RkPvP0/PvDdE1L2T9h9o9dtNs1CxfTbeeL18c3Dwg5cav4VXG6DDH8k0FFp/FbbL3NhF2/EAfpKPvXSACvV+9rA8eJ8TlcfQ7LTTEB359st04kpS6OQZOvRXh2RGVM8N++m2WWfzLP7xOr/jbZyOPf8SnRrj/DcepIPxu3i9+z5B99/YQzR2ig6VtvsOuhODfLXByu3w6nNHaKDWTptvOcDaC6GLerpRn0E6ezQdItH1Gaeu7ihaDHYeoL2buMwrx+jZl07QUMPqHaJnDp2maf23cAvy8rFau3ykaV7MMNxz157Y8c+zb83Qta5LbA6ebRxQqvH6PP/sMRrvznWq82T3XbQH30qs2lYXDtOz2Fbm5Lh89NC+O2/iPrBGF958ml4+kW6hSbrw1jP0/HGWr9tFd905h/54XvudqZ2jQ08/RV975s3ms2gdx1l25OI98dUpNqzYB/caLmzI0sDpjRbmRsPgXlJ+mo6YlpmrP4Bc8rGr0lkN4L+/8b08DObZ1cAgHgbzxsfx35dRuArAKyX/7MgY/d7zw3Togwkamwj7trOrjR7Y203/14f66I7tndS1Ek7BCwS7a+v6dvqJT/TTZ+7soXW8jkAG8y5M0b//zgj93gvDdOziLN+nXkIa2p6SkV8eq9EXXx6mf/OtIXrjw8nSvrv/lm76se/qpzuux75rbG+QVJblOI7jOM0wpw97LsH1XXqNp3HoqWbp7GPyl2xFvykV5zE/vznOygItUmfUoUsIvQGWcbYaQtEXbWnDHMM38mI++UEnOmoLsqBX7csP0Yr04Fek4yaBw5iJxxUMPuKSxo7DxTU15OqzrCSHJEnXeMc/ZRBfubTR5i1tdP7EeRq8dIKOfXCazpw/Q6dPnqT3j7xOb58apml5Jd89tNU+J143Smffv0TDg6fp5LnzdPajizSzfQdt7Oihre2X6Ni5KzT40VE6/tFZOn+GdY6/R2+9eZhOXp6hTfsP0ObBs3SlayvdftN10SBTaZNr2beTdrafp5PnL9OFk+/ReyfP0sWzavddOjtSo64t++nhB/ZQjz3D8Dq9e2GM1m29nWxRBSNn6NipKxgNo7078IK2lFE6c+wkXaENdOPenfIKN6Gtj3buaKfzp87T5Ysn6T3WOXvhLG+39+m9t96kd8+MUq2Lt9snHqA9pf8SvkQn3r1AY+uSdTeMnjlGJ7lKG27cSzttlaq2T99W6hs9QacuDdLZD96jk2cu0tnTJ+O2eY8ujM9Qz4330Sf29sWT7zgd/qu/oO+8cZyG+m+lG/DAvimz1bliGxmq1mnjZhx7F+R1jsWxp/We2kS7ts/QleE0X5PymhxDlcdClG/aczutu3ycPnj/GB+3Z8Jx+/479PrhD+ky34i39+2hj3/XLdTfwvE17+O1inkcb6NHv0MvnRylts376bsf3E31MbE26tveTyMnT9HAwGm60H4j1z007s7NN9KmSd4HFy7SmQ/sdnibXn/rBA1OEfXufoAePbApHktgfsf05v4JOvnhAA1d4HU4wdvnHJfD6/POG2/S0bOj1LP7ftozc4qPg3Q/z7cNddF1W9fR0JmzdPnyWfrg2HE6ffY8nfmI+7p3Xqe3PrxMU5v2013XXaGzubw3bqKxU6fo0kCSl/tJ5J2gXtp1/yfp7i1xNHm+fWuOTRto4tSHNHDlAr3/3od09uK5YIfr/eZ752i0ezfdfzPRqYtTSb3nv622beumSx+doyvcVzdsq+OXaHzdbrp92xhdGErzNmGp+uN12+nGjSP00elLNHCGj6diW+N4eouOXxoP7eORB2l3aXB4tr5rPvudOf4avXRqhKbHR6i2kfvYlr7J5zjOciAX7wYd3NKHHPbhh9W1D0EUzQeJpEJH3QKBXVsXa7MhLUMuXeuONPzXov3PxcVktrotBqg6Zjzh3nJaZvwHcK+H7+ZhVTs6wn9/rmTODE3Tl14eoT89NErHzk7VZ+J1tdF37e2mH36wj+7c2Undq/C7eM3YuK6d9lzXSQMTNTo9MB3f2kA0zPcwH3H8w8Fp6uZtsL2/Y2V8ExAHVHJcv3Rygr7M++4v3xqnkxd5HfA6TVbBd4ce3NtDP3R/ed/ZvgM0W6tUV7AyrktHRwe1V73TbJG4Gm3ZcZyVw9nLM/Tq+zU6cGM73bTtGvjvkWuQqakpOX98+VvT9Km7Ouj6Te3Uac6T2m/b/jsnA5jtUpDoWM2crRIZWVYv4fi5GrsZ2reznXZvXb3HG+8SGhsP16bNvjnoOMsBLh9HR6flnonvIKVtqg8QlqXIte1qOmShbYb0MKOOFya9rK/hIr2JrzP0KtPxwz/DyWxAiDUdQYQrZvjFdFw5434Xvsg1PfFXR++zfh898tmHaN/2fuqaHqLBCxfoArvByS7q376X7v/uR2hf+oRz3X66/+Au2tg9TaOXoT9E4/EBafvND9FjB3fT5t52mh4eFFsXBkeovXc77Xvo0/TIvo18E8aKo0PlV841sQl69z1Cjz9ygHZt7iUaj3Yvj9D0us2068BD9OmH91HyzfulBdvt8Uf4wmYz9dJ43G6DNFLrpc03HqCHPs3bbcMiVqhy+7TT9ns+Q5+6m7c5Zm0NIs1sm489Qp+5Z7uZLXKCLl1hv3sr7bohiJYNbMPvPki7sU8n47HHx0rnpt10kI+73XOdZDTLMdSUbq7Lp9EO1lP7mB63oyzvp+23PUSPP3YnbZ/D7lz043UOx1vt7Kv0rH4X7759rJ/Qvp3u/UT4Xt7AkWfp1WL2LB9Ld36KHn9oH23v66LpkVjvK5PU1bed9t73KW7b5lhaCJvupMce2c/l9NS3j+yvzbT77lBOZyeXND5EA1q9hbJ+N9336U/RwZt4G7ZN05AcIxdoaHp92MePZLaVwtvs4Gc+Q/ffsp36u+p5i37y0cfo3h3JATufvjXLRrrzU4/QfrbT06b7nus90UObbzpIn3rsIG3v7uD9Mk5Di7Wx1u+hhz6b2VamTEyoXSl07biXHvvsg8m2xnctuX2gvtx2WtvWCfPZ7zt3hsHZro20eXMQOY6zMsHFuly4x3D6wBxxO+CluorGoWPzyxLh6IJ0/th6FJh4moZaaU2zeZl0XVY7nXxvgddsruvBfgoyrDUeqIyOztCVoRmZnZfZFCuCZ46P079+dpi+cmiUPjg3RRNmEO+hW7vpB+9fT3ddg4N4yp4tnfQjD/bR3/h4L23diBvxIB8YrtEL703QF58fpn//yggdvYqz89Busu0EsnggDYzW6EuvjtK/4X339cNjdPbyNE3jv4OZPr4X/vSBHl6v9bMOwCJHVZusrIPjOI7jKHJeCuefuYIzSu5a0cpylhvyVJybcrYdx7n6oCXKfDq0SWmuYeZd+AYe2iovMLOOAyEOX+P6UzmePbKPsHUqK/yoH102j7gwG7A6nZ2dgWfktTgbL+jEWYXR8SKsX/QRT9NtvI0XqIXjrBw+epmeeuU00c776Yn7FvaCxGuCo8/SV44M0Ob9T5J/0so5/p2v0pvn+2n/5x+lfStooMpxHMdZfORiPXnoMNdLd6uv4cIibEdZzmpVWam8aZ3UfkYHkmZ5kYb17+zsFLcUVA1OLBUYuBsZnaGxMb5ZM6uOWnR2Ea3rbqOeHqxzkC83xwem6Ol3x+nZo+MyC290AjeRIa1/fTt98rYe+r67e+nAjmt3EM9y4vI0vfjhBP3hyyN0/PwU1eLsPEw2u25DB+3n7XDfzd30Xexu2XL1dmKpHXF4bGqGvnNykp5/b4K+834cwJO6Br2dWzro03eso8+x28Ph0q7j/GpPrWoy5LasQi8j44B4+NZHZ1fXkrVh5Wq3ZcdxlpfXP6jRv/36JP3AQ530yQNLO+P3WsT220sB7I+OhG/rfO21afr4re10XT/esFDvq7XfTvtvxOFsDaEhejndGIZ+zlaBrnOiA9J8KU+/OUXfeKNGn7u3gx7ev3qPN1x/DgzOyHXmNnxqxXEqWOo+Isf09AxdvDBeXF+Dcj3q/xBZDissKMkQkZ4h6GZWKW37oi2ishw0yoNtJSRjyfJYli1Sy1K/chuzWGb3ZfBW66w4Lpy7RJPURVtv8EE8Zw0xcYye/89P0VPPHqH0K2oFteN05mKNaP2WOc2+dBzHcVYnuMjHBb51kKU3HBbVS1FZkRM2VA82Q2jxgO1oP1eftQoenOBVRn195cE6bCF8Nw+DfMPDMzJLz76G82qC3XX80hT9wasj9DvPDNP/8dIIvXVykkbMjMG913fS376/l35IZuJ1rYlBPLB7U4cMfv3gg310/94e6lsXLsiwr84NTNNz747Tv39hhH73Wd5uvP3euwoz9Gz7Gp2coW++P07/6tkh+uJzw/QXb4zS6Us6iBdepYnv4f3Qg+vp++/upX1bO6mz4kGB4ziO4ywGf+2eDtq6oT6bvRm5a9ySxJzzcrqzXnO2UgnHcZYHbr9oofg+Xv0beCwWH8s4m03imKUX5dLuVa5xEHzNE9JDvK6X+s3SJbUhHgJRjpl7OjOPHf4lIcjrvszAi7PwrFyAj41g5Nb3R8HOCmOczg2OE/Vsp5t3RpHjrAW699COjdM0OXCUnn3pBA2lb6CcvECHnz1MF2rttHXvAdoYxY7jOM7aIPtgo8nDCLngN0C30E/zJbrNSO22QrN6VqXNp5zVQjGYt76NerrbyI6jTPP5f2x8hoZHZmgoDuhhgG+pNwfsD0/M0OFzk/R/HAoDUb///Ah94/AYXRrkm+l4XYKBoPtu6aYvPLiefuDgerptWyd1rLE7yvW8DT5zWw/96Hf10ffcvY52be2QGXkAA2ZnLk3Ldvv974zQ//7tYfrSKyP03AcTdGEkvbhbOHjIcWW8Rq+cmqAvvzZK//pbQ/R7XOYfvTwqg6+jMvgaDrAbruug7z3YS/8F1/tzd/TSDfKR7taZc5ts0u4dx3GcNcZiXciYc4uel7BsybqflxxnVYB/MQ2tlZfcbsOX4awUPr5FB5+X0rbLfuqIr4fxAxKvyBdoRW8Wv53rh49R6rf12MGHLKRHPXYyU1nSoV7WT31/tabjrHT81Zprh9o5evOvXqLjwzX03tS7YQutx7fMJkfo0pVReQVXz40Plr8p6TiO41zT6KU6Ltxnu2xv6bIeOrgZyOimktRelf3Kco08p6OSbFqUYb2vpVdrWrCKGKQbm5ihCXYYBLKbAjXD/R8Gz7D6nZ3sd4TXOC5Wtae4zPMj03T47BQdPTtJxy5M06FTEzQwWB50aucyd1/XSffs7qJP7++hu3Z0U1/38m27lcKHl6fp28fH6fljE/T2R5M0kPwnFvYfXkG6Z2sn3bG9k27cglkJHXQz/N4O2mC+mdgKuBYcnqjJoOA5LuvkwBSdHZymI7z/3jk3RQNcn5nYsuTY5mB/XxvdsaOTHr61hx6+pYd2bmgvv0qTKbVBDmtcpVAvZFaXQTwniwF5IOGv1nQcZ7HxV2sujLTfXmxgX1+tWfTO3E/bvlrDaf8tcaunfiIHaV5QZbeKVvT81ZrOWmOp+4gc01M1unhxgqbwLW5ultIyeTGDy2tEUKVCzv2J+OyivEjEoB0O7yjHqkhyoReBHINoRg9+ULGKgdn6CknFQuzMosvp2MZBrR7GWiF7FT6Q5zgrHR/IW2NM0oV3XqU3P7xAI+M1+TwrzkA9eJ3m3jvprpv6fRDPcRxnDZG7VNcL/5SWLutTHdwxsCyXs9UyKsuN8qp0lTaziXW9VgfyFAzgTfAN68QEBvZmZFZeuklQzY6ONurizYCBPAzo4b83cZOK+08MGM22KrCJmXXythf2pzlw5so0/ce3RuW7b8fPThWvYLRs29xBd9/QRQ/u7abvuqmbtvcn31Rb44zwPnvn/BS9eHyCXjsxQUfPTdEg/ikrAfunt7eNdm7qoNu2ddGO/nbayq6vt11eTbphHR/rmYu8Cd4nY1wG3JXRGg2w7dND0/TRYI2OX5iiK8PTvF/DDgntJhw8G/o66I7rO+ljN/K+u7mL9nOZvV3xQUGhFSi1QQ5rXKW6uyEv6TJVshjwgTzHcZYEH8hbGGm/vdjAPgbyip459tG2r0Y413dbuT0PiSzRr8pvfUHXt4l+M3wgz1lrLHUfkaMWv5E3NYVBrdAuQz3QJ0i0REPbRTyol9JEVFqdqIRlYkNSRFSWg+q+AtfWNq1uPxor0SaVwTV5sKnbWsOSw+ZTc9BnhaDtOI7jOI7jOM6KJL3AV2x81st6pOOmQPXiDUJVvrnIs7pGZtNTzWb2sH7X+kCegkG0cZmdR3IDmxvQUzCY19GOV7GEMHwM6OEmL10jMcELDOBhIA/lwJ/gMl45OUH/8zcGZQDRghl412/qoFuv66S7bu6mT93aQzdu7MgONDkBfJ/u8Lkp+vaxcXrz5KR8ZxADb9NNPpPXwYf1pv4OWtfVRtv62qkr82xwjPMPjddoaGxGBgjtvrJtRw/l/vVtdPu2Trrjxm56lPcbwj3GLvJA1e7xUhvksMZVKvoqs7oM4lZWhKPvA3mO4ywFPpC3MNK+fLGB/dHhYTk5Se8c+2jbV2s47b8Rh7M1hIboZXTFZwf9nC1B1zdJB2meHD6Q56w1lrqPyKEDeZNTtVLbrdcEnySI976cDB1oSVURQJzDEpUboyCO6kEe4yrAPRReQ4/iRC/GNb2QI85CG7c+WhN7dbnGuR54FX5ID6/RRDoWkq560cf6iT77uXQfyHMcx3Ecx3GcFUp6qZ572KA66qtOw2W+xvUOIyGV5G4TcjJQVValfvRBM5tYl7UykAewKTDQNjk1Q+M6oMfxik2UJd63FiBvLvsk3yy/fGqSfuOZQRlAxKbA7LAt69to3/YuuuumLvruW3poB2bg+bOelhnjfXbk/BQ9f3yCPrwwRScuTtH5oRoNjtS/NbiYYH/39bbR9v522rWpg3Zt66TP7Oum/bwPO+VhQXnv59pbScZhG9cQDivIS2kxnJNxQDwfyHMcZynwgbyFYfvtpQD2R4aHpW+W3jn20bav1nBOpvpAQ5Jm5AAySOzaZO0BXeeMjdnwgTxnrbHUfUSOab43uXRhgu9/cMGsg2al1m2arw0rLIiytF3DjIiS1QpqRjeNR2y5OUpSLSj8CdJXiVLQxHqFOkKjfL3erE/ygTzHcRzHcRzHWaGkl+q4sNcLf03L6QArt+HcrUHZQiC1C3Iy0CCvKNui0mY2sS5raSDPgkEfDLDhO3pTU5hRNyOyxRwM+mhomv7orVH66NIU9Xa30d4bOum2bZ302X09tL4bH5F3FsLgeI1e/WiS3mCHV5eevzJNl8dm6MpYTb6NONd9icMV/zm8jvcNXsW5qaedtvS10e7tnXTXDV30iZu6aX0XK6FNZfoBkGtvJVkMQ6ZSWLI6Gk59YMMc8YE8x3GWBB/IWxilvnoJgP301ZppP414TlYQw1gW8ow+JHZtrI2SPaxzkl8p6WV45u1pepbdZ+/qoAf2rd7jDa9yHx6Zkbc6bNzQfJ2dtc1S9xE5MJAnr9ac5AtkPjzRuuVqFFXB4Wq+fWe/bVfyRV7XK6XjutvEEUTbl1XliHQRkg8pAXQNoeuoyyyQIjtAWPSjVPJJKOQXGyxUfaAz71Ru9UERV593jOg7juM4juM4jrPyyF2u25sJTW92WW/TJGe8kQBY6s2B0qotJatvZGm6xmYrB+vZ1dVFHXh/5BJgt+NKBZsIAz6YpTchg3phAEg2HdLiJmyyKQVdVdzfIgyH17tMtc3Q6ZFp2tzbTjdt9oehS8XE9AwdPjspr9/Ed/QuXJ6msfEZ+cYe/vEY3yzE9/AwYKtgRh2+R4gZkT2dbfIKzr717bR1Qwfduq2T9rO7bVsH9XJaAfKb47qh7XFcUzWlpMNhjZdyqszoFnoZmcBhH8hzHGcp8IG8hVHqq5cA2MdAHpDeOfbRtq9GONd3qww+aqkaha7JIzbY17Wx9mw4RWybbdBMF7x9qkbHz9fowK52unkbnvQ7zrXNUvcROab5gvjSRczIC/eAIFQj1KXcTtF/xKAlCov8cZFXhRQaRjcSstdzzdZHBHWjwxXP2YOdGXysPNoO8bC+qV9Qr6IP5DmO4ziO4zjOSsVe0KekF/yWqri5JYCBhpsMS67MVmSIy81HlGfzqJ9JU9TOWp2R1wzM0MPAHu4Dp+Lgjx3c062qa4f/LsUAHgbu8F02fOuuo5PD7K/STXBNgEG8Dy5N0eDEDA1P1OjiSE0G85QN3W3U29VG69m/vq+Dtvd30Mae8g7LtiHIzI5VHfWRYnOVbBhdq2PlFtEzsjTc7gN5juMsARjI++LTU/S3HlrdrzpcLtK+fLGB/dlm5AHIUrmVaS0RE1lON4ahm7M1G63oOM5aY6n7iBwYwLuEGXnTtWKmGlpn/Z/c8I083LzwPSLHNL3kczrqHvoLCEOKLFkBYvWh0Ma27DfyoAgfb8AIerjPtvqNdkS/iMf7c9bmqNyD1dh+eywH92K1WvgGHtZL9ey38dSX/GpHfTYO33Ecx3Ecx3GcFYbeiFhfkRsURmWqo1hdoPFCA7qaV5Z10rwgJwNVctgu0uCbugFJS9YJ2DjWxwfy5gY2H7Yg1uwaXD3H0Kzt2Z2velX6JbnRValaEpnR1XDqC9BlzwfyHMdZCjCQ959enKLv+Xgn3be3PUqdVin110sA7I/Gb+QJ0U/7asSrZLaG0Cj0jL7oxjD0c7YKdJ2b6TiOIyx1H5FjcqJGA5cm5PvgaJa5OkibZ6cppdZbtGX40iMUviRlVilk0XxRO5EpzfqKUkpJLxSKVdH86mP9ZF3Memq8qiw/2zmO4ziO4zjOCiW9uFdU3uxCvxLow8HuXPNmaCg/U9+0HNGoKBv2rM05r98aB5sL/xXqm+3aR9tGqY00addzbUtWu6ofshTxqDu30hzHcZxrijmec1I0d8nKHGxmz3kLrJPjOEsHrh5nZOZajWry+kmGm6zc8+LHfngLSU10ZuBHOSbe1fU4rzR1XBMHv0izYfFjPnUqF4dyYjjKC1sVjheleKivxsPrU0L9oyyGpZbwVR5dGveBPMdxHMdxHMdZoeCCHQ8i4DSsckUv7FXHxi2YGSMyThO3SDSUpWH20zqkIO9stKLjOGsN2y5KbUTbeCTXfpq3yjqztTzY9vbpOM5y4F3P6qDYTblzUZNrxPTcMtv1ZEsk50fFz2OOszJAK+e7R3n9JF6hGe5bQ/uXH8vwykmNy72tyNmV9HJ+sF2PJz47XsR4tBXrACev9BRseqPjBWvo/btoh/WR+3C2wUKExRJ0OIx0jaM30nWv24u67Hwgz3Ecx3Ecx3FWKHIBb8g9bLAyq5/qIl7Iol6jtUY0j95ApECWliXkZIZsHsdxWiLXFrVdLxbWWpXlZn2O4zjOUjE8PiPfiHWuLUrnlOiD4vxizjOqC4lKm56HKtKy51PHca460kK5nWIWm/4gLdp3Ea//JC5tuxyXn8rhczMP8/d0BlySzj4HYpy9JF1n51Wmy0/l8IIcPmbk4cPmGoePXkfy1WoxHZmkmmE2YtQTHwkx7gN5juM4juM4jrMCkYt7XMC3iOrjgUT6cN3a0ZsBVsIHs+NNRxmbv3hQEu3kHniUZKasKqCNPDlbtq4gp+M4TgZtOy20GWmDIdgaFTZte/W26jjO1WJkYoam4pvXnJVJ6XquxfOD5pFrRAnNjtXz85DjrF7QetEDYN4ZegD5mVl48JGKn8xa45/EjbyIS1cic+OK9JAjzHYr5Ys+ByQsM+cy6WEmXaNc/YDGJcSLGE98Wc8YF7sIS6Z6PJfPB/Icx3Ecx3EcZwWCi3U4PNRo9rBc46kcqA0AGwgVWrCJdA6mObW8tFw4K1NKMpSX5KsiZystI6fjOE5F24Csos2k+ohV2oAny+Y0a9+O4zhLSiudlLNszOfssJBzyqw5jW2Uo2X5dabjrAy0JcrsN/PDjDXMUpNvzeHHbRZx+BpH3tI388SOLOt6+jP5GuxAJt+tS+0Hv7CXcQEj45/2OoUOO/uNPI0r+s08m27jPpDnOI7jOI7jOCsUXLDbhxoazj3oUF290FcgU31IZxDW/FGvrh1Iy7H2FgNYg2W1n1LIsU4h5DjObKCdou3M0q7Q/pq16MVt7Y7jOM6ahM85c72Gm/V605zfUt00Z4MtPUdKsJ5WdS3qOM7VJbTEcN+qPzRsNFGJqZz94jtyhZx12uNMPklnv11iwTLs6C/mw8w3a6eY+Qc7DfaDL1ainnWSF9VHOvJHG3rfrXo2bONKyNeYrs4H8hzHcRzHcRxnhYILdn3YoGF1KqtC0/S//hS8TtNSjuWxZafkZJwhBvIgtZVyQat6jrPmmaXdlfoB9TlPVT9ipdl27jiO4zhNsGcOe66pOu9YsmedRTwX+XnNcVYWaJHoGfiOs/gFOXyNN/FnMLMNfoir07Ye9NiP6SFe1y/0SvG6rzP1wgy6crr8Mvn4DpqDHMZsQls/yIwv6x3jYj/KU98H8hzHcRzHcRxnBaMP2uUiPsatD1QnDWueBiBXfVnOH1uPAlOurQPCFTUqAT2xm7PtOI6QbXvAtDmL1S800CYT/Uq7Ca3qOY7jOGsQe25JzjXpeUfJnVdKmrOlz4OqujiOc3WR1s0LvpOt/7jN46dS9WdmyvHgt0uHUHzjTuXtVg/pGpdYPQ5f8qu8MV2+2dce7Rt54ceZfBLnJbqXIA4z9CBPv4GHOHohG7fp1ocFx3Ecx3Ecx3FWGPpgoZUHDFbXOoCLfrkBQDgIgovkrGtei9pIyela+xapC/u5Mi3Qy9p1HKegso1UtD9LMw21O1sL9DZaZmpqik6ePEmHDh2iI0eO0OXLl2OK4zjOGqSFc1GrFNegmfPOnEox+auuax3HWR7QOvkOVq4vy9+uU3mN5fARs+nR1x/yig87yAzLGf3CrsbFKsm3+KR8k44I6hfDqeNFCBffuFNf7YX8wL4tJ6TXdXlRiqfOB/Icx3Ecx3EcZwWSG8yyMr2gVxBu9lBC8iKAPNHhvf25HFV2mtmvQvKYepaokMu6hIDEHceZA6bdNO0TZNGYrnmqc4Y2av0S8+gnrgXeeustOnbsmITPnz9Px48fp5GREYk7juOsReZ6NijOLbIMLNUZJXv+chxn2UBbx50prkPDHWrwcVkZ/LbiO3YaL/mSAzPfOIDmrbqSHr89h19hr27X+u34tl6cWSc/+OJg0sYr5Fw4lggX9WWnIFjoRodZeMXMPNEx6dGW6IkFx3Ecx3Ecx3FWJLhozz001wv6FCuz4SIvZNHhe3l1i6e8/BYAAMSzSURBVHWqHm7M56EH8qT1LGKJ3CIlNUl3HGdpadbatf9J27Zl7r3F6uXKlSs0MDBA1113Hd1yyy20e/duGh8fp7Nnz0YNx3GcNUbFNWZLJNebpWvYDDlps/OT4zgrj9DKQ78hy7YQQgNHPKRrWCXlGPKgu5C4BIJfxCUUlpgpJyGVR19m0FXIc/rweBniKD/2SJoujsOIt8X6QUPi0deZfBJnByXJD9/k94E8x3Ecx3Ecx1mByMV8WxjEsw/N9cEE5HKBz6jcyoANI1fIGdG8spw/Wp8cRflVOqZ+FmuzmX3HcRLQpiraTNFfyJLj0Z83Fe13LXLp0iXq7u6mbdu20YYNG+j666+XvguDe47jLD7dnW20bRNRb3cUrFD0umwx3bWMXvNVXvuZ9V/I9aHNuxA7juMsHrH1i69LcfF7eIihCwjh9igJMflJW4Yf0vDjiMjlp+n6i22/nq/uSyiRy7fring5XX76LT7IIVN9/kmcnXzbDz4MMPBVX+PNvpHXxieBei/oOI7jOI7jOM6KwV6qy0V/cumeyppe2msabgYUmzf6Ss5WqzKB5c3qg5Sm6ZyG9evq6qKOjo4oXVzkxshxVinZ9qOyeGxbHQ0jxeYs2YlhyFQq+kauNJNxQDw8xOjkNtzZ2SnxpWK52/I777xDg4ODMhtv69at8n2Tl156SfyHHnooaq1d7DGyFLj95lyL9k8PzNDAyAzdsLmNNq1fuefyxd42eMCL66KF9nlXY5+NxlcLFzWNdda6pz4owlamPmRGDiCDRNcmayuDpul2aKbrOGuRpe4jckxM1GhgYJymJznCTRKtUmqBusQmKm0VUQyaIVGVxOcFxs40HjMVwVr0Tb7Q9HkR4zBh5VIc9BFDJKYrNopwqF6UxgR4hb0YVzSuPl7F2SzdB/Icx3Ecx3EcZwViL9Nx45C7bLfyZpf1moabAEHuMsKDer0xSMnZqyojK4+yrB31Z7GH9cMsl/AfkIuP3JA5ziqlWbuTNs5YndnamxDDkKlU+gjEk/wat3IJmzgG8mQw/hofyDt69ChdvnyZ9uzZUwzkvfLKK+I/+OCDUasMttXU1FSMNSfd9kvB1SjDWR78XHftgOuhxfjHiKVu7+j7xjCQx8decfTF41CPx9QHVqY11NRCL9FHrNBN0lplLrqOMx+Wus3BvrSHRTqWl+OaYFIG8iZoeiqsi1KvSxhYC9iwoRCyr0FkRzRZpaCqSoGipCSt1e0askVdrXdiywJVqNXtFzWIfhkfyHMcx3Ecx3GcFYi9TMfFvcarwrNd1hd5ZBHuGiBBPJczZ69VmRDl2TzqV+RVOdbPB/IcJ0+2/agsHtupTrY9WlkMQ1bSNHJFwzmZ6stAHrfhpZpVqyx3Wz516hR9+OGHMiNvx44dNDQ0REeOHKF169bRnXfeGbXKYFtNTEzEWHN0/ey2Xkyulv2lZCnLWO7jayEsdd1Xu32wmvfvfFmqtq7UpqdpbHQUG7f+ODrZztjudttr2MpQS8QKmUkDYoP93NpYOyVinvmw1NttKbkadV/KMlbztgdXo/64Z6o87ufIcmxvzMi7PDBBU1O10sy0el3aohxz3ng9w1/RT4g05qtP2Iv3ylFRPPgIiH49LsVEH7ee4TWYGoedul7qS3mIc0aUV6RzoaFeST4pHrXj/pIFur6I6/rV48Zn4/Adx3Ecx3Ecx1mh6CW73Jy0cPneoBPvGiDHjYCgsuinpDaqyq2sT5Tn0q0kmx5lWF8fyHOcPE3bXjy2Ux3EkWKlJR2E2UFidSQP5EY3jYPU1loZyBseHqbXXnuN+vr6aOfOnXTx4kUaGRmhG2+8UQb2qsCslVZY6vXzvtBx1hZp373YTE9P09DgoJyLpHcxfYztbxBO+x+Naw0RK3QyupCka5PatPmSlJaBzaXebo4zX3S2bsOxP0+W41i3M/LQUrEq5XoEWcCGFRaIrJ4WLEWSVQo6RaogKiwKPUuZnL5SSEWJrZSqHVLTPkT3lcqa2Vd8IM9xHMdxHMdxViC4TE8v8GejmZ6miEXowXbUz+VKbVXZbiZHWZXp0Qc5HcnPdfSBPMfJo+2m9GAAxzQGh+KxnbYtaVfwQ7QhnQXiINUUbSXQtfoaTv0Cjq+VgTzw/vvv04ULF+RVoniIvWXLFtq9e/eSfx/QcRxnrjT014vM9NQUDV6+LOci6Z1jH237aoTTvtvKbA0hEXlGX3x20Lf5gQ0rOVmrLCRvqyxlGUtdf6/7tcNS9xE55Bt5l8bDQF6xPzgsjRtBbt+4JQyNPfYtGo9+nIqn39DTpCIdqNDoaRzfyENQlzafHCMmbonaZQphyIca63YNqycS/tVzI4QZeno8YmmL84E8x3Ecx3Ecx1mh5C7VcWGfk892WS/petMTw+IjKssyzezZtKxetD/TZLaJ5srlVxnW1QfyHCdPZRuN7S8EyzqI24cCDTZiHHJNEX0jtz7IhqO/lgbywMDAgMzO6+3tpY0bN/ognuM4KxLbby8FDa/WjH207as1XCWzNYRU0owuKPTZQd/aAmk8Rys6jrPWWOo+IofMyLs0QdPTNW6XeEUlpOWeQJtrZbuNcqRLnyCxgMST1Qrqda2QHHLaMhBEfYIspKeUrMiIYxm1EcLhft7a021uyxVCwRL0gTzHcRzHcRzHWcHoRX4rl+3NdDStdGuAmwKW53KltnK2IausW5RV6Wisyi5APh/Ic5xqbFtp1pYUxPWo15SSTgyrDMtCn2VWt9BJZSa+1gbyHMdxVgO2314KZCBvbEzC2jtLP236au230/4bcThbQ2gUekZfdNlXXWvLhgVd50TeoOc4zpL3ETnCN/LGaWpKB7i4fbKrcVXQI+AKtphAZ9JRVURFLpoIxHRRQCDoyYQ+1UecBfZbePDxb6jyzbqSXrjORrlWbn2UI/FYC8hRLhYxua6v8YwPpar0pbkjdhzHcRzHcRxnwdRvGHDpXo2mQ9c6S0mmfoXdXHmpvbkwW/0dx5k7tl0VYbTTRWpvagV+2oZzbdrbueM4jlPA54TiypHPTYtyhljAtaiQye/nLsdZGUjrxKBa/CEsg2wxNYSCrz+JS7vWOIfa2jUl2JNrYwwCRmn0MTiHobEiv8qTOHx0E7CbyvM+vBCXHwQxXuhp3Pj4x1X8A1xVOnwfyHMcx3Ecx3GcVQQu4uWCPoYVPIiwLkch1XTOP5fHF7Y8kMYLKspvlUq7juMUZNsJ2l5F+9F+Acs5tfvoW3Jle7t1HMdxslRcF6bnjey5JfpClZ3oW6quhVsp03Gcq0+4Pq3/8B7MGapJW5bfbD7yc3OemcG3ooOv6WKrIV8sr0Ge92vyyYgYN44XISwrwX4NcWgGgl5YD0mHH+XofUJ6sI/PUmgcjheluA/kOY7jOI7jOM4KRi7iGX3QoHFgwykNacivMn1oobZlWWcuDzWydTD55/OApNl6OY7TSNHOmrQd2xYRyrbMivY6n3bsOI7jrG2KM1LFOWTO13tVdqLfCn6N6TgrE7RuXG82/FTGCuV4cx8z3DC7rpDrL8ZDmfV4XR6XiRy+pCFuHC9CWAyyL7PqoBnjopLoRofeSGbixTgvinAu7gN5juM4juM4jrMKsA8eqh5CyAV/xF70K7ix4LuFGAlyLFNrc3nIkZZhgZ2crdatO45TRSt9gqWldl3VZlvJq1T0B47jOM4awp4LWjyHZM8/7IrrzAo7WpLNX3VtmjKn85vjOEuGtERe8JUo1bhd4hdE8EMc7TX4Ybadyku+tOmyHDLkAA3pMR7KBIle9AP1ePDresiPzgiz6qAeU2WGnvicjm5J9GNexDETr+itWK7pOd8H8hzHcRzHcRxnhWIHyewDiVSuTi70o0xRmbyqAzcWcnMRbwogl2UZm78V1FaBic/VFphPHsdxGLSdtD3OkUVpf96GHcdx1jb2XNTiOSF3/oGkuM6cxU7T81eSprp+zek4K4OaDHhxm5Rf9Ll91mNx5loRr/ClTdfj8r5NhnOLb9OlxBgP38YDiV70A/V48BM9Nig+OxEjbr7Fh65MfGRkEMeMPI2HfJq/0feBPMdxHMdxHMdZoTQMkBmKgbjEl4v9SJrfpmm4Lgk0K7NlmtQBpGWmLEodHOcax7bnEhXytM1nW9kseVvG27DjOI6jZM4JuWs9K5vtrCPnpaivuWa9fjTpfq3pOCuPGW3N0rwxyy1+M05+tTBrTuNVfrSjccTEnv6MvpDkF032rJ7q2njqeFGP17iutTjLzzixYXw4+TZeDKPfs/HU+UCe4ziO4ziO46xgcNGuPh5awNmwTcN/9Glc81lEpq/WzKQDtb8gYn6tn9Kq3TSf4ziNZNsTZBXtzOpbjVbaW1XbrayD4ziOs7ax5xYOp+ea2c492fOUPY8h3MRmw/nJz02Os7LhNso9RWjHaK7st7fVZ+GFX2jnOjdNZEV6jHNm8cUOu5guqQhDxD/5Np3K+Kd6QSc6Ey+VV3J8e61h2OSqIQxZezvkkIXyxIYUpXmDXOoSEriEcrp18S7ecRzHcRzHcZyVBi7YLXgogf/S07B9SKFpKrN5ISviyG/T2JVLaSzXkktrkMW4rR9oZtdxnPlTalsmbOUaLrfKpJ0mbVZJ227atkskuo7jOM4aBNeeMQhy541WrguRC3mrzjtNzkaNoLxm5y/HcZYZbuto1dI1SOuPS4Zl6DNCel3H/iTOno0HQd1perinRpwFUa+N7Wq6ymf32SvFUdF6XL6dV6vHUXH55AXi7OT+PcbFZw3INd36PpDnOI7jOI7jOCsUuXA34OYlfeiRkwHkVTl8G8fNgAJJuZTGchXI07ScTIj1ytYt+o7jzJ+0fReYsJVn22kL5HLZsrNUyR3HcZw1w2xnnWbnJZxF7JlEzjfm3FKch2TZSMP5CXGUx75NQx3me350HGexQTtlD02Vf9Jkg1RkIR50xJdl/SdxtHGEdTaetPeyLz/2Q5eQSy/LMasuzKgr65X8YsadkXMdEONiBJmdx3KZuWd8XgT7xle59X0gz3Ecx3Ecx3FWOHKhz84+aJCLeib3AEL1U0QvkZdzVpN7yAFZrpxWydl0HKc1tP00tMMFtEmgdtUK/FbaakmHw966HcdxnPmCcwhc6YxmzjP2nDPfs55eLy/kWtZxnMUDV49o26H92x+DZhpnupV+Gs/4YgVx5NNfE33Mnit9o07lLBN5jDekx7iUB704Ay/IGK67xKMdLUN9gDBWUWU55wN5juM4juM4jrNCafZwARfzoBUdUOioLMZzOXP2cuVUlSvEGw7QkE/9Zvkdx2mKbT9FW2+hjUJS2fJYX/PUe4+8HaFZH+M4juM4oMXzgj3XaKiVnDkdew0smLhNa9BzHGeZ4GtQ/DD7Ddej/JNv5MmPkdlt/OO0ujzEg88ybs7iR7n9Rl7xK/SDH/7qcfHVzTGOD+QVs+3g5Bt57KIee+LrN/FSx4vKNDgfyHMcx3Ecx3GcFUruQQMu4tXXcAp0Z31IkZMtJqZ+afmzlZytr+M4JSrbiZHndCCpbGFG3/YuOTtV/Y/SPNVxHMe5ZsH5wZ4jZjlf5Miep+Zhpxl+vek4K4nQHmcofrtO4vVlCNW1bEqQIF+b+DMz7CBHl8HtHG096IWw5sM38URs44LRi36gUV74NS6fw+LLDMCAzV/cG0OHCdXjNOQTF2foxXjq+0Ce4ziO4ziO46xAcLGeGwiz4dnQ/PDVnuSO8rnSUtnQUTcLzexp3R3HmQNJu7HtaK5tyrbOXF5pvzmbtszoO47jOGuHtvQ6sIVrQpC7LpzLecTmb/Wc59ebjrOyaOOfNGV28BHXWXohPSzxq/shFP4Qj7PaIEc+CUsstnnMbqvrhVzsY9Yfooip3PhSnwa5LENc0+O38SQOPy61i9Lv6SEqdtkPM/FifdjlfB/IcxzHcRzHcZwViFzUx6t9uYCPIKxpuQceFqTbvMXdg8nX3EKd2coqEcvM1R9oLJU7jtM62faDNtdCu4LGkrY+7QNk6TiO46wlZnAOsOeiFs5LVZTOI3O5Fs2Rqcecrm8dx1lS+O42NHM0VXYhHmbY1fDdOYnjm3TlePBVnwOYEVfIkVCOV/qSr26n8MVhph1MWRlckOl38uSn4SIeZ9pFNI0XURK+jZd+Hw/pNu4DeY7jOI7jOI6zgpGLeMY+tIdstkEwpMPphb8+vJBlDMNyarcKtTcr0EnsNLObQ+vtOM4cQbsxbaeqHUFa1cI0j23tkHmbdBYCHk6Nj4/T2NhYlKxsUN+pqSmanp6OktUBtvHAwABNTExEyephdHSU3n//fRoZGYmSOhcuXKATJ07Q5ORklKwusD/eeecd2TdrkhbPH7NeZ5p0qztLrkCF7ZaubR3HuQrwvSZ+bXyfa3/cRvFrx/fmirjOuNM4/GghkYsU4VQufugD5Md+0I3lG3kxW07iMY9xEEr9EFebcCKLdWVnCekYmgv39SgDrkiDPnwT94E8x3Ecx3Ecx1nB4KJdH6JrGKR+M+TiP4Y5EvJEmc0PvdloRQe2g+cDco6zFKBdZdsW2l4r7Tj6zUitt9T2nTmBQaKPPvooxlYPOPYwKPH666/ToUOHxL355ps0PDwcNRrBIM2pU6fo7NmzUbL8YHAFdf/ggw8aBr7OnDlDb7zxBl28eDFKVgeXLl2S/YJBr9UGBvCOHDmSrTv2xbvvvrtqB/IwKHzy5EkaGhqKkmsbPVss+lnDnPcW6/rSr1MdZ6WAtsjXt7zEjLsQwjK0UZFxe9UfZt3V040fdTQMP02v8vnOlX2ONqSHWYEh3pgu+Woc504viIMcDv8YlNWXdKQhU5yxJ3GoRX34Ju4DeY7jOI7jOI6zQrEDYblBMftgPX3IDt1UX28ERBNpnKecq07VQ/vUZpaoU6VrpblyWirDcdYwVe1T2p5pPzm9qjavZPPMtT/wNtwSeLh/+PDhGFs9YL9jwAWDX/jv8Y6Ojvjf6tVHF3QvX768ogYysP0//PBDOn78eGkWGGa1nT59WtK0vlhnrAPidtAPNgAGKjHbcDnPX6jXlStXZPARg6Y6mxB1wvqhfkjDgBLqq3UdHByU9HPnzsn6hYeOVx/UFzPWMLhtZ0KifhhYha91Q10xmPz222/LbD3oY93Onz9f6GBbYFDQ2lpOUA9scwx4Y0BbB75tHG0Eg5aYmagD5Kt2Fh+v61xaAwZpcYymx99s5yyg5dg+aDHaItpUrj1AhrafS1vJYPuiXay2AXFs67RfU7AP0M7Rdpaz/10IaO9o5yulr1pecG9a/2lcU6RHmKmn1NONj34Ah4IcDjGephe+XruwK+QYLivrzaDMjDzrt7PPYSsP+UMc10u4G9c4CHFEUR/4MT3xfSDPcRzHcRzHcVYozW5Iw8V/mZxMydqa4w3vXG+Qq+oDaXVNQ75m6+I4zsJopSVrC4RuVdvPttM59hNrGTyAxINJBYMomB323nvvyYAEHl4CPMDE4AbSjh07JgMXy/0AGXXdtWsX7du3T9zevXtp3bp18oAYD1UxQIlBCNRbHxrjISVmjGEQELPGsJ7L/UC5t7dX6oRBIj3ONY71AagjBpIwaIQ6v/XWW7JPoI9BQKwPHsQi33I+iMUDejyov+GGG6Rtoj4AxxEGJTHwhQFKHFtYFx0YwzGFNKzjcg5GolzUB3VHXVSG+m3dulUGjIEOOqKuGPzCuuEhONYX+TAQi32G9VxJM0AV1Bn114E8O4iKfYhjDDJsB8Sx/qsJ7LNR3jdo/4XjNoN9oX1aDuxD7D9tQ/bsUpxrcuccQ9NjF2nN0jMcPXpU+l0caxYca9hPK/H4agbOHei/0A+sJnDcoM44r2DATsH+xr555ZVXVsR5cb7gGJvL+QPrfa0O+mH4X/8FQL45B5n49V/QMnKbjnCRL9qz6fhpXHwzyw8ZCnnZPjqkUnqFk5l1+HZfjNseS+OiJ0C/rotv/oWZeUFH9KKvzgfyHMdxHMdxHGeVgQcaxQV+xIaV4sHHPMjZS0nrMBdmyzVfu46z5pntQWf0Z2OhLVDzz78XuvZBP6ezu/BQDq8OxMM8PLzH4JDOMMBDPgwUYeAFgxMY/EN4uUGdMWBiH85jQAKDdzpzzb5OE3oYoMBAC3yslw7YLBc9PT3U2dkp2xN1wjphQAEPhDdv3iw6kGEGG+ju7pb9ggE86GAQCTPcMMjU1dW1oPPuQtB646H2nj17aOPGjcUgMbY79gEGHyHfsWOHrC/SkYZ9gPXD+q5fv37Z1gHHOrYjBiJ18ArHEB7g33jjjbKfAPQ2bdoketu3by8G8TDwivXB/sHxB7+vr68YAFwp4LjB/tJBhzSOY3L37t104MABWW872L8awP65wsfXu0eP0lTsH+CwfkirAv0e9qNuh7mcg1o+Yud4bKOPwkCk9sUA9UM/h/4ag0cAaThWMTirfQXAeiOO/bucg+QA9UO7R/+MNq/bGT7qBoc+Aml6XgKQYb3Qh6Bdab6rCcrEuQb7AfVXsF2xj3Be1DpDDzoYaEU/jbrrwD6OMYB82BboO1YCqA8cwDlFz++Q4VjDPsD5CfsG/yiDf7zANcJynz8Xn7b6j9tqPRy/Tae/mFboF7pRT+PtLEHY2sJP4+zL7D4TDzPnomUjV19SEE8cL4JL0mdMGN/Q40ARlxl+Go7f19OZeup4UYr7QJ7jOI7jOI7jrFDkAj76uZt/Tdc0q6NpIPvgwKTXQ82xNkEany+pneV80OE4zuKxWH3EWgD9HgYcMMiCh/h4oI2HjHiQh4enGMSAHLPg8FAS6cuNvn4SD1LxoBF1xUNG1A8DLFgXPESFHtLwOikMFmGA4u6776brrrtOHrQuN9imGFzEQ2I4PHjfsGGDzNYDqDcGhLZs2SKDLBjMw/oqWI9bb72Vtm3btmyDRngIj2NC64+4naGC4wv1wzG0c+fO4hjDvgIYMMJ2wEAe1nc5QB1R9vXXXy/7A8c9Bkmx7VEv3bZ4YI90HbjEOuD40ll7eGCPvJDjGFwpYN1yfSL2EeqvYEAYA67QR9gOqqwGsB9RZ7QVtPN77rmH7jl4UI47rA/6BPQbmO2G/gKDK3rdh/2KASMdhLkcB1o0fTaW4pyDwTgdDAIYUNFBf4D9h7aEOmO9UG+sA+RYNwz4YWBa+8HlAn0Dykf7wvbUwSKsFwa+8M8iGBiCwyAR2hD0tP4YUMZ6t7ovFhv0uxisR9+Ldg9wnKHeaOe671F/7QNQZ6wb+kQca9gvqD/SIMc2WWlg2+v5Bcce6qmDqDjXIo79gP4PxxzazLXGDP8wGy98A49hX1t2G4fx45YXfY3zEvo2nW2kPxCO4RAXezHOgXK68fEtu5wcaJwDdTlXGLE2zhfOw2HGXZUdVJ1DvIjyCt8H8hzHcRzHcRxnhSIX9nxjqv5cQB658DeIBbUT07Asa+XJ2atkHnXNsRQPZBznWgHto6GNtNBmoNFKy1po69P83o5bA/0gBorwgBIPWLHd8JASDg/0kYZBMDzgxwNNPOBbbnJ9tz4sxoNvPNzGg3sMwkAXD/YxkwoyrAPWRx8mLyc6AIc64yGwDiYp2CeQ4+Eq6ou4fSCvr+BcTjBggIe7qDsG8HDcoI52wBdpis5uU7BPbPpygeMe2xP7BIMHeFCNV7di/6COSMeDe51NiPXQeiMfjjHsR2wPPcaWC+wHbH/sBzxsR91RVzjUHQ7tAoMM2HfXEugZOng90VawfnDTcZ0xGIH9h8EWDK7oABGAHmYgYdudOnlSjgHdds3QnqjqelKAjUz6bLYx8xODKFpH1A/tC4P9APsX6dpv4/jD6ytRFxyHGLC0g5XLgfYF2P4333yztA30aQAyrBMc1gltT2caYwACelg3/MNCf3//svUT6ANwLkE7x8AW1gn1Qh+A/lr3I9YHcfxzBdZHZ+shHfsQxyS2BfLqPlxJ6D8m5MAxhGuAj3/843THHXeILo63aw2+uo3XkLjODXEEwj4OqZjNhtl2dW1ezmgc/zSB2XkMyyRdfWiU8uk/WHAMZdj0lnwO2Ti7khz1lDZTzwfQHQT1UD56h3aEWbdkJ/GX/yztOI7jOI7jOE4WubCPN/7qy8V8Qk5mQXqhkzxIgLR57sBsZZQwZeTy2RrkHmxonuV86OE4Kx20j4Y2griR2XQNq2S2Ft2qntM6eCha9dAeD67x8BcDYXhwjQd52Gd4KFn1UG+5wYNSzK772Mc+Jg+7MdCCh6142Ksz8jDTC2E8bMVDR6w71gfrhbDOeltOUGc80MW2x0NfPCy2D3jxwBcPtrEut912m8z8WknguELdsY3vuusuuuWWW+SbhainzniEjg5EwmHwBPsJ677S0AfzqDuOFRxHeBCKuuL6AMcO6o59hIE7e52Bh9xYV+zH5X5Ijzrgm14YuMK6YABCBxuxXhggwUCWDvbpIJ8dKMG6rcR91ArTvB9wnJ2Mboz7NQx4YWYaBlj3798vPtZfX3GIfY+ZoQ888ADdum8fXWF9HLcN57qEhZynZrON/gv1RhvTQSA7SIx9hOPupptuEhlmkKI/V9CfYOAFbRLrtxzgvIPtiPXA+uIcgzjaCuI4xnSmLnz07TpYBrBuOmPXtrerDdo9+gMcV1gH9Mvo7yzQQRoGJnHO0YExDESi78C+wfZAO4PuSkb3j4L9hGMPoP4I6z66JuBDS9c2+Hydix9vg9KPE4Ofxnl7GV+IM+6CvOw32Le+ulJc7RunM//YyTf99Pt45jt56X4EIS34GocehCEt73wgz3Ecx3Ecx3FWIHrBbm+YEYasCqSrvg0rRc4qeaSqjNReJdAzumk+G9N6NuhkZI7jzALazELaDedt1sdYKtunt9tK8EARD0fxqjI8FMaDVH2QiDAGtXTgC2E8qMNDulb3yUoAD4FRbzzwxsNUDBphwA7Hiz5ExUNYvB4MD8TtzLflAA9GUV88HNaHvngQDxkeuiMdPgZfsM90doo+0MbADHSW83yls+8wiID1wANrbFc4pOlDROwHffUfwng4jwfBGPBargEGC+qisyOxDhiIxPGEbYs0zObEfkEbwYAEBsjQnpCmA8JoT9DBflzuYwvfKkTdsb0xUIU41gF1RBvHPkAatj0GULAOcLbeOO6QttpAa8A+QB8wjr6AHcA6Y/9ghhr6AKTb9oN2pa8VxbbAsYk8QHrBWfpC2w6zbTInmwWtE+qMgVfsLxyf+McFgPXE/kW/pq8+lAfyDOqAPmK50UFIbG+0GQxkIa4DezpjDWid0V8r2s8tN9jm6J/RB2M7oz9GH6Fgu7/22mvFsWXPndhniOv+Qf+CvmM5wPbGuRD1QV3Qf+OYx7aHDzkc1gG6awbeXdgGsh3g68+GCf/sEMMq50NXZrZhG2pcfFmKX/pWXia9wVdXiqt942RGX6h3UUbJ1dcJhHgqC2HseyRCrLLUdfxTRnI5juM4juM4jrNi0At2exNaBXSsLsKWBrlJz1lP8zcDug36mTpbnao1Su0gvpQPSJfKruMsG2h75riuOsabHfm5tPm2FTxUuRqDHKupLevDezxExcwUzCbAQ308wMFDYjwUxkwerBMePOKhPx624kEyBgHwwA8P93RgY7nAA1QMBOVmRGFQEuuG9UA9Mbikr0UEeJAMHTykx6yc5RpEwraEQ53hUFfsCwwmoa44dvEQH/sAdcQ64aErZtZoHoD1WM6ZKnjQi7rbB9M4nvDwHfVCGNscA0JYF6wXtjvqjzTorITBPNQXD+VRD9QLYewP1BeDOmgPWD/UG4Nd2E+YJYSBPciwb9C+MOCC9cQrBJcTrIed4aTbGw6DrhjYQx2Rrt9fxHpinQGOJ2wTzHZdTeCaEzPphtndd//90v6vZ4d9hwEkDHph38Gt7+uTfgwO/Rz2H/YztgXCF7gP0fSifZl2BpltdWkbbGiTFekNehG8FhPbH20LM7wwCIR9h32E4wwgLwbwoIPXwKLuaG949SF0dBC3qoylBu0CA/jYL5hBjTaDYxHnEbyWEdtWX6OJdUN/gleaog1h3+EfT9Dn4dhcLnBexOAdBhdRJxxH77zzjrQvOPTN2O5Yr7ffflv6NxxHOIagi32DNoZjDOcutCtsB+S52kj74OPilVdekW2KOuG40v4Z50bo4Hix//CDfhq68LGfdHYo1guya4GpqRpNjNfCzDbcLHKTQaup3zeGwTJOjXFIOG6aluhzsmhofo6g+UFPcodAXW58yQDgN6Rjv5T11W+Hz5mCfZa3x3QYEV881meJiSMidhFmCrscFv3E94E8x3Ecx3Ecx1nB2Bt/DcO34VYpac4hXzNw89EMrZ/elIKqklXHrpsP5DlOc0rHcYvH9FyOfOjm2nll2zdyDOS1+0BeAR7g44GcDtxhIEwHG/AgDg/04UOOh3oYXMEDRzyE1EEADIghrPHlANsbAxN4CJpuewxe4EErHlxjkBLrhHXAQ3w8fMRDcaThwTDCyzl4hLLxsBf1A9g3cDjv6MwPpEEPD0uxX7A+kGP7Y93xEBz7bDmPQdQVddBBPAXrgbqirWJQFXXFtse6QFfrjLzLuR8U1EfrgTDqD6fY6wHo4fhTHbQFPBzH9/MwOIv1xHqtBFDX5Tw+rjY43oZ4X+CYQ5sJ37Fi2Ed7wqAF9h3a2sjwsAwcYV9hwAV5ALYZwpcGBorB/mIbmm0Jmd2y6XZuZbs308EAHfoz9BP4RwsMqmAACH0yBlm0T8dgHQbC4JAHxyBew4uBJAxAYTu0UpelAAN2GIREPXG+QX+B/YBBMWxjnI8wkIdBPdRb/xEDrwOFHtYb56PlGPRSUC8cH9iG2B84HjAD8uDBgzIYhu2PumI/Yb9gthvWDeuEvg7rqMcY0nBuXa6BfqwD6opBObx6F4O++GcEbGPUFQ7bH+0E6404zp3an6EfxzojDfsQ8eXcN4uJDuTJ9+x4O4XWHfzixyITy+jFWW1ikX2EkQkz56wMPzOzD3LkE19kiGo4+JgJaOOpDzhWlrOTFAlqWgiLr9dxRl7ky/ht3ME2v/N2HMdxHMdxHOeqo5fpcvFuyF2+QwY9m6b5SvoatjZZ1mgxXw6w8my57BATP0kv9HJ1Y1TfhvHAYakeVmtZjrNaSdtQDqujYT3yESvZiGGVYVnopmnsl/IyEjeyto7wPZelHnDytuw41ejDeTwIxsDetQoGhPTBtx0AdBpJ++7FBINZGIg4+u67dP9999X7f+6n0Vdj0AiDXRh4xTUeBvUx0IUBFsyWwj5EuGfdOpnhhgEO9PDSzyd9PWSQ6Nqk54JSHOucpCtpPgWzuzDIgkEwDLhgFhQGizCQgsExbEcMEiENM62xPphpiAEjzH7DYA3WZTln5GEwEW0Dg0dwCuqIfYC2gu+zYoAM6wW5/R4e9iUGLrFuy4kOlGIQDz72hQ5uYf0A2j7A4CnCcNDFMYjjCuuCfYV9hH3iVLOUfUQVoyPTfExO8j6rKht9CHtIjs1J2pXGC7nMg9Mgy3nRxhKjF+xAHuKFj+6q0K+nY9CvpJf6MRiqg1BA7rL5T8pjuaprf4DtjLD6kGJGoqanrMqBvJGRGRodQ0PFu2Sj0LlmwTm/u7uNevl8s359/kBeSvx4c9Yqy932HMdxnHBxr9gL+twlfLPL+pKd6FvSnNDXm4qUVNasXJSV1W9xXVAHH8hznDzZtjdL+0LcHvVIbbDDcchUatux1a2UmThm4+FBWvEfx0uEt2XHcZzWsf32UjA9NSXfxSv65ujbvhrhXN+tcq0hNAq9RF90Yxj6qb00nqMVnWsZDOa9+eabMtv4Wh7cwmzd9957TwYsb7/9drk2capZ6j4ix8jwFA0PTZuBPLRNWw/0DRqst33LTJRLfyASG6v7+dxBA4Ryyjqz9RUhi9XB9XQIqT3YqNq2LfVXnDmfewUyNjZDlwdnyHxv01ljdHYSbdqIacizH9wLxY83x6lzNdue4ziOUwaX63phby/d9UZAfRvOofKqnjzN1cxeKqsqE2WldsTneBHOoHLk84E8x8lT1X4sqQ7ietRrSkmHwzaOkLZjidu0KpmJ+0Ce4zjOysP220vBVBzIs6/VDF69r0Y413erDD5qqRqFrskjNtjXtUntleJY5yQdpHnWGthXGMzDbN1reXALrxjF7Dyso8/YnZ2l7iNyDA9P0cjQNE3zfkLLxr+UBT+AplqXBwF87SeCHl9vmtl3eNWm6gcRx2rsy2syRaXoGsIEPNZgAfqFQm58vF4zJ4ePAiQf7HIdtBxdC5sfi6BXt4sBzMJ+MFe3r3GuHPwVz/DwDA1cXhVVda4Cmze18UkGh/HS4Meb4+RZ6rbnOI7jNKKX6+GGoh4GGs9d0qf6CJfymzyNuevkbOdkSlGGCVtEltQ/B9JQTx/Ic5w82fZj2peieupL25RQoGQn0cVS23JJjyl0jLykw2EM4OGhGQb0lhJvy47jOK2T9ueLzdTkpLzusOiZYx9t+2oNp/034irTWiImspwu+4WeSbfh2ZiLruOsBZa6j8gxdGWKRkamaKamrdr6INQptNeQVmq72XacysKwWhYRV6QxzfuJCrsZm7Cj2ze1WSVXlvbf4hYJzIzyQRXHguMBx8VS4Meb41SzlG3PcRzHaQQX87iQtxfzGk5vsFI9mxfh0o1BkneupGUBWx9NSXWAleXSS5h6O46Tp1k7KrXL2dpbRPNoTvjIO1v+qraalzqO4zjXJObarej/K84PVSC/5mjtzDUHknNZq+dGx3GWFsxIQ1cxM1ML7R8z67h5hv4AstAvhDj/Ur8WdQo565biTXzMoGuiDzCjs5A3uPBtO8zq42WQIQ9sFjqNjhdiV2wnaZpu46tiIA+vN3SclKU6Lvx4c5zmeBtxHMe5utiLdzxssGHrVNeiuiVSnegvBFsHwYYjDfVoQqHLduaSz3HWIs3auG2XqodlYwutU2rLDGKaN+1rbNmlfEbuOI7jrB3Q++OBeonk3DEbpXNX9KuoSi+VhbDG/fzkOCuS6enQb6D5Sw8QRsViPPzwul68qUV9kXK48EXfxKMPTcmDUCa9jctiL8bVRx7OgXIQLsqLZUQndqOLY4/yRgqOysAbfM1vbcEhUdNzjhf4K+IrfiBvZMS/UebkwXGB42Mx8ePNcWZnKdqe4ziOU41cxEfsw3SE1Sl6kZ9S5JNlBHq4mYjRHNZ2Di0vp6cSrY/6zS0GinWA3Vnq4DiOQdtOpFkbbtb2qyj6kqScpngbdhzHWVNgZgqQc4U5X8x27rDprZ5lWtLTevj5yHFWLNOYkSez3ripxp80W/vjNlybqYXZb/wrpwKkBxckvIxhG099nZHHvVf0NT3OlCvp2/R6WdLvSX0hjnZgF9PyrD7WsZiFh8HL0DchzqEAbEJf/Hp8xQ/kjY7FgONkWOzjw483x2kNbyuO4zhXj3DRj+cPYdAMzsoA4talaD5e1B0wumrLkpPNhubBMluX6OfSUqDRip7jrEUa2ifaSovtRdpWCLZEK31B2lYlxjJvw47jOGsLnZGHM4eePeZ6HpnTOSr6TfFzkeOsWPBaTarhfhX/ZIpZa2Hm2gxmypkfWrsN1eP8kz4mztYTOzGd4/rTeCGHLmbHxXzIb9M1Lr+SvO6HWXZxhh0kHKZYf5lVKHrqxXzsNL+g8Vn8FT+QNzHhHa1TzWIfH368OU5reFtxHMe5OuCCXR3AAw59yKEyYHVyaB7x4aBrwpo3Z0NtN7MP7MMXpVme2ewp8l+OGduO49SR9qSuAm1zrbW81vWUok3H9oqYt1zHcZy1Ba7Z4Ox1XnH+YV+dxi02jpDohmjAXA+q7pzOM03Kcxxn+Ziexoy2Grdn/NSPYfQp8Scz3ExcfhpHfptufLHIPnoMlQORGD2bnvOL9OjQQUm5cZYdkLimG335BqDMwqvLeBHzRFkm3cZX/EBe3AaOk2Wxjw8/3hynNbytOI7jXD3kIj6h9KBDH2Rk9BToaLostSNHXpOvmQ3Q7IFHKU3LYn82mznmk8dx1jLSZrQNmrZY1WarW/LcaNYnCFwvvCrIcRzHWRvYa7gilLmu0/NHeh5pOK/Mcp6Z5Sw0K37N6TjLz/QUt8Ni9l2YTSe/OLMt/KJc4lanCLGl4GSpcuNLWkaufsvp0aGTK+qo8UIHUQ1HHZm9F2Qyk6+YxRdkvCjCufiKH8hzHMdxHMdxHCc8aJAL+hhWB/TiXtG4lQGRxbCQPLxI9VNyDzsaZIjDTix/NptNibb1Pxwdx2kC2ou6SLbNRj/bMufYXnP2rQ2kQier5ziO41xTSH9vrtlaPaPo9WLVNWMhj77VW8jZBfWtKtNxnKvH5GT47h2QWXXxF/4gj/GmPvocXsYm3ZgOn0NSDmLoq9gv4uGbfAEjb+Kj/5A454O08CUd8aCr+jpbD+VYO7woy2M89X0gz3Ecx3Ecx3FWOOHCPtwowC89wIgX9kr6QEL1UzkLgkvI6jK2jKYgL3RjvVrO14TFsOE4a4JM250Tps3aVlfVBtO+oogvtB6O4zjOqqSYhY3zSQgtKTjbaDlNrxcrzkt+jek4y8/UJN/jxjDGvtShdfOdKaTxGhOxoFnI1S/SgZGXfA6V7PAyxuHQHSBa/+ZdPT31Q3q4N29MR4gdvpEXQqV8Wk4hZ1fKr/HE94E8x3Ecx3Ecx1mh6MMFXLinDxogUwc03eplH05EfU4MrkW0nJQqOWiW1owiH/tYB/0PTcdx6mTb9xIxl3aOmEhYjjTU02fVOo7jrAG4v5+emgrheG6Yy5kqd16rPvvUkfNOPOfMlfnkcRxn8cC34yanpuV+r8Y9Bhx6Aizlh+vIBj/kE/0olzhsSDx+aw4/9sWaidf9uh4HRE++ZYdfVj/64lB66LfKjuWwEeMgF5b68vVxSR7jVc4H8hzHcRzHcRxnBYKLdX0ooWGLvaiHs1hZLp2NBafhFsk97GiwDaJeNm0e+De2HGcOzKFN59B2jqVa0rasfZJ1Vm6xeb0NO47jXPugr5cH04jYa8Dk/DAbcj5J8zSzkUlLz0mO46xMJidwr8rXkfhxtxFC6vOP23L4MdDTuPFFm70Qhx+/RSfx1A96WObsybfrTDyXLjr47p3I2RLSxG6wLXHoiF6Mqw6vZFt7iAc7KpdFEc45H8hzHMdxHMdxnBUILtYBHoJrGCCeGyCzOkAv+GclY2suNCtD65DqtFCrMhXr7DhOQtJOWukDKnUgj2lzbrMJPqvWcRzn2gbXadPT08V5IwfOBK2eDVIriIsz9pud4xquG/085DgrkvHxaW6e+AcAbaMyTy7Ggx9CgRCvcQdg08MPg2TsFXENlfw0XfqG4MvP+Gl68PHPaTbOHvxao369iwpxOPxvW3htKIgz8OIMPuhhph5HQjzx23hRZF2JnDx1df9z7/UPJ+gPnh0SfzY62oke+1gv/cPv3RQlznJw467FG4++2seb46xmFrPtOY7jOHn0Ul0fVLRy6S4X+ebBRtM8mpZ5EJLLV2UrK09kqY6NNS2LfaxPR2cndbJbTJo9AHKc1UBD29F4RR+gYaQmOUOa1Y2+ytKyNN5g38bhON7R0UE969YF4RLgbdlxHKd10v58McBMvPGxMfHRI0u/HPvmtI9GvJAhHEKCpmkNNc3qBy/GdV00bih0QIVeScdxHGEp+ogcGLS6eGGCpqa4PJTJ7REtEqUnLTVpujGSNN96e04SmEYJI8J6HyTlRlkVlenpNoMiXJSjbrpd6/UM8casGfuMD+QZfv9bQzKIN1cev7uXfvbzPpi3XKzlgbyzg9My6Hz28jSduzJN2zd00A9/sj+mOs7S4gN5juM4S0t6mW4v/pWcTGl2mY9bA0mFTsWNQpq/mb1sWpTl0lJJVkdl8LmOePVId3d3kC0SVTdJjrNaaGg7Go/Hdpqea2uKpJn0kmaU5+xZWc4GZO1cn+5166QdLwXelh3HcVon7csXA8zGGxsdlTD6ZOmVY9+c9tGSrjLVkWXUNfpFyOZhirCui0kDVrcZreo5zlpiKfqIHBMTNbp4cdxeOuaGyBgzkDfDAQ3DR16JRx2Jc0Dl7Nflid9e1oOPYJq/nC6LshzwSrTxZa5M2ANFheuI2ahv+x7d3iLJ5FN8IC9iB/Gu39RBn72zV8JV/MeXRmh4vF43H8xbPtbaQB4G7772+ii9cWIiO3P0hx7p98E856rgA3mO4zhLDy7VcZFvfZCTpVTJcWuAFPVzzNVmVh5llXnUb9Em1rWrq2tRBwJg03FWM1XtR8mlQ6ZHvk0tyTmsaSVZYi/99p2kRx3VVLtd3d3UyW14KfC27DiO0zppX75QYG9qcpImxsfRIUufLL1y7JvTPlrSrUz1JcghuFhH1Sv01WdEpuuSyltkLrqOs1ZY7D4iB4oYujJJw8PTUYK2WL8WrYP+IgYFjmSarbZl1DyE6koZ9ShsTAlmsjlMPXLpXLLdbKbSqFvDNuVk9HxWrnpV/ZIP5DEYGPnpf3lOwnff1E3/7Aevk3Azfvp/OyezoLb0tdOl4VBHH0BZHq71gTwcnzjW9LWvOTD4DKCH8G/9ve0Sd5ylxAfyHMdxlp70Ur24QTEX+FbH3iRUXeZLLuS1esnNQlVekEvL6rOsqZ3oW6w+wnZ9AF7Ph8G8xaLqJslxVgsNbUzj8djOtkEjK6VaOYc1pq1EZIkO8qhE/EQHaL5OvF6zt/k/zM4Xb8uO4zitk/bTC8W+VhPYPhnhtI/WeKpnfaWIs1+ZhvUxaaleM+ai6zhrhcXuI3LgtZrnz43R1HT9vrYdA1vm6hRSDO1pM5WBrxAQQnqQB1ldYmN4eqlSyQ840sYpWFfYr+dinwXardjuJScv+axTtxfqrelI1ThSo3Y5v+qphspj3J/CMnZWUyuDeJaP3dhdDKJgkAUz+xxnoWDwDsfSP/nSRRlkhp8O4uG4w+AxjlkM3GEQ2nEcx3Gca49mDxjCjQJuCoJLb7rSvEVc9RBPdECaT2n5pq5VvSY0rA+H8YCo5To4zlqkok1XUWrrMZxrY6msiGkeWWZAvpgX7Tedwec4juOsfuT6rGIQD+AcUnmeMBR54Rs7ij0XFamQZXRTZtdwHOdqgWY7MV6jae422towfBd+4c/EOYzXs4cfyxEu4kiPIekD4AqJ/DSuUo3LD6/oRDzmxU98jTf4GEZrls4eQhXpgbIcNvG2GetLuqSZ/DHuA3kMXlEIdECuFa7fGHTfPTMpAyk+mOcsFB28w2xPDN7hWEpfnYnBOgze/dbf3y6Dd5gBqgN4qusDeo7jOI5zbYCHFeECHtfuejFffogB5OFIdBpXENZ8yozG4RvdRYVtq+W0fGDr2IxSXg77QIDj1NF2lGtjTVH9inxzsVfUQZbNgS5eveY4juNcO+C6bHpqqjgfiM+udF7g80rDeaLFc41YrdKNZTqOs7pAPzE8EvqNmZkat/PoF/HQ9iHHzD39iSZ07E/j7EsO9kSzkBv7sewQr/JDuVYe7NbjhSviKI+1uKuCNqjr1ON6L6th/AOEymyaOl6U4v5qTQaznTAI0uprNcHX3hilX/+zyxLG9/Huu6WH/vVfDvprNpeB1fpqTf3W3bkrwc+BAWJ8rxHHZrMBOns8/uz3bqLH71qaV9Y4jsVfrek4jnN1metlu+rjoXwRDgK5KdCHIlV25yLP6rIMcjsokM0bfaVZuXD4b8Xu7u6S3fmyGDYcZ7nQ9lXVZpQ5pccwZA25INP0GA9e2QclGTtNae/ooHXr1i162/O27DiO0zq2v14oU1NTND4an2lxX1z0xgjHvtn20RJWuSwDJTn8WMcir02LSMjEgU1PQQqsQsdug2Z5HGctsph9RApMT4xP08WLYUKKtr56O5RWGoLs15snB4pwmXIbRtja4DD/Zdt5IiuVZSjntbYzzGCaYXxeKmqhX9RtmtYDg4Ciw/K8Tr08H8hj5jOQh0EY5MM3yaqArfnMjnr7P5ymXzgSI4YdvW108KYueuJTG+iOzRXfBqmN0ZnXh+mPX5yiQwMzdAKbr7ONHt7RQZ9+pI8e3lM1wDNNw2eu0NN/OU7Pnp2hQ/EfJe+4rp0+/cB6euzufupLn9lPjdChrw/RH79ZoxdVf0cn/cCn++nhm9YFwVVgtQ3k4djBbLvZBu8wQKwzPy3Ij+POHlu//tXLhT3M1svla53qY+GRe3rpifs2lI+FixfpV35ngp6L0Tyd9Ms/30WHfnWUfi9Kqnj40Q30jx7ui7GE4Sv03NdG6I/em6G3pzjO9Xjghi76/u/dSAelTQzT079zhX7tomhXs7+X/vD7NoXw8CX67d8cp69IpIN+6R9up4Np83rnPP3tP0GBGbh9PXFrN33/92yh3T2X6cutruP+8Ra32za6o2ob8/of3Mz7paqNLjE+kOc4jrP0NLtUtxf7VSBdbwRUt3zrEEitVNltVV6UhbJNWi5/KrF5Eda4zdvT0yMDegulfJPkOKuLXHtiYfCTYzvVRapKSmkcLtqcLA02zeRBuGSDyelxROqF9tvR2RmFi4O3ZcdxnNZJ++z5gtkjExMTNMVO+uHYF2OJeNE3qzyVmXpYuYRtHVUmwajHSMjEgU23QJpb6yp9x1nLLFYfkWN6eoYGL0/Q2Nh00SbRCtEW6+0UbV4CAmRIhczWTFSMYpFfMkR7cV0K+xwVO/Dbcb+JRFEhjnI8lmP0kF6Ub/Mnfjvs1XD/zfGojxmFIocdloq+hKI+ArywcU1PfX8KO08wUIKBOsy8q2Igzs5bLM6MztBTRyboF/7VBfrnT1+h8ksXmeFB+uPfGaCf+YtJ+srFOIgHpmbouZNT9Ctfvky/8KVLdKahWuP03l+cp//m343Rb5+sD9yAty/W6Lf/Yoj+m98+R4cGzaDl+GX68m8P0i++Wh/EA2+f4XK+NEC/9txwlDgp6SCefusO7g9/fmfxysyqQTz9Zh5m4Sn6Ws2qwb/WaX4s/O7Xh+VYePF89QD2knH+Iv3abw/TrxyJg3iAj+UXT07SL/6ri/Tld8ajcG4MH+b2EsMYxHz29bEYbhFuX08dGaef/Vfn6T2zva4KvP6Hqtqo4ziOc82hDxrUtzclOV+BHhzkaRoIVsrk9EA2f6xHjjStqg6WKh0rx39/O46TAW0k035SqlqtyHP5M+0cklSakwnoh+DVav56TcdxnGWk2XXbXMFA3rT26fHcYc8guZLkujQEJC5wXonlzj8tnNOUZteYsG/Tm+k6jrM0oNlPT+EfADA4Yb+Gh/aog1jln0oCKsW38zCsBacy6MCiWgXsc1vXn8ZTX38YxFMa0jP5Sj4v0dFIXL91x1J84w8+0G/hcUDSZX0Rlu/j1eOanvo+I4+pmpGHDy6+faphuIzu3F2eZaczpMCxs5P0r79+RcILn5HXTj/1N7ppt0iJhk9M0FNv1OjF+NzisUc30M/pzKXJy/TlfzlKvxfHdnZc10k/8kAnbUHxw9P09Hcm6ak4trb5xh76jR/eQiHnNJ157jz9wjMzNIBoZxv96Cd66I7NHOZG9fbLE/SfzlNI6+2kX/372+jWrml676vn6Odfh5Do4bt76K/v4YNqYpqe/atJ+orUoZ3+0U9dTw9vEJUlZbXNyPvbv3pafAzg/eznN7V8jOggnmKPL7W5sNdqNjkWuCc68dIEfemjmFYcCxw2s8UO3t5Df3d/6JzKdNKtBzro0uFxuhQlw0fG6VfeQfdTPs77tq2nW7el22SUnvt3l+lXznCwvY2+/4EeeuB6Dg9P0R8/PUUvYrf1dNGv/tcb6LrjI/Shjulx+/3Fl8PJ4QuP9dA9ejxu6qGDN2A7GbvKjh76dz+m7SNiZuQ9cd86emyXBIXhY+P0W2+G7fLwo+voR3l7tbSO7UMtbrd+6qvaxpk2+ss/uY3u6JHUJcdn5DmO4yw99lI9XNw3XrpbuVzoM4jD5dIEyBCHXhRZ0nJSWylVctjPYe21Wr71wWLMyittE8dZZaTtRI/m2dpUqmfTJBzjdanRYV/DRbqmMUhL5WpT5Si/d/16eWixWHhbdhzHaY2iP18gMhtvfFz+OUP64NgPY5nGEU77aY3DL84PNo9i9Eq+LJkYVzTdAknVWuf0HWets1j9RApm413GbLzRqXxbLWToM0KoXJO6XFs2S0IwLLhz4hwab+NweCwsYFBNVo3j6hf5kS3qSSCmWz+kqxJTSp8J9o1QzMg3/gKaogT9ALY50s0KNupH38nwT798kf6ff9Do/qc/kUfmBZgBhQEVuL3XV7zycl60060HNtPB6B5+4nr6x39vHf1oHKd5+tmROGNqmt77+lgxiPfA3evpf/2JbfTYPTHvA1vpH/zUBvo5DHwwAyfH6Y/ejAOUVwbpyzpwg0GAn9lBX3g45rvnOvrCf7WF/snd8QDiRvbFZ4c4MEYnTgUR7V1HP/f5LVF/K/3U3+6iByShRs++OSIhp4wduNOZdLORDuJhwE7t2Jl51vacaXYsHNhCT/7IdfTLn6gfC//+xcZZl33Xd0f91PVTH/XSbiM7EI/H9DhvHMQDE3QiDrYdvK+PfvyxqP/ANvrvP9dBMtY4PkkvHeumzXvrtg7eVO/ibtpn5DKIx5wdoaei3Tt647qdmaAXm7yac8dNxg67hz/fSz8QB86eO9c2r3Vsvt3KlHSljW6lX364LWwD7Jdvo406juM41wr2BkdvqFSmvlz0c9jGQU5P01gIAZ+iwrkyaNSx9gDCRd6EKrlgbKgW9CvtRVmuzppPmZyczNtwnDVKs9Zg2w6wumlaAdpXpo2pfkUukYvL6bE9tFu8is1xHMdZvdSmp2navCFB+/3inJKcP5pds5XOGZqfsWFg44U1YzfVT2lmz3GcwFLdX8Hs1GSNJkanyc7Ea/bjVmp+mIVn4/jhXlbDHOIy0K7rcfY13tbO/UY9jn8Ixay+enosz8StD33YkLi6mI71kRmCRTrCsXsy+jZsZ+YVTsqox3lRioc7dycLBnBzVMmvCn2b6clPxN1W09cAjtCht2OlerroRz63kRqGQtr76LEf6KEnYvTLrw0ThmEG3pigp4KIvvCZjZmZPD106+M99KMb2uggu4nzU5Kv4NQkHRowr0a5YSP99z+zmf4du5+6/ypNC1plYBAOYBYnXrP50//bOfr9b1UPvqSDeHgFp51195dmIG8hr9Wc/Vjooh2fWE8/d2cn/Ti7A3zRthy334eOjdOJ4forJLvv3ES/EY+5v7UnClvkzOEpelFC7fQDn+uMg9Az9PTrcxgMa0dHv5zwfnmkPpj44mvj9F4IOo7jONcA9kZKLuYZyDSsQKbOojKrLzqqF/1yrno+S1qmArm6LCzP2S9AWF1E03N2VYb/BIdbCOk6Os61QEVLLCgd9dwGGtqBtlnT9irbN6hKa9K+MIMDr9lcLLwtO47jzM5i9ZUYxMNrzkvnivRc0OS80eSMUjp3aKjhHAQddqXyE+R6EX6IYFla/6bnNcdxFp3adI1Gh9Fv8I+bX20mXAciLs0xNklJjz+IpN1Kew/tV5czmGonI3eQ1FNDqO7DCOyLPiTSDzTqBT+THuPhvrMeL+rF8hlel5KcffxpXMo3vsrhw65eE0MmcvVVL8Z9IK8J//QLW+iX/u51De4Xvl/mviwbfXs76eEYfvb0ONHFSTocXyW4eV8n3Vq1Vzd000F9c+jJaTrB3plzOChAOx3YUzGbq2szfeGndtAvwf2dzdTHv3s+hqbEjE/T//CvLtDP/Isz9Nt/coGeO84V6VlHfX3suhbyrbZrFwy2/dbf317MnrMDehi0s6SDePgGHr6fZ7Hfx1sIzY6F4Y8G6NBhdkenaQsff7fC7Wrcv889c0Ve89ngfudimOk3b3rp4P4Y5OP9Z3/zHLsz9LtPXaRDZ6apqzccc91z+mb+FXrutbjON3bJKysfDmOs9CI3KPu2TcuZD+O2iO65r4zQH8X29/D2OVWgYMHbrX0j77MYHp+iswvb2I7jOM4KARfr8hBC7mzKIE3TQeorml9uABCPshBhHzZCrITmsxQ2Ermi6bNRld+iOrqeIJcPD5EWOpjnONcK0kbUtUIrbda0RSHGtT1WloS2G4MlOJ+26/GxOX6b2nEcx5k3RT++QGBnCrPx2AGcB+ScAPvo30UasOcIex23KDUx9pSGdYSO1i1hsbaH41xLLFW7qNVmaHR0msbGp7lfCD+ZDdcewugtxJe/+g/o9W0Rj8swP41jM7i2rKeGUKOPWXOC2EMsp4fkRI6yWR8z6LB56umBMIuO68Jy3Xz1zRjyw7f5RZ8p7Ims7jSOfDbuA3lN6Opoo4M3dze4lcQAZrFPzpDOiTuwpdlAQh/t2BaDwiRNFJPp2qk/fYdfEzY/tIF++e422hHjZ0Zn6CvvTNKvfHmIfuifn6Evv+6v1WwGBvPwjTvMzsO38gAG9PC9Rp2dlxvEwzf1LPa1mncl326cG82PhRMvjNEv/qfEfX2crt5e7qY7vqePfm5PfIUkc2J4hv741Qn6xS9epp/+jbP01En9MF6LHJugp2OW778bw9P99KC+RvbKJD13rDyoqjz1cnk7/Er8Ph5eR/oD982hES0h8s1Yx3EcZ9UTLt7DDRXC6ltSWdXNV2ELjnUatJDP5BWdxBZsVNUDaLq6HA3lzoLaydmDDHXBg6S0rnNhIXkdZyUhx/IiHM+2TUjL43iuRVe1c62DTYWubc9waLv2tWwLxduy4zhOnsXsH+WVmlWzqtPzQuzvK84WzUls6TkEVNm0Ojk0fTY9x3EWD3Q/ExM1GhmZkr5IfpjBxj/5h0xujlEa05m2EBctCNBko6zQ0bDajD/I1ab4ms7R4Gu8dR+zB+EX9iQt2sOMOqQB1JMpdKIc6ykz76JMw0BlEjfhnPOBvFXOZozbdbWRfpnv8KVmN0LDdOZ8DApd1F180q9GQ42fPKumfT3d8fkd9Jv/cAP96me66Mf3ttFBtTU1Q7/31Sv0x8fzAyFOHbwiEwN6eF0msLPzZhvEA2+cqL/c0r5uc+7YY2GaLs1zRhdmtf3S31jX6D7TQ+ujzrzp2UCPfWEH/c5P9dMvPdpFX7ixje6I49YDkzX651+6TC9eCfHZmaa3X58Mr6Bs76AH7giDoJvv6i5eP/v0kdYbxK3Xd9Gv/ldbMq8jbY3F3m7d3rM7juNcU9iHDriA17A6vbDPoXltOiQq50A2b5GeQdOqdJrVB1SnRJDX1reiPC0HgwELnZXXrL6OsxootQ8+nqvaZwnWKY58tIHYDmxe2zIKefSLdpO2n7RsE4cNtYP8E+PjdTuLgLdlx3GcOugTF7NfxDUXvlE8jesu07dLOTEsxL6+0DC6wJ5nCkw9S3kzQHO2tUrXGzZVtpjbxHGuFZaqXUxP12hslO/Xprkd8k9m4sWffFeOi9V4+oNmw3fxTP8g4TirT34cFzn/inI0P/uQyafpErn6UlYmH35qV+KFw2w8JCCFPVkXREN6O+pWhKGLcEjXuPqCSc85f9w7CyMTM5Vuub6VN3xsip6L4Ud29hBd10UH4gDCwNEpeq/qOcaVCTp0MYZv7KDd7O3YHg8UqtHh4xVfPJscoC//9hn6Rbj/c4CGp8ZpeHhM3ERHH936wFb6/r+zg37pH26l33m8g26VTDP04rH6bDGnGszOw+sy09dtKlWDeGCxXqsJ6sfCDB02A4Tgju/bSX/483Ab6Of09awZ+q7vpoMHNje6vX2N322cC5PheBseHifa0E8HH95KP/rDO+iXf3Yz/fp9sd58IXmo6hhOmbxCL7wbw5vbaOJofFXmyRnaHDfle2+O0yHz+UflR/9W3BY/10c/rrpcrb7e+b9KdsHbrTbI7TeGezrp+uV9+6/jOI6zBMgDEna4gNe4+irLoXpWB+GG/Jreot1mpPm0rCqgX1VWsxrYPIvxis3Z6uk4Kw3bdoo2jQVkmeM5bWcNx7yxZ20XZGzOud1EfbWPh8Hyvby52mmCt2XHcRYL9Cer2S0msIdZ1HBquzhL5M4ZDLREU/UTvTSPxmzdSzqQm7SWYRuLvT0c51piqdpHbXpGBvHGxqa5L+AyuDnDxzfyJG5lIQvHQyxIsIwz2SRe15WY1JtdzIN4kMR4g8+2uMAQi/JoQ8oQB52yHH6gUR48nWGH8SLcR4d0uHCPWvdFrZQfNVJiOi8kPfF9IK8Jv/anA/Sjv36m0v3Yb5yh985mnvQvJcMD9JVvx4cU7R30yN3rOLCeDt4Rd/n4JH3xLwapYTijNkxP/9E4PRWjX7gHrxIsz0D68tcH6e2GtxOO03tfG6ffuzJDh9jt2NNDfSeH6Bd/c4B+jN3vvm4zdNHmu7voYIx9yA3VaR0M6OFVmzo7T6kaxMNrNXXAb2Gv1QzYY+GPn84dC0QT74zSn+pg8FVk+PVBOd7gvnLSHFft62j3xzqLY+7ScGuv5pl4e5K+rM/6Lk7R/1C8KnOCvqzjz7Vpeu2dJgOD7RvoiU/ELvTyJP3xq8s1cD1JZ54dLb7T98A9PXEw3XEcx7mW0IcY4YK/TsMDkCSeAzcXSqEPGcImf1pWDuTPlWnluXQWimdLsHqQI9ZKHaCDG6OFvmITIP9CbTgB3Zbult4pGha5hAKpbi6MWBGODu0KfkkvcWlaFARPloxJhww+bKMvQnhiYkJe1baYaHnO4qDb0527teacOvinC/3HC7nOi3ILZDm5XvdZsnqG2ba+vdZU7D4rpWX2JdJ9HztrnaXs62AWr9QcG61Jg5ZeA+3W/FByPRbapf2RzMmzcdWP9rCEEdjH6CDi0QbCQasebrTHS+krdPYcZsdFnShv7nPIxjHjDz6+2VfSCzPvrA+5bnrZDlafXc7v+KeM5FihXLkS12gJ+UsMiAxOy7fK7OsJv/jMEA3iYKtgiu817rulh3ZvrX+XDnZgD8CWfv9sLlw4MkRPXQjhW6+bpLHzY3SW3bFXBul3vzpJX41jC499sp++fw8GcNppy83T1PnaFB2aIvro7CR98+0x2tgxQYOXOO/xYfryfxilL8bXJW6+sYf+u8/2h5k+Pd20p32U/upDorGpGj310jB10hRND3G+UyP0zT8dpv9ZZ/r0dtI/+OubaMvmKRp7eZJe4fV/9/1xGpucoo5R1HGUnvvTcfqDOJ7xNx/cSPdsn/8spVbZuAEH+uJwNY63ZvT1tMusPBw3z78bRmbOXZmmT9yGAdsy//HlETp2Ngxc/eRnN0reBcHHwrbhUfrzMxxOjwU+/t5+9jL9T9+qkR4O1NtBP3BfL60bHaVn+GA4waIt69po28y46JfdFPVv6y7NLhs7MUx/zMcdjt8nPrmeSp9vTOjun6ALL07LqzBfPDxKvV1TNDnIdk8N01eemqSnZTy9jf7mp7fQrfYzdRdH6A/eRhtuo0fu66c90rxH6Tt/znVu4c2Zb3L7/767e6m7sEN0zx39dOdWCVL3zmnq1bZwukYPPbCetpjDsek6zmW7Vemijf7ZEP1/j1Dxnb7/+/dtpm31LmlJWcy25ziO48wdXMznbrwglwv+DCrXvIiJBdWHvSb554LeGFbWx8g0VNRPlgzyxmDVTabmsWVly3Oca5S0bcjxDxn7aZqNV7WpFLSmUpuK+VQ21/ampWou1AMDex2dnXO25TiO4yw9mIUnr9Scng59N/fVRW+NsOm7i/SkP0e8pBfDKs+lgUJPlkyFntKgz9izXVU5jtOMVq+ZnDoTE9M0PDTJfUd9bCXXLvmOMSbwoqFJQisKNU1EISLLqCJ2xGk8wgGM8XEvEzJE/QYfzDU9RiSZF6gWjhVJAoVekGu6xcaNepY2Vm6WvuycPFU9kLZY/JMvXZRXFGIABd8rU46dnaRD8dWFOdZ3t9MTB8uvNIQd2AOwpa9KnAtv/4fT9AtHYqSCJ76rj/7+YxvKr90bHqQ//v0R+t0m3ze746Ye+rkvbKEdpTGfcXrvLwbon702EwYDMmzu66D/7keuo4Mbw8DcxDvn6Rf/ZIrellgjd+zvpV/6vk0Le51ii9y4a4EDWIarcby1ih6XGNTDrLz0WMJ39DAjr9mrN+dMbYze/upl+uU3q46FNnrseqKnz3K3cV03/c5PXEebL16kX/mdieJ1r3k66Zd/fhvdEWNg4Lkz9BPPoPtpTGtkms48d55+gfWrjtHHHt1AP/ewHcVj+Dj923ycot4/9xM76DE07yuX6J//dpideuvd6+lXP78RmoYJOvRHF+kXjyLcTv/op66nh0+rnfBqzS/cLkGhvh7cLj+zif7BA/U+oek6zmW7taCbttGrwWK2PcdxHKc5pQv85KGDpkGeXtqnMoQ1v4QRgI686iOEU1KbOXI6VflKchOWUBM7WKY3N0iz64hwZ2cndXR0FOvpOGsBbQsxEnzTNpSiPSXylAa9inyVcdWPYchV0+qoDHR3d1N3T4+3XcdxnBUEBu/wPVO8xlxBP1301KbPlhDSorNIHC6eA1Kdkr4NMxJLZU3iRSjRcRzn6oDBu+GhKRrHKzXjxV7oNepXfvFONIRiW62346TtplHbtsUkFlFW0e7r4nK6ylHPtF+xNKZxBik26Q+T61vks9fLVfFmZSv+FNaA2XSWvdd30d96oK/SpYN4wNqYz2y8ZuzobaMn9nfTL//kVvoH6SAe6NtI3/8Tm+k3P9dFT17XRrt173a20cM3dtI/+sIm+uUfTAfxQA/d+rlt9Bs/to5+6sY2OtgVxcwd17XTT32un37jp7aXBgi6b9/G9Qj6d+jsH7Z7cEcH/YMnN9IvX6VBvGsZvGYTYLDu1796WcIWfa3m9g2LeJy1r6M7nuRj4Qd76Mcb9i0fQz+4iX7EDGJdPTpox8OhXj+6I3Ns/+DmxkG8Cs68PBFfMdtGT96TDuKBbrpjfweFz8zV6BtvNJ+6t/mBHvpCrM9Tzw5lX0m6ZGC/VLRRx3Ec59pCL+zVTy/+m134p3ngSxhyOGPLovqz2c9h6we0zFRe1AFBiVaXlZOqrvqwjwdO4RsEjrP2kHambYjDLbddtM2kfWp7bWahFftihfWK9hqdlQH72jbHcRxn+dFBPMzIazhHRF9Bb25lcj7S84j29Yibft9S6vtzZUFm5M3OFWmK1kWd4zhLx9RUjUZHpmh8PAzicasT+Qzh/gwxhCCrcXcQUoPUhsN36uTbd/H7d8FKm/g1+SYd20Objil1P+Qty1kqbV9Twg8Un52Qromlqpf6/CvFa/W4/ETOkiRfuC8tx+vdYJAjXsrHLhf3GXnM739riP7g2SEZePutv7c9SueH2gJ/+PM7xXeWlmt1Rh6wxxMG9vTVr/g+3q//WRjc+62/v12+r+c4Vxufkec4jrN86CU8HozIRX3yUCRNB6XLfpbzjYA88BcfadaG6hpZKb9hLvKWdU08TctbCKguZuRhZl74BoHjXNtUtSttvTa1oT1p3Mg1ZHVhqyqvlVt7Km2qx9g8aLM969b5azYdx3GWGTxsxiDe5IR5U1nsl7V3ln6aXdFbI5z03Yjn+vOcvEEvxktSo2P1S3lxXkltRRrKcBxn0ZiampFBvLGxaZrmcLiA5AX+cLkncfzx/SsiuFWTy0Ak8LKIg5BP4iGZvTCQB2EUMfWQINFEFmnsc2Qp4dmo65oK6TUsR2V9mKL6DMqz17yWuZSt+J0to68sxAwnDJDMF8zG00GX+bxS03FS8NpMndmJY0tnfL5xon4h5YN4juM4jrP20JsQ+4DcupRUhtwigT58YHVgP5YBcjabUaU/n4cnyGPzIZSzYsvEf5DjFVA+M89ZC8ynXSlF3iY2NGVO5bSqy+1WNdGCp/HgeGJC2vBc+x3HcRxncUD/iwG8prOkuZ/PpeT0U5k9QyClogRhDmcex3GWEczEGxmZotHRKQnjLhNtP9xt8lJn1smIHksQ13RNi/HyD7Pv6mHtMYJVdkmeWi2GVM5+GEWEflleyj+LX9iFD5lNZxlm9slas68Uehkn9jLyZs4H8hgMumHABGCwBLOg8G0yDJq06pDnp//lObEBfuiR/hhynPmDQTr9/h0GmnWg+GuvhwFnPW4dx3Ecx1k74CJ+0dGH7hW2FzJQ0Ay9KWkgU95c6+CDec5aYlHa6BK181bbs8rQbvEA2duu4zjO1Udm4nEfrP1w0V9HX5Y2jGs5iRky13YlScyvshAL14UFWu58qMi7KOdKx3EaCDPxpmlsdJpq02jT5iftzsRn2LGs/ms3YfygnZEhn4btz9iSFI0vst9exLkUcRovu/b2ehikshDn9Svi0ValM+ncSTb2riuIq/WqQwzG/ZMvXSy+O7YQ7CsQnaXnWn61poJjE4PLAIN3OpDnx5qznPirNR3Hca4+eumOC3l7GY94SnqZn7vsL9lRH7YQbsEmyMmUVvQr8xs5dNJ1Rgg1FAnLixToxLojD26U/DWbzlrBthFtwXVJOV1pkMX2pO0O8SAu62m88GXJZOJFXoRDqCQTT5ZMjHd2dVF3T4+8KtdxHMdZemQQL75OE310cX2p11WyZJK41SvJjFw8WcY09VUn9v0lWaSIpXITt+Ecs6U7jjM/wky8aZmJNzON6zm9oguDUAASBNFDyPWfaY6ldswu9gT1vGqOaWeZputS4lE3xEM/BHmRzqAcibNAbLOT+khqwKYXegB+jT2uQKh+WMuSflt7qB8SkK5y9jGQZ+UYFES0KEdSWojzxoO/YrmaAysYzMMAic56mit4BSJmT/lrNa8ua2EgD8emnfGp+HcYneXEB/Icx3GuPvpQJXcJb2+Ccukqs/lTW3KTYPMam0oz20pOx9KSfgs6hSSmyRLhpN52MM9uJ8e5lkAb0eNbwvAlVqZp+4vhkoZJhy5iYtvKZRHiKrcyUOizr1KRmbjqQ4518cE8x3GcqwPeZIABPMzGm4kz8YprpujHmMQ1zcrEkyWiHIoy0Q+hIl+hr3GmCBkZKMWsfsaGnkcabCRxx3EWBpradHyd5thYjWrTLEAzQxNkX1o9/xVNUhcxrpTaZpGOPgZ+FUmiRJtmiPbqOmk8R2XfgrD6UWbt2WtkYFXBfPsjH8jLIK/LvBxemdkqeAWiD+AtD2thIA/g+42//meXJeyDxs5KwAfyHMdxlgd7+a43Ac0u6aGj6eqrrPCRJikRtWdvMliWK6VZ2VVpqbyZDZSrZPOhjuyX0my9I1hXDAZgQE+3m+NcS9g2IMc42kWMW7LtSDHhImRlMSzLCt1Cx6SLPAZtWHRUPwhCOPqgq7ubutm1c/v1tus4jrP4YBBvfHxcvomn/TCwfW4RZr8kl0VeFjz2NSzLiJVxOJcGNKT2UbtSWSYsaP1TOdOg6zjOvEAzm5iYplEZxMN3jWNCQRjYahAzaStsbJc6KNYMoyCdQnRYaDzxQ3I9PY3nfMzAK+I1CNhXohzrXtKDH9H1sNun1H+xM0kNpOk+kOesetbKQJ7jrDR8IM9xHGflMdulPdL15sHq6u3ETO5uAyCeyWfJybU8m1YVbgrrVdlXSunmBikFA3kY0PNXbTrXIq20qVSnFLdtKvpoTapTlbfwQ0TCiqSxK6QxXNhiX/sJkUR5kc7IzLzuburwgXjHcZxFA/3s9NRUGMRjH2gPW3rYrGH2JWTTZBHiaf+MeLO8QGNWT0nT9KyQK6dAzx2JDkjzOY4zd2q1GZoYr9Hw8BRNTk7TTM20LXj1hho8dvUruhC3lNtl4wBgql8nSZFoXWbNolto7DdioKKEkJ6kBUPBj2hI7cO317BpHKR1aRW/e3Ucx3Ecx3GcVYo8+E5uFBQbTvXSm4lSrGb+sQl6TfLNRu7GBUCec81I02HXyqwdSDWsQB9ucnJSHL4DM9f1cZxVh2kDim0XDWTSbCuRvOqCIPgRiWVsNMjQftlTe7mWaOuJWSJjY2PSdr3dOo7jLBxcB6FPHR0dLWbiaa9bOk+k/XcLIH/JBsj03Q2W0zwtlF0qB2Ug3kI+x3HmzvTUjLxKc3BwgsbHp2gmzlLDv2LhRzPhmi64+rIuDRL9of3CL/TYFt+hFT+Qxq2Vwm/T1KCt9gD8NkkP97iaXot9Ul0/xkVexOpxuUeOvqyzgvWo++hbRU/zzeBVxUgP61eX5/yKdHbwfSDPcRzHcRzHcVYp9kEJLu7DBX8A4YaHKIzVsYjUpiFs81fks6TlaR2sPFenSlooM0umHpZa/A4MXiVVtT0cZ7WRbfM4vjPHeFU7hHS2NlqkWj0TrrIBmcijny0Hdc3JGbTbifFx+X5TeEjiOI7jzBWcK2QW3ugojY2MSN+q/TJQH2eO7BVS2kebfAjZ1Gw/H5GUJulCPH+hztm6WJJzXbOyHceZG2hekxM1unJlgoYGJ/keiq850Yql3Yf+I8SJ2hFu13jZZy/4/Gtvaxd9hGXJiWjFmo5f+Ivp4mu83cRsOuT8Q0HSJQRpkIdhsCCJ5UvM5ucQ8tZjspQ43ubCecRn20iR+kY7cNhORX72g2svuid4eCtMqlf3K+Ts4Ic1cBzHcRzHcRxnVdJsIErT9MZAqYzDhyvuNuQuIzgmalWS1gV25eFLIq9C61Gqj8lr692gWwHSrVPkP9EnJsIMHw63WkfHWang+M4exzjuIa84xm27aKUVSBnsirJifmunCls/DRX52JdwRT2BDOaNjckDaB+IdxzHmRv6j0wjw8PyTxHSh1b03eiPxcV40UdnULn0yDGc6qq9EuY8IqGKPt3ma7ChJHI9P2TLdRynJdCMMGg3OjpFFy+OyWw8zGRD+9Lhdfgii2H5xXT4NcySM3F0KjEW8zPSRJFudCUenM1RT4/SqIOSijjMySw8xI1e9KUOJl7y+RfSQz4EinpF366vfctLkCILdBELfoGYS3SM40WDzDr/Rp6z6vFv5DnO8uDfyHMcx1lZNLust2n6MCOVNeRHXB98cBipMRZvUfLk6lFVtyq5IulGR/Vz9ZV4xYMaq4twTgvf3urq6iq2j+OsRuT4nq09R9J2URDDiYW6vEl6Wm6ha+Q5mcDxkh4c4okMYE3wrcuunh5vt47jOLOAvhT//IB/hMA/MBXEvtP2oNKfGnmpf1U5+9pfI2x1NFwls/24+DGtkNv8XEZVuqJ6MRL8DNBDndP8juM0giaF9jI1NUPDV/B68+mQgOZTNLfQloq2qctMEwv/EtDY/rRdhkzBDyroK9RyINhoQswXyql+Xqn2q8imax+j6HpAPqu9NE3Xt4rq9BX/FNa/Qe80Y7GPDz/eHKc1vK04juOsHHDzYx+m5FC5+vogQ53GCxA28fR2oqRrSOuh8fmQy2vrmyJpCJg06MHZ+tqwtYLvw4yPjfEN61TWvuOsBrR9SHuILiaU2kaK6mFZhDWvksRLsQrbWgexFfNb+wipHbEQ00rWoKd5ZIni8HBpSl4LJ7PzvN06juM0gH4Rs/BwfTN85YrMwgNFv4x+M/adhQw+4iIN/bFoIC2SnmdUX/Ib31KkRZeitjSs9bKkdlUvrV8OrbPjOM2p1fBN8RoNDk7ShfOjNDrG11jxF/54wU2phtlpMYw2GOfD1X9ow9KOEYu6sjQ/sQFp8ItZdIix3XqTjbIYUj3EEA51CHFd2lDw47frZGnqU9SxHpef1J/1MOOOf2EZ5Ki3zMSTeKhnYYd9W+8wYw9O04Pc6kNYStd44q/4GXkXLs7Q2NiKrqKzjKxb10Zbrytax4Lx481xWmOx257jOI6zMOTCnu8Y1E9lKVZm85Xy2HywaeKNFhuZrdxceorWI7ceiFeuX/SB6mm4RCYvgH5nV5fM+NG8jrMayLWHEjG9SqvIr37SdqQ9mTiQkEnPAXkpTxIv2jLkEBhfKeWXRT0O1vX2UndPj7dZx3EcRl5FPDEh3xa13xXVPlL7XRvnhfTxJSCLOqAIWd2YXrJlKOI2D1PSy+XVfh75rDwikow8B/Lb9XUcpwya29RUjYaHpmh8fJr7EBaguaAZRh/fvrPx2AjL8cTHOFtQkUWQK4UeAkrQK5Igkr5AdWw4ItG6rJV2PpuOpGsfBDiufYhek1bZCHJc64a4MluZs7HiB/JGRmbo0sCKrqKzjGzZ3Ebr1y+sEVj8eHOc1ljstuc4juMsnPSGInejgXAabwr02Sv1+OYGpCp/q/Jm5SMNJdnyc/pZWfQtlWUZuZRpt1l7u3yQHK/ug+84Kx17nOuxbI9picOXWCPFsY+whALWbmFDbcqinG4p9DI68FE/DcdAKd1i4xKycQ5j8B2DeT3r1kWp4zjO2gH9IGYo6zeAmw3gadj6HCiuuQTENS0iMZVrHxx1RIY0iQVsfg2nNoU0LWc7QWSsN8N+Y2oZ6GK9s2U7zhoGTW1ycloG8MbGpmRG3mztpDGd45ksVtTcZpoffUyoG7fcQiYgGoPBZIioFgIy4KiovvGzA5KQR3+GfR2ALOkhH28fSYcw+nLHzH9aZ0Xe8MnK2vek6SmcLMVUseIH8sCZszXi85DjlOjsJNpx/eI/UPHjzXGas1Rtz3Ecx5k/enOQe0BhL/c1jEGp9OGOtRGFQYawsQG5Ym2npGkaL5XBVNko9GUZqNIFpbRYx5x+KkO8vMUCItdtwD4G9TBIAOeDes5KRo9ZDVsajvdm7VHDqa3o52xbPwVyOFiDRkkPadYHMd3GbZ56iEnkHdxGMaDnM/Qcx1kL4Pt3eEU4ZuBhIC9FrmOS/l5lBTFcSEw6lrbPLeTQkRBjZNBVueiaNO2v1YamgUJmdLTcIs1g7Vk7QPIm6yvnoIwdx1lroC3g+3f49t3Y6BT3G3j1I7cNNA80G+OjlRcDVXEArGhfaE/SzkQxOIjZS6lsew1yjoe/UIdZCNnrfYWSltdq26/Swj8MYF3VTiv9SUhevL5nVQzk4VWHeOWh41jwWj+83m+x8ePNcZqzVG3PcRzHWRitXtbn9HBjoTcY8AsdjkuPb+JCErc2c/YtVemV+aIc6Vq/lIa0TL0sWTlkyMe+tZcrUwb12LXHgT2RxTIdZ7nR41WPydLxi3A8zoXk+G7QBWkbiOGSjJGYpskyYvQry2I0rj5qL3kkxiTpisRSGcex/nCdnZ0yQ0/aKtbdcRznGgDfCcXgHRwG8qS/NH2hvS7R/rBEjJf0ZBGu/WBJ0+oaDNIzeYLH5wsJhXChpekSrF9fqdxSkph0WyYo4nGd1V5hm9HtgbiVO85aBG1gcqJGExPTNDFek+/gTdfqfQbS29vauQ3XZcC2H/yQrm0JcXwpTgmtvhwPsbBshy0EivypdojHZJkVh/FFVaqXr7Gozw7/oqrpoFTfIBA/mhIkXdatbgcBG+dkCcDD/V+YsRjk6re383aIMxkLeyYdPozk5Fkf5SJHGmfj8Fc8w8MzNHB5VVTVuQps3tRGfX04jJcGP94cJ89Stz3HcRxn7uiNlV7W642Vvcy36SDNkyNNy/b+TWzMxbbSIEcc62PkVseuQyFXfZPW0vrHPOJXUNJnYEPBLD2dtady+FbnWiTdJjlUR7d5q9sEuql+Wl4ubTb7qpfassACUlMfpGGlIZ3t2zIQqrKjqD3VVbJ51D6vL+S1GMdDEhyLmHXboB993UYaL3QAx4NXtg8p4iFnElY/5uVA8CRYlyFc6JpZwYUOUw8xqm/SQUnfhLFeUobK1Gd5d3e3DOj19PTINzBnO04cx3FWCujTMFiH2XYYwMP37/TNCqU+L4L+rdTHxXAhQXr0LYhJvoxcQD6ThjDKFkkmLQaCz2gol6aUJDl7jA1LPx/jJTmj2yWVO85aAANLGLSbmpyRV2dOTdZYxgncLDD4pt2G9AZoIogbX14t2c5tHANU5lWUVj9cpdXjaGozYURNRMgX4ugn6npBkQNqVxO0LYssT1AJeinBdD5tLv2A1VSbtp/Vt7NYWVX/oyxGP7RqBvIAZkpdHsTUzyhw1hx4pd+mjVdnNpAfb45T52q2PcdxHGf+zHZprzcQ8oA/htMbkNSGxKKs4SwAG5xWVWpVfeYkT2Sqk9a1IW9cPyVNz5YVQVq6riLLbJ8SsUzNq7qYuccRGVwBSFcrqpPazZVl6yQpSEeZVi+z3qmdxQS2i/VlVy49yCxWt4pUB3G1nctny0zzWKryz5fUntbDyuz2UXJ1zOUFqpPaAFW6ejxk27NJA6pvtbTOkLVBH3ZCQpAhHFE9TReir7IobZSbNLGD9Cgr6h71Go5rWcR6Ij2irz1qyBfDGOTEwxcM5MFhcA+v39SZtY7jrD1wTYQH3ugz0PfguXLa5ywE+08LAvqjFC4P5evgHHyNI7/4SIh5EU/7eO3XgQ3ruqikSLM6DGLN0iAr2Y3YPBKOdUptac6qMkBJYtLTcktxlMdxyNLtUbV9HKeK6en6MbMU1KZDG09L0aNzLqVjgI3/BPRh4tg+Bu5C/wEfTUT9un2UF8JoOxLIou0o135SmbUtftZwlMFDhkIlBEpZ1GCGkm1jJwQ5grjKo18lL9Ir5NhuOpDJW5JF/JMBSiQEvaI+bEQGLjPkt8fcWFUDecrIyAyNjhFNTOCgjELnmgXPO7q726h3HdH69Qs/6OeKH2/OWmW5257jOI7TOnqDNdulfaqTy6c3GaktjZduQiCbpdyqtJy8QdbELrD6DXltPZl51YN9u76Qp9uriqyO2rJpLdoriLpzyDEn5lSXBKzdXHK3si1btal61uZc66M0q1fTtOjPpcxWjydLK+tVbAO2DxDXsjRc1BeyGFZEJ4aBpmteDkRJoKE+mh5taz74QVz2C6K+YMNA88gykuTP6lsdDWP92WFQT1xHh7yCU518C5PdWhrgw3bCgEF5i9aPa6BpVqY0ywfEPlyMW6BbJVeqyla57Odov9DRYzX60zN49VVIgj7E9QxFrgjssRfzQh8PRe1xLG2BsfFgt26rMF+B5Iy2xU4srzpXKEvT81uUgSlZwB7JjN3puPJqWYtDeunVZSFLQZGk6UUwLPVhMeJ1PSxYU/5QE47XEzU1LkP+sN1iOrxYQQxa4eE0BuqhUWiFQmN9sdC4rLnE8av3diafZKrnxzoo7R1t1NHOrrOdOjmMV6bhGS7+EcCYmhU9HmA5zabHjKLHTCGN+bSOij22qrA6qX4RtzrRF1gOHbs9QjovJY2DmiQiza0JdYWwvTQ9pAgsg3lZtSgs0lgmWXhRT45L8cKxZPdpEYplwW66fQHyxK1aoHbUZmo7xIGRse0wAz4KCoJA7CAxZgl2QzRohJjENcEg9nkDqX7wWZ8DSFO5ErIHqRSLAQb4iBcp7IuBYMPu38UEtlF2KJ8JlS7VQynqNQcfYNs3bp96OmjIz/UIM7xk0ZgefSD1Zx9xbLOwL8P+Uqw+qIrDB/Dxr3zwZRuxr/pSBvwQFWKRBUjHQmVyPNhcsAnHXTysF/m5Yy9Kk3gIFiL46NwSOfyibSdyGI4pgtq3sjKcViQGI7rOdVgekkIQKyCCaoLNoCO2kI9/2A5F3RMq5dEvlxpi+e/iwVb450yQljmjUxINVWUHZlvfevqqHMhzHMdxHMdxHKeRVi7tcSOhNxxW34bLNyNBnk1nGaSI1VPr2DwpVWmVeUxZKWkdZd0kVMfqaP1tWXZ7WB3B6AGbL0Xztqxjy2kBtZtbh4Wi9VJsWZpmy7Nx5LI1sfVLbebSJAxfYvX8OXI2AWSalvOVNA4gA1X6ljRvFdaOtQ/S8my4Kg+ARGPNbOhsjRwle6yDuJUBjcOCtSdSpHFY6mLylS0wMa2kY2RatoKwyBEOIghjIFDkl2VA17LIb+sZ0XwC9OCznniyJBnQQ151AN9CgR5m06pMkXgsD+irTW25wMZSG0Ksj6ZJWEJICtuDE8MgW2LbAr2GsqAffVtGDsmr9qOe1Zb80bdYnaz1JmVmMfoS0ritm90ONh1O46keYBneuDM+gYGb8KANWyY8kLO6sIG48dlW2ZqmBzQUt3SIMBKSOiX2rK8PW+Uv+MZEgTyklMQEEdVLxlETWwELOITgDI4fm1p+0IjckCMEuRxrtt5xW8oxifYQ40BCHIeFVE+eLMftq3qh3JgfcdlXHIaHB/R4sMy+DCsndiWnLDRDzK8G4Ks9oHpRHtpQ3AIcRkpdDliG+rbNEK+lmBKHJK4XwvL6YgiwgA32dXvpA1wtR/1gD3Y5CliuJTYS7TPIH9ottMN2lBhHIZH0wijnRBALNV5PYup2gda76BeQh4NY/1DvmD2mSzlRFWi+Qh7rJHLYxf5Xo4kv9lkvmIA+olYPHuSwE3w5jmI+9aNmtBzyYlmYsXomX0jnBQ4mo1d6hSDE0VCwKor8Q7rdf4jH9gQVG4dW0b9EG5IRcvhYRD2Fg2H7aDymo96SyL7UXVJFXljQ9ROCgqaqetHfKCEjZ4ty3SYi5rhsd6wPA9vQl3ToipD/ohD67Jfsc7w+MIOU4IunqLrIwvYWkWSL+kqsv0pFG/05BFo/lBf7kWJ71DMEueyWKFR5WBT5pd52ncVHHPJZ4gBhjbMLyVxfDquPjFBpldBODFpWAdLr5ZtYJC0v1QjxtBwbk1pzuhZtVWV/BI0Qt2mIxOO3sk7lhAagFg7RkEHjMSRyLb2ohdQ1rJOVBz8cTaIncZYXGeGzhhxH+OMf+0ivfxMvxOGLBvs5uZZm5U19zZHGeUXgO47jOI7jOI6zypnt0j7cdAUdG4Zv4znStHAzVpdJOmQVVNnOySvrkcgr9SJpajN9TYOv20LWMQhLtnQtZytfqdITecU2K5UfUVnqa9pikCt3oeRsLmY5VbasHGFg9VqpVzPbINUFOf1W0LJarYOS07fk0iQPfHaaDlmaF4ie5tO4xCImTSnlUZsoJ5FhGUoPMpGbNA0DG69LGavDYayP2rfrpthwFVZHbCDOvqxXEBdyKQ8CDiMfwsU6sdMw0LxA5damUsqn5Zo65SjqYdB8mmbLkvob1L6Va1htKDYuS4Qz9SuVYcOGkk6kqtyUIs2WncuL9EQ+MoZvBml7YzmvifhRtcgSHzrWd4oIjcl6PnluLA/wytsbA0LBTDw+kI4A7MR0DFppOgaKZBggxgWWSXEIsgvZo700LvaxRkEuPvKn+pGSHgTw0/yJn6LbUVKTcsTnBTajGd4IfkU5YRCPAyXqWsiFUIDjnITy6xrG54WWq0KpYcwkIgTZl/0QVCSfliRxdlgEX5YCQsF+qAdoqE+M1w0F6nqhFInHgSSRw4ceOxwX2F4QyPiopHNO6Ev+OtAP6SzHQ3P4QRrLEzPst8XhQegH+/ChhONFlAHi7EEvjH+EuOgijrCEohbSTR6YkmoKWpO6HQBTGqunR19MBptA0lko+UWhkCJgQnU0L0jTq+Jhe9frqzTEWU/iWj/ETXlCtCVBdqXtWyIeBzYNGbBQmRgIQUHjLfm8KDaslWd89Ge841CfAk1XigaGBPjsJF2NZKhc97mTVkdYiH1dWc6vFhrsG7LlM6H4eh3sMVEVbsasOtEO7HEgCiOoYBSJHRMXkKXYz2wHiUhXPaRHH4eOlUtCjEOkZat+occBkcW4iIDqyzJmsfnUR1CUVLOcnKYp5e2mOSKyrfDXmE9EdcOyXfEPX7J9mWJbNwmnlOsyP7jfqLDuOI7jOI7jOM6qAJf0rdw4VKVbeU630m70S+kmv9apWd2q5KCUltGb1Xb0FauX5quyYSnlj/5s+ZqVqYgEck4vSOMR5LfbVWUpzbZLKzSzrTQro9XyF1JPm7eV+raK2l1I3apYCputUipXw3G7gVy9ZDuYsOpnbSm6jkZehKyMw2Lf2CzsRl/i6TYzYSMty61+M6xebt0iOVl9y9Up9GAryVOywen68BzAVmMJAd0+djsBjVuQIlKbBn0TR37khcuuV8YuKOScR8pBPNoqym1CyW5ShsQSWYrN32wboE5CTNN6Ip7mw+w8DOjhk0VYi3C0YxlikIom6wefXTRfYBNmkE+HjIK1AO/tqieTAse13jFd95PVj6tRxIsnqlGvvj85LmFNC3FZQ45LzXQGi1AEYr4IxBpFfthiHzOtdAZMWK1Q31Q/mIVSyIdE8TgugxgiiXA8JmEZ7BWp9XjYN5AEVKOOTQUxnpaHkKrKoEaM80K2T0GhJLF4JCSEdFkDUYv2Ihqq5wxWCn1JCJKgXM+v64sE7DuJi4AXEmeiH/TqpDLVrRO2pyL7VYyz1Khpe1F0BqvklSReIF+7Wov68KQCkHNAdQX2wx8veMn5pZh0gEmVkL2Is0N5US6dKZqdUtiTDI1ovhZoUW1e5KoRtkF1udJ+ZR810iwNlLbGLLqWfD2NNbbTzJLqNi2Pk8JAUtSBx9kkJ+oaZ0QVFOlByX6rLPXFrknXCZJQUb1whAahrhqqIkHOL0laN7UTt6Hat/lAiEchI7qq1ALFduOftiwltWVTY/EC5IiLLucpwg1wCSWxRkIebDLF2g8E3ZDfhi11+2n+bH2MkrWbompBBcso0X6ECeuOQIgLEucFTmNx/0o6fMQjsl91//NPj7fS8VJKZxCN/RHKRvH6KlupC5RCVEiiDaTpPpDnOI7jOI7jONcI9tIeNwtVl/p606Tp6ts8NpyTgWAl3mCwHL7Yhk4sA9g8KfNKS+RVetWWQ550fZRKezk5ZLrOGTSPbBemqlzE0u1pt2GBzZdLT8iVDzRuyaWl9bSk62Sxslx6q1SVn7NtdSHT+FzLztW3yrYlV06qN5uOpmsdNC0NW6yuTVN9pZRf06K+ptk8hT0jAzZm9bVkSCRviBY6skxtVcTFN2kS13XjcJFiddilZQKEi/Vg36YJadwgKTFfoRdtFGXJorztlcKyKaPQUjtqO5NfydrOlIlSUk3oqK7WosFaYqextIDasuTqBnJyW5cUSYMfohDEQJDZtHINAqKTsa12ObEeZkQr6o6OzdDYOOLsRA9SXnAY+niFFks1WZ/rSnnQU6sIlWZ0RftFPPGVQs4L5C9m6JVT2WMp25QZfiIr2xNf6pSRR19WjnX0tZIyo4nDhR/1rA+K/BEtB+soejFu85X02dXtcTkcwHaU5+tSfpFYQvYp/Kp0dpqkW6UeZ58DssqI86K0fzSH1D2uR0wpPJQvvj0OQv0hl4pFPSB6HJf1QoGSDn3OF/XkuIA6e0DtI1rsF3Y6k1MQe+yHQkM5kq52kR+1j/8kwDJoSj3YxyKsIYB1hJHIVjgo9jhQpEBfIvVcQoxLOcjHPvKLKY0jyguEgr2wVUO96vklH/txXEWWRX52hf0Yn609lXxehJyz6FX4eA7fip71i/2eyLM+B8LxFCKy/5DAqfD11Xx1glz11Lev8IM9LaCldI6gvlIPyHkh27hIx/pwf8Qy9YEc6xwOsQCy1+PRbtRHHOlY6D5Ue9oe6vlFM9SHUf16OtLEUKl8ULQthNnZ9JAGPwoy+YG1AdL6peksYWfrn9OZHSmjqFygqQ1bIIhxrJVsbYmHdbStCkXYgSuRIwkHvDZEUeUF4iyf4Y4AfYFUh3204WAIPnsxX1iHkB+qdbiUKEByHQiDnUK/rCCEvGWLBSVxXiefnwuKZTVsZxPXfaL7J7Vl91uwE7ZxPa5AaOPzxwfyHMdxHMdxHOcawV7a12866jcOzS79VbfVPFk5ZJrXhiNpHltmFZXlJOT0qq3WqSp7rnJF03XNEStvhTKV5bBL84lmqp9s45TUvt23cwF25ptXQD3mkb8oN+bP1qOZ7dnK5XRsoVnXDXbAbHo5TF67P9IyF7yNE2xZrWLzlPLHupXS4WLc1rrQwbrEcMmWQeUluxrOyeL2kXiU1bWYXB5gwxFItN7Qhctt/5y8sJaxm24nux0ALDXmqufT9Ia6wEaUqf0iT6obSeW23CKFddLcUn4ISnpR/6hry88xmzxbD2Dsq26ax+pLPTQPO5sGuaB1Z2ArtaP2J6dmaHSMaGo6WAqDMJIUbMmf3d76wC7oww/fFqs/EZWayWhIfCIa9Zr5yK9DGyLhJP22naJ1FqQSWC9NZ1/+gjyo1u1LiqiaOPQgEkI8Kv3/27sSBbltXOk4//+7mzgvth+qgAJBiFRrxsduHJanhatwkNK03S33zGRP50I2eJP0W2XOHNC5Ak9vBCsf9XAzb4rzE38mo79uMsK2gEvti/F0TQI5l/GYRTvOC6X2C3OaRtVt1mvnSz+eEueFn7jkXaLIR2nwop9b9Xw0gBfrYh/W1fzwx61Gs/2TbzG3SV4X6FvWPcPn9DoA6sQ6+AU/JvO56QkZXvL84HUQ0Sfw6C9x9zvoZjzmg0Pzx7zjunWbNxFVdyFZP/cLwqTsKuMTorxBgTtI6lN4ur70/avrkX78Lj9db2bXGxWoZJrbsiLu++XXB/y1LuM2v35nosevNqTsqxTeGx+Szyvf3O+tfMFtbc0uDnk/p1BsFhVfsDj9YaatvBKnWeIh83qa4p0PG9L6b+PFDuR1krArCVyh8UchodsD/j02x3Gd4vt7QHHvu4tzTlh2qPGPtl7+hwPQDMEu9lyv/gcBv/o9AzmAx9mEuMuvkjDDn5e92op3ybcD+ebANvc4NH+eqE5fH1TwcYPcb4B7pvgwJfG0Mv4Dx/C/lut6JnxOC0IeHBwcHBwcHBwcHPzDsfqnvb+oW8cqFBdfWOU9egkhTq1nvpr5qI5hyyv+5ZwhE+A8WB/warYa14uuC17UEF71Epa8tp4dlNvP72Oo93vzHwJzsgP69J6rGeQDVrMh/oNnJnazwa6xOi/w3tlW/RaYznvJyWup1zE7PES95sCoNpDWyt98vbZQZ7nE4Yv4FKtc5RuoVdt0rX01u3avxwB5xNmh5tbvr1ofyFlCn2D+HXeFWvvSxx60S82JY37WD/0OdYasFbOv8u9mXnFXtXB07/BX3wqKV6l6da+rX9CbeNqTPz59+PDpr7lefaMPR9wswfv+4/1/XF/mxxt3sCm1xx/zfV4cWEeFQ8BGnG5JBHG0YPczv7DA4O0fMxm3I94wtba8KeE3waKOHWD7J7/AlPS6nm8SDYvMOaAWOYF9Zn/lA2mz/xyf8tQ30Pn+hjD23RRDzee1BWkPyjIX6WZ7/oDi9CE/+lWe2/Mc876or8819tM/0eS8kIw7QbwK9o8bCeDrk1MkQjAvDAM0hHUTLfuHVB0aruBgJqel7R6DKcjD9aPvaTJMF8vbKMObuMVAaFHby9PGF+CuUYGg4Z5ICddgSWO8+F/CqJwH+6o801VH/XTd3dXunLShUzNYbFXP+4PX1v5WoGwtsLN/pBSexv/H4ecGw/5c3PV8+9bZdfVyCUaI8zRzZVjQvvD8E5cvNsfD4Vd+SuUy7nLE41q3A+uFH+uGKZBT86BCx6ESDaQxgYcltvuqRUX+hYW5gsMZTa+1el1xd9jO8U6cG3kHBwcHBwcHBwcH/3DoRcbqn/Y7P6BYjesXefecFXcJvGABRzzYAvJDBV7VQlwvgLZc+VttYfKBW+cx3M3wvea7OweC4qoH9JxljbaeLSwX2RNbuRETOMOq1wpPuW+p2dFyocXkz1FrdB14Ndt7Z2h5L6F5hCe5dQ1tPbxmzAcvPIyWmRiveQZG5DMJzu4aTk+PIS/UxMpnyLohcdQ0iNW+U37xQ4eVnhLrtbQWMMaqB2o/oa9/tx+vwO8tQ82FLj/wptolr2M18xOsePSEn/NSm7Gtv6p3M4vmfjLvkrHJ016grmrXPtIhP3/+jTf0PuPuCdLIoZIq62Urd463BK0ObwExww6RhCPncN5wu4I/4IvhVyl0fOLA68HFT6xYHf7IMzLVLwriK+bLmWD6nT2oFlc9qxF/7/s8SLJH1PffLRVVGHfFPzkjpwL2YFyAYTGErU6GPNGBOYXUvR6t8OGoLr5H9oexiChXswbcC0+s11BbOrpD70Tbw78I1aWNIug1htLBgOl8SodrjFqevIL20bNcV306IsF5jrHc4kxu9K4xwMzcHcTUg6ZlmJ31IlRtv1MImITNuHvizp7bOPByNBLr0EmK8lQfoKTfeYonr9044D4Fn3O7k+la0rQ/kbfCtGZDtx+BTaG8Me9gD5wvnbefJPVdm37BbP8deAhcIb8/H7k9dPippn+Or2sCPVJHcuD6dw3lbkoZPFg5l5ws5oKAqzXufe7W4LD4RBkGNJRnidYHuK19F8Pa8vnKwCZF8n9GmBrPW/LjCuCXbY67aPA/6Hgo4vYnnyvsy/+e9Dq8AQpbCD/Vl3s10Zc4N/IODg4ODg4ODg4OfhHUf9rjxYJeZOz+ya/YKq9i5butCQVxPMymDECrfaELu5rCKsccoQzs6tBfcw2qt8sB7mLCkvOg9ivczmWP+oKv68C39P4RwDzcE9PnM7HHW7g8v99hzeqpeV/iQV+di0f1HuDJvuR+S5pPOZqno/tpFR/yyYm6F4RvEUlknknVUl4H4juO6mgmWhsuID6QueAaMrLJq+et1lkha7Y8Qf5eZ8V9AlTJzDanar6aqWIVh0fT7rKzB3RqhptetU+fC3rfH2Ff0WB5q/lrLX3CDiDXYrUTs83/6RNu6OGGFWaB33im+/2JkTFm9b44TvXQInQoGQ8l4zjQJ8XBOAkOT5ODby2GZV5TOCcs6BbkfGbr9hTAelGU9e2gOlWOT5INxP0Z99sBEtAeqL/yKC0GHfA8ZZkdMcmKmj/ZNBZ97OH3K8u+gGePiWcK33CNuEP1cD5NGjH7pg2JepBwMMHBwpZd3EznhoWfedU/X49QEOf7wijgVSh9X2NdVoDn1QzSwq/buQB59qifKNW+ALI11PAHH6Gw/cv97b5amR+e4e/xUQ9S1WBDC0/MIR4OYqbf5vV142APbibUwguf1jXl30nta/e/VZrC0V7Z3yxjXthWnbu446Mv+ne7S1P4owNNWcZvpLCKoym/Z8LucY84nsaF99nDu+d3pqPaWlNF53f4eYPWWZ55yY2CEIQp60/GBbp/x58kFEh7wE7wqgrdMMX9epvAeONPkAN1hQuJ6Hurtuu9q8D+4m+CHfBM6b8flHXwDWGYlh0Ah98vpefwuT1+ZK778vmnYF4L4tXu2MfPjbyDg4ODg4ODg4ODfzj6P+nHC4vxohnY/dO/8lacHtvVmbDjWK1Xc9zV7zHmhA4gCntVQz72cAfnEe76Cq84Pa5Z7tb1ZM39HLwVT/Jqnx+Bb6n/I2f7XrVR48k+fy9o7vfOfzfrKsY+RRc6E5wez1ybs8ar3O3f5Cs6tWpDxz6YhDdnDSnuqodQ84AdF/4+7/c4B6qh+itUzgTzK0MR2NDpX9RLf68FlHrAk5km7Lghaxz5U33MA11yAXi1B5f+ZjMOlQ7XhYndeioPgP75ywf+7jz8Dj16dBeLAB95H82nH7o4v6Hn5Ncyr9pY04hDuJ/ToT/4fONQt+bCzzdPoz/rlLqRl/zSRz8W9BKPvs50vxgZjztO3smjtDBf5DsvbDICiiOPPFNlkzXkpZ5JUhHPOoLnaarMD3+VmpuSJewQcwJ+jYkPVBt1Lds2T1W0z6jn58f6xt02LxX5URc3BfW777w/MOpP84VUHLZ/DX7mQZXtH8UcNuKyh4velHQC0MNf9sXhvOEHyfKYqnUx4Chz4GacD+k2F48bDUTYFuec/P4KPiW/1Gb0z/jgefnZDz7Pa+crodj08ADbkfmJyLtIpKGfr9tXM8cdbrObfXnpOe4jua/W4f6k7RhxYd1vQHaXwr1918/3CtozvuOBzX11vyKD5XE6iGKDoPP7BhsTuwMu08Okh3y3XcKGEgi/wpd4Q90f5JTMODryui9xoe774K2huCpczo+ptQTibGngNrXy2i0iqKVaxHG9V3tAfK/LbrTlU75jxIVIC4x4Shta/5EER+0VXPhbnN+t9k2vHryhbQTyEMfzvfj29x8k7PqrNgesf8RfSmObeG3bMJAHBwcHBwcHBwcHB78Y+j/1/cXK+p//iuGhF3UdNXdVR3lTTLpeiRiumY5VzYplvPigaXJ6N/VQJ2flceDVDMKTWfsuKme1v0/77nCX3/tytjZDzUes16u5QK/Va3YesMoVej1BduVW9FqV+5Y84Um+coEar36g1gFe1QVWXGDH7+i173oJvRewyoEPDMVooz6tQIlVyGIPi2UNHg2d32wh/SUubcqB3tdedQOt5kMOEX7lax+1R9Kn+hsoBwC/1gG6fYcVTxOsKnBGSDcHok71P52DNYMLKV/FyzoWJyfyCfhM0FNmeTRXrRVc1kLux4+pJ6IXIK/sqRYQ9f786+uHPz+ZYiFRPIQDzits7c2IT9LTizS+Gbz3wTz9LjW8Xag3AOOTMUhAlunMg+5fvP/BsAGSb1RChs1c9KEd2eaTJAt10cepcdTv0vM6VeKI+RQXEPc3QmU52M+Iyq8yYaQeF5hv3p6n85p8O+S9JNPl93zZsW4mVD/Wk24ifyde8ZMXUnmQWPcXM7R+nDfwaNujwj/xBM33UfNQhM2w4njD2ArRX/j60XDVDwknBD/hRmWOU4IGxAWk8695h23SKKyIJHPS72nuMi72HTnw4rrwT3RpDroZ5/4zD04HbeY6VNddPseIGhDAIqi2uPn1yT5AcfjVQ/YOiGB+6rWPcqL+ys4epb7qrWq5Dm3kAjXfWGgBJ3vpBgK7hh9s2aoXTkp9IgtMxPU7F5lpX+LtZM331QbEC2S9Al+Wr1lrX+0TUPegouZUKF91O3Z9Kny8Ubtydz2Xc5ofmRkxDvTeeeV7jbgGGlazLGeryCGjptn8Ho0nLD6Hmg2Zwxap68xtU7Bf6pn+Ku1Qio66sIPXUNdAOs3h6xDdR1nxapO4gskz/2hgoBH7Crf/6OkK1K/7vor/KJwbeQcHBwcHBwcHBwe/IOo/8/WCQ3pF5VVOzwdW3IqeZw68WzX0iOF44RbA3+MrHwEbtakah9oA2eaH7DGgVSMuPTZ4yXtYR3jaV+B6y9q/FarX5VvQc17ZwHv6dNQa31oP+QBqfI/ZOn5EzVe466n1Vqx8gPyolJxSN30lP9/oD17NXfW5iwGTv3A7W33gpw6nUPg+1Qzk6fwTmD18wDRDwSquOquc2kO5L/GUF7jURb/wZaz4qDdoTvLxEF9c5QZ2a0nvIj7NAmEP+XDUVDWTe1c4U92I5dwGHGtdcGSTB1/hStc5wl9n//nz64e//0Yd93kuNFaKFBzM5juj7vd3LoXil4weUlFHdfU78dzCnP4JMFgAP/lE3eslkzl4wzLWhzfiBX50wPLiIwTkjjs4rITD+CCbBbw842krbmBnlo24kHyTX4wFvsLQI84UHOKGgU1FCo5MIQEa4DHmebRE3B4otqn4tAUWJv6Io+PIo25f4inC/UwLHGPE+dWPc+N+UzNgfQZn4Bj97IuRiA9E3B7ea0DXLvfCdFrcFxNejH+Yr3itT67NGPNON9vomemsNzscKO9LNVgcX+KhUJnP6zqHeXIG3f0tDkAJHsbVnnsfOSHNDN5Kej0eEjw/pb7m9RiP0ce5AOyqL1HqrKB8YaqDUE/t9Yqda6h40Z89gEsfe9ykvRmqt6jLuaG8mrOGd3aV3dnjb5T5/Z/PZwiEgLkC9x/STaCfo1JpW6aj14DdryVBscu1kcD3dKiBWmmXBXhtyHBMMCf8dYGJeC7KTiJcyXPtYlCduYLnKGY19bwgqE1px/3hOODDESqfHvG86Ncpf4es/ocHhF0PK1vXifZoXD/ggexgW/PvEGW3ODfyDg4ODg4ODg4ODn4BrF609X/q+4sLvcgYsqLWqTrQuYBqTLFWIxFcxpAT7hVWveRTz4qM8ehIxqKWMEUKDxprLXp11LmAC192xGlXveBVrx3qDL2G5loB3Dp3z39a765O9QOKVQ4gnlBjwK5mrwPI13kJ8Aunc59CuR3Vv9Jrr1c6sMqXD3iVJyiv8sgIHjzK6PUzL3wrIIN54JUcM7xf8QNfvsTvHzM9e0cMEK8ia1bAl6r3QD3UT0R/SgNrlDp1LkB15IMuVB4RscFwKAf8S07Dsr750l98QJ8Ldq1xB/KQv+BnbAN/U8vOG36OlKGuC7l4rNbaZ6MNblwDQl1Hz5mgHsYRq3dF/m5fyN3EgLven/768OE/f6CCPaI/LM/AHqg+vqxH85NPgsEM3I/AJ79okuTXM3h4vzDua/EAyfcFYQdYD3UgZZPrLHyiqn6yDPW8rn8CULayMQJlemI+GSlNiXnHJ/NinQiVhEtK91NiHr/B5p/wavFMDr/pPL8RZ/EA400yVyjPDRkvuOSbgvWIV+3ksX7sH4kWB89sTAmpfUq/SX0ySjYIiifgB8wpHsM4mB5pvm81buA+QZozP6lWZfFnHXv4Tb6Rz0/mMa51Kx58ZNLwqxl14l1sysyzAyXz5nmm73/YRRLiQS2SfsvN+85NTvWLP9cdfenHfihuD6LU1/df1kFer1v9kHij3wKjH0sOPmyzpjhsSLs+km91cL3g+xVxHPGV9c3FOOyaV/L9hgPTWIH5yDOJupKKk06i+4DVPgA1Pl1XpucnHHk0aKgFVLeCdVzNuHx4+N9IDvEAcWo+0G2g1sP8b5mvIvMDuraEzIW/8ATwb8En/Li2In/S0YFf6Gs++/IbTpBmgoYWTqdD10X6l9IO6EsjoFnF64i8XNKKU+BrV8MZ9GahGVr/Lg5kpHKwGcXmeNpHutf1ar/VORDu5nkP7LpqHQ4ODg4ODg4ODg4O/nHoLyY6Vi80Vj75BcUrah5Qc6pfVVY1LIFiGSu4iz+KvahfcakX6+zrvcMj3htqqfdqf78HVj2AV/Z7UfsBdzXFAV71ftd8qI+ckHc1auwVD7ibpeff1et4mit/lUDVLwg/juDpJptQbRynOoU3+U1Pu3Dk1zzq6SHzhxSk01/sBOyo5WZZd9ULJstisDVh1rFHmZqodThzzA10rpD1TGoWrReo81GnNgBm9wGqoVjt33sI9FnskmP+K3sBzKfaUcvdPjdqSArTnHWuki+s9oa1xWs5ZBY+UPdSuVMNADETvV+ixN0s6zb8/fnLhz8//TZ+dx5WF29yug0gBzem4Hc73uK2R8lbSP1ON/fgGLap/J125q1+QF7/Ql98cm/0yzkQz1T4nZf51CCCDMvWDq3ainOLeLA8uHDAjTKTzhjx8bvuzIw7BFxH+LnfzDcv7yiYHzeNmT+QPJN5bkkZftals0nW1xyDf+EVqdXz5gTsPD8eQYl6/pXpx7jlwZDH3Qa/soeMql4Xfu2be+1ojLw55jb9pNiB/PnWm35XGysUHv2yI37hEehg/pij8lyKaUdbZ0wUtmIBpi3WiSwYEc/6ug7kquctJP9zAc+Px2VPPJ13QH6g857IHGYnBbPTdceHtCPqh537Aw2qbFLn/PE94SL9kDrPhQ/wmGlxfjPPtbSDJ/sqhdk/6grht4K+Vl8nWG+t596ep3qCaRw+zGqTvrZzJtktfs3vco7LPRRHXqcJJQp7W/tX474793H9xxGC6uAr33ODz+vH/DYnf0cc+RYxSq+nfFn+HwJK3NRhgTFstoznRUFxPOp8guKSYz6H+CopnjczYcZXO7gfbPz1ox8N7HxwM89iOF24Ye6nzW2Ucwm/n29kD/81PvubZOWF35LhPzg4ODg4ODg4ODj4h2P3T3u9aNjp1SfsagHgC8s8i9f/yYpPXEg3wtADd72AXXzlv611E1Oe1kYLPrMRoz84+ypep+/nan+J6ou+9JVeOyzrbdDPF6zn2Qf/y9D19gri9eum+1mp1VOscnUNUSK+mEF5prgIPbzeKyAfIb5JrQ26+tIOqXmmXuHrmDgL0GuxrFnsDvVEbBUn5A/uS4i/qAePKiy7Iaf04BpCp9/szAtb4PyYUXqANVTTpGqKw08WhZ5ZsFf1A6oHH7xRPSEfc9RbKHXUo3jSx3z3ZC3WLTnwA4jxPLpBX0edRfXqOj799ZWfzmNM3dnEekUqpUfCxjVR4k6PNzh9X/lGovntb0+Lk2EPoOZ9xf0uRh0xhx38E3iKmN+SPlqSe932m1JieB1I3v4xQ7bXk+37VflVau5VHIcxAfzeP3k2k/NmPwA9UeaOhOTzaF95Xg2I4aG5OsDTOe08SMZDAuDiz9jfgeSU/YVP+4cHa0cAbfWGMM6r/PxEFXpoT+BGTXqje/AhfZp5KsZhIY4+Kzv6IY+fmIqZkcyKoNMBFxKA2kedWYZQPgWPDs93pviU5q/5AGycB9Xh+QQvJP1YhGB2z692InK28cCrOBGzeU3TYbaZlrbJen1eYWtpwVy30AcMW+5oQwfOIaRs8ppd/ZB6LoIB3hN+QvEQmSd0+wak2YE1AkplGRug7gtihfoYq7zJZz3qNfg9MF3PC8jv7eaeu5yOzvPZZx8ouO+Pkyg+v5sqbd4MH8q4cOn6cmOWWQd2RcRz/RGnzosPSYEIeze3L/UK7vYmI+xpRchFP3cD7EXiug7q6xpQr35N3M3wrTg38g4ODg4ODg4ODg5+EeQLoqKvXlzUWOescrotiLvMN8mbeQbZprjcYNcHeBrb8sLP+Yq9Q9apc7ecuwrKr/sJCfsC1Q+IV5k5zw129ZHZa9W5qv4zsZv3n4RvXcPP2gP1WZ3n6ifPnWmvoHqmhMdQ1oG4cuWlzyTsKlFDe1DzVkBMfcGSnXl4lDmI4OY6xYEsgNXrq5J05kNXrYLMxSPAHMnCF5ce+E1PO8AqpZZ4FaoPJN948MGucUC25ue86k9GxKGIE7pytY7p0y4BcSrYA2hcAfHMMw6k/ic8cKmJmaIOj6U+bp6wT4A81Oq+6JN1GgdgJPyIwxaHudRcx/9Vwe/O+/y3GSjvbA8C7FNsxQPaAb13yU/Iff1MBmIu/egw+ZvxcRcPFuozbD7MC7bZ7o48OkwNU++VQjox+oOGTzSQD5LzcScKn1pw2/n+o9rAMzOk1/UVAS4xD94pRhr2s91SM772tsK5UQlhqORRia9rXo2nCombYybxSTa+cx3rSLmFioxuumY0X53fz0fhhgTo0yFygegQQL7Pl33Mizgz4KPwfB7NwY7IoRdAvsv4mqDaqIXvOdUD1Audi3uAF4+rFFg/iPJZ3Of56PksaAdcBriDOBpMNqeXXxIH+/rt948fvnz+wusOf1BfEl8A15B5OwQfXJ03LVI2IN8rsJarCe1HlcKqbqsBlRlKDx+gSskxSJ9kTVqg5gOVWv2v0FvUOXbw54nQ7aFZs1aJA+AjmGt6IHPbiz/7RnzKk1Cc+rjOBF1v/v1DyhZ6XtD31uV5YoHuVwrcvd+qxqpH9ZmXX6Et8XQ2oFbuFSf6TAzAOUiXtdtjN0sFGZU3l007XRkPZ7VhJN/j+vsNfv0I0tXzDyGe5gk70e034tzIOzg4ODg4ODg4OPiFoH/e6wVEf0EHW3IHcaouvvzAqgZ94KiGbMVcSV/Fqp6w7XWDuzi6I363F4/qL9axQq2lvl1f4cmcwK4OMrq31ltJcX4G1Pd7Y1f3Z6/vfwVab92XuhfUTSqGo+JA3a9pDyOXUdg1FmD9ohMLHvJRC5/oAS45BaxZ+wb6jwNFjPnVF6A/Yoiqj/i1P25aKa4c+t3jOnxhC5pFNZnboVgADFmZD53aDaI+c6JPnavm0xcc9RC63YEs1QO31hKyX9RSRc2z8gvqnzUWIAc5wRV6nT5b1o45VnyhxoS7fOD//v744Y8/v5jfYlxBjEnNJbySQvdT2kH18Qm5/qPLQon6/paiQ5oHkYebNH4bzXN/+/qFNni8qRZ98o1zM0c3v8/i72PCC5JW53CPS35SM2wAes7PL8XxCTCTlWigyUVFsEjuO1kO6NkPiVTCjw6mY00eNxs1Bo1IGzf5MBBs42K9Wc8k6lPKvYjTRp3f7fki3vjNuhFXnV6Xn8CrcSMHDar7qeM6DTvIaYMPGzwDbUrT/Etj2GHUX9mzNI0k2LjNvOGZgnhQCfh5Y94G1PdMngckQNpD1yMOqIA4F1Xw0Z6Hdb69mV+HsCXhr3aWMGPyv1WWufUDSxHtvN1cmIOhbv83pebr9neUwlM+JJ+vbKDqzyHD1vXS84XV9/sUt8dtvj1k1zrCExvz6hpXvM8lwMa6hR7vwNNLPF15j2yAL/tjkuWK36V9f5RvYP8knocGDwGbszxvzTK+x4sf/RyMEGU5ztsh6mivHFF4WsQanraPV1xYm57w6lwJsAcQK/8uDPDcMi8cD+d6tcYaPzfyDg4ODg4ODg4ODn5B6J/5ehGyf7Fxje/8gnKrrhxKfFJDv88ECJ2x4BrZYwswvsDOD9RYnWkHdEdUU4Cb84eskL2NmT9rhayoOagB9Dor1Dlf8lG3zxYSmGrBEXMDfoTLM+o667wrv6D4Sq+4q/cqr/uAVQ3pQK0J7GoI4nferkb1A4rVGtJXPumAOB3iATUPWNUBVrWFXUy2bojBC89dfXKKDijXSP6AKjt0csImTE/L9KxhGF0Rcl7OhZmiDo/VB67pdT6tgXXscVlTcPt8zA2ZQLzm24P1qr/UIBQ3oD7enJZeJaDZ6owV4tY4tFoDqGtBv1WPjpqTukmw+SYr9PBva/DgsR0va9+g58HKeZQvm4RrH0B1NIv6Qq92x4onKV3ATbw/Pn398NdfyOGkb5beDnVx4+KzeedbJwwb8pNtwZ/q8CMsONefaSOLu8NQscFnHdyANEGYHwbXFfW+Whx2kOonasiz5wzG+dyBvvb3vkncNKSMjqo7flee2yjFyisb16zqQuINZpOom+cs8piluviqflWVaof8XXcZin2xPNCSHHzZuonmLPC9juJ1f6mNkEnYaXDUDEZdVOD6RhKlv3k/5s48k349wIz8Fq+8nI9fY95g2NHq4wTrzXwcuAjnKwM8foK0xFkUNnhDdZs8Xc9wIWCP2G8v4TaNIvkfKnjefc6r33wsD9v8Eed1Sr915/Uz81UP6tTXwO/z8I/r2vjMQ2CkwLE/L17Pny+iTiL2SeD354iP/FHfR/SaT+Nhmq35HO4XFzXWtucB6uPQ85OfQeTM6wXD87Xutl6DZnXM84nve4dY64+6PK/wRz9IlfFktwnZVtcszA1tSDhN17XvpIxP9RivNmZt8+l6EyJP+xmjbIB6oQbwdwy/79DHtBr2Per7XwG2Z3ldzQufczVXhTirmKBO4+8rGmpXXGaU5z/IWrtQzXBfRY0jjHrJN0z5hqmCJTBe9oV27WMxRKd56KDpN5rjP2qA6DTfT/2HDAZLHPldvopfpNPxdw/Mg4ODg4ODg4ODg4NfGXqR1P/531+cKX73MqFye03q5nNGIHxVrqrXer0uIL/0il2OUP2oAKvOuMqvvm1fe0x1Qu74FYrdzf0SyIteS1g8K9d+1Hx26DcVJtSZK+DvvgrFd7ylH71WOWbn/C3nbo67mCDOW+rAFrpf9l29il3OXb5iXe6AeEXuZUh/gzOskPCBRws+1FAv+BqmDsZJu/TmHLVG1NV8WgsRXIE5i/7J77kLXLzGk481i80a0V+9M665xIEE5C+Y8gp/d76yV4Brlh5SqHN1qEZyCq/W78hehQMfLMZqjai5q6feeEAXLvxqFx7ACOLyt9y+PtUGW0z1vvQ1rHwAM2o91IgewCXP7L/++vDhP5/s++bzoIKFDNqQ9gdXA/J54yHiwrCNNeVHHvPdL8A/PjHkNhh4Y5l/M1vuyI56YtnB39A023RqSDEJAiTfjrag+1WJLudB5x/cRmSax4vEYcTpSbu83e3gvB6HxE1kfcKv1/eDbDdqXPmTbY/LnFhftYsEfP+HH4vnXOYf9f2mm65JE1gK+dP5YYAl6EUeeLDIx3XBGxSWZzbeKNbv1ENe8liQ2cmXHzTNR0CEn//RATzkeRFPhFANi8VkSMv9EryONOSgP/iuQ2KfyZMMPxp4PZ8DQC77oI5Jng/xYZvezyOT4Ysi6Q/s7Dw/YQO1vwCb9cGyr1W9u/5A9jKJeXscQEhQe/INqg3kJz2hoy6qwVTjhWQVO+g+zzin+/y8/ppkXAi+j2mHsOu8Qt2DaT3N/lbUek9qdz4A+21z2S4a1dM979Ucr+vXmgI3N/RA1On9gGV9hOiO+vwGLbNEfHVd8Hs9bY/73x0RDJtxIflFBvJ66nHN0vgVTgneDZYMJlth/yJ29ereal+Bvre3e/6dcG7kHRwcHBwcHBwcHPyC0AuOirf8018vVmqdmq94xSrOXPmLPmeu0esLO7+wm6uuI+ej54q7HncxrjFQ+9yh857k5PwP6z/BtBdW1xLD+Ebc1fqefXZY9Xg1E6D4O2dERlSaoXpNbvnvxWLuei3w2jHZfQB8eMgGZFc+kLziT86CD558yOMbsiVfPcSBZBwPd7hNNeaETk8AueIbVKtCecIuP/tDj5uc7Bf+XhtW1kVeiatOBfJrjwvCP9WsQH3zwZuzyAdu6B30yK88oOTAmzzzpQ1Ernqil/qRh/xSV3GttcfkTyCOnDCh0wc17KwReapxV5/SfIhO/QKqLdQ6FT1X9SuQit+dh5t60bFJIWy6VjyX0xngXKbzy9bFmKJ2tLjfXIH/o4lx7Xrc7cQX430EL/JgR7jsmP1xyX3hG7dgeH+Wk636xuO+kG+CbxiD57a/8auAgzcTlQfbiFTNx/I8ID0UFpLbjr4AWcimJjb50a/GE7jTYXGt1uFMR+EauBSFAH3yqAaKzk/McC3mi1Ie8n2ErJ3B/4J5sgmkx93nNlvQiYNwXT18fpMsfKhhyd4VvnKrkbxQQ3rNUk9NwWUdOXUO7YH1esB9ll7fwOeUiOO04EZTXn/uxw2kj79j3+CyPnwudj/qZH7EuRlC+psUuv0mIBkYBbC+1fPGOH/GjviO+16oXkr7M5/774P31H3TWvm8QIWm2yXXVN1YBC/nAQV5Fxn5kw1pDkr57+XUR2DcIpA30Pnv5777B641r4zwcR1mlXr3eD2vCJ02ZlAcOwJd19s1ZwUvv2aqx91a7vL7EFeWeXA94GkaQVP9Bjf8+Jqvp25D1uevuxvdmJOnNvJSBjK+QaOfG3kHBwcHBwcHBwcHvyrqP/X1grHqXXas/LWGsMo1Z75eIcQXd9Oz4xXnLr6KwafZFR8rWcfvsOQg3/yIaA9rTfkqqi2u0Lk1vqtXsYr1HkbKuROyO/cVek6tbZIzw7+rC14AWs5a85uv5kycVbyj8yAF5fUaldPReauaZi/XUXVIoObeodYAes2C2luRaR4DbUg3GYMPkLxg4Sc3clVd+ahZP1lBBB+y8jJuEJ8yOImwa5x6mR+AjngCPQFwgqt43mwMSFM9HgtndPG+RHD7HECtzb6VY/qIOtSPqHH4UCtq0GUPaJTyIR52VNkjcmptSNUUWDtiqp+5htQiTjVsyFoL0B4kx3RwtAZBeeRGTDmYR/FaT3XmSobIoQSkQ8K0R9Yp8lLHQG7I//u/Dx/++PMrfxpk9c/AbFbTNNZT35A1Dyxnyx4SfH2CqeexXgHr/PZx7K09Jj6kxWjjEBHNiZh7Ld9U7knE8Ym5+r67540j+a55Xtou+Yk71nPb9yH49sel2TEDWDXfJVgO2nZQnrPcxm2rzyF9bs+OloTmwwGS9w8QDz/3CW/gwvrKKozXT9ClDQoKRwP8mE2Px3rNTcWcOI/go9/vpnxmPdwojPXbQ3HZ3An/CpulCK6XDTyqOI71/A05wLlNeia7DNtyKWMuLCL9sY5Y5ByHGpLvo8O2WK7PdMy7+gRez38q6xzVrz667sSDHDzkaXdgzx6XXg9S+VUyDgLZWHesDxSkIGTHRWr+6D7YuK769aUbCX6dxTrQx76BeZ8eN0r5jWBkfoOWPuQaum3QvhAmOAf+kOvrGPyxD7RiDtiQGpa26Yjr/DpMG+QpX5jmMaAOAC5Q4+ohjHl9fvp48BoC+0Zujddagtd7BuX3uQCtw6tF1aBUJmkjlDYU1qQNaUqVUVMaDn4Di26TdqBEwCQOtF2dJQluig4ovkHeMAtUqu/H1MQeM7zt1d+BWtzjsCegCIaWfgPVeYJ+Pn8E7Pn04TQHBwcHBwcHBwcHB/8o8AXMzQuQGssXPEUKNb/HgBqvNXEEU3KCcUbWPWr9FXbxV3nANHvIFZ7MgEfujUmtvWLiGF7VfYrvVWcL1G/n/b3oe/AY75hhdQ6Iul83Nbf5Pwvfcd8rdA70/arrp9rUv8SnQMK/wuQvumqFQV12XVGvO1ktVqEIz5Hxpn4G+qCU3lwLANu1RI1V1LwaYV9XE7V/xa52+gHoi/xaE/y0TdZ8xqAorljwpvUvUDvf8YTKUd/JV21IzRW49BDHJCJaJ3nhf4JaF3rdvwrxVvvCjNp/gUue6bKm2Q2w4cLvzvtkD4vAa39cwubZm99RXctyk+gSl7qw/RNi0O2APv6OfnyhOz6Bhv68hUae01WkSayJQ5gNF3iyI057ksGr+ZiDEjcm/AYVw/zEFeb0fKbi8AVEELwOf2Qo4qjnLOcjTMt5qqM83cSofniQkX6TusmWdZpE6sVvgyIPo1a/9he2XyPOq/leL/afLs/j+Sn7wfMJPng1345epNWlhmOcZ/Tlhno+6kRzk+gT14fyGSo28sQPO69fUOzA311GY87nuiI+1Y156MT5t+shPJTwy/762dbBT+gF/ztJ0/ZxdX9lm8zzA1fxV8nSpjnpGn8thaf8q/Tvnzhviaf5wvCP5z6KgMe5Xvr3+fdSuNp6HpA9NhcQv8ge13BF4g+viPSb4I1SXXeWaqLGX9lTPaHZedM7YbYXCj+uqxqfwU/wfvnM51Pa9gdrGVA9h8eR5zY8Oo/gje9jhz8fYW+YRTlX656c3uVoFHA+vRZbVZSNVLchVXfdTzeyaZf91Ho8C9ltPmqAV/V85HkcdXUD3W9AWyWTvKHe+e+SXu/iR13UtyDkwcHBwcHBwcHBwcEviv5P/vrmYoVePHS94i7nAr36wCN6pg8wucmcsK1vuIsJOw782gvMUgErIsRb+mhPKGEjxsjAk3qvMM3f0GdZQblPuECN1749p9cF7mq/hb/iCopVgFf9PQ8ReNTvVf3q7/YKtTewy5e+qtl5Hb2GdEA1BcVf1ZOXvAUHUG3VArIujw54YENWLjD1KVI9abecCsS1Bs0imbUgS73sGRJgjeCnv+QRqtcAb9+HFVCJXFqBRX3WgoSLngJxoEKJGTm/YcqJWIc4lIhr7q4HpGVOSECzEpqF6tCnukCpDZAPWfw8T8WuGao0VYleiOkcK5+1QybAiTc5J2hO5FY9wDrwl34C+0VMuThmdtT5C5/O+/T1w+e/scaSYkwwlJPSCNpnv1k1wLgdnNfyUrq2qoP4hBzI83EQb5LIN65s3HSpdtZXPztG2bAlh5+9YdsRZwY3wcQjzMg8O+ieD2y/DaEdBLyOa54HSALyS+oNWYffhONIBo9DqovX1zWGo7LVmetiOLy93he3wfb5Cx9+8OFnwPPxiTwnKh9+6zvcjubgeTCbbt6IQF2fl2uwL33SywcKPgzYgAWnT0DZI/mm4PpSHEfexgo/YfrIVpvqCWhQg/ZX0DUM6BNcsjkGtSvA0fmT7WO5DUBbzrMB+Cv29H3mriWucVhjHod8q5h567wW1rVH8ImBThBNmjKVUxwSNq4LUzLuEtfLzIe/XOsIRx5Co48zCPVfIq5fxqu+gmqO2nn+p5zOe1VXmOuCHuWJkd/r7+Gs4EUxlRzVPP6sooGE8b0wQ2vNdg2rDvKZjBycaui8H51PUF1aL8rxPLTmueqDzX5uadh+HUGBjUNAcbqKfwE/b2Vv8pwFwo/dzvMCiviBvreqqWug6h0993vj3Mg7ODg4ODg4ODg4+BfgyYsPYceBb/VCpkqg80wB2XUhYtcua2StDb4lznmhlPmBu5diq3qs0/ZA+oSyFyue7B16vad5QufXGXZ4wnmFXQ35+1xAz+kc2cCq9h1q7d7nDn0G4Mkcu7y7vqt4993VuOPuYpDhmL4/a15FtyeUWGcxDw+rW6dXvcpXPGOlrmbu66qciW8PWPIpr6LyAeVYAEckXZ8fWk8hc4GST8AutcSrtXvFS98FuKaoTRR9te7eA1CN3MuwARyVjyNtGu6rkKf3qPmC6mQ9oNaM/hMsTgZ4Fq+MqVaJw+a6QhJlbR3kIC5uRfhrZFUDEAfx//zx9cOnv8REZMyOarSsNnvzzgveUVVt54+Z7BGfAHJGyJjLz7lpMPDGPD75xjtBTmMN9ho2cmgbP2/4hmBdKLjhwzf61cdqRpxEvTELhAjC8AeYz4f1TcvPkaPyLe5fUcb5fjRHpdLAO9H4JNqungGmFaCXbyL7fgvsY26fDXCHzwswaLwgEqxmFmLwme2uNVgieCa5FiCEX6seAxQf13BEZQtKSwK+ghM6wwZJRFGH1wEdwQeQgz3C+UccMd3wQZh5zlO/KscNI8jIJ8wJf8bdpTnmOnbwLx7qdehxKCbcTZvnKnshNts/Cvd9bOYS4jqJ4o/ZgV2dVZ775voVSun9+x7tatT8Va0K1TEt6/deEwadMp/eCMuDUeKDZ7F2/cxxl3JxcNrFmcHAwub1ppwOcu1Q18Y+VzI98GsD3wVU8fxHe7scOlBCro7nhhVuKiV8jCuz1n01965GB3JZA1zQc1+HTQ8OdNEpgyqun3ED20PyQ7JC84u/uy4pH+IV/dzIOzg4ODg4ODg4OPgXoL44Wul6WVD1p3iZK1/0TLvgVcc+Z4Vi0lfY+Vc1ZbPmJg/Y1ey48FQ3ZgagPavmeNp7he15+h8HZtZ5/ifjv7mOXe96Pej64DUJrmJVL6i5QNqQlqNu9IbPVdOLjaNyU/LoyDoWW13D1a5r7Dxh5VfeXW0g96j0SWz6vQLX7yqR67XHosseNlPNBWptyphxOX/Daq2XmUrPR3jIJwd9rf9qLcBqDZwZCtYZ+dXPnPAxDqzsFmO+6ZLyvRf/9zd+d96HD58/j/UBqHhnA7X/iNvRvuDjJ5ZiNhz1O6PAEz9rmGXs8Ls2eKb5lwP9kBd99f46eFEubABH5wGqVaGYwP2FHEVKPZfM4Vq8nuKD5xYZiMe69cESQH38B4nW9QboiHyYkPrkiRXK301mG2DlPQ4bitIj7+PvINQ6fj7cYfUo3W8ieeoPYDWjT8TtATF/Us7Pu8p7MedVmyp4JpGP8+i3O81vyfIrz++bscJkax8xHP0ZtyOHaP6QWz9k7VulHfwHy8JQfq3D1Ydc5FO+ilepiq94vm9+HQXfAtyCiK9t0/xrxEGAbQ/eN4gEXmdx3uUXP6VR+X3O63ARb1JG+uWKPmkjbrqGh9/vW/hqOY/i9FgkeJEyJPKS70aNC8kPqX7pjaG5h+7xSPhgixYq40LlE5qj5K/4QmRtwaVBqUkFtd6Gcg9usFfBGvMGZRTT9eKNbD2YB3w1xvNOxFFq+CFNSdv2I64nOkseH8AlPyRU6Kq3ggbOxCucso51JIs9W1Pz6XyPTzM/q9vBawR7kzWhf0zfa+zX67jZD2vSVnZwcHBwcHBwcHBw8KtB/+zvLzD6y4HxomRwOwf2rk7NB6qeOa2esPZe0efp2MW7v886AX7MG3GxtOpqq8ZuTyB7bAfV3aHW6nXVT1jF4Ks6oDpVHvy70K+JHe6ujR7j9RS6AB9Y9doDpuuu1Kk1mefqEhPXdPaIuqs5XiFrhL7CMr7g1vV1XaCn+2EXzgT1KXFofAMdqHHTYTGysYlSC4D1lLeMV7vodd2ExXJfItYYvj+G7p9qC6U+NETpkb/OtYByhFojawmbGm/BH398+fDHX9CiQzYZHW13YmycO/fDm2Tx9Y4u/HxHvthNqh5thRa85NsR8L6OPGchOSfisceKZ4bZ9SYPJK8H+CMuPnPx0O+kUjxtsrKO9oUC7/zLDslrTHbkX363lt/KoiVbrWGjAvNUp0rWMVnfGf8NU+mdbyD8mFf8Usfrg4++8lsEataZ83x+z8Pv0uOb7eSHnyXsYE56ELT+43dF+Xoi6pJvdCMFvoh7UdrJMwk7Sg67vPmPPvKn9OLNz0z3W5wddLOCDPjH+SHNNffzeo+6tC2EPdRwugNGvvPyd8RlXs2Hv0gvOHgxB2XM6X6gxWNSl7EfCme8S2G2tRvcDx7DJmXO5zXP6wjzC/jdhJXvNvL4qVpUtBT9PdVtnc8aVz/Af4ea+iFXdR264YEcXV/Kz5KlHmu4oBuReT7Y6CFb9ZjlsJh/csp0hi3OIlcbPLfhR7zbsxzPZ/KHLTR+j+v8DcC+0AJeKFuS2vMBrwHMdaSYc1AC7vAb+Lo+5nxEMK+2cQVun0nNB766AsijzeG9Xo136D8UCM4fnqxnwHXA/4gAJyKmKw75JeLojeuF/BKvUuB/dLC/T0yMuJdICS9k/gePFn+XRB9U7n4bHP6Dg4ODg4ODg4ODg18UerEivUIvfqsE7nKElV91qp62O6mb02XBussau5k6XvEQrzPvsIvHai4Qv9d+1CvkCshFDaHbd3gr9+D7Q+fgLefiZ6LPJf3LF/xYOjpAog9HrWUF+ZFXOcyDUnJr3DvOPkB59CJWZqlzSGp2WMxr9Sp2sewHgBN9WFs50SfRasFqjHdDayIW/eHJ+d4ArYezvshl9EF91JnOxU19eBijEfFYBytEHbxhes0e9YWhXfuxZpsrDJcFEw8wGx7Ztda3gp/Ow+/O+4za+HvT6iNQZzTwEzcmtRec56H0omaZnPyBiW8cyugj1Lz0o17OYxEGzWp9quQnBk0CqzhkzRdWPFwlqJZ5Iek35cp3iX3M9/XT9kriOTSH/KMu802h3w68b2R6EAlOFgTmwYybbdoHhkPx68qkDVTvH+UbxGZoSkrW8/wq8YY6P8kkG/ViQI+jnlWoNucIP9qaTmkP7I/I5IWtOIsgDhT/kJrV81mP0cg3KF15I+7zyKZQPxPk0+cxzU/DKWE7ZNeRiXCkP4iTDWH6Ii2MkIXAMgu/wLirBOtBCWetD6Hzmom8TmA4+vxdvoq/kjiX2GNCfgGFFQN6/LsBhYF1cX0f7ZtfB9Nz+1ugCrvMGodOmSeg5w2WRqlbCfQRS6mA19BaMt/dAzUHz0f+DenwERJ4HvJP9JmzPtGJV6TfCL36LxL9ah0hbB9/H68Y5w0B07kpYQLaCzgQCltp2iO/ZpQ0YxXLPW51fyTOjbyDg4ODg4ODg4ODXxz4J399caGXAHpR0l+c9Bci/SVDzxeUV2tC4iZAxcRzB21z4HXQI9S+r7Dj1jlfYceZd+qKt/QQnjDV93nVt+PpzH19Or9A9z/Zjxq/46rPXa2Kzl/VfsIBdv4n+Jbct6D2edqz8quEH9quwm1tiynKGpW7myt8GcMcjVetS92OEpO2Wo9qaN2E+ehVjRJT38pnDdnKMegcTLUNy3xD5z2BuqlXByrC22vLrrNI7/MB8kt/ikdc45BV5ufMkMgv/if1Vpw+v/S3Yte/1+u8Gu+xP/78yh+36W+WQvqSwfKscIbliDd9zeVXq+8hdF8fDDsEqdaDS3FyzWZ2/R16+gRcT4Jd7xSFGDADdsZd+nnUvwvK+YZS+XSPvAERdezwOGPKl054PLwGWzfvhOCdZcl1ZUf0t3pg+SeUxr9zUBkVwfPR3Y6JDPUTUc7Xkch68nititma4TuqXgaSa8YcH5+YK9CeGVhPJmk11wNcC2k42IP7jgDDBougDWEBXDdqKx6lHVo+8urvwKspxGQYYNftW8WrXQE/b0TsCBuArn7fG09q57x3i3uFnruvlc8rOdxdz7fFWZvnr+SojUC75PG6MV1+G258Ak9+8CTBhzRHsaG6PUu/kWU6IL/wyk6MANuy3ops1zljz+C1Rp08N+aiN8qr33geEm76TdQousCcvys2yoHBatvG97GOpGpEnPf+fUxOEMUL6c9bHmBK+l3Fwa8nKMOOzU8+/eHOZMlAxjd4Gbe/FG/CBwcHBwcHBwcHBwf/dOif/HpRBNtf6O1fClTuHWr8VY78ZEV/zxi47zbA3BdrqHjCe08tzS8P7KlKm3On74Coava9usN91R8DrEXXQEVd7w49t9o9v9o971vwrbU0F7CbHVj16TxxVvlPsOqxgupXKPeSH9xrxsCqHpDrKPoKjKzi5ttnOe7qZk2s6Y4XEIPzQmk5sOruSK+sXLP1XOnC6jyBs/JX9Bmwtl1e7b+C5rrrKc5K77irswLZyom6gLQn9cTRXMJuvru11Bo13rGq/T3w92e/off3374H/X1oHHMiU/hJKgsinp90i7kxI/OYMKq4aUeswSTs/EQWQ6OOZwxUWz3ExxFVpjikPbrscL/xLaibtsjXJ8e4puSFhD+AlHzfPkiI1ttUkAglYr7LJ/HsQL85IL29r4s7EsQYi3NwH9xNP9/ndcsejuSbLp7nm8QNKxscdq2v94u1B4q78L5Azh/8oLkNgh1oQw/pcc+b7quZL+P2EGhrDtmSUccjpNDGML99xG+QU37Js0P67Y9L7bP7cf79up7IVHm+7UEoKdS786648rstKK/KVV1KO2g9ACTvJxSZeabgvGZ/s7FfgOwsHIL7GbyLtELVnoHvI/hBMJO8uF5T2jw2IO/fRx3OF/WY78UcMFALKuJQwgZ4XVL679DT95GgOID+iqsXSg3+uB40a49nonmh8pPLwQ1G4Rtg1DS4CqHyX8VX8DgYg1l7JWPyDdRea4jgydoX2KmD0uRvdoF+zW9Ac4AIvx9mPlBsP2cLHl0Lf2B8T3igrhezdrjr6u8YuVaw1IwCBh/Gr3HY+5qqVb8vgDnPfZofMeirNfxInBt5BwcHBwcHBwcHB784xguS9QuVFSoX2PGr71VNYcoJucOrak/6Ca+4iL9nDbeImju8Zf634MdUfR+0xrt9uAXyN7k6Z/8LeLzOm/X81xCz+9GhdeQeBweovI7VNd19qPyElwg/jtq5zlz1EC55uz6Byge2cwW4HlcveJn7zmtBVb/1+n+S/5Yeb52H7JqD/Qobe/e0nnir/VYM8nKdLHqJIxtY+X40/vz04cN//ox50Z+9YZs02yOYO24R8B3TiJudKbpCFcebudMtDJNB5pu1cIV/yg9pDJUZfu6PSfX/8sXi4BkfRTRMlQXc3+BHU++GH+v7++8fvn7+PNVxxsiDH17uStjwmDI+SRG2+jDuH9lxiTwieFWKF/kEQnZQ5xG388F6unVT6oTU/o88IOaHv5wn/o49q8c+pF7rXfw8D60/VNmar6RUg3PF/LTq+iH5Vec1AafiyGM+VXPhgJt5ike9KQ989QGcx9+pFneYsk+c98t1E+fV5w87JL93wxbfv6+vfF23te5FYo5cj/HtfPG8LeIWtePMf4tEvuxRx38X3bCFa/5a2tGEP6et447m1/PIhT/L3I/0C9p30xBa5cFmDK6x/lU99an9UN9rA6ZwoWGmPSSeH3S5TnwTvuPDHnndlrRCJod55bMfbEBEoduZKGCd4eFB6/Y0nE/fL0H5WIfbiNc20AWutvT31d/b43pocYTSVjzGDlQbc/jvWByMK5+khOKUNjefL/CHOtkjXqSgevDnDWD6NXVoNMKKApDX34kHu5z/i3wVfyEt2cTBwcHBwcHBwcHBwa+K3T/5/cX7Ol5jetGxg2J3vBqrfDOg0Ka+wNo7424+4QlHeMp9xYuVbYH8ujfcE8OT/srdYVcBGW+Nqcvrqb4vat+7ue/w35odWM381NfxdP1PeR3Mw3VXrkFdm5frLK5PHkuOsLx+zVe92U86lODcfh8sfBePcTT7Chc/+lWf1lN8yLn7flth1x9QvTpnrV/7IaoIuZs5kr/pW+tX7PJWfPg02zRj0e+QjMZVvTBQ0PUNeq+7/m+dEVhxq614zmyofYSVD+j+XS4+nfefP75++L+/rZ/5EH0s7fDVjJQ1bgpaeju9YVniIYFhmxZO2pZcb7sIsNttn5TT74Szh5C21m/Dia83VhETL6XqBb/Hd3NkPPKB9KOPGf6W7ZUH9DpphIq+9ZNInWflcv+HBAscXFfRHa7CqzbeQO7xlOasfEocws78cE/nUXHOMe8/EX2na9b0zDeAiTyvOs4bOaxLEZ4RH/D51TLzg3TlDyhH3BVq/phl4K7+FWBG0wk7/3cAZuYNhLk+zgldXJT7qMDHJwI3u/SrbR8fkmST5rjETal+4ZVNR8UUbBD3jtPxnpz3Ir7vGrgtC/8e9zPzPIcuIGO/wtFcp0lYjoV4DRR7yjfJG6CMIwAZNv1myH4hvY4Z8gs73hIiAipSbZwft/vftcBrH4/UVe9n49zIOzg4ODg4ODg4OPiXYPVPf3/R/zWlfMDO7qj5tQ6gXED+iYc4bARC71h3vUedoaLPtuMJr+K3QG70wPpQaezGPZiD/Sj4lll6Zp1HsdWM3X6Fyq/1ew34gLvau97KBWq89qt41QPonPfUqlA+cNeDiOukxntOrbfCKl59q3oVO7+uXaJej7oWY3ZYJTrqBK/a0pOPHvF9krHopWv+cu1HjpA8e9BfbcieX7CKcZ7QE9FTfOl1DuCtPV/VsQCOW9R5Oqpv1eMVfhRfrLs1clVtn1S/rnmlCzUH6NwaE3oNQDzJFed7YTfXH5/wu/PUF/Pj1ovgbx6PXIvjk2zQ6RfLdEjz++/6sYc7kgShT5DQkzUNJvhMBRufuHMv/cMwqF74vQ78kFbX4vykkzD1dwmqcliKDoGFknuFx4UoUzyzdYHVVY7D9sv+DHsDDap803PGWMA42v5lqPAIP5+u4WZgiUV9BHgu6LOHKFOfK3J/wStceBHLcy2gFVw4aA7qkG4SYftaPOQ3mjyIH+mXjfKNf0j4zUi7+yHdNccfSGFlT3cun0IJc7G+NUI9p3VfuT+ZM9cSah1AOaDr6vQant/P23w9AXVOxZSzOO8F2btgLn+tNzCu5Wk/wLWvbe0pYDrMuIGMMCM4yCjSv1fxPQu7rO3Cg7T4oq4/P3JK8496itOAoPRIX0fFtJwlFIzCrd7oA1jgUqvz55k83zwtj3OF/hS+n5oFGBUmL92vq4Pn+/OaC3hZHC1JDUcRM8Jf69F2lX1o25mN5wGcX8aD5+e/umCYZs9H/P5DOK6bQpql8DT+EOdG3sHBwcHBwcHBwcG/CLt//uOFDWL1hZS4/cVVr6G87q81JYHKoz90ApxaJ3Lgm6vfo8+ywhOO8BbuBcjVHoTrW/BNs/xkYNLvsean4B7rmvkfx8/em6fg1VWusfq9rZlzj80/mFesrlV6mh/VklvOX82v+t2+gQdmnVGgFvbq+WiFVc6ERR+h186ePDrgAW8VExhZ9V6g1qrzVv8KmnXHgf9VDWHFvdSHLL4ely3UWk9Rc3qPWn/XU7jr3eeuQOwuV+hzSQqyv3z5jT9qE787r97cQQdZeMMRdrnNNsWBrW0HfPfs4v5BCK8PO+eGDr/ZVXoR5+CYdWtek/nJN9WBHnz4KOwhf80XdnaXQNqmcGT0N8VbjvpQtKSZP2RGdWMq4HFbT+NfpfVL2/eZhhWTH+8vfyQv6hkr85PHTJ8zpAzaFpcf6/348SP3ffxIueCZ78JPGfMZ0E75yTI9tCFlGHxO2MYz3X9wqPPmTwCWddrRPVHvW6QpXvcFL+VYj96/x6HaM/+FNIX9u3wVByFYuzhk/CRSoscBSMwd96sICISTL7tIv/6u/knagfIV76HEARJ9FajxKgE+L1lz2H1eATYOkIrjoL1Y2T1fNtrB5nyBOz6QdjTg804w6r4JsCtiiQnmFlvx5JlkDRxADZmNXkioOOgn8uKG1orHfrpR71lXiA+VlFIg0e2Bi1cbweZQ3PYWdnTFaO536fX1dxgwZkGptV/Af6TJHx38U+DzAudG3sHBwcHBwcHBwcG/FLuXAnqxg7h0QHy+qfPiZQTifHMoPhVQa9XcXpMM9Sw84L7jFbXPDk84FZxR8xW8qrPLIyzWszfMCarZa2sWxe6wncnwqv4vA6znZh/+aajna3V++/ns0PnVua9QrmKoQobplan64ChH9gXFB02TybvMMexWoJ7WNOeTZC/M0mqK06FadX7pAvci9F4XWNauNZSjuVAv+qz6Vazmgi7c5d6h5t3NQD/6ld7pA1peWvKLZ39XcG574O+NuoYOzSJOtfucsOWvNXc51V7VA3qtHwn16XP8+ekrf9ymBczCNQrpHy1wl81IG280xu8YwxuP/N1DwbPjyIeBg9uQ+EQfNRKtjt641DvASFJ+scdNvGIzHncWWjxl3HngJwntGuj+C/+Sj7oYJ2xMaSq6m4aAubEvjNjD9+ML9wX+ysO+mYfk4Veev4lttjc03STJvu/8nXbkCzgvyhdgixd1KTHJyPcM+YPH/u6PpZpPdWbJFec76+73OmOd9PP8uI2s9KeEsGrWh3F++XoVx/5mhinaP/GVgevV9wl+Bkgec5lEss3j15PHnRvzyA6JCN1jGy3d+vBOFWw6TI08Xi+m2xfXXa5PXH/6RCvSsh7ipT80wD+ZU4hbKTy3OXbtO0nhaVx4p80v+G0feT0LT+t1ucMmX67cD2HY2i/+DjqcVrr9uiONMAX++J5EOb9uzKZLcXuwIKT8sKNwxuVvPDrsmNehfy+MiNOTTwN2SENUyJADXnhGAkoMGN/q5ViKZRHlC90eGHVrkXQ6zKx9+u+46/A98Lhf2zPgWWWLOcXN0J4K+jtIf4dXPvvFsPn3qz1qnLY5NCP/Y0HYNU4lRJScpAp3/9P4RTod64N5cHBwcHBwcHBwcPBvhF7oCPXlAfw13mNAfznxhNOheM7R+fAXHzQw+T/3S4/Mb3jVv+It3I4n65zWWOZd5a5XM4NZta5BfRBb1VCvJ3t3h9XMF4Dzjtrfiveu6Z+Ouu7vsf56jns9xnR+JRfQTLUWIFtxoVZJDo8+A3xTTnAA8VfInDoLZOutmOrjPyOsUGeuWM0gzyWncjf17tDr5RrfCOWs8le+lz2wrp4TMqF44e56aU+lVx8Ae+UD4NN/Kumo9d6C3uu/gc+2nD/++Prhr79tHrP1STYccTumf8JpxMG3+el32xYT/ojboeaTbwZv85gD24Xob191s8/rT5+kMn3ko55JM9zG9zApGU+e6kRcc0P+bo7ap+ZB5jrsoHtd8gM8b5D24Dz20PmntD81b5KMu32HrPcF153qIs+qm6J6UPgGf9hfcOMB8XBAwk4e/DBg2wH3Bbz+kOLX/JTmnOK2AbTtgHpe36F64gJSWQd8Oxpt1DOh62y6DsRnH8CTej2uxwnuMd3jsxR214GQfihm5byB5JvCaXI+R8YDk80cpiRu+Qs8ifth7rOFCr5TYp/Y545nB34SlE8ExZ/xQLd/Iur3MwbZ7901pmulLgC1hFrTo4ZQkoUYfYNboZjqOsvlGs7j0Q6eb6q7p3o1Jl1wOpyR2FFCzMfzA8+zGfCjIKUddP4h4MY3VsbtwQKQsm8kxI4vhD3OhRniEabEgvk8YzrDps/XQ63hqDFBnJ5Teb3Oz8OHD/8PqIkLcEYkW9MAAAAASUVORK5CYII=" } }, "cell_type": "markdown", "metadata": {}, "source": [ "## Enter Financial Modeling Prep API Key and Ticker, to Obtain Financial Statements Data\n", "\n", "![image.png](attachment:image.png)\n", "\n", "You need to sign up for an account at https://financialmodelingprep.com/developer to get an API key for free (250 requests). Financial Modelling Prep has many financial APIs endpoints (stock data, news, performance, financial statements, fundamental analysis) to work with.\n", "\n", "Go to the Dashboard to obtain your API key. Enter your API key in the next cell to store it in the environment variable \"FMP_API_KEY\" (or use any other method such as using the cmd line to store it). In the following cell, we will then get the apikey stored in the environment variable to use for our requests later." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import os\n", "# uncomment and enter API Key below\n", "#os.environ['FMP_API_KEY'] = \"your_api_key\"" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "apiKey = os.environ['FMP_API_KEY']\n", "ticker = \"AAPL\"\n", "ticker = ticker.upper() # make sure ticker is caps" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Obtain Financial Statements Data from by Parsing JSON data from Financial Modeling Prep API\n", "\n", "### Quarterly Cash Flow Statement (Most Recent 4 Quarters)\n", "\n", "For summing up to calculate the most recent trailing twelve months (TTM) cash flow.\n", "NOTE: Unfortunately for the free API, you will be unable to get quarterly data (only annual), in which case you can choose to just run the annual cash flow statement and use the end of last year's cash flow as the most recent cash flow (would eventually result in a less accurate estimate)." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
changeInWorkingCapitalaccountsReceivablesinventoryaccountsPayablesotherWorkingCapitalotherNonCashItemsnetCashProvidedByOperatingActivitiesinvestmentsInPropertyPlantAndEquipmentacquisitionsNetpurchasesOfInvestments...dividendsPaidotherFinancingActivitesnetCashUsedProvidedByFinancingActivitieseffectOfForexChangesOnCashnetChangeInCashcashAtEndOfPeriodcashAtBeginningOfPeriodoperatingCashFlowcapitalExpenditurefreeCashFlow
date
2023-09-30-6060000000-929700000095200000014901000000-12616000000-57600000021598000000-21630000000-8557000000...-37580000001608000000-231530000000839000000307370000002989800000021598000000-216300000019435000000
2023-07-01-2009000000-1987000000-220000003974000000-3974000000344700000026380000000-20930000000-9759000000...-3849000000-2438000000-2404800000002769000000298980000002712900000026380000000-209300000024287000000
2023-04-012310000005321000000-741000000-1468900000010340000000-141500000028560000000-29160000000-6044000000...-36500000003484000000-2572400000005155000000271290000002197400000028560000000-291600000025644000000
2022-12-31-14970000004275000000-1807000000-60750000002110000000-31700000034005000000-37870000000-5153000000...-3768000000-2705000000-355630000000-3003000000219740000002497700000034005000000-378700000030218000000
\n", "

4 rows × 26 columns

\n", "
" ], "text/plain": [ " changeInWorkingCapital accountsReceivables inventory \\\n", "date \n", "2023-09-30 -6060000000 -9297000000 952000000 \n", "2023-07-01 -2009000000 -1987000000 -22000000 \n", "2023-04-01 231000000 5321000000 -741000000 \n", "2022-12-31 -1497000000 4275000000 -1807000000 \n", "\n", " accountsPayables otherWorkingCapital otherNonCashItems \\\n", "date \n", "2023-09-30 14901000000 -12616000000 -576000000 \n", "2023-07-01 3974000000 -3974000000 3447000000 \n", "2023-04-01 -14689000000 10340000000 -1415000000 \n", "2022-12-31 -6075000000 2110000000 -317000000 \n", "\n", " netCashProvidedByOperatingActivities \\\n", "date \n", "2023-09-30 21598000000 \n", "2023-07-01 26380000000 \n", "2023-04-01 28560000000 \n", "2022-12-31 34005000000 \n", "\n", " investmentsInPropertyPlantAndEquipment acquisitionsNet \\\n", "date \n", "2023-09-30 -2163000000 0 \n", "2023-07-01 -2093000000 0 \n", "2023-04-01 -2916000000 0 \n", "2022-12-31 -3787000000 0 \n", "\n", " purchasesOfInvestments ... dividendsPaid \\\n", "date ... \n", "2023-09-30 -8557000000 ... -3758000000 \n", "2023-07-01 -9759000000 ... -3849000000 \n", "2023-04-01 -6044000000 ... -3650000000 \n", "2022-12-31 -5153000000 ... -3768000000 \n", "\n", " otherFinancingActivites netCashUsedProvidedByFinancingActivities \\\n", "date \n", "2023-09-30 1608000000 -23153000000 \n", "2023-07-01 -2438000000 -24048000000 \n", "2023-04-01 3484000000 -25724000000 \n", "2022-12-31 -2705000000 -35563000000 \n", "\n", " effectOfForexChangesOnCash netChangeInCash cashAtEndOfPeriod \\\n", "date \n", "2023-09-30 0 839000000 30737000000 \n", "2023-07-01 0 2769000000 29898000000 \n", "2023-04-01 0 5155000000 27129000000 \n", "2022-12-31 0 -3003000000 21974000000 \n", "\n", " cashAtBeginningOfPeriod operatingCashFlow capitalExpenditure \\\n", "date \n", "2023-09-30 29898000000 21598000000 -2163000000 \n", "2023-07-01 27129000000 26380000000 -2093000000 \n", "2023-04-01 21974000000 28560000000 -2916000000 \n", "2022-12-31 24977000000 34005000000 -3787000000 \n", "\n", " freeCashFlow \n", "date \n", "2023-09-30 19435000000 \n", "2023-07-01 24287000000 \n", "2023-04-01 25644000000 \n", "2022-12-31 30218000000 \n", "\n", "[4 rows x 26 columns]" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "columns_drop = ['acceptedDate', 'period', 'symbol', 'reportedCurrency', 'cik', 'fillingDate', 'depreciationAndAmortization', 'link', 'finalLink']\n", "q_cash_flow_statement = pd.DataFrame(get_jsonparsed_data(base_url+'cash-flow-statement/' + ticker + '?period=quarter' + '&apikey=' + apiKey))\n", "q_cash_flow_statement = q_cash_flow_statement.set_index('date').drop(columns_drop, axis=1).iloc[:4] # extract for last 4 quarters\n", "#q_cash_flow_statement = q_cash_flow_statement.apply(pd.to_numeric, errors='coerce')\n", "latest_year = int(q_cash_flow_statement.iloc[0]['calendarYear'])\n", "q_cash_flow_statement.iloc[:,4:].head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Annual Cash Flow Statement" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
changeInWorkingCapitalaccountsReceivablesinventoryaccountsPayablesotherWorkingCapitalotherNonCashItemsnetCashProvidedByOperatingActivitiesinvestmentsInPropertyPlantAndEquipmentacquisitionsNetpurchasesOfInvestments...dividendsPaidotherFinancingActivitesnetCashUsedProvidedByFinancingActivitieseffectOfForexChangesOnCashnetChangeInCashcashAtEndOfPeriodcashAtBeginningOfPeriodoperatingCashFlowcapitalExpenditurefreeCashFlow
date
2023-09-30-6577000000-1688000000-1618000000-18890000005195000000-7422000000110543000000-109590000000-29513000000...-15025000000-6012000000-108488000000057600000003073700000024977000000110543000000-1095900000099584000000
2022-09-241200000000-182300000014840000009448000000-7909000000111000000122151000000-10708000000-306000000-76923000000...-148410000003037000000-1107490000000-109520000002497700000035929000000122151000000-10708000000111443000000
2021-09-25-4911000000-10125000000-264200000012326000000-4470000000-147000000104038000000-11085000000-33000000-109558000000...-1446700000014730000000-933530000000-38600000003592900000039789000000104038000000-1108500000092953000000
2020-09-2656900000006917000000-127000000-40620000002962000000-9700000080674000000-7309000000-1524000000-115148000000...-1408100000012331000000-868200000000-10435000000397890000005022400000080674000000-730900000073365000000
2019-09-28-3488000000245000000-289000000-1923000000-1521000000-65200000069391000000-10495000000-624000000-40631000000...-14119000000-1936000000-90976000000024311000000502240000002591300000069391000000-1049500000058896000000
\n", "

5 rows × 26 columns

\n", "
" ], "text/plain": [ " changeInWorkingCapital accountsReceivables inventory \\\n", "date \n", "2023-09-30 -6577000000 -1688000000 -1618000000 \n", "2022-09-24 1200000000 -1823000000 1484000000 \n", "2021-09-25 -4911000000 -10125000000 -2642000000 \n", "2020-09-26 5690000000 6917000000 -127000000 \n", "2019-09-28 -3488000000 245000000 -289000000 \n", "\n", " accountsPayables otherWorkingCapital otherNonCashItems \\\n", "date \n", "2023-09-30 -1889000000 5195000000 -7422000000 \n", "2022-09-24 9448000000 -7909000000 111000000 \n", "2021-09-25 12326000000 -4470000000 -147000000 \n", "2020-09-26 -4062000000 2962000000 -97000000 \n", "2019-09-28 -1923000000 -1521000000 -652000000 \n", "\n", " netCashProvidedByOperatingActivities \\\n", "date \n", "2023-09-30 110543000000 \n", "2022-09-24 122151000000 \n", "2021-09-25 104038000000 \n", "2020-09-26 80674000000 \n", "2019-09-28 69391000000 \n", "\n", " investmentsInPropertyPlantAndEquipment acquisitionsNet \\\n", "date \n", "2023-09-30 -10959000000 0 \n", "2022-09-24 -10708000000 -306000000 \n", "2021-09-25 -11085000000 -33000000 \n", "2020-09-26 -7309000000 -1524000000 \n", "2019-09-28 -10495000000 -624000000 \n", "\n", " purchasesOfInvestments ... dividendsPaid \\\n", "date ... \n", "2023-09-30 -29513000000 ... -15025000000 \n", "2022-09-24 -76923000000 ... -14841000000 \n", "2021-09-25 -109558000000 ... -14467000000 \n", "2020-09-26 -115148000000 ... -14081000000 \n", "2019-09-28 -40631000000 ... -14119000000 \n", "\n", " otherFinancingActivites netCashUsedProvidedByFinancingActivities \\\n", "date \n", "2023-09-30 -6012000000 -108488000000 \n", "2022-09-24 3037000000 -110749000000 \n", "2021-09-25 14730000000 -93353000000 \n", "2020-09-26 12331000000 -86820000000 \n", "2019-09-28 -1936000000 -90976000000 \n", "\n", " effectOfForexChangesOnCash netChangeInCash cashAtEndOfPeriod \\\n", "date \n", "2023-09-30 0 5760000000 30737000000 \n", "2022-09-24 0 -10952000000 24977000000 \n", "2021-09-25 0 -3860000000 35929000000 \n", "2020-09-26 0 -10435000000 39789000000 \n", "2019-09-28 0 24311000000 50224000000 \n", "\n", " cashAtBeginningOfPeriod operatingCashFlow capitalExpenditure \\\n", "date \n", "2023-09-30 24977000000 110543000000 -10959000000 \n", "2022-09-24 35929000000 122151000000 -10708000000 \n", "2021-09-25 39789000000 104038000000 -11085000000 \n", "2020-09-26 50224000000 80674000000 -7309000000 \n", "2019-09-28 25913000000 69391000000 -10495000000 \n", "\n", " freeCashFlow \n", "date \n", "2023-09-30 99584000000 \n", "2022-09-24 111443000000 \n", "2021-09-25 92953000000 \n", "2020-09-26 73365000000 \n", "2019-09-28 58896000000 \n", "\n", "[5 rows x 26 columns]" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cash_flow_statement = pd.DataFrame(get_jsonparsed_data(base_url+'cash-flow-statement/' + ticker + '?apikey=' + apiKey))\n", "cash_flow_statement = cash_flow_statement.set_index('date').drop(columns_drop, axis=1)\n", "#cash_flow_statement = cash_flow_statement.apply(pd.to_numeric, errors='coerce')\n", " \n", "cash_flow_statement.iloc[:,4:].head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Cash Flow Statement (Annual + TTM)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\damia\\AppData\\Local\\Temp/ipykernel_58404/2380273774.py:2: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n", " cash_flow_statement = cash_flow_statement[::-1].append(ttm_cash_flow_statement.rename('TTM')).drop(['netIncome'], axis=1)\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
accountsReceivablesinventoryaccountsPayablesotherWorkingCapitalotherNonCashItemsnetCashProvidedByOperatingActivitiesinvestmentsInPropertyPlantAndEquipmentacquisitionsNetpurchasesOfInvestmentssalesMaturitiesOfInvestments...dividendsPaidotherFinancingActivitesnetCashUsedProvidedByFinancingActivitieseffectOfForexChangesOnCashnetChangeInCashcashAtEndOfPeriodcashAtBeginningOfPeriodoperatingCashFlowcapitalExpenditurefreeCashFlow
date
TTM-1688000000-1618000000-1889000000-41400000001139000000110543000000-109590000000-2951300000045514000000...-15025000000-51000000-10848800000005760000000109738000000103978000000110543000000-1095900000099584000000
2023-09-30-1688000000-1618000000-18890000005195000000-7422000000110543000000-109590000000-2951300000045514000000...-15025000000-6012000000-108488000000057600000003073700000024977000000110543000000-1095900000099584000000
2022-09-24-182300000014840000009448000000-7909000000111000000122151000000-10708000000-306000000-7692300000067363000000...-148410000003037000000-1107490000000-109520000002497700000035929000000122151000000-10708000000111443000000
2021-09-25-10125000000-264200000012326000000-4470000000-147000000104038000000-11085000000-33000000-109558000000106483000000...-1446700000014730000000-933530000000-38600000003592900000039789000000104038000000-1108500000092953000000
2020-09-266917000000-127000000-40620000002962000000-9700000080674000000-7309000000-1524000000-115148000000120483000000...-1408100000012331000000-868200000000-10435000000397890000005022400000080674000000-730900000073365000000
\n", "

5 rows × 25 columns

\n", "
" ], "text/plain": [ " accountsReceivables inventory accountsPayables \\\n", "date \n", "TTM -1688000000 -1618000000 -1889000000 \n", "2023-09-30 -1688000000 -1618000000 -1889000000 \n", "2022-09-24 -1823000000 1484000000 9448000000 \n", "2021-09-25 -10125000000 -2642000000 12326000000 \n", "2020-09-26 6917000000 -127000000 -4062000000 \n", "\n", " otherWorkingCapital otherNonCashItems \\\n", "date \n", "TTM -4140000000 1139000000 \n", "2023-09-30 5195000000 -7422000000 \n", "2022-09-24 -7909000000 111000000 \n", "2021-09-25 -4470000000 -147000000 \n", "2020-09-26 2962000000 -97000000 \n", "\n", " netCashProvidedByOperatingActivities \\\n", "date \n", "TTM 110543000000 \n", "2023-09-30 110543000000 \n", "2022-09-24 122151000000 \n", "2021-09-25 104038000000 \n", "2020-09-26 80674000000 \n", "\n", " investmentsInPropertyPlantAndEquipment acquisitionsNet \\\n", "date \n", "TTM -10959000000 0 \n", "2023-09-30 -10959000000 0 \n", "2022-09-24 -10708000000 -306000000 \n", "2021-09-25 -11085000000 -33000000 \n", "2020-09-26 -7309000000 -1524000000 \n", "\n", " purchasesOfInvestments salesMaturitiesOfInvestments ... \\\n", "date ... \n", "TTM -29513000000 45514000000 ... \n", "2023-09-30 -29513000000 45514000000 ... \n", "2022-09-24 -76923000000 67363000000 ... \n", "2021-09-25 -109558000000 106483000000 ... \n", "2020-09-26 -115148000000 120483000000 ... \n", "\n", " dividendsPaid otherFinancingActivites \\\n", "date \n", "TTM -15025000000 -51000000 \n", "2023-09-30 -15025000000 -6012000000 \n", "2022-09-24 -14841000000 3037000000 \n", "2021-09-25 -14467000000 14730000000 \n", "2020-09-26 -14081000000 12331000000 \n", "\n", " netCashUsedProvidedByFinancingActivities \\\n", "date \n", "TTM -108488000000 \n", "2023-09-30 -108488000000 \n", "2022-09-24 -110749000000 \n", "2021-09-25 -93353000000 \n", "2020-09-26 -86820000000 \n", "\n", " effectOfForexChangesOnCash netChangeInCash cashAtEndOfPeriod \\\n", "date \n", "TTM 0 5760000000 109738000000 \n", "2023-09-30 0 5760000000 30737000000 \n", "2022-09-24 0 -10952000000 24977000000 \n", "2021-09-25 0 -3860000000 35929000000 \n", "2020-09-26 0 -10435000000 39789000000 \n", "\n", " cashAtBeginningOfPeriod operatingCashFlow capitalExpenditure \\\n", "date \n", "TTM 103978000000 110543000000 -10959000000 \n", "2023-09-30 24977000000 110543000000 -10959000000 \n", "2022-09-24 35929000000 122151000000 -10708000000 \n", "2021-09-25 39789000000 104038000000 -11085000000 \n", "2020-09-26 50224000000 80674000000 -7309000000 \n", "\n", " freeCashFlow \n", "date \n", "TTM 99584000000 \n", "2023-09-30 99584000000 \n", "2022-09-24 111443000000 \n", "2021-09-25 92953000000 \n", "2020-09-26 73365000000 \n", "\n", "[5 rows x 25 columns]" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ttm_cash_flow_statement = q_cash_flow_statement.sum() # sum up last 4 quarters to get TTM cash flow\n", "cash_flow_statement = cash_flow_statement[::-1].append(ttm_cash_flow_statement.rename('TTM')).drop(['netIncome'], axis=1)\n", "final_cash_flow_statement = cash_flow_statement[::-1] # reverse list to show most recent ones first\n", "final_cash_flow_statement.iloc[:,4:].head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Check Stability of Free Cash Flows\n", "\n", "DCF model works best only if the free cash flows are stable and steadily increasing. So let's plot the graph and verify if this is the case." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxEAAAG0CAYAAABNKaoSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAA4IklEQVR4nO3de7wcBX3//9eHhFsIJooiGK61UUS5qHAwGOSmXBSkWrFCjUKLiAr4k9bWWrUWK5WvoqiIVDGhtCKIWAtyFwRJBY0Q7ogHuQe5agIJIAQ+vz9mEjebk5wze2azOzmv5+Mxj+zOzHnvZ3d2NvvZuUVmIkmSJEkjtUavC5AkSZLULDYRkiRJkiqxiZAkSZJUiU2EJEmSpEpsIiRJkiRVYhMhSZIkqRKbCElSV0XEFhGRETG9CbmSpOHZREhSF0XERhHxdEQ8GBFrDjPvTRHxXERsO8S0z5ZfmDMino+IeRHxvYjYvGWeuyPiUxXrGx8RR0XELyPiiYhYEBFzI+KfI+KFVbLqFhG7tTzn1uGiXtYlSbKJkKRu+xvgfOAx4IAVzRQROwMvAb4DHL6C2e4GNgY2Ad4H7ACcFxHjOimsbGrOBz4PfB/YA9gO+GfgDcD7O8ntgtdRPO8lw0G9LUeSZBMhSV0SEWsAHwBOA/6TFTcHAB8EvgucCrw3IiYMMc9zmflgZj6QmZcBnwW2Af68wxKPBt4C7J2ZX8rMOZl5d2ZekJn7lzUTEVtGxA8j4oGIeLLcYjKj7blOj4j/K7dmPBERN0TE3m2P97KIOK/MuLM9YyUeKZ/3kuEPK5oxIl4ZEedHxMJyOC8i/rxl+n0RcVjL/f8st260znNPRHy4vP3qiLg4IuZHxKKIuK1C3ZK02rKJkKTu2QtYD7gQ+C9gt4j4s/aZyt2GDgROz8xfAvOAd48g/6ny35XuJrUSM4DLM/PqoSa2fFmfCFwG7EPRtHwLmBURu5f1jwPOBX5BsdXgdRQNzpNtkV+geB22pdjyMSsipnZY+3IiYl3gEmAdYNdymAhcFBFrlbP9FNiz5c92Bx5ZMi4iXg5sBlxeTv8exVaknSme+zHACpsYSRorbCIkqXs+CHw3Mxdn5u+AnwCHDTHf+4DbM/OG8v5wWy2IiM2AfwTuA27vsL5XALcON1Nm3pSZ38jMGzPzt5n5dYrdoA4uZ3kB8ELg3MwcLIf/ycyr2qJOyszvZ+YdwKeApyl2oRrO7S1bFhZGxJtXMN/BFLuE/VVmXpuZ1wLvAaaU/0LRHOwBUDYwLwa+zp8aiz2A32Xmr8v7mwOXZOatmXlnZl6YmT8eQc2StFpb5U1ERMyMiIcj4uYRzPumiLguIhZHxLvapl1Ubl72w1xS34mIjYH9KHcJKp0GHBoR49tmP7xtvv8CBiLiNW3z/Vn5JfpJ4B4ggHdk5rOdlgnksDNFTIiIL0TELRHx+4hYCLyV4gv2ki0WpwIXR8SFEfGJiHjlEFHXL7mRmYuBh4CXjqDOvYHtW4afr2C+VwO3ZuajLY/zEEWT9epy1GXAhuVruwcwG7gI2D0iohx3eUvml4BTI+KK8uD2142gXkla7fViS8RpFJvER+Je4BDgjCGmfZFiU7wk9aO/BcYDvyp/CFlM8Vm2EfD2JTOVpyfdGjihZb77gHEsvzXiPoov0a8B1svMgfLX9k61frlemS8C7wWOpdj9Z3vgAmDJLkJk5geA1wOXUuxGdHNEfLAt55m2+8nI/h+6OzPvaBnad5Nqz2y3tFnKzPuA31JseVjSMFxLsay2LZ/f0iYiMz9HscXm+xSv+zUR8W8jqFmSVmurvInIzJ8Bv28dFxEvL7csXBsRV0XEVuW8d2fmjcDzQ+RcBjyxSoqWpArKA6oPA45j2V/Qtwf+m2Wbgw9SfPHerm2+jwIzyv38l3i2/BJ95zBfpEfqv4E9ImLaCp7HklO8volit6yzyl2u7qT4Yr2MzLw5M7+cmfuy8rNMdcstwKsj4sVLRkTESylqvaVlvsspmojdgMsy83ngZ8BRFFtGWrdEUL7eJ2fmu4DPAB/q5pOQpCZo36TeK98CjsjMwYjYCTiZke0nK0n9aB+Kg3P/IzPvbZ0QEbOASyNiC+Bx4F3A4Zl5c9t8d1EciHwgcHqFx94oIrZvG/doZt4/xLxfpdhV6OKIOBa4guIg41cBR1AchPxVii0WB0TEOcBCioOLX0axOxLlmY0+AJxHsbXkZcAuwHUV6q7DGRRf8s+KiI9TbIH4EsWB6me1zHc5xS5ji1pqvLyc967MvBsgIiYCxwPnAHcBkymW7bDHkUjS6q7nTUT5Ib0zcHaxOyoAa/euIkkatQ8Cv2hvIEpXUnxRP4zirD8B/G/7TJm5KCLOp/g1v0oT8ZFyaPUfFE1B+2M8GxH7lvPPAP4VeI5id5+z+dNxGh+jOObhpxSNz7eAHwAvL6cvAqYCZ1Ic2PwYxYHXf1+h7lHLzKciYi/gKxRbFqBojPbJzNZdqS6n2F3sysx8rmXceJbdCrGY4oDx71Bcn+JxitdglT4vSepHkTnsMXX1P2jxC9yPM/M1EfECirOSbLyS+U8r5/9B2/jdgL/PzP26V60kSZKkVj0/xWtmPg7cFREHAkRhux6XJUmSJGkFVvmWiIj4HsXBbC+m2J/2Xyg2H3+TYnPxmsCZmXlsROwI/A/F5uSngQcz89VlzlXAVhQXEnoM+NvMvHiVPhlJkiRpDOrJ7kySJEmSmqvnuzNJkiRJapZVdnamBQsWuMlDkiRJaphJkyZF+zi3REiSJEmqxCZCkiRJUiV92UQMDg6aOcYym1CjmWMzswk1mjk2M5tQo5lm9muemaPP7MsmQpIkSVL/somQJEmSVMkqOzvTimQmCxcu5Pnnn186bp111mHBggW1Po6Z1TLXWGMNJk6cSMRyB+NLkiRpjOt5E7Fw4ULWXntt1lprraXj1l57bdZZZ51aH8fMapnPPPMMCxcuZP3116+1FkmSJDVfz3dnev7555dpINQf1lprrWW2DkmSJElL9LyJkCRJktQsNhHAKaecwsDAAB/4wAdGnXXttdey7777ssMOO7Djjjty1FFH8eSTT1bKuOeee5g2bdqQ0z70oQ+x7bbbMn36dKZPn84pp5wCwDbbbMNjjz026volSZKk4fT8mIh2k2fNqzVv/qFThp3nO9/5DmeffTZbbLHF0nGLFy9m/PhqL8/DDz/M+9//fmbOnMnAwACZybnnnsvChQuZMGFC1dJX6HOf+xwHHHBAbXmSJElSFWN+S8THPvYx7r77bg4++GA222wzPvrRj/KOd7yDI444gkcffZQZM2aw++67s/vuu3PNNdcAsGjRIj7ykY+w9957s8suu3D++ecD8O1vf5uDDjqIgYEBACKCAw44gA033JBrr72Wvfbai1122YW99tpr6UU+brvtNvbYYw+mT5/OzjvvzJ133gnAc889x9FHH80b3vAG3vGOd/DUU0+N+DmddNJJTJs2jWnTpnHyyScD8NWvfnXpVot/+qd/Yv/99wfgyiuv5PDDD6/hlZQkSdJYMeabiK985StstNFGnHfeeXzoQx/i+uuv54wzzuDUU0/lE5/4BB/+8If56U9/yumnn87RRx8NwAknnMCb3vQmLr74Ys477zw+85nPsGjRIm677Ta23377IR9n6tSpXHDBBVx11VV88pOf5NhjjwVg5syZHHHEEcyePZsrrriCjTfeGIDf/va3HHbYYVxzzTVMmjSJc889d2nWpz/96aW7M91yyy3LPM6S+n/yk59w6aWXcvrpp3PTTTex8847c/XVVy+dZ9GiRTz77LNcffXVK9x1SpIkSRpK3+3O1Gv77rsv6667LgBXXHEFv/71r5dOe+KJJ3jiiSe4/PLLufDCC/na175GRPDHP/6R+++/f6W5jz/+OB/60Ie48847iQieffZZAAYGBjjhhBN44IEH2H///ZkyZQqPP/44m2++Odtuuy0A22+/Pffee+/SrJXtznT11Vfztre9jfXWWw+A/fbbj1/84hd88IMf5Prrr+eJJ55grbXWYtttt2Xu3LlcffXVHH/88Z2/YJIkSRpzbCLaLPnyDcXpZy+99NKlTcUSmcnpp5/Opptuusz1F7baaiuuv/563va2ty2X+/nPf55ddtmF7373u9xzzz3st99+ABx44IHssMMOXHzxxbzzne/khBNOYOrUqay99tpL/3bcuHEj3p0pM4ccv+aaa7LZZpvx3e9+l4GBAV7zmtdw1VVXcdddd/HKV75yRNmSJEkSuDvTSu2xxx58+9vfXnr/xhtvBGDPPffkW9/61tIv7DfccAMAhx9+ON/73vf41a9+tfRvzjrrLB566CEef/zxpbsqnXHGGUun33333WyxxRYcccQR7Lvvvtx6662jqnnnnXfm/PPP58knn2TRokWcf/757LTTTkunnXTSSbzxjW9k2rRpzJo1i2222carUkuSJFU0eda85YYdZ09YbtzqyiZiJY4//njmzp3LzjvvzE477cSsWbMA+PjHP86zzz7L7rvvzrRp0zjuuOMA2HDDDZk5cyaf/vSn2WGHHRgYGODqq69m/fXX56Mf/SjHHnsse++9N88999zSx/jhD3/ItGnTmD59OoODgxx44IGjqnn77bfn4IMPZs899+TNb34zM2bMYJtttgGKJuLBBx9kxx13ZMMNN2Tttdf2eAhJkiRV1ne7M80/dApPP/30MrsJddtNN90EFGctarXBBhssbRxarbvuupx44olD1jkwMMCFF1643N8MDAxw7bXXLr3/qU99CoBjjjmGY445Zun4JZlLDoIGOOqoo5be/uY3v7nS5wBw5JFHcuSRRy6TCbDrrrvy6KOPLh3fWo8kSZI0Um6JkCRJklSJTYQkSZKkSmwiJEmSJFViEyFJkiSpkp43EWussQbPPPNMr8tQm2eeeYY11uj520OSJEl9qOdnZ5o4cSILFy5c5mJqjz/+OC94wQtqfRwzq2WuscYaTJw4sdY6JEmStHroeRMREay//vrLjHv44YfZdNNNa30cM+vNlCRJ0tjl/iqSJEmSKrGJkCRJklSJTYQkSZKkSmwiJEmSJFViEyFJkiSpEpsISZIkSZXYREiSJEmqxCZCkiRJUiU2EZIkSZIqsYmQJEmSVIlNhCRJkqRKbCIkSZIkVWITIUmSJKkSmwhJkiRJldhESJIkSarEJkKSJElSJcM2ERExMyIejoibVzA9IuJrEXFHRNwYEa+rv0xJkiRJ/WIkWyJOA/ZZyfR9ganlcDjwzdGXJUmSJKlfDdtEZObPgN+vZJYDgNOzcA0wOSI2rqtASZIkSf2ljmMipgD3tdy/vxwnSZIkaTUUmTn8TBFbAD/OzNcMMe184N8zc3Z5/zLgHzLz2tb5FixYsPSBBgcHR1m2JEmS1Ds7zp4wovnmTH+yy5V0x9SpU5fenjRpUrRPH1/DY9wPbNpyfxPggZEWNZTBwcFh56nKzP7ObEKNZo7NzCbUaObYzGxCjWaa2a95tWTOnjei2ao8xuRZI8ucf+jId/rpRibUszvTucD7yrM0vQFYkJm/qyFXkiRJUh8adktERHwP2A14cUTcD/wLsCZAZp4CXAC8FbgDeBI4tFvFSpIkSeq9YZuIzDxomOkJfKS2iiRJkiT1Na9YLUmSJKkSmwhJkiRJldhESJIkSarEJkKSJElSJTYRkiRJkiqxiZAkSZJUiU2EJEmSpEpsIiRJkiRVYhMhSZIkqRKbCEmSJEmV2ERIkiRJqsQmQpIkSVIlNhGSJEmSKrGJkCRJklTJ+F4XIEmSJHXT5Fnzhhg7AWYvP37+oVO6X9BqwC0RkiRJkiqxiZAkSZJUiU2EJEmSpEpsIiRJkiRVYhMhSZIkqRKbCEmSJEmV2ERIkiRJqsQmQpIkSVIlNhGSJEmSKrGJkCRJklSJTYQkSZKkSmwiJEmSJFViEyFJkiSpEpsISZIkSZXYREiSJEmqxCZCkiRJUiU2EZIkSZIqsYmQJEmSVIlNhCRJkqRKbCIkSZIkVWITIUmSJKkSmwhJkiRJldhESJIkSarEJkKSJElSJTYRkiRJkiqxiZAkSZJUiU2EJEmSpEpsIiRJkiRVYhMhSZIkqZIRNRERsU9E3B4Rd0TEJ4aYPikizouIGyLilog4tP5SJUmSJPWDYZuIiBgHfAPYF9gaOCgitm6b7SPArZm5HbAbcEJErFVzrZIkSZL6wEi2RAwAd2TmnZn5DHAmcEDbPAmsHxEBTAR+DyyutVJJkiRJfWEkTcQU4L6W+/eX41qdBLwKeAC4CfhoZj5fS4WSJEmS+kpk5spniDgQ2DszDyvvzwAGMvOolnneBbwROAZ4OXApsF1mPr5kngULFix9oMHBwTqfgyRJkrRCO86eMOJ550x/stbMkeb1W+bUqVOX3p40aVK0zz9+BJn3A5u23N+EYotDq0OBL2TRkdwREXcBWwG/HCqwtaihDA4ODjtPVWb2d2YTajRzbGY2oUYzx2ZmE2o008y+yZs9b8SzjvhxRphZqe6mZDKy3ZnmAFMjYsvyYOn3AOe2zXMvsCdARLwUeCVwZ6VKJEmSJDXCsFsiMnNxRBwJXAyMA2Zm5i0RcUQ5/RTgc8BpEXETEMA/ZuajXaxbkiRJUo+MZHcmMvMC4IK2cae03H4A2Kve0iRJkiT1I69YLUmSJKkSmwhJkiRJldhESJIkSarEJkKSJElSJTYRkiRJkiqxiZAkSZJUiU2EJEmSpEpsIiRJkiRVYhMhSZIkqRKbCEmSJEmV2ERIkiRJqsQmQpIkSVIl43tdgCRJkrTE5Fnzhhg7AWYvP37+oVO6X5CG5JYISZIkSZXYREiSJEmqxCZCkiRJUiU2EZIkSZIqsYmQJEmSVIlNhCRJkqRKbCIkSZIkVWITIUmSJKkSmwhJkiRJlXjFakmSNKaM9IrIXg1ZWjG3REiSJEmqxCZCkiRJUiU2EZIkSZIqsYmQJEmSVIlNhCRJkqRKbCIkSZIkVWITIUmSJKkSmwhJkiRJldhESJIkSarEJkKSJElSJTYRkiRJkiqxiZAkSZJUiU2EJEmSpEpsIiRJkiRVMr7XBUiSJKn7Js+at4IpE2D2stPmHzql+wWp0dwSIUmSJKkSmwhJkiRJldhESJIkSarEJkKSJElSJTYRkiRJkiqxiZAkSZJUyYiaiIjYJyJuj4g7IuITK5hnt4i4PiJuiYgr6y1TkiRJUr8Y9joRETEO+AbwFuB+YE5EnJuZt7bMMxk4GdgnM++NiA27VK8kSZKkHhvJlogB4I7MvDMznwHOBA5om+dg4IeZeS9AZj5cb5mSJEmS+sVImogpwH0t9+8vx7V6BfDCiLgiIq6NiPfVVaAkSZKk/hKZufIZIg4E9s7Mw8r7M4CBzDyqZZ6TgB2APYF1gauBt2Xmb5bMs2DBgqUPNDg4WOdzkCRJGrEdZ08Y0Xxzpj/Z5UpWrZE+b+jtc+9Gnb3MrPJa9lPm1KlTl96eNGlStM8/7DERFFseNm25vwnwwBDzPJqZi4BFEfEzYDvgNwyhtaihDA4ODjtPVWb2d2YTajRzbGY2oUYzx2ZmE2rs28zZ80Y022jr7rvnPsLnDT1+7t2os4eZlV6HpmQysiZiDjA1IrYE5gHvoTgGotX/AidFxHhgLWAn4CuVKpEkSVKjTJ61oi+oE5b78jr/0Pa94dVkwzYRmbk4Io4ELgbGATMz85aIOKKcfkpm3hYRFwE3As8Dp2bmzd0sXJIkSVJvjGRLBJl5AXBB27hT2u5/EfhifaVJkiRJ6kdesVqSJElSJTYRkiRJkiqxiZAkSZJUiU2EJEmSpEpsIiRJkiRVYhMhSZIkqRKbCEmSJEmV2ERIkiRJqsQmQpIkSVIlNhGSJEmSKrGJkCRJklSJTYQkSZKkSmwiJEmSJFViEyFJkiSpEpsISZIkSZWM73UBkiRJTTd51rwhxk6A2cuOn3/olFVTkNRlbomQJEmSVIlNhCRJkqRKbCIkSZIkVeIxEZIkSX3I4yzUz9wSIUmSJKkSt0RIkqS+5a/xUn9yS4QkSZKkSmwiJEmSJFViEyFJkiSpEpsISZIkSZXYREiSJEmqxCZCkiRJUiU2EZIkSZIqsYmQJEmSVIlNhCRJkqRKbCIkSZIkVWITIUmSJKkSmwhJkiRJldhESJIkSapkfK8LkCRJq4fJs+YNMXYCzF52/PxDp6yagiR1jVsiJEmSJFViEyFJkiSpEpsISZIkSZXYREiSJEmqxCZCkiRJUiU2EZIkSZIqsYmQJEmSVInXiZAkaQwa6TUdwOs6SFreiLZERMQ+EXF7RNwREZ9YyXw7RsRzEfGu+kqUJEmS1E+GbSIiYhzwDWBfYGvgoIjYegXzHQ9cXHeRkiRJkvrHSLZEDAB3ZOadmfkMcCZwwBDzHQWcAzxcY32SJEmS+kxk5spnKHZN2iczDyvvzwB2yswjW+aZApwB7AF8B/hxZv6gNWfBggVLH2hwcLC2JyBJkqrbcfaEEc87Z/qTtWaONM/MejN7uczHcmZT30dTp05denvSpEnRPv9IDqxe7o+A9s7jROAfM/O5iKFmX1ZrUUMZHBwcdp6qzOzvzCbUaObYzGxCjWaOzcxR5w1xAPWKjPhxRphZqW4z68vs4TIfy5mr3fuoNJIm4n5g05b7mwAPtM2zA3Bm2UC8GHhrRCzOzB9VqkaSJElS3xtJEzEHmBoRWwLzgPcAB7fOkJlbLrkdEadR7M70o/rKlCRJktQvhm0iMnNxRBxJcdalccDMzLwlIo4op5/S5RolSZIk9ZERXWwuMy8ALmgbN2TzkJmHjL4sSZIkSf1qRBebkyRJkqQlbCIkSZIkVWITIUmSJKkSmwhJkiRJldhESJIkSarEJkKSJElSJTYRkiRJkiqxiZAkSZJUiU2EJEmSpEpsIiRJkiRVYhMhSZIkqRKbCEmSJEmV2ERIkiRJqsQmQpIkSVIlNhGSJEmSKrGJkCRJklSJTYQkSZKkSmwiJEmSJFViEyFJkiSpEpsISZIkSZXYREiSJEmqZHyvC5AkSSs3eda8IcZOgNnLj59/6JTuFyRpzHNLhCRJkqRKbCIkSZIkVWITIUmSJKkSmwhJkiRJldhESJIkSarEJkKSJElSJTYRkiRJkiqxiZAkSZJUiU2EJEmSpEpsIiRJkiRVYhMhSZIkqRKbCEmSJEmV2ERIkiRJqsQmQpIkSVIlNhGSJEmSKrGJkCRJklSJTYQkSZKkSmwiJEmSJFViEyFJkiSpEpsISZIkSZXYREiSJEmqZERNRETsExG3R8QdEfGJIab/dUTcWA4/j4jt6i9VkiRJUj8YtomIiHHAN4B9ga2BgyJi67bZ7gJ2zcxtgc8B36q7UEmSJEn9YSRbIgaAOzLzzsx8BjgTOKB1hsz8eWb+obx7DbBJvWVKkiRJ6hcjaSKmAPe13L+/HLcifwtcOJqiJEmSJPWvyMyVzxBxILB3Zh5W3p8BDGTmUUPMuztwMjA9Mx9rnbZgwYKlDzQ4OFhD6ZIkjQ07zp4w4nnnTH+y7zNHmmdmvZmr2/uoKZlNfR9NnTp16e1JkyZF+/zjR5B5P7Bpy/1NgAfaZ4qIbYFTgX3bG4h2rUUNZXBwcNh5qjKzvzObUKOZYzOzCTWaOQYyZ88b8awjfoweZlZ6HcysL3M1ex81JXO1ex+VRrI70xxgakRsGRFrAe8Bzm2dISI2A34IzMjM31SqQJIkSVKjDLslIjMXR8SRwMXAOGBmZt4SEUeU008BPgNsAJwcEQCLM3OH7pUtSZIkqVdGsjsTmXkBcEHbuFNabh8GHFZvaZIkSZL6kVesliRJklSJTYQkSZKkSmwiJEmSJFViEyFJkiSpkhEdWC1JkkZm8qwVnZN9wnLna59/6JTuFyRJXeCWCEmSJEmV2ERIkiRJqsQmQpIkSVIlNhGSJEmSKrGJkCRJklSJTYQkSZKkSmwiJEmSJFViEyFJkiSpEpsISZIkSZXYREiSJEmqxCZCkiRJUiU2EZIkSZIqsYmQJEmSVIlNhCRJkqRKbCIkSZIkVWITIUmSJKkSmwhJkiRJldhESJIkSarEJkKSJElSJeN7XYAkSb00eda8IcZOgNnLjp9/6JRVU5AkNYBbIiRJkiRV4pYISVJjuNVAkvqDWyIkSZIkVWITIUmSJKkSmwhJkiRJldhESJIkSarEJkKSJElSJTYRkiRJkiqxiZAkSZJUiU2EJEmSpEpsIiRJkiRV4hWrJUld4dWlJWn15ZYISZIkSZXYREiSJEmqxCZCkiRJUiU2EZIkSZIqsYmQJEmSVIlnZ5KkhvGsR5KkXnNLhCRJkqRKRrQlIiL2Ab4KjANOzcwvtE2PcvpbgSeBQzLzupprlSR1iVs3JElVDLslIiLGAd8A9gW2Bg6KiK3bZtsXmFoOhwPfrLlOSZIkSX1iJFsiBoA7MvNOgIg4EzgAuLVlngOA0zMzgWsiYnJEbJyZv6u94hFoyi9qTahz6Bqh3+psim4s86ZkjlUjfS3B11OS1BwjaSKmAPe13L8f2GkE80wBhm0i/LKiOvhFTZIkadWJYuPBSmaIOBDYOzMPK+/PAAYy86iWec4H/j0zZ5f3LwP+ITOvXTLPggULlj7Q4OBgrU9ChR1nTxjxvHOmP9nFSlauKXVKkiSNVVOnTl16e9KkSdE+fSRbIu4HNm25vwnwQAfzDFnUUAYHB4edp6oxkTnEr+4rMtq6R1Pn/CH+rO9eSzPN7FKemWb2a56ZZvZzZhNqHGuZI2ki5gBTI2JLYB7wHuDgtnnOBY4sj5fYCVjQq+MhxrIV7abTjTefJEmSxq5hm4jMXBwRRwIXU5zidWZm3hIRR5TTTwEuoDi96x0Up3g9tHslS5IkSeqlEV0nIjMvoGgUWsed0nI7gY/UW5okSZKkfuQVqyVJkiRVYhMhSZIkqRKbCEmSJEmV2ERIkiRJqsQmQpIkSVIlNhGSJEmSKrGJkCRJklSJTYQkSZKkSmwiJEmSJFViEyFJkiSpEpsISZIkSZVEZq6SB1qwYMGqeSBJkiRJtZk0aVK0j3NLhCRJkqRKbCIkSZIkVbLKdmeSJEmStHpwS4QkSZKkSmwiJEmSJFUyvtcFSJIkSapfRHxtZdMz8+hOs20iJA0pIiYB+wBTgAQeAC7OzPkd5k0s8zYFFgODwCWZ+fwoanwT8FBm3h4R04E3ALdl5vkd5r29rOnpTmsawWNsCbwWuDUzf11j7nGZ+clRZtS6zMvMWpd73csoIjYDHs7MpyMigEOA1wG3At/OzMU1PEY/L/MxuV6uiuVePk7frZcNWeZjfb2sc5kfAdwMfL/MWe5UrZ3qiwOru/Qfl5n9n1nbB1lT/5PpxodYHZkR8T7gX4BLgHnl6E2AtwD/mpmnV8x7N/Bx4AZgd+DnFLtTbgP8dWbe1EGNJwIDFD+GXAzsCVwI7ArMzcyPd5D5FLCozPkexXv8uao5bZk/ysy/KG8fAJwIXAHsDPx7Zp7WQWb7L0sBzABOh85+Wap7mZeZ3VjutS6jiLgZGMjMJyPieODlwI+APQAy8286yGzKMh/L62U3lnvfr5cNWuZjeb2se5lvABwI/BXFd62zgHMy8w9Va1tOZvZ0AN4H/Bb4JvCpcjilHPc+M1fbzHcDc4BTy5z/Ar4L3Ahs00HeU8CjZc5bgXE1vDdvBiaUt48HfgC8F5gJzOww80cttw8A7gJmAbcDh/RR5u3A5CHGvxD4TQd5N7a8li+m+BIAsC3w8w5rvIXiA3sC8IeW/DWBmzvMnFs+xw8AlwEPle/1XUfxPprbcvvnwJYtr8MNHWbeD/x3uW6+vxweWXK7H5Z5F5d7rcuIotlecvtaYI2W+50un6Ys87G8XnZjuff9etmgZT6W18vaP4tbMqYAf0/xQ/CM0WRlZl80Ed34j8vM/s+s9YOsQf/JzG25XdeHWDcyfwNMGmL8JGCwg7yb+NOWz3Xbau70P5mby3/XofiPa93y/rjWZVcx87q2+xsBRwNXA/eNNhP45YqWXcXM9Sl+RTsDmFKOu7OTrG4t8y4u91qXEcUvp3uUt88BNi9vbzCK9acpy3wsr5fdWO59v142aJmP5fWy9s/i8u9fB3wRuB74DrD1aOrMzL44JiIodo9p9zyd77dlZjMynypvLwI2BMjMGyPiBR3kZRab5r4NfDsiNqLY2vGFiNgkMzftIPO+iNgjMy8H7qbY7eqectNgp1pfx/GZeVdZ/KMR0en+qN3I/DxwXURcAtxXjtuMYnPq5zrIuwC4KCKuBPYFzgaIiBfR+Xvo/Ii4iuI/rlOB70fENRSb0H/WYeYytWTmg8DXgK9FxOYdZm4XEY+X2WtHxEaZ+WBErEXxn2xlmfkE8P9FxOuB/46I8xn92fbqXubQneVe9zI6DDg9Ij4LLACuj4glP0oc02GNTVnmY3m9rH25N2S9bMoyH8vrZa3LPCL+FdgPuA04E/inrOuYn7I76ZmIeD/wGYp9v5Z7sbKzfdTM7P/M44HtgSUfZBdm5nHlB9lVmfnqinlzM/O1K5i2eWbe00GNm1Ls1ziO4kNsOn/a4vH3mXlZB5nPUTRNAawNbNbyIfarzNy2HzLL3BcCe1Ns/gyKzbYXZ4f7UUbEW4GtKX5FurQctwawZmb+scPMaRQN5DUR8XLgHcC9wA+ys2NrdsvMKzqppYPHmgy8KjOvHmVOAB8GpmXme0eZVesyLzNrXe7dWkYR8SrgFRT7dd8PzOnkPTTMY0ym/5b5mF4vu7Xc+3m9bMIyb8kdq+tlbcu8/DHxTv70w+2SL/5Bscw6+o4AfdBEQNf+4zKz/zNr+yBr4n8ybY8xmRo+xLqdKUmSmmO4rXWd/Mja+scODg4OywzAVhRn1zif4qwYpwHzgV9SNCZV8zal2Ix6FfBJikZxybQfdVijmfVm1rrMm/Lcm1CjmWM608/isZdZ9zK/pJM6RjL0/IrVEbFVRFwYEedHxMsj4rSImB8Rvyx/ATZz9czcNCLOjIirIuKTEbFmy7Qf9TpvrGcC3wJOpjjrxOXARRS7cX0OOKmDvJkUp9I7CtgYuDL+dGxJp/s0m1lvZt3LvFt11p3ZhBrNHLuZfhaPvcy6l/lLOqxjeN3qTip0SD8D9gcOAu4B3kOxu8z+wGVmrraZl1JcAGV74OsUZxXaoJw2t9d5Zi5zxo472qZd10He9W3330txWsCXd5JnZlcya13mTXnuTajRzDGdObfltp/FYyOz7mV+J/DOFQ2d1Lg0ezR/XMdQ94tlZmMyr2+77xeB/sq8seX2h9umVT4NYFnPOm3j3gzcAfyuwxrNrDez1mXelOfehBrNHNOZfhaPvcy6l/ljFFtMZg0xdHTNq6XZo/njOoa6XywzG5PpF4H+zvwgMHGI8X8OnNhB3scY4podFFfWvrTDGs2sN7PWZd6U596EGs0c05l+Fo+9zLqX+S2d1DGi7G4F9+rFMrMxmX4R6ONMBwcHBwcHh+YPdLhHwkiGvjjFq6T+FxHXZebr+jXPTDP7Nc9MM/s5swk1mtl5ZkQ8m5lrDj9ndf1wxerl9NsCMLOZmU2osUmZ0PHVTFdVnplm9muemWb2c2YTajSzcw9FxAqv8p2ZX+40uC+bCPpvAZjZzMwm1NikzPP7PM9MM/s1z0wz+zmzCTWa2blxwES68L2gL3dnioh/y8xPmWlmP+WN1cworla+ODOf6Mc8M830vWmmmb3PM7M/M7u0Z0Khlwd7tA8UF9NY30wz+ylvLGYCLwNOBxYAzwH3lsNnabkiZ6/yzDTT96aZZvp+N3NEeXM7qWMkwxr0WES8LCJOj4gFwKPALRFxb0R8tvXKu2aa2fQam5RJcaXMmZk5CTgQOAd4FcUukN/ogzwzzfS9aaaZvc8zs/8z9+ywjuF1qzup0CFdDuxW3n4n8BVgPeDfgG+ZaebqUmPDMm9ou39ty+1f9zrPTDPrymxCjWaaWVdmE2o0s/7Mbg093xIBbJCZVwBk5g+BN2Xmoiz2536TmWauRjU2KfORiHhvuZXjKOBugIgI6Ohzo+48M830vWmmmb3PM7MZmd3R6y4G+AnwXop9wI4CzinHB/AbM81cXWpsWOZmwPeBmyk2rW5cjt8A+Mte55lppu9NM830/W5mb4een50pIjYDvgRsDVwPfDwzfxcRG1DsonGOmWauDjU2KVOSJGllet5ESOpPEbE38BfAFCCBB4D/zcyL+iHPTDPrymxCjWaaWVdmE2o0s/7MbuiLJqIpC8DM/s5sQo1NyYyIE4FXUJxm7v5y9CbA+4DBzPxoL/PMNLOuzCbUaKaZdWU2oUYz68/slp43EU1ZAGb2d2YTamxY5m8y8xVDjF9ynMXUXuaZaWZdmU2o0Uwz68psQo1m1p/ZNdnjgzJYwYGfQFB8ATLTzNWixoZl3ggMDDF+ALip13lmmllXZhNqNNPMujKbUKOZ9Wd2axhP7z0dEQOZ+cu28TsCT5tpZo/yxnrmIcA3I2J9/rR1Y1Pg8XJar/PMNNP3pplm9j7PzGZkdkU/7M70OuCbwFAv1ocz81ozzVwdamxSZkv2RhTHWQRwf2Y+2GlWN/LMNLOuzCbUaKaZdWU2oUYz68+sXa83hbRsptkIeD2wA7CRmWb2Q95Yz2zL/2w/55lpZr/mmWlmP2c2oUYz68+sY+ibK99l5oOZeW1m/go4wkwz+yFvrGe2eXuf55lpZr/mmWlmP2c2oUYz+1DfNBFtmrIAzOzvzCbU2KTM6PM8M83s1zwzzeznzCbUaGYf6tcmoikLwMz+zmxCjU3KfH2f55lZv9d1IbMJz70JNZrZjMwmrENNeS3N7DM9P7B6KBGxRmY+b6aZo8yLrPkN3oTnXVdmrKIrZkbEZzLz2A7/dm+Ka2Jclpl3t4z/m8yc2UFeAAdSPN8fAHsABwC/Bk6pazlFxOWZucco/v7Fmfloy/33Upz+72bg25287yPiHcCVmfn7iHgJcALwWuBW4O8y8/6VBgyd+WXgnMz8v6p/u5LMFwFHUrwfvwN8EpgG3AYcl5l/6CBzd+AvKU5IsBgYBE7NzDtGUecqu+Ks61BHfz8m16FurD9lrutQw9ahOvRFE+Gbr3lvvn77AG/Ch3eZ2YgP8FiFV8yMiHszc7MO/u44YDpwHbA/cGJmfr2cdl1mVv4FMCJOBjYE1qI4u9XawHnAW4GHOnneEXFj+yiK1/Z2gMzctoPMpc8vIj4F7AKcAexHcRaPj3WQeWtmbl3ePgu4BjgbeDPw15n5lg4yHwHuAV4CnAV8LzPnVs1py7wAuAl4AfCq8vb3gbcA22XmARXzvgC8FLiM4v+Mu4DfAB+mWCfP7qDGE1mFV5x1HXIdqpBX6/pTZroO9fk61DXZ4yO7gS8As4D3Unzp/SLwAWAucGCHmScCFwDvoVi408vbFwBf7cJzuLfDvzsO+FlZ72+Bo1qmXddh5snl63gu8N8UH2DvA87s9LlTXPikdbgJ+OOS+x1mXtdy+1PAxcD7y3q/0kHerS23zwI+RvGBcwhwaYc1PgL8iuID/P8Br63hvXIBcDzFKVmvAL5O8Z/XsRRNbieZ3ViH6r4Y4OMrGJ4AFndY403A+PL25PK1/Up5f26nmeW/awKPAWuV98fT+YWDlqyLWwGbA1sA95W3N+8wc27L7euA9Vrq7rTO21tuX9s27frR1AlMBT4N3ELxg8a/AK/oMPP6lvfivNHW2fp6lcv5/8rbLwRu7rDGblwA0nXIdWjU61Dd60/rMm9Zzq5D2V/rULeG3hfgm6/v33xN+ABvwod3ay0N+ACv+yqp9wIvXcG0+zqs8ba2++Motu6cDdwymmVe3r6ojuVT/u07KH4weHt5/85Os8q//zXFlrbXAzfU9D76D4pmdl2KLXl/UY7fnWIrXyeZy/0YAmwL/DtwR4eZN5bv7c2ABcAW5fgNaPkxoULeDcCLytubAde0TOv0fdSNq9i6DrkOLRnX8TpU9/pT/q3r0J/u9+061I2hHw6sfr7cxQPgZRQLgCx26+j04NCnI2JgiPGjuYLvfGBqZr6gbVgf+F2HmeMzczFAZs6n2BT2gog4m2IzVieW5D0LzMnMZ8r7i4HnOgnMzLcD5wDfotjceTfwbGbek5n3dFjnuhHx2oh4PTAuMxe11N1JnVdExLERsW55+y9g6W4+CzqsMcuaBjPzc5n5auDdwDoUDV8n1oiIF1LsdjQxIrYo69yAzpd5N9ahQ4CvR8StEXFJOdxGseXkkA7yTqdoOodyRmcl8tuI2HXJncx8LjP/lmIXh1d1mPlgREws8/ZZMrK86M8zHWaSmf8D7AvsFhHn0vmyXuJ3wJeBLwG/j4iNyzo3oPwM6MCRwPMUr9+BwA8j4gmKrVozOsxc7v2XmTdm5j9l5p93mPnvFF8A5wB/A5waEZdSfOk4sYO844C5EXEJMBv4HEC5W+QNHdZ4CPWuP+A65DpUGuU6VPf6A65DjViHuqLXXQzwVxS7i1xC0SW+rRz/EuCMDjNfB/yCYn/4S8rhtnLc6zvM/DeG6IrLacd3mPljYNcVPNbzHWZeCEwcYvxGwC9HuazWo/jQPZdin9HRZP20bdi4HL8B8KsO8tYEPlu+h+6l+CB/guKDYbMOa5w7mue4gsyDgIfK4S+BnwCXAvOAwzvMrH0danvfdO0CdqOsbV1g3RVMm1LzY60HbFhT1nbAEV16TcYBE2rImQRsUEPOcp9FNT7PJVtxx5fvz41HkfeiMmNyzXX27fpT1uc6tHz2ar8O1b3+lDmuQ8tP69t1qK6hXw6sfhHwZxSb5ubXmNvXlwwvfzUnM58aYtqUzJxX42OtR7HL0MM1ZG0HTMvMU0Zf2XLZ44C1M/PJUWRMoviAfGyUtUzMzIWjyVhB7jiKkxosjojxwPYUuzZ1ukWrK+tQeZD+AMuenOCX2eGHRt15ZppZV2Y3alzJY22Vmb8208x+y+zHGiNizSz2UGgdt8yJWczsnX5pIjYDHs/M+eXuHTsAv87Mm0eZuwMtZ6upY+Uws78zm1BjEzIjYi+Kg/QHKbaSQHGg+p8DH87MS3qZZ6aZdWV2o8ZhHq+js8CYaWa3M/upxnJX5P+iODPRXIot9XeX0zo969GYzeyW8b0uICI+AXwQ+GNEfAn4e+D/gH+NiO9k5pc7yNyV4qCm+RSbwf4PeGFEPAvMyMz7zFy9MptQY5Myga8Cb86W0w6Xj7UlxfEgVff1rDvPTDPryqy9xoj42oomUZxEozIzzawjswk1lv4fsHdm3hIR7wIujYgZmXkNQxwnYmZv9LyJoDjYaGtgAnA38GeZ+UgUu9/8gmIf/KpOBPYqc7YEvpyZb4yIt1AcNb+XmatdZhNqbFLmeP50bu5W8yiOP+l1nplm1pXZjRoPBf6O4lTY7Q4y08weZjahRijOLHkLQGb+IIqDqn9Y/vDc6S40YzmzK/qhiXguM5+KiGeApyhOS0pmLorouOEal5mPlLfvpTwaPzMvjeICJmaufplNqLFJmTOBORFxJsXpfKHYVeo9FI1Jr/PMNLOf35tzKE6v/PP2CRHxWTPN7GFmE2oEeDYiNsryWNbyV/k9KU5I83Iz+0PPj4mIiNMoTtW2HvAkxf7cF1FcaXn9zHx3B5kzKbq1yyiu1jwvM4+JiAkU51zeyszVK7MJNTYps8zdGng7LScnAM7NzFv7Ic9MM+vK7ELei4CncxQniDDTzG5kNqHGMvPNwCOZeUPb+MnARzLz82b2Xj80EeMpzqecFFfb3Yli89e9wDeyvH5Axcw1Kc7LvDXFOYpnZuZzUZwNacPs4NoGZvZ3ZhNqbFKmJEnSSmUfnGfWwcGhvwaKc5x/geKiRI+Vw23luMm9zjPTTN+bZprp+93M3g49v2J1REyM4krDt0TEgoh4JCKuiYj315B5c1vmIWaunplNqLFJmcD3gT8Au2XmBpm5AbA7xRmgzu6DPDPNbOJ78w9mmtnjzCbUaGb9md3R6y4G+F+KS5hvAhwDfBqYCvwncJyZZq4uNTYs8/ZOpq2qPDPNrCuzCTWaaWZdmU2o0cz6M7s19L4AuKHt/pzy3zUoLjhnppmrRY0Ny7wE+AfgpS3jXgr8I/CTXueZaabvTTPN9P1uZm+Hnu/OBCyKiOkAEbE/8HuAzHyezi+qYebYy2xCjU3K/CtgA+DKiPhDRPweuAJ4EVD5jGldyDPTTN+bZprZ+zwzm5HZHb3uYoBtgV9S7H86G3hFOf4lwNFmmrm61NikzPLvtwLeDExsG79PP+SZaabvTTPN7H2emc3I7MbQ8wKGeREPNdPMfssbC5nA0cDtwI8oriR/QMu063qdZ6aZvjfNNNP3u5m9HXpewDAv5L1mmtlveWMhE7iJ8hcQYAvgV8BHy/tze51nppl1ZTahRjPNrCuzCTWaWX9mt4bx9FhE3LiiSRQHkphp5irPG+uZwLjMXAiQmXdHxG7ADyJiczo7zqLuPDPN9L1pppm9zzOzGZnd0esuBngI2B7YvG3YAnjATDNXlxoblnk5sH3buPHA6cBzvc4z00zfm2aa6fvdzN4OvS8AvgNMX8G0M8w0c3WpsWGZmwAbrWDaG3udZ6aZdWU2oUYzzawrswk1mll/ZreGKIuSJEmSpBHph+tESJIkSWoQmwhJkiRJldhESJKGFRGnRcS/9boOSVJ/sImQJNUmIq6IiMN6XYckqbtsIiRJkiRVYhMhSVpORLw2Iq6LiCci4ixgnXL8CyPixxHxSET8oby9STnt88AuwEkRsTAiTirHbxURl0bE7yPi9oh4d8+emCSpFjYRkqRlRMRawI+A/wJeBJwN/GU5eQ1gFsUFDTcDngJOAsjMfwauAo7MzImZeWRErAdcCpwBbAgcBJwcEa9eZU9IklQ7mwhJUrs3AGsCJ2bms5n5A2AOQGY+lpnnZOaTmfkE8Hlg15Vk7QfcnZmzMnNxZl4HnAO8q8vPQZLUReN7XYAkqe+8DJiXy16N9B6AiJgAfAXYB3hhOW39iBiXmc8NkbU5sFNEzG8ZN55iK4ckqaFsIiRJ7X4HTImIaGkkNgN+C/wd8Epgp8x8MCK2B+YCUc6XbVn3AVdm5lu6X7YkaVVxdyZJUrurgcXA0RExPiLeCQyU09anOA5ifkS8CPiXtr99CPizlvs/Bl4RETMiYs1y2DEiXtXl5yBJ6iKbCEnSMjLzGeCdwCHAH4C/An5YTj4RWBd4FLgGuKjtz78KvKs8c9PXyuMm9gLeAzwAPAgcD6zd3WchSeqmWHaXV0mSJElaObdESJIkSarEJkKSJElSJTYRkiRJkiqxiZAkSZJUiU2EJEmSpEpsIiRJkiRVYhMhSZIkqRKbCEmSJEmV2ERIkiRJquT/B3bUJMT1KwAQAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "cash_flow_statement[['freeCashFlow']].plot(kind='bar', title=ticker + ' Cash Flows')\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Same as Above but Plotted using Plotly" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/html": [ " \n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "alignmentgroup": "True", "hovertemplate": "date=%{x}
freeCashFlow=%{y}", "legendgroup": "", "marker": { "color": "#636efa", "pattern": { "shape": "" } }, "name": "", "offsetgroup": "", "orientation": "v", "showlegend": false, "textposition": "auto", "type": "bar", "x": [ "1989-09-30", "1990-09-30", "1991-09-30", "1992-09-30", "1993-09-30", "1994-09-30", "1995-09-29", "1996-09-27", "1997-09-26", "1998-09-25", "1999-09-25", "2000-09-30", "2001-09-29", "2002-09-28", "2003-09-27", "2004-09-25", "2005-09-24", "2006-09-30", "2007-09-29", "2008-09-27", "2009-09-26", "2010-09-25", "2011-09-24", "2012-09-29", "2013-09-28", "2014-09-27", "2015-09-26", "2016-09-24", "2017-09-30", "2018-09-29", "2019-09-28", "2020-09-26", "2021-09-25", "2022-09-24", "2023-09-30", "TTM" ], "xaxis": "x", "y": [ 268300000, 739600000, -89600000, 688800000, -874900000, 577408000, -399000000, 452000000, 135000000, 719000000, 751000000, 719000000, -47000000, -85000000, 125000000, 758000000, 2275000000, 1563000000, 4484000000, 8397000000, 8946000000, 16474000000, 30077000000, 41454000000, 44590000000, 49900000000, 69778000000, 52276000000, 50803000000, 64121000000, 58896000000, 73365000000, 92953000000, 111443000000, 99584000000, 99584000000 ], "yaxis": "y" } ], "layout": { "barmode": "relative", "legend": { "tracegroupgap": 0 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "AAPL Free Cash Flows" }, "xaxis": { "anchor": "y", "domain": [ 0, 1 ], "tickangle": -90, "title": { "text": "Date" }, "type": "category" }, "yaxis": { "anchor": "x", "domain": [ 0, 1 ], "title": { "text": "Free Cash Flows" } } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig_cash_flow = px.bar(cash_flow_statement , y='freeCashFlow', title=ticker + ' Free Cash Flows')\n", "fig_cash_flow.update_xaxes(type='category', tickangle=270, title='Date')\n", "fig_cash_flow.update_yaxes(title='Free Cash Flows')\n", "fig_cash_flow.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Quarterly Balance Sheet Statement\n", "\n", "To extract debt and cash & short term investments for the most recent quarter." ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
inventoryotherCurrentAssetstotalCurrentAssetspropertyPlantEquipmentNetgoodwillintangibleAssetsgoodwillAndIntangibleAssetslongTermInvestmentstaxAssetsotherNonCurrentAssets...accumulatedOtherComprehensiveIncomeLossothertotalStockholdersEquitytotalStockholdersEquitytotalEquitytotalLiabilitiesAndStockholdersEquityminorityInteresttotalLiabilitiesAndTotalEquitytotalInvestmentstotalDebtnetDebt
date
2023-09-3063310000001469500000014356600000043715000000000100544000000064758000000...-1145200000006214600000062146000000352583000000035258300000013213400000011108800000081123000000
2023-07-0173510000001364000000012265900000043550000000000104061000000064768000000...-118010000000602740000006027400000033503800000003350380000003407400000010928000000080872000000
2023-04-0174820000001366000000011291300000043398000000000110461000000065388000000...-117460000000621580000006215800000033216000000003321600000003118500000010961500000084928000000
2022-12-3168200000001642200000012877700000042951000000000114095000000060924000000...-1291200000005672700000056727000000346747000000034674700000014491500000011111000000090575000000
2022-09-2449460000002122300000013540500000042117000000000120805000000054428000000...-1110900000005067200000050672000000352755000000035275500000014546300000012006900000096423000000
\n", "

5 rows × 40 columns

\n", "
" ], "text/plain": [ " inventory otherCurrentAssets totalCurrentAssets \\\n", "date \n", "2023-09-30 6331000000 14695000000 143566000000 \n", "2023-07-01 7351000000 13640000000 122659000000 \n", "2023-04-01 7482000000 13660000000 112913000000 \n", "2022-12-31 6820000000 16422000000 128777000000 \n", "2022-09-24 4946000000 21223000000 135405000000 \n", "\n", " propertyPlantEquipmentNet goodwill intangibleAssets \\\n", "date \n", "2023-09-30 43715000000 0 0 \n", "2023-07-01 43550000000 0 0 \n", "2023-04-01 43398000000 0 0 \n", "2022-12-31 42951000000 0 0 \n", "2022-09-24 42117000000 0 0 \n", "\n", " goodwillAndIntangibleAssets longTermInvestments taxAssets \\\n", "date \n", "2023-09-30 0 100544000000 0 \n", "2023-07-01 0 104061000000 0 \n", "2023-04-01 0 110461000000 0 \n", "2022-12-31 0 114095000000 0 \n", "2022-09-24 0 120805000000 0 \n", "\n", " otherNonCurrentAssets ... \\\n", "date ... \n", "2023-09-30 64758000000 ... \n", "2023-07-01 64768000000 ... \n", "2023-04-01 65388000000 ... \n", "2022-12-31 60924000000 ... \n", "2022-09-24 54428000000 ... \n", "\n", " accumulatedOtherComprehensiveIncomeLoss \\\n", "date \n", "2023-09-30 -11452000000 \n", "2023-07-01 -11801000000 \n", "2023-04-01 -11746000000 \n", "2022-12-31 -12912000000 \n", "2022-09-24 -11109000000 \n", "\n", " othertotalStockholdersEquity totalStockholdersEquity \\\n", "date \n", "2023-09-30 0 62146000000 \n", "2023-07-01 0 60274000000 \n", "2023-04-01 0 62158000000 \n", "2022-12-31 0 56727000000 \n", "2022-09-24 0 50672000000 \n", "\n", " totalEquity totalLiabilitiesAndStockholdersEquity \\\n", "date \n", "2023-09-30 62146000000 352583000000 \n", "2023-07-01 60274000000 335038000000 \n", "2023-04-01 62158000000 332160000000 \n", "2022-12-31 56727000000 346747000000 \n", "2022-09-24 50672000000 352755000000 \n", "\n", " minorityInterest totalLiabilitiesAndTotalEquity \\\n", "date \n", "2023-09-30 0 352583000000 \n", "2023-07-01 0 335038000000 \n", "2023-04-01 0 332160000000 \n", "2022-12-31 0 346747000000 \n", "2022-09-24 0 352755000000 \n", "\n", " totalInvestments totalDebt netDebt \n", "date \n", "2023-09-30 132134000000 111088000000 81123000000 \n", "2023-07-01 34074000000 109280000000 80872000000 \n", "2023-04-01 31185000000 109615000000 84928000000 \n", "2022-12-31 144915000000 111110000000 90575000000 \n", "2022-09-24 145463000000 120069000000 96423000000 \n", "\n", "[5 rows x 40 columns]" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "columns_drop = ['acceptedDate', 'calendarYear', 'period', 'symbol', 'reportedCurrency', 'cik', 'fillingDate', 'link', 'finalLink']\n", "q_balance_statement = pd.DataFrame(get_jsonparsed_data(base_url+'balance-sheet-statement/' + ticker + '?period=quarter' + '&apikey=' + apiKey))\n", "q_balance_statement = q_balance_statement.set_index('date').drop(columns_drop, axis=1)\n", "q_balance_statement = q_balance_statement.apply(pd.to_numeric, errors='coerce')\n", "q_balance_statement.iloc[:,4:].head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Shares Outstanding" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "shs_data = get_jsonparsed_data('https://financialmodelingprep.com/api/v4/shares_float?symbol=' + ticker + '&apikey=' + apiKey)\n", "shares_outstanding = shs_data[0]['outstandingShares']" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Free Cash Flow, Total Debt, Cash and Short Term Investments\n", "Extracted from Dataframes Above" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "TTM Free Cash Flow: 99584000000\n", "Total Debt: 111088000000\n", "Cash and ST Investments: 61555000000\n", "Shares Outstanding: 15552799744\n" ] } ], "source": [ "cash_flow = final_cash_flow_statement.iloc[0]['freeCashFlow'] # ttm cash flow\n", "total_debt = q_balance_statement.iloc[0]['totalDebt'] \n", "cash_and_ST_investments = q_balance_statement.iloc[0]['cashAndShortTermInvestments']\n", "\n", "print(\"TTM Free Cash Flow: \", cash_flow)\n", "print(\"Total Debt: \", total_debt)\n", "print(\"Cash and ST Investments: \", cash_and_ST_investments)\n", "print(\"Shares Outstanding:\", shares_outstanding)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Extract and Parse Data from Finviz" ] }, { "attachments": { "image.png": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABw4AAALuCAYAAAC3qDL5AAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAP+lSURBVHhe7P0HvCXJdd4JnuufN+V9VVdVV1dV+26gG91oNBqWsCQBwtBBpChopeFKo9GOtDMrDXe1P0mrHWmkoUQNKWohOoAGAAEaDEA4UhRBeKLh2/vu8u55c+1+/xMZ9+W97773blVXN0Eiv/viZWbkiXNOnDgReTPOjczcnXe/rmUZMmTIkCFDhgwZMmTIkOGvLI6f/Plk7+qg5XeJOd9fGy3LbUSSoKUPf22oXK4H/150+Vze81sopeSn+xTsVGl+awLKjXjCqA9mYtNN5cdR9wRBYl7pyuS6PbqQ67aLDnvz79TF0Z2xRlkvmaYVSXdRP5Z+uTz1C8etZpNc1ViQnujKp9lSfhe/3jr3Qo969AG45+RXaTGYs9lsrObnenYiJ6KYB30rMGzvt3l0l00O8rIL7UfCDi0x5BNOh/9N2StfyMv/sVHLj7FnN7rbHPlNFBTy2pA8Ly8+2nJcIE/nGzp23dcBdOgUtYtY7Wui7M7SMXUF1JV66E/1WC207c/tU9hltX6r5ApNfTo8QTSFQsFtFm2MHrV6PezLrgV8U/t15aVKCkk9lCgDDQleaVDG02p1VsH5b1CPyMtpEzgF8v0owH2FOsmGbEnRxh1IePWjHzKgj01IOSyazxfEX/VuSp5s5hZIy6UPRbTlJEzax72Rrmcb6BD+teG6RH4Ja4f0oD8wrjQb9A2dTpVzpI5pb+pZrzesWCxSJbHDq/EN2jf0Mbet6MhznxIPytIPKd+ARvxgjb2QmS8WrCE7URYeJNok+g/5jVbD24y80A+a7qPup9LfIV6NRsNpesF9MBHuNE5GxtpAP+zHVn+us0O6gJU2Z5whI+S3EU56HTzpQ//JtRkB+kjYRnhbuM3C8drAl13EhnDZKZtGO6fh9eR8Sq63Mf6bsh925iBfTNpJH9oEn2poTIDIeUMrnwn7+ATtKya0pXiybesCF2yFbCWvE6TQqUxLyW0nf3EalSEP5N0PdP0hX+BaRGF8Nfp5vVGXL9Ing4/iT16nLjt7fVWGc5EWuYwdYexFXyXJK5ZKgYeXCz6GLil2AeKxip+y3d6BwlGgb7ltAygDfQd06GNHV3Yzh/0lBztIDrrVqlUrlcteH7ezEh+HNrBwPfRx2+oDHfbqdb3sBecXGQHqR7vSZvrA08dbnaJd+O5AnfjuQv+NcnwsUnKfSJgxbhZE36jp2iNjwYc84LaBhvLkJzyDIuKhk+lu5rx1rlAoJn6TnIx2TNGui0i/EaKILnofr6QvdcdW4btdv8L7wFWsh1zB/Qn/8T6MXd3GPdCvXSLSenpZ/imzQ/+kTaVIoZRqtxQNPt0NfKGh/h70DmMDtqbfcM49E//R/ir0WY+Lv/WuZG999NeLMmTIkCFDhgwZMmTIkCHD9zW42fbJEN2UcrPa76RMhhcG3gYdKdVGfj7Q9AITa0lTtsv3O9nQDyJfJktcG21dDvtXET7f4nW5vBQ2bFeSclxX9GSyxvV/AQDfFfme4ROCPknpGQl6iA80Yd/tyeTr9xC6WxhVfZI9eIT/Z0K2F9rtoD+n7E3WN1yi24i9MLEfEOR4MBZ5nEdslO30/YEJwdhmFLucsleO6J9BXvTVKxXt2idl2RBY9uCH9psp96JNkLNS37DPJ5Z/MREmYFf0Ys8nskONwgS92yUo57nSl+MwURvo2HJM0MFT4p+cDaOpPpKVayhHW/IIzFMm+EyyTSHKjPDjhAS9kBFp2CKj0Wx4MAtZIai1Ap/wVnnqGv5CmX5A8IF2JHWX4Bgt8sQBfO4/GaeTVChizwTIdd2Djbj+ryS4kDZG5A3cf0h+tDEoB227jI5jP46puy1Au4xs6x+nUZIaYUwNqdEIQWjOuo76S7eFX19FF+q7Yiv00An3D+V4XovEh1OQCzEIRFtzjnJ+inI6DHoJ4s8eqV0nEWJ715WPtitj2mqk/b+dlO/XGtgleRyw4Vxbfi9Ap03kA62PPdqHZ9TFfVUIclSGYxG18L8kucBCqo5K0f+RExSCs/gRmNN+lOEB/AS+B7k2bpt4Snke3FqvPhFeWP/EN9Qt1C8nud7P8Qeva9CDAk6HfTnSPkGderXmAWYyc0XZhYB0qeBjCh7lmgTThPFE5QgKayfYihSoViHolWwJOrr/CW3y5DjZXBXAuzuxwabUXYlAtDvu1ZR7lSGTtX0I3dPX7CsHFU4qHVnB39s35tNmYd/HTIKGfJTF2OCnvGy4bqFfQNIf9Y8AsfcnHXtQPCkHH6gJrDvxC4zEbTNkyJAhQ4YMGTJkyJAhQ4a14ffa/GMb7l/DztUGLGPqgXif3jd68dlAxguF/sT2qGEyYdAuqK1PRnQlLxknRVTGJy5imRR8MjJpSCYj2iuHooweZTrQD12c0Ej0iZMoPZE+Fasf+ce0CqEO7pIxeW6PpH+dKUwgxcnImNwWKXty3Et0T3W6ISJM4PJDjgPZ5IdVCzpmwrA9eQ1tmhr6ZEcI52IGbZfsviiIslMKdaFtw2SSi0lXD4YklSCPFTO91O6YzHP7rFG5LvHd9nKIV61W80lmX1nIh8nOhKcHZ+p1q7MKRMcESErFUhJ4WpEbVWrrxiamKLet9wr/vhCLbQA4tkU6QmAJsegV7dtW4zKR1hgWK6vT9HGeUIRJ/m5ge+TT7hB4+2LDy7FDH3Bu4t/Wj63k5uRfrh39VT4XJmDV3mprXyWoVGCiHXr6mYyEakzwe0Bbf4yFHOMTsQ6Bl8phV+UzVtRJBHwIJDh9IwQ7xDfaIPAPYwj75LHCse4r2GDXau8TiIj7AL3Rv1QOfhjHn8jHV61Id/LZkt8PaMO48hhbpcExXGKbu3E4Ru+G+of0cznKRm6xUAwr4ETn5J7CB+AP8bMW0u0AT69nwiFw6UQ7L6FXYefBljZuJ9ks2q2bEYfI9A/1SdSLbU0edaU9q9VquB6qEOODB6BgoEQxitNWbIHbgnMJW+wY7UOGF01oOccuq88Yf9wWSX4oEBDKsrIMfw42C3UOgUzkozeUBDs7IBrqEwNeMcVxwlfziRc6wt/PeX8I9NBpJ2EWwBHnvYzsyzbyIEXdKV9dXvYteZyLwbE0OM/47PUikAMv1YeVhQRDKINuoKRj+EDruqV4uZY6pF19hSbX0ZAb7NMlN6CzbgAqVkp6kJN9ZEtHr187SMePCxjbtK/kvqtjv8YxHuiDzKKuIzl3GdmoIXtW1c5qb+enMu4D9GWp4fbWOVZV1mUPaCLgl0h2ePvJBl7O21w7bQLKJYp1lLoKcJb6l7BFZ66r3kekRqO22l/6R9CX0htzWKmX03rbruStDXRNZKCn69pPuYC0XmE/lk2fEcQ39PMkX2T4dKNOQDm0P/byOGss6qzCeIav8T0k+GFyDe1Qk7Eq+KV/d/HxQ4wir74B05j6Q2HP3kP/LNnPkCFDhgwZMmTIkCFDhgx/BbF19g3J3tWBT5h0JO5Xw0SKT/Ql+XGS5orQ475VXFd9+Is3/L6FDoX6QHisj3a8OJN0/HI8zV2fpE4uyNkih4mhpGBSV9/vB86jE2T5yoyEl8tEdvtsBJMIyEkmraCTHu0VKq5CsLqX7izqeU6XAEqn64LTka8/bOptu+pjPikez8fEJEz649wSXWPSPxi7rE5QgjIB6BcnaQPICZNygXLl4xOMHR/aN0wIOcQjtLeoO1I42Z3v9UjR65+zSdd1LaT5hHJBPyYZXXf3HU7xuLiG9mRf2jD5RMR9l+WskvP+F+lCXUN+zIt6JgcppO0BtZfQP18Bk+SF6VHy9M8J1gdy8JAIL5bSxaHDUO+ogTROaIKdtCNG8VGP3UiPKwCaUC7keQpMVpf3/hHoYxlkoU9bG7UFJZl8Y4LX6XTsQSftoxfBElAsph4fKTDJHehX4HyVFyebwXo+46pHiAxd0jyZrCaIlQanWXXgE4s6jnp7PahbQh7rwl+E75K/ImJNtC2rf+GxoDkrYheNRT72SG70lSgCma6LaOIkP/WnHXu0UH8Qf9cEWSlw6EE69bFGLowZJaW8lHLdCjm1XaqfSS8PCCrPx3btk0c7M7z6EJtAWUrhsY5xHx2YpKcsZfCvWH/OEvp2myey2itIUogBj3YSbaSh3SjiQZUEzi8B+0G2EvoLwcaBBh2jL1CsLYODLpBDHdxWnHc9sIXsJkM0WQ9FWR6fKcWiD0Mb21Fnfcs57ERQNQai4rjm53XOA7DeDkHvlKkd7WtZUoaNq0U76tCDKkC83fboluRjC69nbJcU/JwS8l13MYs6Fks8PpM+lNg1HwKMnMeusW3I80eB8kn4oBeKkReOCeahAzJCHgl/C3yCXgQH8BW/JmkfGre94HbVH2VI+FY7cEU+gSj0TrWJ6y7Z5XLJeVCHEMQ1933/QQYH8JTunKOtgOvFVhsf/7QDT+ofz3nddc7tAWEKfqQ8yrXP+VZtJDlu+9S5WD9kcP3zx6Fif52Htl7nRx0rPhxog67IpxyBtNg+3o70x6R87JvowNWEOvDDD+yGBhwzlhPE43GPYpfQB58Aiaoui0dI+ipQ2Y02i981vK1pHNGgp5cVr1hXeEIDD+rj/KV3Ia9+rfoSOISf1ynh53qIngC180AGeQ6OVT8UFr3bJtV27vfOMclIzqFTLJscOGAD2Sr0yusC1fZHfEq/tpzIDL4wkb0IYrE6s6ecDSEutBVBU7Wpj709+QQ6KhQD7vSX/uHaindotzV17crHku5TjJUYU8ntwQmSM01SzIuQEMpwffJ6+QUkReDl9I8/9tnp4uHZjrDX1h8/UHL/QK9urBRsw8mU7z6Lv6ns4rc+FE5ugOidGTJkyJAhQ4YMGTJkyJAhwxrgZjXecIcb1R63q5cHGKTTWkjOdZKsV2B9+EQdE0PttBav1N13jxvxy4XLaqYSeiTnNsYaCsAgJpAmW495pEuXXQW1d7IXEY47c4NPdKJHlqODdh39sEz3JznRpfOKjmvJ9DPdJ/147RLroWcpZbYncgSfkPc2ZrIz5LufcTrNwI/DqgwmFwMP5cX6aevuSUqXayMSvhiIisTW6CFbWWGSTbuqu9fF9U7T9ijXL8Srn9IuUsI9+CdlwsSs9KbPqW1CHwyT9kyO+gS79uPENHA5ic3b7ZpKYHUP6RMq1p7AE9AlTmh3QIJ8hRB6o2viV91APZ+cxH9i0nG/6kEWScOKvsRGsh82ZCId/eqsnEjAMbq0J/8FdAyT69FCzx9Rr3KpZJWBihXLpRDEkwhW0bF1ceRFYgHbEryLduYUwWF0JiCzksIqOmiCjcPYTJ3SLD2gKrCh1WK+64K9VCYmgK3iPuhs35CPDNo0XZbEKkXXQx9o0C2UT4IJ2nbyWxuur1wmrjhsayQ5HOMn/ihTpCFL7en20r6PSTrPMYGpMJaJFjsm107fV/LvB6LzwCBb17MXuvKlUPBr7aCTZCAXQUFXrADCGBr1Zxvl+zali59rUwrsJmJDX6u7/dCVenDe9dXWbc5HxyR4BwYCeWHj5wABJ2S6zuIX/EHnVYSVZ746lSASxwWVT+wb7eqBBR7bqQLx4zL0SQc7kUcQLqwwDHWN/bFcLou/ZKhu2B5/pn6xDnw8eIUSXp+gP3zFystwDn7Rft3APgQoo1+7zRNbBhsFv8AP8BUCO3H1ICvq2hBpuVLxAAz6AlZaQQcfVizCh7L8aAKs1D/4PcfQxB/rcK62XHWbAzalcsVpoCVFu5ZK5dBWOkLtOFZiIzLcr7GBZIUAbhhv4QUoi0yOWWlI0Mvt6MX5EYXqQbm65PF4YyUCiOEHIMm1hjYhOUfVTzypbwj8SZbqiD8DVjZTIw7Rx1cvUhJ5ziBygVY+IX38uucykhNXALTj8Zru07KB/wAKlbAZHwnHh32FZShyZRA/fySnEnb1+qxSXG2R1KkgeS7zciqX2PJygQT8OD0mus+m2PmPRnxHKbhIKCh4++i8k6ADNDGxUX4o7wQ9UkTob7Wkb2B/juvVZc4kNOsBHbzV2j4b/bofBK/MkCFDhgwZMmTIkCFDhgwZ1kE7AKL9MEmlG88rvCH/S0NQ3tVup3DmBYfftvskQkj6p5zvbTCh5hOcSfJgxIsAJkW60/c64sQMmqJvDAh4W5Of+Fs3OBsnNyPtX1lIddW6feD17VHnFwNY0X2nvZ8cK4UfD4TUCfpmUDm2Cckni53L1UP0F4CWq3UJehDscir0YtztRaesWJ90cgZ9ALJIGgNM2KihXMIIYbK0FXw0kLX9lW0aHgC6inDdqLu2BAYKDcnWpYdAXr2Q821OujGR7ZP9sheJ+qOfX6doVLc3egdmHVoqy9sYep8kTweg/HTbLiAEV8NxDFakEe3frUtvdLZZKJcOFoeJYveXrtQPsJ0HBlM6+3+V94ltyaButGwBvi5Lp30SP5KmZYZ+HR8F63n+F2liXsjvB9QTplG/FVnBBmw5DmQrdmqnhEdoM468iNcBHTnH1n3V+QYCAhYuhTaP5bUlM9TBTzp1N4I+Ouf01F4bdhNy91kZNvYhHbmPtgOqcUMZ5vAJMsW+Az8CNpQTXdQl1BHfEKm2cTVdKILdIaNs6JPehu1yiRbad70FAlbYhLakcMzvCXTSpm1HwXklYwPwQB5UEArt80quF2Tsyw6F+J0i5unDcbtchy46i3zxTbcxPssHGZ4XfVZlwx50Mc+zvR4RsS4E6vykTrnPFAkswi7wB94e6MUHWv15oI9iCU+vq/b9XXdFleRdhxqjYAFPnQ1tpjp4gFF8VmQHHgBZkWf4zhUClR7UjGQU8dgPXMPW9ULnpHzwgxW+l4vYPm5f6iYZbV/kBLYqhSD/lQKusR2kceDfAx7o8uoF+f74z3bdXygEW674XLLqNCWXa0/YUQrumwA/Dykp2pmU1z6f4nc56L9UoAx10FabYL/+0FGtDBkyZMiQIUOGDBkyZMiQoRd8IoKkfZ9A8Rvev4JIJh5iYvNioG2/VHrRhF8hfAKqK73gwK3wrVUpnP5ehfcJfdxCSftGtWN7h34DwQo4ZELQJwW7T/4VQ6xje99r95cDJLvd2/uxHTq3vuNUpAAmSf1UkucT5SunrwqivwDkuC69IDqfVE0m1ddC8K3O1C+gZEKaueCCkk/mq6+36O/Siwl0JpF5xx2n0DRO9gImVsELYqck1QiUVOuWqzY80EUgrFGUjshTe7kmyvd6J1smRwm86oCzXhcm030SvtFMViDKViQKeaMHv40rfrw+2kUmW+QhO+b3A9qWFVW9ENqKbUwcB8ZsY8Ag+kh7i659AE5uKxkotrGrn9TTfV2J0DjwSfIgPujhf0EnPoEjPpmskE708XPQeJmYnM3GCAr5hiLw8PolbDzT1Uv0iIks0XmAJykfyvkZ38dv0/ZzX3bfRX8v4W0d+nygcbnhn59fD7GMB1b0531HwNa+mggZiRzXC7rkfKQnefmEB/R+vY26kKeknFi1AN8Pq/ACfVw1m1ptmIwb5MWgZbSfHyV5nCN4Htq0NzzQSIA9oaGo65gUCPoFW8bAJrr5alUI0JdzrJrT1n+OQfesh/4InD9kOiZY5Lb1ayOyGAepS2wrHSc8/dGVBOkE5IcATxoQSrZ0iuNV0FvtzypKlXGIB49fpS4eOMN+oqPOQY9QPyeFTnYnD7iufChSUtmS6lJQOeQkKZbH3kkxHYf6xx9d4JtuV8FtTV19X1tWp1IXCnviRJKEsEIuBD6fL8KPAyP7RAh66S98Z5GNEz2vFJSOY5zbziu0GsEPdDaxH+0b7fdCAlm+6l9bbxPkcwLF2YmJ48Q2Hfkk4OdTCaTPbwBYu78l9mYbf/jQD9xH9Uf/9hW3fcoFYQTJkCFDhgwZMmTIkCFDhgwZHN13tUkiWzer4Ug3036j3yfShM6nR4pY51yiif6lMvuByH2ajD/VIUwcJr9yzvfg5bNRa9QO8nXSGqVWJj3aKUyGhRIh+aFkBx76D09HOyfZS7Zp2ZeLpNya/JSYLOr+hJMpRAZXC2KPXbpTW3SXCpzyMsl2VYpI7zuxkM67DKwqJgV9wr098Rd8jDke2jr6nP9qvgfqtbo/ntADGenKwoCkfbLZ60asSkRS0sE5ggZRalw1Rf7ldKEOGS4gyWEbk4AN4uR0nKzvFx0y1kQvqmQCvBsyGDb3XSZA0YaJYA8YMPkdJmfr9brrChN/7KbK8A4ufyxfQ+2irU9SwsjrnqTnAzHzyVLXS+zkL7w3LgBJqaTsfJHJvqBbz/FKoC6cC4+KDNsrRzJGSqZvPQVbATTziW7ZJUx4J/ZLaK8mumuRuFfoV2En7OsENuLxpLzTjmP3x6iTaDjGF8IIq6Q8tvRLf0Si6gMtjzD1ydU1gWQlbL5KQyEoJl4EDMMjUb19/OQK4rUg6hF0CX4bAhWtxA8bVpNPOq2YeD5t4eU2AlK7koqFcSbYRq3ttgl+3vLHbxJ0xS4eIFC+P5JT2zadypMIEIWJ9eAHfsy2W7d1dPXAEv6KapQVP0AJl6Mt1osy0wm7hpVz+H18zCllGX+8oOuD/eqNmuungs6dd5d639chfaZcKfvqO+dNIEvboJdzcjBuUhobpH2LMr0Qg3Guk2iQR54n97PQt+HhnJOxFH3cB/Rxm+p8eMyp8l0l7VPOEQIp0Hmbad/bUAlaHzu0g0y2rofbmcdt1oMddBzkuRark8qQ8DsedejylfwxvwTXBPjDBzrai3z3r7b5qI0+qmMYY+Vj+lBXdK4tLbvd/f2N6sME8Dyoi76t4HPFUtltAILv8bjk0FeR6QgKq25qI7cZbepZKqN/CRllw2NUsWnI5Boe6+p+jX8I2Bf+sT05z3Wb+tarNZfJ40bdvh5soi/EFB7xiiHQHx7YkK2XET9XLkm0CeXTOhA04jGdTuuqJpVIQaUDD+qiDWMa9u2gXV2sJ5DdUP3YepBdulK3xEyh3tKT4HAieQNQsIdwZfkPPJT8+xP6k7qAj3hdRM/qzTDGJydXIcpK0tqEK1hFQkawf/iRQehDxXLZtx1V9rJ9yFgT1C2yhE9Ma8MpnCTSadtRT6doJ04FHw82LA8MaL8/5O68+3Xp6r4o2Llzu912681he8tN2u7wfXDq1Jlke9pOnT5jH//EZ+z+r3/T8zKsjcrYNquMb/P9mWe/49sMGTJkyJAhQ4YMGTJ8f+D4yZ9P9jYCN459QDeYfpOuG3j/aNcnv7TjEzlMDunDhF/HvarQnrxJwSewtA0T91CEyatuMCnXDSafgg5RLjLihFlAuCnuzHMkk3AOyvumUy4ikdGe8BIz6uoTn5EWAdpHuquoY59E0e6qCdIETpcgsEqCBElZKIJGXYhZQZBvsBkTV5x0G/reaniRrhO9ZPjEl7ZuU+mFfrRlYJBCDyFBoy6k7Zygt1mUmc4XK+cHy3Y+OiW7KbjJUrKdJB5ykOz3bF/q63XVObbKKxbCO59CcqnBx1MyPJeTXeAxaxTyXqDTvlV+nFSOfszEIPyC7l6kXY/oP9DSPzqkJPS+wkuFCBzg+wQgXF+oKa/kE8qi9ZU06AU/tSkTjOjFeerVfmQWEA274b1anQi+uQLOw49Cfs7/QlCGfeR639O+T1zHQsDPh3MRfqpLBlitiSCy9Jjgu73K0mxd6G43Vv94MBNbaD+0u46lH/thQp59VqIlK3iUUIu6MkGetg3ck5bYEE7TpXbwNZ1DDyar6UOFfLA1ukuWBzH0wd4d0GGsA7rFsx5IQEflN8TTJ1u7ivYEZRI678o6DmMOY4NswzG60ebKXwkOxz4joAty5atFf3xdyF4LPe3maqzoApwOXWQXRj5OkUfCv9GXtvMVR1LF+5L0iLYhkAg8IJXkUw/K45v+frVkLEB3tvgIwRb6XRg7RC97eoAC9bAHn8Ru6NZoEoAOtoLO+bjk8J8NbYFdPWAjHdznkvNuR+0G+5VC/6J+0hE58TjyQyd0Jw9ZJNBujwT4PXJ99ZtIKO2U7Z2EI/+gUabbKdqoi188z9jmekkP6hN0WQHn8Ed4UKdw/dKYtqofBaU8METggHKSGTQJfJxOMgmgpx+FS1szRrZpvIQgp8BesXxMnic+7CODwFWBABXnlE+QoFKueDAJWqejnmonbzu0CqKcN/LSdo8yQ2BLPiv9uK66XvrzojqHXTzo5XUJ+vgY6qUTiJhgp/u1EAJIYWVdO7hJXcTLxyn+Ajv90UbSX+e0k/huCKpSZ9C+VtSlo9ou6l+v112fbuCT8PWxyuuM7OADgHO+FQ8Yo5O3I7ZFd/VWbIxM9EB+eNdaqBP9NB43VRG3N/qzxT4UVWawHXZGD5fo511/yuJnyg/BRHbEwOnWAicZS0PbIQ9e7Ky0d5AVrh/J6mHJxE/QF93Zxrp4HWRXeMKU6xN18oAX37OkYkN1JQhFXYIM+knd8zwYh2jqr/Kuxyq4tilEGwSZ/KOt0CfkRXuJshe7VVipv9dNH+dfD4Fv8tETf1nvPYeUBXFMTJRLEEpFGtcrnmYbmSZbyIKvK3HgtLFAgNMkFXS/wV/UFt10vRDUcwZtHvgk9UZ/94uEhqAx12x/rC30EEedSKH4ynZNiEB/BJ+RSXu5j2tMDYwCYO0+I1sTUOccYypl8DO/Tsg27v9CGE/YBr+I/ZoALeA9o+fe/3bf3wgvauCQ4OCb3/R6e+/PvMePCRJ+/I8+bW9+4+vbgcNeiHTv+y/vT3IyRBAwPPauf+HbNE588XfsOaUMGTJkyJAhQ4YMGTL89cflBQ43upPVLSL3x7pTjRMG/MUb6ZgPmPzp4KaD5Ba6Az4Rr228ueUT+bYhgvRhG8hN9ECsT445h045rl9nlpfp5hp1T4OJQ893AeLcPk4IBHadn4sJNNCGibJOuBqpsisIGrUBjz7gN/xuw0TuGugld1V9UTsfAhL+p/N8fBVWQtKGV60zd7V8+HfJWANRZhvoslpqf3Q67CV1rfYF6TZlcpfddJ5PSnUhfX4FrUQb/RdvJjl9At3PKPnJuMKD/TRCRtCT6VRYBB7d8Eln0dH24TgJYiBFZSjnk5n6eMCCySJtY+CQ6dqGJBRz0qMZdI76eauHztSB7vaFwoNZyvZzSnzCpBWHrOigDH0mmXxNEDiF/23o0IMYXdnBHitAv2CXzvxu/ZwPdOGojVX8RMfEMnbxMjrdDoDoEDvGMsjOF4J9yWNy1wMeKaWhdBuGw3XhNCtFHXES0nkgQ1seQ+e29hJM+FGoq2ACynjgSfZ3u6sI+rZ1hh/7vYt3QnSdYgIfn6AXL/Y9CCQaNItBOOoQ5UWEPoQy4XgtrJRIwdXwf21AR5vVGf/QQ/zDpOoKjzCxS9BV/cTFh3YJ9CHI4nls9PEJ1kRn+gw0+LOfS8p4nuoJLeVJ0EZ7hISQ0D/oo/FclOk03kYhRR9EOWRFmhAwC/o6tPV+nZTz4ILg8inMvmQ4uXhEXiSf1E8hBA6VkuP14KNRW4WwE8YU33Ugg+ATbYIOMa8X/DrDuaS8BzK69PMLurdHytfc5uF0DGBSjj3oQt2h6S2XAGMoJ358XA/5bGJHQJ4H9pioFy/ahUn1cqnsk+8+vomuQOAZfVI28F2ViTTwAsgjP9rF7aTjUJT/TuH1o97oH4OHjC8e0Gac1nn3Z/EH8I/1JbktsJdooUu+FDnYdV3Fw/si/KHDBsoOK8RWbBz5BSA7+Bi06aHXWwG1/QP8IKQUvFzYFSINuUpeb8lVPd2/kvqzTwCYwAiPXyTI5oG2EkHXEDDxfqpEG3lQcEWI14FxkGAsvNp+6f83gPhAnx7ror90MBCd992EHjrGIQ/y4Fd+TrKlB/YksOTFsDP1l0/yvbqgD+1RW65aqVz2wFRo77Bak0BUvN5727oOaUXWghSTfGzlNhA/WhG7rMpLSqwHqkM/cN9Q2VAu5/rSVuGdjWon2UCnV6kY1UYuAoNt/dT6iHzYRvoUD/Y59F2njQUCnEag3oA6eHDdj9aH+yKfhBhO3scSvyUD3+W7ctBFKXk8biCGINkHnEpOrw38jT4RC6YLREYBuCQ+gY5xFSsrL9NlXC/XjXooX7vQRp91jpyWzAu/+Q4vsxEKe/Ye+mfJ/gsGgoL/8B/8d/Zz//Qf+0rDiP/p//H/to9/4tP26KNPeEBxLYyOjoRyqvP9X/9WkpthbO8NduN7/ncrVoaTnBVwbuv1r7bT938sycmQIUOGDBkyZMiQIcNfV2ydfUOytxG4wUzfmK6BLhK/2UyBG9B2SvIcOujKcfikgbYrZVbT9MoCcSIAtHm0j7oAaTsxrdGt+QYQ7zbWKioSrwG0pJR+Eas0c1IvGOC6heI9qNeGCrSDnNp2l+yLUxdRu02UVsGr1pnfk+5KIVara9EDveguU402OTvdZZO87myv/urmTSZ5RI/d4qSSSsfjaM+QnDSFkBHPsQ0ZYdMJ2jpMdvtkqGiYwIVUpQMP+UKUxcSsB3dwD/QCOggBB+2Ggl4nF5uQpNHWJwX3VmX7OWTp4306yQtlOOBv5eMZ3fDsQLsRgrzkIMEq/TjszusFkWCDNE/qFYozoaaz+gsT8dhbNWjzVb9j4i05uiKsUxg5iErbOYhO67ACJpgDzUpaDRiFzYagfA86z3b+KxkxaEg+k8ps8YXgD8FObsh+5HbD1fB/qxHzYI3M5JDxMPj6ig4O7fsPBrR1QJekGChxvZNP/GEG+hOgDwEUFYv9SPAAk/o+H+C6UpY+mvBmG8GxBzwSfrSbBxmcLNiNc84x0TPS+T489QnHQVrkmcyLr0KwfwroQ+oDcaxxGeITdUvDbRLZpU/5/koGe+06qUDkuQqcS9k40kZeXms/lt9LP/QJP1YIvKKMNkTq10g+nKO4PuxH3oG/n2qvYo3y/L8ywlY6E/BJ6HsCftr4uBtyAn+OYztK11jHoEegCWyDnn7Mx4sGWsqk6SPa7aK/SBOke62dxskp6wfJGR1HWWR6EER9AX7BN0MAM0A00MGfQ655+nM9lddus2QDUCPoQj2SukCXk0yNq+63yQXK6USAbL8+5ZUHKe8FhD9cZD7OqYMl/EJfCHVI+hVCBPIjTUxosiGQKT4RXhb7el2CLCru8pI6gJAviJ7zfqQ8yqz8CEv/VRcPLiof3hDG7w/kh7oEfcOPcbTvSgVa33XqfhDbN7ENtk906sxLyNdDKOr6eF3R2XUK+gYV9S8Sd4MyQmwjD+AheyNA0p3Cv2TlIEfSiaB64idpBJ2Czvi32wMdwukNgD+KUjwol/Yp8txwmAH/QD4lPN+znSYEMxNwKpxeBysEtBEgOB77wAqCHtGG3ibUTR8fZxK53qelXzgIbQ+tB+SdDnsEHovf/rBvN8JK73iBQMDv9373/asCgwQM4yNI2d5//8aPI2Wl4nv/Vlit+P0OAoPH3vkvkqPeYBUiwcMMGTJkyJAhQ4YMGTJkeH7QTXR7EoUb3OQm1o9eWCDRpUqY30xzU9xDcLhBXklMbjNBg97plNxfd8AnF/h4ncQ8qedVg9hJG98GxAr0Z0EvK6xMUly5flQtTqiA2JZ/nUFdqS61jPXtnRdpQ/KMHgj2StoCEv1zHvhn3JKcohuBJ3RMMIZf9HtWJ1x8bKcw+ehzriTPsfDOwiSRx/sMO2j0r9B9Pinr4OBqwvnxL52+txHHBRAnOX2C2xPtyYRr22JXDR6ASvwr+kxs65ji+W6IPJkcjEEl8igTeQZ/XGnoywdjBB7sdkjkhBR4E1yLcG1dPuWufpvTPt42vh8mPqmnV9H7WWKrRIdwQnkJfdSIs25rUsgKLqqUDgikk/55CsdBF+rYQYdNVNaDmNpGfwI6m9A0PTDg/pbY0c/rXNQpKkqd2gqy6+fCtcyzXgB/BG09BPRaafOVxJjkgRHRxbq73hSjbJLi+aB74Bd5d8P5KOlf2LrN/FB1DQEPZFM+pHAu0MIznUKbu67SzfWmzZxWFFEHHXs/J9uZcS7IkXQaU4NnMuaGEh2ALv64IOiuP8rSvshzuaE+0IQxBdkIgkNSR3aFWD8CeWw51o7XHzqvB3k9AD0f6F1vXBkfrQcbIMNXM0Zd3KbQi1T7K/ok9mpE/eWzie3gH0aCoLPX2ct1In7/AnEMVY61JM99pdbQdSvRN0K70FipYE0W5LHfCPrn6i0rSLL3fv35dVAfSnu9qTNQER8jdIxurl+/SOhXyiU/OpCUcIzNgt18vPF60S7Ya+UdeAD5caUoevo4qjwCZ+6P2nI+PtrX66CyzovxIaF3+yDb5fcHKFlB2/5O4UVlv3Ren0A+OvpYIx3QneLwYpVd0FctJX176wi16FBC56lTXxCdr5DGX5J96oA8l4UP8ZdsOyFa0QdZSFY7Uodwsj+0y0s28jqEwD9s+KEJ7eX9DF2gS85dHkK98CP3NZX3bVqsQF382kH/0qBFu3hbcM7bQXkUc12C/0Q+Tie+tFdos5DfL1au9C8ACBr+4n/8N8lRJ7pXDr7vVz6Q7K0PHmuawWzL8f4Cgv3SZciQIUOGDBkyZMiQIcO68HvNlbvNvicC0neo6SJ93Lg6CTe/2gu3wnx6QZqJrDOhbWd+YLgGxNi56289sn7QqzwTQu0JNZ+EChNHG8F58Y8JDfYFr0u/WvYwGCWvrC2vAC8Q6161j3nd56IvoAx19ZVDq/LChGT0FU9euhOYikk4D5xonzZlUpZ9+HhKPvx1I9iaCUcCCeEdQb0EBV1CokgI4Gib0LJpBwk5ATwz7EZ00IddR8zfGCuEHXtRZgo+sdWkbknCiFeMHgJ64XmIoI1WVtgE+KSvRHszQZFsAaJiel5wBsHXVrBS3+AjouhhP06xegCE8y33o3Ac8tgmLK4Y+F+wA/+iLN51FiahaVt8t8r74LTPxDnv4Hwhglqxz0R9XBX/l/QzPwx9qiad2Oe9hXEy33UnqSzlSTFoj868o4xEvvdLH6sDP/yYY99n0lb5vVLUzdUJqjmYpMWn6rzzTMfIRC8CETzyD75BnySAI17hvX0rgQgm8JFNXSXN5cXrBzw3BPptBMmOuqGG17cRArY+3pE8QBIe08d5tq4f5aRvOqG/PxoxkQ3PGFBJI9YHftHOPgkuvpiTCXXyCBjFd/F5OcZd8QsBnXQKK0bRM1xn2Q9l0CJ+XC3xZxOuytha/5Th9dZJ3mXbaigjVKEDTpro6SvKpGMIcq7YCTu0y1JAQC76hDrLHtpSzoNHfKi/Pmndo38MDAz4fhocOR1tEBOyfRvKr/gc+yG5faQfelNf9ukLbaYJ4nWCAAw8AYEKb8sepoGGuoBwPQh+26jWfJzy2ok/j+lk7MUOPP6Sdy02dd6viRx7QI73ICpPfRodEYZN/VGZ6CI+6FETb9ogKB6UZ2wKjbwBROI2wO7eJmE/1gMdQvsUNNYtuyzggT+JCu2h9tKHAE2pXBGfYB/4APj6u+mku/u12tY10z428keTap/3bQad4ZagfXHvAyqKLHixrS4vSYfQv0KeWXVpORw74N2bv/siYw56qV7+qG7aVboHAhcW9ntAxTyFoFiwZ6e89P4KnGN0Ot+Sgs3K8n/etYl14njdCelMffUJbVH29uslpxtUhfcM+spIr7P6sdoMPt5X9PF29XdXqj0ln8cYu4+I3lfSSnai7krqCyrvBtOffKRUKfeoG+ekA/VDTnKcV1/gvZj+rlb1Aa7P6Iki3m7l4HfoRR+OY2gv/msh9OYXCGsFDUFcbRjR76rD9d6F+P2E7ncaroXKeH90GTJkyJAhQ4YMGTJkyBDRnmxwcFMbJp+YEPNJlPZNZ7jhbSd9wm17+pMEWpR84kQfwM1tkKHkN8xhcizy9sBOM9B0JD/bDcp2J27omfhZyWPyofftcphoiRPDUEX6UCDoGXkC9PNfkUNP3RPdOda/UIbiLjtOZobya2nRC1AyaUN5au+TTM6/F8QZXdKpR57roaQDL+U6a99tkNiccshjv530oUg3v1Dbzg+2FAvnw1+c+O4oy4l+IAE+CZlKvXxD/xL9w4QdMqhnsF+Y6GPShQnq2BaAsv3qhxhkeFCMiidUTCjGiWSyXUfR9Er0Ly8p2rUQpEv/REfeUyTFjUeT+nGuZTV4yb/CSkLJZnIVGp1HDnB9kv1+EHX0+sPb9znjQryO5LUn55P6Ij/0t1RKjgHnAWMJ7eP9O6qFLISkUtiE/HTyQqnkn7iNHx17/6Sd2kn1QBexCDIDf5805wPvFJggrNfDhLYjkRdT+FwhkK2PjzFep+BT0VYgjFkhwBDrTkL8eoi2dx+7YgUDaCuYwCvoIj1lL3RFl/a4nugNnU/wXylc5aC020Xw+mMwZZPnK4GUxwRosEdob9dHevgEt/aDfyUBzURHxoya+hHBTgAvpFEfH1cFaOFD4IG6RX3cl5XQxa8jiey66gtv8qOubg/0TdpQWQ7KkID7ZDJOsR91dXoVdt/QhwAEwZMSgQfq4W1COyQrVBL94EtZ56tEoJI6hDrX2zK8DLolegQeqIisQKOTQY5IYjm22CjuUx77UMea+km8nseEEES0fRwJUWZyDlA3dIz6sw3lAziOeSu8Q36sr/drIeoFTQiQhQn/yCNUXH/SiXl+Hp/Z4rJAIE3+FKUSMGTFW7NaF1NtZUf8xvlDgA7IYVd5jInU00/pg51IaR09MKYtdGxjPdjAw9szyfdj0XNNQS558OKdicE/VoB/BB1CCryDX8W+GWUB2jhef6K9g+7SG58huCceISCi89BiA/HMFYOdKEfwzt+v5qywL/VEFypEvaSD5Pp1gvPKI7CRqxT8vbtuI8mjffBt3i2Zz6kNZHfXS3JqTdmfd816X5cYsfQ2xfZuuGD3Urnk+ciMATu3kxfqD/79Tbzcl8SaulDa87Vt6ZjrXXinnGwlv0WPaGP3IW1jP8BOBK7I94AU7R993eWIq0TlPTBFmyZjmGxRr1W9HiEALd6yLe0W+qdIeyLw5MN3BYKv8Ap56B/awwNvynM2OoFM/GEttv6dxjkkQUf4AJWjbEwg8GBfY0IcY5P28tV53fBioewK8P9kfKAdVOck2/dj32F876U05bwoPou98Mc+QDnaNtgjyCEvyAoyOUcwDv7uF9rhnNOSyypZ5DmBs+0L8AnC0Lu3zk7C+brskfyYgYC60ycf9vz9oMrzEqKJ9nL9nZOyk+N+0TniXEX84i+sHTQEp06dSfZW0M+qQx5xmqF/zDz7nWQvQ4YMGTJkyJAhQ4YMGTZGuJ1cuan0G1aSbmw9eW6A3/D2AsVjShAO05+QmyLR4cqxs9Y/Jk7iZCk3u+FX+n7YBdeynWJ59tKfXvB6BAVDioW7kL7hdlv4hE9Amrq3elCs5nlZ6NCvT3TRokZoxy5rdE0kJLVM6JNEvk6E9ks+nuGZqxPoEHLlgE069YKLTE6m9QuTJ2ECirr7hCgVioj6rsV4I8Azn/PJ0DCJ5JluljZvEohbxzoCORUTUDmffE3Ks/FJomQ/nG85TZpreNRXZx7oZyGDkzjzLuLuPI49rwuRgbbubckxE6HB/qF94mQkOTH5/7DTgSiqLVL/4nYlMwEykuSsJIvxJE72epY+tFmYUA96gOg7fMJxZ0qyrxypugUZ3QwDAX7leiSJ6qBn1DWuHAJu0jaen4LYB3krcsLEeNTb9fEJ3pBBG0LrE+JXChV1flI9Bj459qAFE+BJPQO6xq9Q2PM8X/qRXE+OBXjFhK5xZaEX0Ib6MSFdb4TVTivBOU63fDIfRB4uMjlOg2OCJD55jU2cXvx9u5IikMUqUvwSINFpVGeCBx4k9fpzwknadepGN2/2Q2Aoykl+QKF6oVt6SzG2nvRhnGwfJ0n/nBeIk+buF1GxDpDXme+cVQbbAwK93UWjxUN7B/+nHsHfgg+080RMO8U6hMARdQr1Cj8gEG23EIHHcHrwUKf8xyTiDRX/fSvecbz1gDW6IzDFitOBJMmMGSEzQPvBdivHBFR8NZPkgzAmppK3VddYpXoAr6sS9YcHgH0E+173pP6U8zFWKrq9pQBBh4BYUCfFz32HqpCcUbKrVG+Fx2w6L52Lq+8iSqWy+6kHCFUHb4+6+gzBQH3gwQ9eCAZ6YBXOOoQn+nigjFz0UJ1VSwwv2rAyHxqCcK6D2g7+JOoZ8vAJFVHZsMKtf4Qqu0YO9A5tFmTAH0R5ynXb43tt3UgEFNucqLH4Sim3DXlJ3ShPcI8t2XHLHmMBvuiBMvGnvNdJaWUcjJpGBD1B8B2NJ9Iv6AE4F+zj/UhHnKMP+4r1ULSNUEr/oeckdSAQ6mf4H84FGn50oH7nNkv6ta/2W2kD9yshtFXwzW6ZAL5xPKFMHK8CQh0601rol24FUUfa3FPHfnIskvgjAupNGe9fqhM+Htq2Td03guRYsgcHDVKyTBijSHxc30DLGEZCp/ijGnT04Gk3r6RMvwijz1UGjyi97babk6PVWGtlYT+rDj/+ic8ke9/fOP/AnyR762P2uSxwmCFDhgwZMmTIkCFDhr9E6P40TsDEFCc4uhF+RRzOcePLTbJPlvgNsk7xobwfvbhAZpCd6EdK9Hqh4XJTduk9cfT8kObv0LHvdyfqD22SQqkXAV169LI9OXFSxeEqrkwgt9tvddGrAJ/KacsI7ZScugpgUoiVhSQQJ7XxhOgNPnnESUDdE3q2nPf3HYZTLxqwBzK92Tj2/XYL4UKJza4umOhPJyZcXTYflx/ayvuSK6Oz6MjELIffMwjaoGtA4mOuu46oH5OVfj5N+3xqgY3gGSbnIye3I0KFFR1W9AHPRypwfuzAMzmGZ2AfZIT//SFMQodrCwl+TEbDPU6s+mqYqHhSD7cpW9GzzxaEifvO1AtBa9hJEhP16NGD1gOkAqegjRPqrpsSenId7BdRJ4KFcT+pkvONbYV+UXff8pccx7aMefHY9/VJyMOEudLl6Bfkr8gIwdIgdxVScoHrnZCG/Vi/Ljp9fPWb5yNvjclzbE+cw7eB1ttJtiPxnjW2vmpK+WGsSNnzeaDbr9gPu6GO0W9jHUkxz/0iUYK8EDBQUlaOeIbO+Sop5UVe2DnyAfF6iP8FVkm7JjSc84RIdIOivhKI8I/OR36+j8/xafNIdHUeSTuJB/5CoAUd4y9dCEaSxyFtwQo/58w5ZFB3bVgR6fn+PyQ+sd8E2UHf54u2DTwlmS4tAN+P8tsf5BOMVoHYTt5uSXm3iz71Rs3rj5+67pzTBzmxnbEH5QhKOt+Ej/94LjJMI1ESurjSryfcbEEGbLz/9iAli2CgB0110A5yu5xEflIu6BfqTx5BYOoZg/o64fm+SVIs2wHx9scDJ33Sg9QRsQxqrFX+xYDLDfWnzbwPSs92/RP7JBa6OkjqjW+1r0H4gxtSG8ls/3CMgK2rIR3oY4k+V4rQ6lcZb37T65K9y8d6qw7/+b/831Y94vT7Fee++yee1gOrDTeiyZAhQ4YMGTJkyJAhQ4YXHH4Du5L8RrbrPjZkJ+cFvzFW8jzP4V44fP6ygOQO+YmuLzR8ki/ZxyY+gZ8cXy04/8TmbJEY65v+UOXYTt5WpBcarpKkd6VecNuQXFfpGCeeos46jpOMVw3OOz1x5Ca86kBlUmiXEAj0YCCZAjWNQUIS2eExpoGGQKPTJnk+4fxCQkKCe8T2Cm0SpAeE7KuviE/0p5O3S5jMjUmt5qLjDxTY4jffi0j7u+ssfbUXfNlBXSJNsv88qkLRdtslk/6hv5PnuU7kIsiTPGQyVj0fBP8QUrpTV28zJtKF1Kn1IX08YKLd0Pdp8VCvUBeOwwpDEAIZyUSwzoXgW+IX7iOMvcGX2kl5vQCvOB7EOoWxZ8UHQ344jqtwXE9SpIsBlstA1I16oHcsz9ZXgAlRt0ATrilBy1A+wveTE+l9NhyTYv36gkijzFjXbgTpK74UaV1+GwmV8uC3Uo+wTZ/rCbFmLGxhD9maEtibMm4b2rUQkr8XzHkndrqc+q4Brzv+mLASW89r+4WO4yo6PmBldSLakkKZNOK1wE/zmM/ENuE9baGOwO0Cb/mE8/ByoT35cM5HSO1iC1k1XEOwgcpCHoKRlANhVV7gtaJztGVLhf1aXFe/Si48+COWD0GuvL8HMT7uEb9Hd/hhf39XW0l06MJKOhccfKK9uhDdk/wYkL9SRL+J3x9Y/Ql8TEhsxzsZXR+d60gEzXQ+2sPrVlPdxMr10x98eZxpG6436NQb+nafVYJfCN72hstL9v0HEWvAebEV//jewE5wrD5IHaQrH1aJUu/wRSPSBJn4QvCH0P9oWx+7VNYDrJTTH7bxFZUEt3rA2aO3ZBBA9DHfZWkjvukU5b+YQKyv5HQf0DF1onfg48nHiaTb1dYOOyOQT4cHsJtK7rPaokboD89Pk+D5VxlvftPrk73LB4HB9/3K+5Oj8EhTjt/2jvdkjyntwokv/o6nXiD/wQ//L8lRhgwZMmTIkCFDhgwZMsSbx667zFUpote5dEr+x/vS9L1pV56X0L906gVujP3Gu43kEUj+C2sd6SaYiRm/Fw5c10mXiS6d04Ab2Ux2MHHGvk+mcIO+Bjo0iDwj/5j6RWI0L4b8YIAOXC7LNFzXNP9wyEFbXkzeRkGdJHnp1YjKrHH6coFWaT3WrG37PKKDNzGZRT660mb+C/qrpViCaAsmHJlUCpOGyck0eqoN4fop1IQU0GajrPZ+D97pUnFSeYXL+uiXrg3kdyXX2/f1j2MZJQRJAnfaivdgQXLVEEQ573SiPer1uj9ij63r4o9XC7oE3dZotyuEs6LeyX46xfz2tgfw13QdwpiTSx45GOrjk7NioNOO9H5fWKWf7JAEm3y8TfzZH8Wb5PuEOfmS7QE17bsdL8N4LgvZMek4rAqEfxjnkef7OocsUniPIRw2Rhyn0Q2d8bXl5eXwSEGNCyXxQne3sz7ef/XBR1GIevMOvzBm0AbYFgr2Q+oJN0UYD5hQ90cZigeT4vCGHzJ5VxzBLgAvr5v0LJVKVuZxf7J/8FUnWQ3EpxJlwz5b6SfWvLeRLNqpyGPstB9sEm0TJ/iDr8Xgm0/4C2HsgV2YHI8BvRgoqcsvyO9uy16AhwcZZBfk8h7R7spx5O0lWj/GB7RP3dATUBf243cD9r3v6uNtKPpoey/rte4EMjx4R93Zl2AXyb9EXtz34JS2awbGV7MPcH6pBLRFV3+HqrYAvtG/SdH2gOAJj7XkvXqAOlE3dA7vQPTsFLBxeEwlduF9c7yfrpGsGKSBPJCYL6psGBcJxLi9PREYhL/2lcRNeaLn8Zf4ZKns9JyWs2ibBDKcnHowTjSC75VLKsfqM+QE3vS7YqniyW0qlfLiHWny0qtUHpCvlnWOyqEL9QrlPBCnetRqoS95sIrvZuIBf/jxjk+Xh1IbpVV0yCn7NvCQH0kXaSb70R7Kkk3yhZLaBPtyTQmpLp0Yr9w+rjN+VJB9tHUfYnwhEDrg9WQLb2RQVcqzpS75Ysltgi7OI+FXLMsG6NaVgr74Ev0hPErW2zZNp/pUl6ruY15X6SNFgr4pOs6hg+spPXzZaGKLmLy9SC4jJ5uH96nm5CvIxw68Z7Ggscxt5W0Ca/QIdQ080nLpswQyQ5uyH2W5/FRbdZd9sZLrgN0kv9GgD6rOslVDdY7+GnTuL7XrJRv7sSfqGDbB9Iy7+AZb+jG2pC8jLwG7OiZI7eMg44QSXTr8S6P7eG3k7rz7dSkpzx8EDX/un/6j5Kg3CACyejDD1UFlbJtVxpW0XZ45m73XMEOGDBkyZMiQIUOG7zNcf+o/JHsr8Ane9N0eN6DJ7vrwu88kBTB1FP5WbjbDWY5X8hyrhCgjfXPbje7iusFNZzE55ujKXy1nNbpYrwlntRGxiLj3JviyIjrsRftwyA275666Ue+NFV69AZcY8LkaCLr5bgfI78iOhD1ld2f2JOpkKJI4EXwlCJOayUECJlHSkrvE6Z9PN3lZtmnatl+l0SOrF7rl+JwPB5LTngNSRpTbhg7Sv7TnHO8pDNOu6wsPNQlgr+0TSXbUAzCRynF8tCkrDZHKSo+YRwkmozYCeoVJxU70ag/q3wvpXNeT1FW82zegYW5uY7sIKtpN5ZP+KQnw6faXNjpFr5KLbkzUdxNGe68HuLg/hMNOpMq7PKfrpIx2YZN2WfLTPsxxBw37zm99eB3gxbYHogdHvfjfHu/Yd7nJAfb1XVElWWsBPqv003GadxppOpeZ7Ee4XJqokyPEygraexnqGmmcz8px4Mn/JIeibBM4dWDix8BXUkG1ktUTbX4ddPIrGKbz2G/rBcRd+rdtnELov2kNKeoMlJJ8Hbuf9CjvgCw5Ffit0FGvDvvAi336gsg4B+C/ajzVKQ/gJTQdIMvJE87YcA2yCM7Tp7ukdCBWM/bfFb9sS2rnrdI3AcGOKNgpesntVVR0q7KVF4PCbaiugZ8+2I1S+sNWMYiIjtDEvFivtJ1dT+3z6M5iiWBzCCiGoJr4JHVwUMSLsXotBNrCezOT1ahiXnA1w+pbgiDemcTfH0uJcOTD0xP684MBbAxZCLzC1wP9+oRjgl4l5ema4ysJQwA4rhCk7h7I1JbrYqwbQWEq5NZRGei97gS7dMpp+SQySOyHMToEZQkoEzzVSc+7XESe6IZQjuG5ki89knp0AHEF7AP0X/RkhXoKqJjoRBuHswL1S7aeB00ih8BRWm56f11Ak8hKA0nw0MmQwaYHvxwN7tkq4TTtEm109NuEBfWCslM0Oic24ITkeR0S/h1wOdGGCXk3zeVio+IduvYDV0opME6PEbDqsMs6gCw8+hXI591o+AB9WP0Kf+GxEmLYClkdaPsPgI0OfdNpfPfVeq3qJz2YKH0vfOAdydn1EXrVVcTOnduTvQwvFmKwkMeSXk7QMGurDBkyZMiQIUOGDBn+eoAbxY7k//yWdCWRt5qyZ+IWOF065IXtCg1IUyWJG9Z08jxt1kJkCUTfTcoNsKfkuI2E9XqpR1bPFP5tANH4vGrYTVL4ONrnIEzy+sAKr94J9MrvlfrBWqqtyiajPaHRjShxDWYRsW1JG5Cui3XKrqWJ51HZxH/iNvhSQp3Wj/Q84DIixCt11AHyE3X8YIWuW5nO5NNSSRlHen8VOsvy/8qxppBOMesgTeakYrkO18vC+ibQv5giKNCdutDt9uE4eE27iP71KLoaImIo7pl0OqaNsFqn1aVWZfXDeAPgPWkPktqCjhNh4TiB963+AYdV9ojbrtQByV6Vtxa69KTkyjgQctjG893S4rmV81cIZ5LIbackP42kwqGGie5O2ImoZYf92kml4z6U2rLXM/lFLSb+r3zicUTwuaA7ykcZYdUZ+6KOyUu44NVos4w26E0HWUxglX93IbJZoZce7isrBWNeTzgDnQt/bawid5070xocV9MKBLZYlZe2J/sh4AIvfDKseoUkPCKVlXrhPO+P45hUKpZCvuhY7cQnBmzbH8orr5AreCKv1cx5MM/DAsgnDya+TwCDoJhSiyRa+OuMJwKF7U8711OgYiVZzNMHvVQRpFGf2Abt/GQb4bv8Qyj7Llw0BB9JlOE8f+xHPslxKAOPhM9lJ28V2SraLNiTR1JGu8ePB3LSieKud+DjeisRpPVEGdnTg3J1navLRiTagiQeXh/aXlv/sYvyCTx6Pnmp/XUTKvTIjzr6SltSL35RpicVkK7+GNmuRJ7XCRu164i/BovF5BB5tIlvdSa0H/p0JZRv66PjRo/UXWat1A/tZfDLtVQn2pAP9VYiP/qA74tf9If1ktNin16rDSFgfOZQW7p5+9Q6cLq0EP5LUPzRGquQY5C9H1z1FYesNtzoUaX33/9N+9m//4+To8sDwS74v++/rDzO9HJwOeWh5VGpf1WB/jt37Oj5Xsjbbr3Zbrvtpiu2Y4YMGTJkyJAhQ4YMGb53cPzkv0/2Avwmb9Wdnm7AuQndEGEKqRtx0moFYYJpwztZJgD8bjocrgm/Ke7jrvgywEqrfhBWYG2Mq82vX/Qrty8y6dYnuzDxsVH7Orc+OIoNEy1XhFi2qziTav3AV/WkoWKrVuReBtLcvPZkSEbcb7NVXodkHTDpm85Ur5SZm/5/fYh/Uo84l5RGWw/BJ6K1jasLmeTyNSTaxjyX3Md4EPl2U64aDzjszusB59ODrJsfdDnm01ZJXo1+9IPGJ2F7yF4FaDpsw6P/mHBfQeSzkXYuV6mPWrjc7vquHnd7o1d7wGmj+vp5le3LLt1QubBiLl2YGoS6rAd0c7t00fVTX6cQXZrS+fhcaKf9ugFdPzKcyyoyJorDNiIEyfqoL+cp3EXXU5cedN0I+klyVx/u1196AR3Xt54g/rkCgaXkOEF4hGi6NKvYOvtMT3gdKLmBZBj1YRdHH37QE9TN+af6Q59ye0pTmdUT9DwGuOHnCDjE/uOr9giScE3TMavueLQj5XkcLAVCcKwZriHOSfx1rtmqh+uZaCJ9XMm3Avqq2k1ZgQ9n9V1PtKHOfO9rqE8WrZkvqf5Fy6mD4l55W7Zyqa7yVZ0r6JzalXz0pKTzI7AhHX1VYNCVY1Yckod/UD/qvbLqPglO6dOxEl/lnFfCl/cLEhR1H6M8KxD1iYi00dbQEZyNj3O+EsCzG/CNsgDXBA+8+VECFQt9PRwGqD5qTz4R6O/26Cy9Cn52tSovDiR8I9HU1W3Vw14bgzbtskFy2La/72uT2DzCjyDZSGzkF47WxOXw83b0Ain0KteDrBv0tXquHFYWCmH1YUNFQ+TRv/Ph1+RHW6WYpn3K8zlcpUuSoU0YF8z75fn3v933N8JVDxz+3u++f8OVbAQO3/crH0iO+gNBrttuUbrtZj9+2cv7f49iDBa++Y2vb+vWq3yke+/PvCfJCe9YPHXqtN3/jW91BNliUO754NTp0x2BSYJ5/aBXIDAiBgRjHXg/ZK/gYKznC/XI2PV0zJAhQ4YMGTJkyJAhw9XFsRM/n+yl0X332NJNaD+3f1ngcC1kgcNegFsfHMWmY5LjchDLdhXPAocraOsh+OSmtvghKQscBposcLgafl5l+7JLN1QuCxz2WV/OU7iLrqcuPei6EfST5K4+3K+/9AI6rm89QfyzwOFq9JSmMj1X9tBmztcPnD2BEQKFwMsojxWHBM0CYRKY82teKONBwmLBajyCEJ6w1QnyeKdm+vIIB4JX8CPfA15kxlWOPIZT16BcccADGc0c77WTHNEWcws2OVyzUm7eGvmyNXQu38pbsVWwgmh8paOYxvdOqpRUSQKHxaLGXekSV1i63kmQUMfQe1mvZ0BYxcVp+HLNJDgKLfahfqzOWkG0Sztw6Cs6sZ38D0aXC/Hy1Z4dUoKPh+Ar55J3h3KR6kNELz3cHhvAKbCFHz1/uOuRkuO10Ja3ASE2Cu9LXEEou1pjf3RsF8K4sQIX16VfbN80/KgPu/Ti1wv98sM3PDjeRbiqn0deGwheKg7bvL6dtUoiVD/KeXCwrsL0I/qGbMaqX+emfJa4pmTT19ogn8NVMpWhv2hDL6O/i7/5Tj/eCFc1cPjev/WejqDbC4mNAoe9goARBOve9o7O/H50T7+bEf7QE6iLwch+QeCUQCT80oHDqO96/LoDgTGAmQ4WprFW4LCflaEg6kfwNAZtN8JaMrvx2tf9gI2NjidHK/jsZz9pMzMzyZHZnXfe5dsvf/mLvo2gPPjsZz7l2wjod+/eax/96IeSnNV4+9vf5duNaE6ceLan3Fnp150PxsbG7Nix613+qPYp/xXRpesTAZ8Tzz1nDz743SSnE7v37LU777jLz29Es149MmTIkCFDhgwZMvz1x9HnVgcOV09U6IaXGYMNkQUO10IWOOwFuPXBUWw6JjkuB73K6jALHK6grYfgE23a4oekLHAYaJ5v4LADCZ+NtHO5Sn3Uwnl213f1uNsbvdoDThvV18+rbF926YbKZYHDPuvLeQp30fXUpQddN4J+ktzVh/v1l15Ax/WtJ4h/FjhcjZ7SVKZn4DAZ19qrDPXBVvAIK/ZCkAWxXOL8PYfK572ETP6zaohAW7FY8u1ydSm8s9DpCdgR3OrWiABPw0rlckLH+/pEx2UQGfrH9aVcUt3rS7pWLFrJLlm5NWUDNmObhppWsSWrS89GXrq18lZSKqgyHoRsy8UPxMOPc1YqFTTu1uUfBDLJwyZhLOU4Bg5DgDSgO3CIDQMtj0BNBQ75JzrkcL4jcCgbFWUTZ3Q1IFl8Z4iyANcE9/tw2AZdslMqukOUJlQ9PGi7vn5eQiRdIp4XVut35ehbP9GsGptUaPX3MLWwjrmuJGZOfIG9FUL2Qh/t4rkKgd/GVM+PX3cANPJjux7mixN2wSZtqbjZGrkRa+aHVQ4/JnCo0gQNm/J3F8hK5U57dVwFyeewW7k03Jj6k90v/fa7k8z1cdUCh/0Goq4GegX+wHrBwjTSj0qlzC/+wv/Wd/AvHTwElPu5f/KP+g6qdZfvxlp1oM4/+/f/kW8jzc4dYbseLjdwCP+P/9GnZaNvdawa/MVf+Dd917Hf1aA/9dPv9QAcwbU0CJKlA20E8GZmp1cFCClPoI7AXDqIR0COwN2v/9r7kpxOENiLQcePfvTDduK5TvkAvvBHj89+9lMdNOSjc7c+AF0JGD6U1AFZHHfzAPCBrlcAEsBr9549zmejuvzCf/h3SU6GDBkyZMiQIUOG70d44FD3g9xExpvzOLmxAiaGVt/+OX1SBvConDD500nbfdPPBE64V+7MXzU5AOUqXXqAYqvKPj9kgUPp4m3ZhR52Xt1uQss9KjlYC0jtU8E+wCRqL5nxV/4d6LMevQKHq/tHL7Q82JQGnNL6cdYndSQj7rdLKK9Dsg66J5Kpbwg+9GinDoh/Uo9eE1dtPQRswDF+SMoChys0bDdCsEuaI5O8+Q61nU8/9RUJ9u6jFojR/07KXv7cC73aw2uxQfFYj37sshry72TF0gpCPTqM1QPo5nbpouunvk4hujSl8/Gu1Wm/bkDXy9fCYwNTgKSTTJDM7rKxM66i7US0czddr/q6jhCuPtWGa8u40dWH2/yU7b6EeqvaqDeQ28mtB+Avfl6fDnSVFMGqcVdYVV+vA6U3kEwxyq5muRp9+EFPiH9QL1W/PuX2lEax7vqKssG1TCm2C4HAgYEBvyatut6oPIEwzvF4QYKIrMBzfUSKno1mPQQO4ac8ghgE2QjAseKPsYtVYbV63Vcj5vO61uSaMpP4NHncZt6qLdHkSjZUmLXt5WkbrT1p28qP2L7RZ2zrcMvKLclVakiEyB1F6caoGB+xinwCZFTZj7XjgUPpElYdSjnluf4CbZ5+VKl/73SS0M/gQSI4SlkPMop3eFRpKE8/ifJiQJIAaXxUqU5dFbg8yV8JyhLsDIFDjiL4rkbq6pYdNBH96Bb6RtheLbguG/BD/1716Ea/+vlp2tWPAtqsUzI4j53drzwntnGngCgzVbQnKEUdOkuvxvPlhy+mEflthOnGhH3zqZpdzO2zi4M32uzQjdYoDlm9WQ0N0L5IYo9OGc4+ncV+IF0H4SS8Lv1WWFC1Ea5K4PBygkpXA92BQwJpPCK1X8TAIasFf/E//pskt3/87N/7xx1BtcuR38/7HeGXDmamy1yuzmsFDns9Ura7XhGXI3MtHr2wXgAujfUChxG/99EPtYONGwUOIz9WO/biC2LgEHQH7tbSO8pN6wKft0keAdLuVYEbBQ7//n//f/Og6B13sqKwd4AzCxxmyJAhQ4YMGTJkAAQO/b7ab8zDTXb3L2D9VrHHLED3DbnDg01dN6mrbtxD4LCVujsOJMj3wwSi9ImWDUCZXro8D/QbcAuBlI1xtfn1i37l9iJb9YvuNezcyw8IOIUC6wHmfSq4AeLECD7cjedTj56Bw/BvQ6z+RXwnP04FM4WJLvbb5MrrkKwDHnWWzkQP+mUWOOzMhO57LXDYAfj0U1+RYO8+auE8u+vby597oVd7eC02KO7nVbYfu6xGHOtXCmM7z9uAH7q5Xbro+qmvU4guTel8vInWtzR0vXzNV02Fwzag66XfKrkxrYNAp39ddL3q63o46Wr6iECzug87P2W5HyWnrn7gENqNeXaG2gNW1dfrkOi7HihG2dUsV6MPP+gJ8Q/qpdq9T7k9pVGsu74A+3FdSc6HOFQIkIEQmPIsjTsi0jbYB1pW0oVHPsbveKxYhy7nYxQBNoJoMYgXxi4CknXRF1S2lauLrmaFXMlyjaI1anmr5svWKhdtInfOdlW/Y7eMP23Xjn7LDo88ZpsmK9aqShbiYjSJhEz0JyDoykpXDw66Gr7NserPr6HqX8m5oCc0qhV5Aj4a91fsomOKcI79WD6uToQcWRHIBw34NgNd+vzzAbLQgfZkC6hHomMbOvbT6bzni6tVByBe7pMb8aRa2LufevSpn8vdAC6ugaNFWuW09e0qH7PXgfPrpw7gL4FfozFsT57M25n6fru/+VL7rr3M5ouTtsz7RgvqX94GCIST+gGjalqJtC4rZH3hYp+Bw6S3XTle7KBhLxBIJEDWL06dPnPFQUPAY0HT8FV6n/h0crQ+du7c+L2I8OPRoBHp90ESlOtXFoBXL/QbNASsTuwH/gjWPoOGVwsE5EgE5/oFq/h4RCjBPwJ964HAHcG/+LjU9QCvuNIwgn0CiTx+9XJAQBAQVETXY8eO+3GGDBkyZMiQIUOGDFcbTMikU7hJTd+NZsjwwkPel7ldhgwZMiS4ojHRi6yU6zdomOFFgpqDQB5BQgIpfHzlWqvpj9f0YGDSdv5oTr6X8WkSEGys9gfx88coixdBRX8kpsrEHzqE73XiiVzoyGuItl6UgCKk8pGmVfJ1G7KGTbaetT2lr9vxzQ/ZgS0tGxnbZrnKJssNK41OWG5k0vIjmyw/vNlTboj9ruR5oqOM0ygNblF+SLlUCnnQhG1Ivc6Rp3PiE8s637g/mOz7eehSx1cjtXl37bucVBqWrt/jyfVE7/USNuxR9orTiORqu1FK07t/tfO2rpxLpe7y3alXmfVSLx7p1KvMeqkXj3QqjkzYnj2Tdu3uvB0bOWuHq9+0iYXHLV+vqasPKg2owxKgpuN6933R8bwDh6yE49GUMa0VqEoDmnSZdOqnfC+wqq7fgFoMGiKLMgS8Lgc8IrQb/QYuCdghfyPEAKPr1xWMQ9aV2gl0P6J0vaAh737sDjKuhXSAs18QbGPFXEwxYNYvfMXgZz/Zd3Av8o/vDaQc7wlcCwT+WFl4VOXWowPwSgcNI8jrlb8eWGUY32vYT4AzQ4YMGTJkyJAhQ4YrRbwfXUl/SXenGb5v4T6XuV2GDBkydOByr8chUBT2CRr2s8onw4sILnUE8pL98GjSlhULRU6EtvM2y7VX4BEM5NGba4EgIUWgY6UdQUIPIIpvaP3wnwCj+wfPGm2WtSVgqfxizoZLTRuzRZusP2k3bnnGrht/0raNVK1UmrTlpQGxGBLhoL+DrZYftbqS5bqSjVorN+L7Le1zbOJqNuGplWxX0qTntVor59s0qbxID13Dxn3b9P2wbbKFpjXpdORXRUde5Pl8E7yQHeWyj6ym6hCOQ4oyLXd1UkupqdS4WinRcaOEjfupR9/6wVfbjVLkx7aVU3tqu1aKtOslaHqV7ZX+MvhZvmIDA031tXm7duCM3dh4wLbMP26FWlX2Z0ggaKj+G4aCvxQ878Dh9xI+/onPJHsbgyAljzvlfYMEP9l/PsE4yvYbgHzvz/xkstcbBBZjsK5XQNIDnn/U/6rDbqQDgfBfK2gI3Ubvi4zoFeB8sXA5wb10QI5y/azmg57g3WtfG96L2AsEDcHM7OUFCHuBOsAP3UA/Ac4MGTJkyJAhQ4YM3+9I3VX6HFGYNOpMa4CZqlQKqw7FRincsPJonKJSyXLNctjqON8sWqFZsqKO862CxIYbXB6mY9YQTVP5JI4BinELymO2SknyBygqhYmt9dSM8CdkKRV821RJJtSSiTjnIx0SmsCQyTMStKuTn0/q6fV1UI5zMQU+TTEmtXLKy3XKdQo/ny4Dgk4hgcBr5bzOaBd904m8gCCvhby2zPbJFPIqp3bx9ghtFNqprGMS+Rxr26yo7Qa1HfB98rFBtEe0GAh7a6c2RO5mbCedbaeYl64Y8sikvuheSPQLvsQ5dC6gY6vidQllqKnazv2UvYISNqop1dnTJ2oXEzKTI5WLueiCTjEF3l4VRyjFOdlFyX1N27pSLd+0hpcLtKE2+BDvXyp54gGhOekX28K8DnmdS7xPZYM/Bb4rCckgakQZr7VS2M95vwzCXU94xX0yHbG+wXdaedkH/sqPNJE+WCSd0Kvu5QJFLyA/pgBvZ7bOI5bkP3JD/Zx3ksu/IDHYN/hgQKDRWXgmInjcasH9Bf+gbKIv755q+xq6S47aKBwHmwceKsR41R7LAgfPVwqaAXJlc5Vtim9IwfbeJj5exLahzUOK7RVSUBpOoX5sQ+5KCucCyInlVnRahU4GPZOXcj+K5dMEK7qtzov5SXuRr/7Xkq2oe+wrnbqFPLe5H4nO+wEJ+ygP/6N/suUj+ihto+RIdtiEtqRdxJ829zNB3zBWRr2gRv+QvK2DEzi8D2m8YfxRIaemqCencElJOfoxj12MPhA0CTQBHK34SkhRE/ijCxPBlIiPDA6Pa410gZ/zht4zZSsPNMVzbNBV59t06USu+obss/I+Nk5xojN1FtU/rxf1pH8l9qIw9Gz4UFRK+2vytO9t2dYrSclxOKStoj1Cm4Wk/bz0Uz7fFXh/Xp7+z5hDv5UqTR5R6U2XtGlQxhknKjnQvwOeQV/U1v+QQX2S/ul1JZc86swhTJFD8cDcN64A7c74ndAmNQsJQyTjpMoHPsk5v0YlKQF7BPXCqkPZWrpwmiBvuVK2UknXCtQTKgO6NkOnVCqXdE7fmeLJFOr1ujXqjNOqdaEoOsoVfN/fBygBteWa1Ws1D1B6kFKq1msNqzd0HWvK9vU5qyyfsfLSCds6UrXBck3KLlmdYKSuY7VGXqng27rv56wqP6iTyKurTes89rSk/ZLOl3S+qLoqryn6JFVF2xAfUj3msU34V5O0LJsvKX85OU9erVGULHSJeqS3Yb/7XEyuYyqlz/WTYh0bdelfU9KW45BUZ9erGPRP9N44rdR3zQSNaPtJ0cbrpnR91kmBp9qhr6S6qOOwDfrKDp7UBi43+IrTKPE+zZVzkkdyuek2g1/OlkS7BM/EvjF5edFTZr0U/KH3uXSKdCTqvqw+GfSlfivyPKX310p96tdQHXl0b66Ssx2jy7Z38DmrLD1ixeZMGDY8heuOOj9d/EVHHPX+WuDU6ZXHe66H9GNAIwjGXc7jTnuh3xV3PNp1vVWHMbBHMO75BDPXQlwxSaCz1/sPI37un/T3iFJwpbaL7wqMKQb1LheU45Gl6wX3YkCOVYe8P5DEY0v7Wc3HI0sBqyJ7Ia4q3LN7T5KzgiizX8RAJrLQMb5r8c47Nl5RmSFDhgwZMmTIkOH7E/5+G91T+vSj7jb5hDzP9ONe72rjNpT3taVTIZdPHRd001hSqljRhrQ3bPlGxVq1ouXqZSs1BzwVmITXzTVTcblcSzyaom9YsVXXVvviVSyUrFQclA4Vm5urWXUZ/oMqUfZHdMX3qfjcm8+/MWGbSkk+wYKSJ6azCKPUlZLghm70Q2BB26R+OWbIeiVnGCbb2sEdlfJ5P84360q1ZFuX/RqSEj91pZqokklwSqggASUChyE4QxL8pj+ZxPQEOCdBApOzkuo6pxN5YZKbYKTk5yTPJ9/RO5RFLnuBTDVulKzQGFR70F4VK+fUXgQIlUe7edCwoTZrjFqxPq7tmBUbIx6cK3lbB52xSr0hWR6YjQEPUqxFPA7nWDXRUPsxIRqSaijFOpPspIQfYjH+ENeqyYrLDelVkCcMut6FZPK6JJ8rN8estpC3pUXe7TRgA+WKVQrypzwtTGCCdzaJb345sRFvfEIzasMkPbLxr7qnHI97U+KRcKSG2rWm9qR98TMmxKN6rmdS6bz44tetvOgLDVsqNK0qZ6Q2EKCzNSS3wePfZO/8sOSUrFxQv8nrWH7PlmB5vdGymnRoqAqFSlHFaVP5mvQI1udYmyhcvJlsbyjV1T+ZygkT+yEIQQCTFAPbIRgZ2oiwKgE5AqvYJwRwAls0Dwg8w2Q7SftRJybFXUrXx+WzDQmmbLx11d89EKHEhHied/XAnrphZxelfLVhgQluxhrvxzVxlr5qB+A1gKdSCNIGuYVm3orKpJ8oWwht7e3u9GpbD5JSZ9qIAJOE0kT65HMai/JjKl9xUxfUjqWS6lNkElx60BdyjGBMcppVtV0SnWunc+GNkbSj2bJMVKspX22dy1XUD8JkIK9pYuurgHzspe7a6o/Utp3XMvSjEKSAtyoBqFyPpP8bpkCnPdox5Aji6zLgH2QElsGuK21Kf1m2em3BWvWcxoZx9bsJyxdVR9mIMd7rojq1ZC/q19K+j31q70KJFUoD6lMEDtQunPeAUFVb/C/qo7q7/LUTKJZoP8aYutXr6q0am6oyJ1eXhnQm8MG5EOjGX/FCEOpLwCj2F3gSZGEskifpGqVrl8aegto11EOeJD8rF4u4qGjERb4TfgSQ/NjFx3MQ2o6t/6ncqsChEudoacr5VUv83E/FfIUOosBLpwQkA/JIybggMj+nunjdtN9OfkxdqYv4yve8tHj7GJnahn3aJe7jgcl1EHtJQa612IMVaQiu1WRjqUHgnqGhXq1ZTe3hKxvRQDw8ccRWfZva1KVEXbw0+qoWGsPEv854VmB00nVzWWP38qLK1eU7TZ2vWrOgkmXZSuZWq6ucxmioGRuUchq7SbhyTKEv8VH7eBtFG+qcdPYfpWgLVWgX0VJQYFwP9gg8RUSmZMg38gOql3wavirHOwb9MaPIVLmcxhoS/uffCWJfTyXsyHUQtpRt+mNJw3UIn/bvQJyUbgFqF2Xg606nfU/ad9+V7XhfIW1M4KGhawp+DX29Tp+ENuQhywOJsnlTjUGfzetCV9SYR5+mIoXmrE0ULtjeLSUbHRmW7VVf8S8WGxobdV4+i1/RC4qqC9+9NDhIjnjpWJdD73oF7KVroPsgLSp9uMa6/ybB1WZL47ISZcnjUamcz+kcqanjhvKbus42i2p7jRvQcZ2gVXPiF35kkiTxYRu+r9UkVfrJefleSJK3yWe7kvLi+X4Sge2yakTdS+JPKqgtinIWvjnh8+oGSmpEr2cyFq2RctRbfOUJG6SEzsusneg76mm+XTelaNdPoc0YH9ZLXtc83xM0DrAvG7neshM/GkRWQVfQfI6xn+9o6tu6knI1xX/yGrfztJlvRYtNxQeb07fCjwbEV/zi+/7oS/T9vGgLXmb9lEfOhkkynSc253tS1FU+rv/IDzTSi4QO6yXRhPqsn9QRwndGfYcoV5Zt29Z52755Vt+JT3qXURdUP+e60zmebQwGk41Sf7gcqX/t8XyDdAQu+1112P2exDTe/MbX+Xa9FZTPR1eClpRnpeVagKbfd1c+30enXi3E9wiuFaSLAbmPfvTDHamf1Xy+qvGzn3Le0PcCgUtWPXaf5/2LBCj7BYFMVhumdSQwOrqG3AwZMmTIkCFDhgwZOhFuCvnoDtb3fUKNSS4d+b1+PMXxqk/I8/8++aabVp9MLFmjkbOG7nV9Hkj30k1mA7UfJt9ILSuXC8Z9brGgfWWVmbDXzX5DN+TVWt1yhaLt2LHbRscnXDMmw5iY1ekUH2fVmRw53bwzccnklW5odYPuEwxMVPhZdE4mLr1MnNxABkl0SfJJEZSHucow/RPKig6dqGA7QdOEmzWY2MoxocJEIZXnLBORopQMnzynjCuAVtx2YwP2yUOfwDdMdAZSqFhF6SspkzzOQc9kZgiEIC/oodOCl07281bIldQ2eaurXWoE5Lx9mPwsSpxq5rPVhfB+o0bZt62G2tjbsOWTXl5HFQsTyeygZ9Q1piA1Jv6oH5sVi4WzsTSig9aR3qfarChnKRAEJFv6NmoNqy7XlF+2UqFixdyAjQyM247tu1TFluq2rFK0OyjIf5iIF2eCYrJR2KcVSWHimklU2tondFwbhJFHS/HBF5SPDXSK4HOsj4PG4Ly3e1htWFVD1UVMvWI7VEoD8v9BMSh7UKlWr6suS7ZcZWJYFDkmnJmo1Vb1bhWZRFeHYuLU2zZJLpkEX2wT6kPAoZHULQQJgo5hEs9VTuxMCi0Q+4hPaueT4LN/Ero2vVPLLNF28GTSDH2kX7tAUijqlqRQnjL+X59ASkAH+9HEBaV2ENFtGrhQMrRLnLAMCPUJvhPsrPLKLOigveIw0cXlazfYIkw2Nj0YgB7BYxiDckSDcrJ71WxhbtHGRtVmJQLHy6JpWGmA6WHVmklKKZpjlY8PaMzglUQnDRvoKvmq0NDwgA0MEihTv1PHibJCQi/B/Q7/k5ae0But2aI5Y5gyZPt2wMPt46UTdB6Huq6TIOrmwQl4ewLxXOJPOu9J+YyXpaL2ZIfZ6Xk7c+Z8CAIkE6kheKgeJhtgUhqDyf6G6oqNlqt1H4NC6FrwNmGCGR8PI4Rna9NO8ZhtkkCdiVrkJKlULnvgBN8gn6AIwUP0imOkM0rqE+yarp98Sr7QUnvldU0jSFZipZb6YzEJZFM3twPJy4frYGwfcRd76ud7rit76NQgkKPkAUHleT3Qw+2uMReusperBg2nAhH/nNb1dsSxgS1+pE0o2N62k87GdgzHQDxli9AvQmofM36hh9RyX6VuXOt1jcjregFpQxf8am1ZXJpuH/ecasMqGsPKGqPzyktEB7mOYA/v9EnHz1FWfaghu/I9YGFp0ZZqS1bA5iIeoK9pLGw0lkXLNZYpe9Vb+hX0RYKAtQvxOur/igsF+X6g5Bu0pJ38hBPkqI/q5W1H+3Iu2irahCCF5PkxFJQTTauutqyrnvKT9rsGozxvF8Zwrs+MdbRVKI8Peft5AkEfxiHgwUdtA0/V2ZPGLXxTRdkmhL6JAUO+M9VqNU/+4zDRhhWMRV3Dpa/48Z0KeQxjJKeh7vDkmuDXHEiCjxZb8zaau2Bj5aquYRoDde3lHNc8fjQDaXgygF91xYk89NPWlSWJF98nZGe+O4axUHZ1uvg9DdutpJAXzmNLvpvFsbshHcMYjl35+UdoVbhyTYsJnnEb99G5fa470LhG3noJma4jbU+SDdVAXnf/zqbklpTckKjPOsn5UncfDdZJwWYbJvH0wGAfqVfgcXVCT+q8fgrjLSn4vuuMPXTW24lgGz+58bFffUT9xAOn7XN1D8pqBPet5yX58COgD8NAD+/gL+3yfSYPNq+ToCnQLzhGtgerkx9aIc/PhZTWYa3kwXSnX61LOjHGsCqXsTdXWLKhgUs2VD6vL49nrVmVZFWf7hW/y/YHFbiKoC0zJOh3xeJaIHj28T/q73Gpb35j53sG0yBgB68X6tGfrGjkEa3r4ef+aX+rDdFzvVWLLyYI7sWVgb1AQM4fO/rcs13pub5W80G7Hn8ClwQPCRSyWpB3LrJakEDigw8+kFCtjxiY/PJXvtihI3LJXysoiqx0Wiu4mSFDhgwZMmTIkOH7BNw3+t1mcgPpE0D93XQyj8YkfUOprjKscKoWl2xhQDeym3XPtP2c2Y4z1txx2uo7Tlp95yntn7PmlvNWHZ2yheKMzbeWbBk+xUGVL1uToGOrbsUtM7bv7mV75U8P2p3vHrXNt1yy3MRFydQNdq4o6WGyKwDd4wRFvBFmikT6SK8lJupZJaIbaqbfwq+bwyQGwRH0Z6qpacgvegqPz+O2njrqptwnppjQWJZ9SCrv3AoSyWMMU49mVdkYsPTJRJ8Ahi75tTm/tG+Gx7dCGycdmUDzyRSfLGHtEpMFSAErk2R1bWvaktgPE2bogzzp0GS1JkENZIeJ0aBX0YoEBnM1q5YuWXPygrW2XLD6ltNW23zCbOtJy209Ya1tZ6yx/bzVt5+y6ranlB5TesJq2m9sumC18qK0CdNjTPX5p8UEpvTQtt0OOIjq5fvUhQkf7YegJ9vAxScTveays9rX+XmlsQl6l1VPs+WBJWtslextl6Tzc9baOq06mM1VGrY4cdbGbzwnXxmyV/zEoO29o2blTTX50qC1miOBDxyxsa96TdneP2jAf2zGir04lYhfsGYCetlP9UF/JsqCzZnwgW9oPybT67mSfI5VaLRzwcoNVr3R8vInNWgtX7fF3LzNF2T3kWdsaM85Gzlw3gb3n7GB3Rctv2XKFksXba41b41C0XIFHh8rHer4B22rOqmd8U9UCdtkX/yZZCq2alZipYZ0JHBZk5Kcw598hVAyYRvrSzsF/3MrKU/1VxlWTNYK+D5y4E+9mfgOwVefLKOZ8XEmoiXA8zin/hLO06Ir+qEER2FStybpS9rK35vy52XJW5TOiy2rL6gfVGtWrFdVJ4KZTatLj1o+p4SdxUE6egBYvGlBgoSs7EBM0D+MTy5RYwHbANdGiZMEeUph3ydAWx68JahVL0xbcdM5O3i72T0/uMle8roB23e0YEOj0BIck57NpjWWq2azC5abnbfBWsOGlFdU3Zr5JSuOXLJb76rYq940ZHe/etQOHqXPnlL5JYnC3pKpMSWs2gz9OOSRdOx5bNENkC9aJizJ96rQQLRjTLGe/YCyqn+zEvZhiAGdMRt4kQ8dtopBMWxXVrlh7Q/Y2KZ523PkOdt7eNpylRlpJn9QO7HycrmOv4if/4pDo4DGeg9Q5y7Y0MiUDQ6y0gTflR6NAVV5WNVlTKXfuKSNIdaNGj5e8ABhvpizgYFl2zw5b+PDZ61cZNwetGZjKOjcHFI/YpxEn2SMl783lOoE+wvqrwSwPJg1b5Uh9dPxBcuX1FbKs5LO418uGpvIFt4vqbN8U0rjgw35a4OApbburz5eS1ml4JFhP+hA3+E87c11gPpwmnGmFhLBHnVIAnb4u5+XT8QfueAvHliXj4T+lUy4E7wQHUEvNA682Ybrmk/o6yiuJAwBNI6VfAAI11Axdj4+ae7jAX1QRamfdKOvDhbrNjaYt+GBggeVS8Xwww9KAq+/9lusbJO9GpLJYyrz6uuV2qyNNi/Z3uF5OzA6bXuGp21rWX6ivLz6WaGFb4xYvT5shUZJ9Es20pi1kWbNhtTZyzVdlT0o5Wu9QjsSlPQ6hXGKdvFAqNQJ9sUWob81izWrq40Zv/wa7DZlPKOlXXnMF+j9HOVItNeyfHDGmjWNZ7posbBNBfUv9h31MfRwBuoTtAfjkmzX9gl8vqE2UII9lgr/xEX1wIIE9Vgd6E9fUIbniw/wH78o8WMFto06QVb5lPYJMPoKRCXoE7Y9Edoq1BW4rFQBAo+RjyPZdAP/cV/Fh6gQ41ZefZHAkHwxBHzwPb4LBLnrfQDXIfoKdscX+U7H6nJWMLKi0X+xpvYJ362k4zoptA/jGde9OL6tJM/zc/0l+kILJYpKzlb8UZu6uh+F66aolAAn105JT+079eKRTqwwdl1V76uRVBnZMVx710vt9vGnXej7mI7xdco7L2wng4XvIyH500mS7yrhuzRjatNqRcZoxurQh+FVrPO4eskSl3AtZXzCR8J4C93VSa6F/F6JfsYqdP9Or/ohX0ROIkCvVl8/QdPBf42kj48zKqUdacB9CmPMstWXdL1dWtaYwHhFn4i+9eKCnpThKqLfYB/Bu16PK33zm0JA8fk+NnUtIPdn/94/XlfP9/6t97Qfl7oRNgpArgceU0qgbSPMzE73pOtVnsAgQTbOpcGKQmh7BfAog4xuEFDsfmchtKRe+oRViZ8MQb7RcV99+JBof/3X3ufBv26gI2XSIOCH3G566JDbHRBEP+gJiqbT6Bgv6s2QIUOGDBkyZMjw/Yw40QSYBPKJIP1tBEr4bazoG0r8RrlWWrb85jnb85KKHXv1pF336gk78uoxO/L6caUJu/ZVk3bN3RO2+6ZxG9xeMhvKW6NUtFq+YjUrW05bJoV2HavYvT+xw972P1TsHf9jxV769nEb39+QvIZVSkNSj4mFqCQTBUlyjQSdQ6dqPm/L+RDUjAGSMEXBxA1Bw6bftPNox0byYCmf+PUJDFHmuLFnhYxu8ZmIyFdlnyXJZ5IQOUxosMIkTBoz0cQkRwgcMokgHjp22eIXJlg4HwJRIXgVJlBCwvRM+iInyAiTAEyAMNFet3q+M5EXJt7Udh4UI7ikeoif38q7jBA4JGCZy9csPzpvu28etOvu3WLX3jdp175yzI7eN2JHXzliR+4b87zDareDr64oFZRKdvBV2n/ZpI1sHxBLbCR9ZV9f9aCjkJigjJNiQXvf97rwy2pZV4dFJvpE67/KFoXT6S9O8IQD8Vd7EJRlondpYMG23jxmh1+BzqN27FW77NDLrrH5Acncdclu/OEBe/f/VLG3/mzZXvueA7bn+KTVsQVBAq+/WlS2WHmPI/u0h6yEUMlj4s0n/fEQJpjRMsfqMYIYheSxl6E9CDrjb1jZH8nnEzkltV5RPkdgi3Yu2ACBQ/Gn7bFQVeVqlZqVNi3ajqMNu+11m+yON222O9+yxV76xl12/BXbbfPhISuMycbFMlZTWfxWOtiA9FSdWN2LjaKtHOhFDcKjf9uBQybamCTXB12dl/spE6KJXyrF4CeJyWwCbtUCwTr1OtpFVCuBw5hke/LFJ/QXzMhEHecIFmmLVuLn57TvOtL+BEPU6/M5Hj1YpZZuL4K6+HEeuzVUl0ZVRWqqFYFygqCizhekF22FvwSfgTc29oljwfVXvQk20sdXA0JOMC7Qd7EOeXBSuzflzcVp23Fty9753r327r8zaO/6O9fYvW84aNt3jdrcgu7RCzkrDwxYWTqVlms2UKvbqHQYUt2K1EntvHVPy972Y1vsx39mzN79Nwbsnldvs8rQlMy+JDmSKZvmfNUCgcBEvuoUJz3bKbEe9GFilDLkxzqQwiR3yOtZ6dWg3l5/xjD8ATnRDpGPkvNPbIU85XkAuzHk7ys7cHjA3vrOrfaOnzxq45sZN0PQMM9qs5L6W1lymIsnoMGPP+QblcF5O3b9hB06vNWGByvW9FXP8vEmwT10Qq5EJVVfF9A2JUM8PHAiEeMTebvh+nE7erho42PyaSas8+M6HwKHXmfZyydv8fNC3QOHDfxeVWxK76b0rYzUbdfelnTdrLYjaBGuCTwm0yd9sbt81u2hffoD791zOq4/HjiMASu1mWStVCxJyuNcWDGeTHqrHXxy2vsKAUCChzpuT6YzfoUe6LT4kujCeEuCnkfdqR8RcBSfEMxf4RtWDS2rvMq5Del/gXe8Lnm+NODaSD9HX8YZdPQAHE1bLltB13L0HFETHj20yQ4fnLSBsmyhfswI5n7kusY+q3PyEd5dVq2pjs2qbSo37MjWkt17bLP9wC1b7QdestNerrH8wOayjZV5524IHFprXNUsqq9V7drNA3Zk26RtKw9aYVEjZi2MI/hZwwOHyCWPcUrHtK309npgek/6J1s0CxprSlUfu6gjozb1bAd73CayjXPCBtg00BRVNt9a8rGtxLULQaLHZu4bBOe9jwa7I5zrja9sxB7wEW8eFR7L6p+uP5Ih/Vh1SZDQadFFiAE8EFYi4lsCquIboue8f8/DB5DFaeobt9Bp3x8fK/pYDlLf1w6rF2MZ/54om0a5AIt4gS4EH5Xe9E1sWSDwrvFLfS34YvAjt0lCv14C3lf9OhPK0X4heIMcaBJ+yg8B8HWS+zd1Dt/T/L3D3o+V2CePcU/bfhLi6xo/CG6FwJY8RbYK9WTcDvX1a6lKuG+sk+h3KqC0EaDpzSOdAr+rm1a+R62TZGsChsWGrgX6HhofB+z2l+5Bv2Brt7f6CWOc0/oxNmR4l23lO25f7ZPn382ct/jR9gT9lejP4TtLGKevRvJ+p/ZDDvUKAcMQNPRXB3BaNXJK6DdMga5bTndSJfWPPkJ9+DFkGIs9cLg4Y/XlOWvW+XEM/R/aFx+5O+9+3VWV/Hu/+/4Ng06sUnvbO96THHXi+ZSnHOU3Ao8T7fWYzn7L8+7B9QJmrNaLAcD10ItPLPuyl69fHpp+VgXCHzn9ol8bgLXsmCFDhgwZMmTIkCFDhhcXx0/+fLK3Ah7d5veluhmNv1wnr+PeUwS55Ha4DW54/aMb+taAbmcrZiMX7fg9Y/b2n95jh4/qpp952aL4NVpWLItO97T1xZbNXmjZyScb9o0vN+xrf/64nXh81kaKW6xYG7Dl5Xl72bu225v+zqjtvKbgj7d77IGG/Z+/dNa+8bEp2zq622ZmL1mzRbBMDP1GOQWfiGAymElabrKbHqjinTNhooIJHiZzeSdOXbozm01Apqi6hwlXn3jyib04uUMJJgVI4u8yAh+fpwsEyY52fQKNyQoCk8jNiboAB2UzOcUEB7ojDwZMjCi5TAII6EBeXvozqQI3Jhioj3RLIUwgUy+CbGFSP7zDr8ZZfcJ5Xy3XzFt9eNr23DpsP/Qzu+3ITQUrjeWsWJK+dfGXILmBzKdj/dFuwP/ruHa2Zb/7f1TtK586a3NTi2qbAVtcmLWiVOW9fqq41z2+68sLUSfVxyd/GmEyiDoQeHPTyefYtm2FbdQWTBgVWmXpXLKlgUtW2Ldgf/t/vsHuvFP5A7LaUsuekF/8y39+1nYdXLT3vHe/HTpSMH986rLZ//mLy/ap/3zWWnU5YSFMyLfbVVKwC34SID11ruWrbzjvXi17lNS+7sSiZPUONsVI2ggxAOcTPzr2wFah5qkgslIjBJDdF7FfYc6WC1P26rfcYXfcN2IHbyzYll1qE/UJmYEnY3rTnzvRtC9/rm6//8Enbfr0ok1UtnkgrbYsf2ECV3q0WvgJigQ/iSDHdde2qmxW3TEpXpSjohNBR58URWcvRmiyLj0JQieBDhHW8w2l0GdYqcpEX7vibgP8EIZignza3+2bbN0iBFzDCth4zifcJCeUJ4+keqmNDl97wEZGRS+6cqFozz513manF21mvmaLsku+IB9XvvuZ6sRUo0+8oYI4F5k8lo95PQrBnwgk0v8JvXgwmL7pstEv+CrbNuBHeVu0wcma3fnKI/Z3/37FfY42euLbdfvEh+r227/1edu1f6cdv+Ea2zwib6rLNxolm7rQtNNnZu2ZsydscNOIvf3H9tsP/kjZKkOSoT724Lcb9ku/8ICdfFatVJv0Cc4WKy4l030fHbw9SVKHmUi3d/BfxgPCkkyy+pjhfqzToaDvUx8PQqievk0hjE0pMGZ40FDyPIBJEEk0jIuug+S6vThOAh/oAm/GkzqPBK3bO35ii+patguXWvbLv1y1L37xgjWqM7Zv16Rdc2DCpqebdv7ClF2aqdnsguqav2Avv2uXvftdW40Y7Kc/Ubf/+idP+4+rc3nGSmQQ/A7tIcFKCaQePZi/iNBj0aVoS9VLNjZZtDe8/oC9+Y1Fm59r2Qc/VLVPfuqMDY9sER39nBTHU+xLn0FGYNrKydeKg9L5tN16rGjveMs+u+mWgv3Cf162Bx6ZtqXFqqTpGofd1LkJQngQSHl+3dF44ysInZe0kyxfpYJM+l8cHx1orz4gncJYrnFF3L2Pul9QVrWTH7MKJ/RFZIV2bhGMIRDtMuCHPvyIhAQ/ZeqvVlTNlXgHGAuiWL3oK4MLvKOL1ZdD2laCPPom2id2CeOFtKLfaSxh63VVYgwvyO71+oKV61P2kuv32t/6qSF76smmfegjVXvs5GlrDQ2qXcXEV4NRln6K76lv1qtWX5q1wzuH7LV3bbcfeFXRhvV9gesKXk9aUvU+92c1+/yXqvbk+SVbzA/bQHHeRvOn7Gf/5jGb3Jyzz3+xYR/+2NNmgxMawwZ0uSEQGMZMrn/Um3fhkRcCEwPKY2xX/1PyQK++cBDoCXWUkdpuF/yLpEIah9CK82pHJcbPAfWLzWMjohyQf5gtNhq2oHwN3Sts8Atb8nbzVb5+fZEsgh18R/EVtxXZpmG11rxVhvETUfD+QV/hJ15iRoBQux6s5VGkMcDHdzhfbUjbYmelkFewanXZ98kjEEigkDLoBq9IxxHvPAx6SV6u6O8KLUr3ba2n7WDplB3f/LjddeScbSnK3ho/cq2K+GhcYrhxf1MB/F2HPrYgxX94ha4Eh0TP9ZU+wrVZZVa+W62NEDSM3xX0UTn/fiU/99X0yHElvEZiuz4/bxevIwfOMckUfFcH6gP9gvEkrE6VfviY/wACVtKJvkR/pe2Vw/hJH14PoX5Qr0+HntQhjJVrI/AK26uDqNf6+gUboCAHroHr65q7MtiHdpXv4ZM6x48d/AcPXijQ1dXvWG3Id3FWFhMsDj92kJ35HiEf8x8uxb7qpYO8qwHnRl9zfdCKf8gJThSkhe97jN2hjmsjnIan76wJP6/k79iVnaZmpu2TT4/b7z913C5U7tP3i0GlISsNDroN8fvAM2Gc5s8+gjcSmuDib7072Vsf6/e0DFeEflcLrrXi8HICfVcbP/dP+ntEKXjfr3wg2cuQIUOGDBkyZMiQIcP3GuLkEeCX7eG9PBuDe04mHrmxr+iWcYBJkvqytZozVqzoPPNhSQCKO8oG8wLaFgdzNrwlZ3tvKNjrf6xsb/vZI3bDG7bY6dqjlhsQ09aAzV+s2Mwp3fbP64Z6sWUXnmna4tSgFXPDtrTUsHxh0PL5IfEk0FixxcWSzS8UVHbMikUmnnXz7HfuTLEz5c0Ub0mJVSajShNWr5dsabnqwbFyYcgqhVFRVZgqk755q8kM1RqTmhXVcdxKrU1Wym+1Rn3EqtWyypUka8jfVVcsD0gmQTvZIDekNKHz47LPqA3mRq2Sk76sfpCteBRqQfUoSl7RtNU5HgnXaiz7xFlFZSv57VaQzPpyyRbnda4+LK0mdH5YNi4rFa3lUSHJawz5uXJ+UjqKX6NsZdWzKPssLzesWme1FpNVTFbLXg0eX7loxcmcFcdz1igpiVWuIj8ggMgKDW3wgrzymsprEfRVYo6T1x7KSySraGOSN16YsMHCmFUqkyohmdWCzI6svGwiy8sezeaIbF1R4v2Xg1bIq44EivOjahPVRyWDP0kHlc23RuRHo7J1eHysr2aR3AI+RYOqAFMe+NTwUMGmzjfs8QebLGKQ7cyefqRh506Z2kbHSrhhHi8giKX2a1bVHtK1IHvUqzlbWgiBzYqcdkB2qshRCwSma1UbLlRsSG1k0sX1l/8UCptVpzHVZUR8RuUX8jvRFNXGBOd8xZ80LKi9S8orMgNe1P7Yov3Qe26y171z1I7eUbCxHdhcp9QnsDX2b2g7tD1vL3lN0X787x60G146ZvOL56XKkuqWD8HImnyvNmLFqtq7Jv9UoxTkC3n5RGtJ+/UJKzW3qI1GpA866ZzsWlB/KTYHpZvKNeU38u288jjHDBerGovyV/w9Xytbflk2rcnujYLl8Xe1I3wLjTF1jrByoGwjNqS2HCltld1kG5yEaGWNgKP4N5SQ40ntqPZHh5z8IVcfs+byhM3NL9vew6P2ph8dtx//ewP2o39/yN723pLddM9W+ar6gPQYyI3YAPKXBm2wOmYDsn1Jvl9RG0pTQlo6Vv3q6qvSv+CT8vQr+QnOLCcfVH8dkD9W1IaVpvqM2rAsnsX6gOpZUflB8RFHOcyA+sHipZadeqxp55+WHZbk0Upnn2zZiUdbNjY4aePqP698bcHe/lMle9vfHrIf/Jsle+nriraQb9gSE9nyi4e+07QTTzVsea5lizMay840beoiYxWdbll+VJCOsmdD/du0dd8fke5j8tsx9YtRuTuP3M2Ltq59ylZUZlhpVGOD/FC6875SX+3bUruoTYp5+TkT0/QrAgJKYTWS+rG2vH+RR0uS/JFnslVTvsWqv0ZdvuBBHXRU+YLG0aL6vJqWoFu9zuMPxcpRs4WFeXvg23X700/V7Nt/UbenHmF8mLDJsWG79toJ+/EfL9lb3qy+U23Y4mzVRoc2eV8pq0+Ui/J7AhnqbkUNAo2qdvRn8jkCKKW82ka0BDr8+sRW+tP/O6F6eLCR4MScTY437aYb8xofcrZlS94OHirY3gMTlissqEI8bnlJ40dVNmSCn6BDycrqwxVdO1gVU5sXmcbSktpkqFKy0RH1O42BBENmZpdsWdemsq43FfmlmHngm8fPtmxG45uug3XpIXUKsidB/1YN22rwYizhhza6hjSr8tG62lb+56vRdK6gcZu+k9M4arpG0fb54pjG8SGbXx6wReXXmSzXuNQqaPzKVVQPtZnasV5vKqmYytfEsyofqkn/Jfn1smxZF6+m/L+msVA1l6swRtMPh6SD8tVHlyWzKv2q8qFlbZdkl5rGRg9TNeo+DjWa8gG1xbLkLspGS+p3Mwu6vuU0brDCVH5NwKmk6i4vzPr7W+mLdV1UeReiB0/wRwZzfWcoLZ+3V9y43X70LTvsVXcXdT03+/if1OzXPlK1D/9Bzb785bo/vvhenXv32wfshmtHrKExo6J2mxxRf5Vf8gMjxnl+BCO1pDs/FhF/+c/SEv5alU519Qu1o3pIU3Xi8eisDl+WDZdb2lc9qro+1NUfGwRR1Qd4zGyrIhuX2Nf3g/ywhOg6rLGkIb9k5U+dC5P4jpRb9qZ7xuxdb6zY7UeKtnTpotpdfU3jJP2lJl+ra990/WvZJvmx6iGbNzR+8wMLgm+0Yw2/lPNUBtQ2MfBFMAC/p0Mr+Vc2pXYAsVDwFYl8lyPo58FB+jsnBR5X6isPtc9qwlKR7yoaTbQl3wOGOg7jgahcgItyeNA3YRYCj4wlkKn/QsupSJwCgZPcoHjLvQnK1pFT1rVokJXI8hGlstpMFhIflWfIEV14x60KU/10cntId743+FiX/CQrL5v4D4Q0RoiEVfK+GpZA3kZJslu6ZjO2NTV+EEgvVFQ2z+PO+Y5Yk+0ZlKjz+onfefBocr6F8Z2irrao0R7yE360w/gtC+iazJ7qLR9eP2EbaH093poJGqftyWN14ikJVyNpBPH293exrpNE7O1dGJK/yR8K6it5+Xhe9udnMPTJosaaor6r8J2poi98FdEUKho78kuSoWswecWSvm+Gb418v+LHAFzkabem2i9X4geLFdGGH51xHZECkiAdr0Li/oBxizXFBL7DD2zkp9IhR8BYdcWT/Hu3+ohqH04r+fXLc/RJ8vy8QFB0/eRU4hXoAcHTEn1a/llfmte1c1an+RFEGBNebNAzM1xl+PsJ79/4kaWs7ksHD1/ox5RuBOTzfsV+QHDzhXoHY4YMGTJkyJAhQ4YMGa4CfIIouc3kHpz70pV70zVBCZ+wUIGSbmArSgV/qc+CTuR88kcETlhV9lK15aneNCuN5Gx4a8s27c/Z0XuK9tK37rUjL9thi805K+aH7elHp+3jH16yj/xG1T74X6r22T+ctZNPzYvtkNXrOfGp2zKT10xelIZtbHy7TUzutHxxSPktn6DzX+dLtxwzdk2CIkyUVaxazUuHspUHhmx886iNT476BFuDSKGUpVwIHhZ1yCQoqxIGrbpcsFqtaANDm2xsYqsNDI9YtVm3qm7anZxZ0kLJmAZZrheUz6P3ij5pXC6UzefZckyR5K2m/QYTqRgD3dQGBdmrIJnVas6WF9F9wEaHJm1idKs1WxWr1UtWl+65RsEGi8NWkl5FJX7tX2/oHM/WkywemdRsSEq+ZJu2bLFcScpJNX6FXNP55XrDZqszdmqqac+ebdozp07ZkyeesdMXL9oyE41UW4mWPH9pyU6cnranT56zJ0+eUWra7PIlq7NqoFG3gtqh1MxrP6/65mWyQRscmrBSZdgK5bJs0bRF2bUmOwwQaJnY7jTLtZwtLksnVogVimpX2UD+U8wVrJRn8rRo9VZJfIasPFgWj3lbWJ5xu6l6qpMcVNVln5Uap56bsT/99KK9X77yu++v2h98uG6PPXJBbVkXwZK0WJZ9qrIjtg7vNiNAUiyVbWRk1IbVlky2NmphpaCqL13MBpjkrFWtVa2qbUpq+wkrVsZs0X1oQPywvdoTxeQ7RSZk82pHNTZ+FybWRCtbDY0P2MtedczuffNW23uD2fA2nan4uirZY9nm51RH+gf2HzGb3FewW+4t2n1v2GvX33TQlpfnVOXAt7kseTVC4RWlkvab1qrxkNS8jQ6Mm9XlLwQ5q/Ij2kVtVJLvs0LSA2lV8VA/Kcq/fT6Uug6VbHBYbSPei3PirzpWCDrqvP4H2qp8e75gDfWFQbXNcEXy5fN1teXctOxcQ1ZJ9BX3TeQ1CF4v1ZTUX2tMchb8XYYEhAaK47LZpK+aGd1Wt20H87bzWMF2HS/YpmsKNrxDfT2vdmF8yQ9ZoVYyDRFm82r7+ZbsIN1aPEI2PFSuuawxZrZpS3M11V8eTOVUNw1GXsmm2piVViW1G4HPuYtLtii9Ce5UCKCoyMLUjPpsTXybVm4O2ZmnavZb76vZx36nar/5y1X71O/V7dSTLZsYkZ+X523TjrztOFywrddK58N523Iob0uFqi1r7KlJxiMPnbOPfnjZfv/DVfvIB2v2J59u2PICgSLZqtB0v2rUBmx2Gv9TnYfGbXBgzOoaa2amxGepJVq1sazKhD0/dMirLRfURlPqnwuyxcDAiI2PD6uPqR9Wl216ekHjVUN9A08mgKBxUH2M98zlPQAAVgb6Gj4u3owZhQIrzpClcUi8Go1lKxTr0pWgz7JKsC9tChprxJ5gYqlcsKcen7GP/z59r2GXzojnQk5+tijdZmzvnrxt35KTD6oNNB7kNFbhU3lGSw1P9H+G0cX5KR23rEKgXWP40rz6xeyi+mqYCKUOBEALrEiM1WiDoEpddV2S/Rq2a0fF9u/N29kzTbqw7VA77d4zYPNL5+QOvGOtJh4a6XMaB1Tvkvx7aVbyLs5aQ4PTQF5jv9yntlC3Vn1RMmVooUYAqqixNz9oefWvhvoLwUcCU+rJsp9Snkfvqm4yL6ENemmRvVzJFhZqNnVxzuZneKQlk+Rl9amqr6xdkCyeo0kfyvNOUwKEGkNquiYwxs8vtLx/AjWXXZSv+mWLlbjy8ZwGbtqOlb4L8psZ9QWuZbmirj+qT00+V1W/57rpj/Jmwl15Bfk5QdqpS/Ma12RYXYv8Ub/6t1xtSjbyZHtxL8h/6E75kq7+SfAvr2tMUzy5NocnGHCtlo+obflBTJN3XIovQbCCMnn/pBrS9dCgYvu3VexVtw7b8QN5u6Rr0kd+/6x95vPT9sdfadp//eKcfeKPpu2DHzxlzz7dtGvUpnfcXLBrdlXUd2dUfF5ywjW0qv4/PXPBA0iFsvL8PX8ELNWfpZA0lE1ZrSQ9ZLOF5arNLeu7hPpUrliRGbnOF/3HOnV+nMPYJmvKZNaUzxFIrOraNTe3JJuo73LNL4bVeIuL87oWztuBzTk7tC1nW/ghyJLGbJX1IDweoe8sC3OLNjdTk0+rr6l/cu0kmN4iWKxrHtfDvByHdz3Lq0TXkO1CPwUhqEdfEL3qTDCR4J8H86QToI+I0vcjwvuHQx9ScT9LANH5JfmMDWydT5LvfPle4EI9K6CT/erjBASJ6/IBVrA31a+X5fPTizU7d2nazl64aOfOnlef05hLv5Y9iQs2NG7X+QEb1SBQkk6uBP1CdtLYHx55SZ74M4DjWxX1XSW+++S8AdRHfZViEigkcJ0kOb7qyLihcVkXsrnlBX3HWbSphVmbW1qQHjXpxvjJGIRvs107YTd+iDQ/W5Mf1VRe1zz6H2Oq9Mb6xNF85a5vOV47eZVpiz4StL14pJPb6iom/fd26R3sWkmMRPOy5/zstOwyo3606Ne/PG3gdoNfaE9fsMn3dr6FFmRDq9qFqWk7d07p7CWbnVpQ3+HHZPpOo7Gb6xGF5AEaQ3VNnF3y7wCNZY1XulYyNoYnd1yNpLFO4yyvNqBNGZ+xQVF+V1B9POhd0niv70bcS3hfdCNpQ//yHf6FNgtmjNu1U3AEgBahncmii8h5NQ7wY5UFjbWLIsF2AoQvIgp79h76Z8n+VcGPvuvtNjqqb8PrYE5fnD/4od9LjjrxfMpTjvIbgcDex//oM8nRCvot/+ijj9uffe4LyVFvnDp9th0IXA87d2xv6/IP//u/a/d//Vv28U+s1q0bR649ZK+89+7kaG2gJ/r2g3/9r/7ZhraP+Bs//d8lexkyZMiQIUOGDBkyZPjLxtbZNyR7lwndgCa3vCkkkwLay+f4/W/JqsUZ23SgbNe/dLtt2ux3u9aqtez0M0174OsNe/LBhk2d1s217msHBvKWL7esUsnb8FjeBppb7IHPn7NiddQqW6esvO2kNUtzNr1w1uYXztjShZbVLg1ZLTdvteFTtu140/bcULB9N5odvr1ie2/I2fi+ORvYNmf1gQs2NXdBN9Jl3dqP+Yq6Wr5mrZE523q4YTtvXLb9t+TtwC0l23W0YkM7FnXukj8arLbMRFnOJyVYVVGvTFtx+4xtP9qy3ZJ58DbJvCkvPss2uH3BcqPzNl0/Z7ONBcuPjNiOw8O281jNth2Ztq0HzSrbqjazNGOLc9zsD9rg7mXbdMO8bT1Wla1IOdktZxcX8rZUWrCS6r7lyILtu7loB24t2c7rC1bZPW1j++uWq1Rtcblq1VZNdqja4KaybT1StB03NW1cvLYcKtrSwFkr7pqyvbeX7didk7asZphZWFC9lizfZLXHspWKZWvMl+zcow177ltVe+aRObt0qWqbt03ayEho59pCyx68v27f+sKiPfoXS/bs13P2zAMLNjM7a6PbmrbtQF66121oX82m8s/ZzqOjdvCWzbb5mpLN5y7axeULVpoo2OT+nO25Pm+HXzJie28q2ojaaEj1KW05Z8ulizZfX/RVGy3ZwOeRB2f93X87b1yyA7Lz9iN1s4mztpg/abe/7Kjt3kPAL+cxofOnW/alL85YrX7atm5fMisu2FJzxuaXn7G56RlbWsp5gG7PTSXbdHhRbVa2gR01m7HHbdt1Tbvm1kHbf/OgbZFP5EdVVp+FKoGCog20JsxKNauOnLVNx6u2/yVDduClFdHKP0Yuetp8aNn23NiyyYM12y7ercE5m68u2AJPDfT3Eapf5Iu2KHsQCHzzu/fYdbcWrTTMZKfJJ1r2rPrEdz9n9sTX83buLNNr5ivZmIgaHMzZJl7RqEb8+rcesWqhYduv3WE7jpXlI4u25dq6DexcsOrQGfnHsvxlUDYesMGds5Yfn7JlW5QN8pYrNm1gvGb7jo3Yruta0ntabbdsjcELNrBp0fYcp32GbOeRsuXHpqyaP2ON+lJYiVcYUD/kXaELVlCdJ/ZM2f7jDTtyW9n2qk9s3de00e3zVh6bl/WmbbGh9sw3LV+RHpvUX24o285rl2zHNXkb36naDcme+6vylSHbvC8vH5m3sR0zdttdW+3aY6M2NJbTeCI/qDGnQ9B5yurNJWP10JZ9A9KxJVvXbMuBig1Oms1Wp21uccGGRoZtq3xy53XL8sEFyTSdV3vKvxqFih26YavtPFi1XYcXbNOuphWGZtU3nrQj6mOHb87brkNmI1vnrVFatGUNGMv1ihUHGzY6UbWhUfWd8rxdnHncpmZmrKFRb2TLnF13Y9luvn2Lxrq8B0qYlGX8mLo0YzzWlh8MDEnO8MR5lT9vi0tNm52Tfywsik4+36xYaWDRRjdN2/Y9i3bk+qIdFc+d+xo2vmlG5RasMqhWXLrkq7XkzfIPjbl52WxT1XYfaNq1x82O31y2Q9cVbOvOZRuZXLBBjWXFiupRk90IPqlkCAzkPQjAfrVas1KpbNcd22F7DwxbtXFJba5zrVFrtpasPDhj11w7YNccmpRtW3b+/EXpK19oFMV/znbsXbJD1263ocEhm7rIIxWnbEJj11J1xs6euWg7t2+y48dzdvMtBbvuyJDkmS3LF0eGeUdtSfwetwP7h+2mmydMzWfPPHvBiuVpu+X2bXbw2opt39WQ3bH1tOpRNV9lXvBpUp+A7UaYmK9YTdeb7Vua9pJbNtlNx0fsz//slL8Xd2g4Z9OzLfva/Q/LpqNiwqpjQu1FK7SWrcnjTQcXbd/uhh0/krfrrx+1PfsIwp2wbZtn7JB03bRtxD7/5YadOa/xabJux2T/ifGWzczrusHqWgKEOVZINtT283bdoU22b8eIDcp3l7ge1aZtfKhh+7a17NjBgt10bMgOqQ9sm1y04fKS5eoLtixj5OU3TTnUzh1mB/c2bGJAuhUu2HV7inbTkQE7drhou7YSLNc42pLxmg212YDaV6lQsGJBeg3P2sE9C3ab6nFcsg7szNvkaFW1nZbvzctWugaoPXlM8UC5ZmPD87Z7x5LdfKxg1+8v2aGtNds5Jt/PzVrO358lMfyiQSVK0q1UUF+aaNqN+/N24zUVO7wzZ/s2qb/kztnWcbNbbtxk8zMt++pfTNnFWY0lQ2M+Ac7YTfs1NDbWNM5WclN2982T9vKXDtvMotlnv7Cs9LBdXGzp2lC16cUZOzV93p49c9r7z+49EzayKeePu334oZM2PFyzl9y+0x9revLZJZu99LTqvNeu2zdohwnqj6kPNRc0hqrf1FnVp36gWpRtzkYL50RTtRv2lO3GPYN2bE/Otg0v2aBdMKuHOusriuV1/Ty4dcL2ThZsPH9R31Wes9uPy67XDNsgMQ+N4/s3qW0OlSV7zIYrqp/0p54jo6O2xAVh6bxsOWfbRxuylWy8t2JHdxTsGo1hmwd0/anKB5f0HYVASpmgqoR7sCB8x1KX9X4L4jZA9VG/YEUhiIEKp/GCnu3BRw9cpMr6vpLntPN1beWHL0lgkmzilq1cwYM8w60pm8zP2tbBi7Zvi/y2MK0yBQvvVBZxiHLoT4X4fqhdgtDL+k51bqpojz5jdv9DM/a5+0/aVx+Ztq8/OmePnMrr+8yIlUsFGyjpew5spANBakJOoSIhhdBNWGUnN1ffRX9Gxbr8kx+nVWx2UeNNHf2pB995VFQUcEC1qBuJQx8hcyV7/GzLPv/Qgn3pwWm7/5EZOzen74aVIdsywjghXl486LBWmq8N2VcemrPPf/uSXZqbtbGxosaIISs0kqA1gUoihkkJR0qf7uSrMPEJT6vPdybVsqt+3cn5SXKvc1ea8NkQWF2xQ3eq6jp04vyCff7+x+2xp08TwvcftnGW9l5xP+rZ8GD99GLJnj7Tkr/M2ee+cd6+9uiCfeOxeXvkZM7mlgnMla1UVnmNKTKwzer7/pcemLU//+aUTU8t2MRQ2YZH1efh2dZF7J9Hoq7+eF1+UZXjHc38AKXuqymlsr6f53W/UtTYxvVuUd+fuD/CFzX26ToAE+9xmE709BpCj+yvl5y54P1SvtgQ78enKvbQ9A6bze93PVjp7tdG3hGhFPq6l16NdU51Y/Hbv5vsrY8scJjC1Q0cnrHbbr3JdvKNYB1wnmAh9D/3v/xj+/l//598fyNc7cAh70vsd7Uh703sNxiZIUOGDBkyZMiQIUOGFx5XM3BI0LChm2huxQs5HstUslpx1ib3D9j1L91imzZxgyu6RbPvfK1uH/r1p+wLn3nGnntkxBbmcja5OW+Do7rRLZWsNKjjAbOvfXbRqjNlu+1Vm+yt79lj19++xY7duM0O7N9uc6cLdvrRlpXH67b71pa9+scP2L1v3Wy3vXrUbrq3ZMfvKtnRO0Zs/w3jVpio2TPPnLLq1JAN2m6rFxtmI03bcbxgr//J/XbXD02q3JjdcPeoHbtzyI6+bMJGdxVtebFhM7rNqi7mrFwetnqrbsXt03bw5WV7w08csZe/edxuuW9QssoqM2xHbp+08d2j9uzFZ+zkpUs2MLnTXvGWcXvDjw/Zba+ZsJteMWqbDozak0+cs+mT4pnbZEdU/p6/ucle8obNdvMrJu2aG8bs7HzeHnmmacXNNbv1daN23zu22cvfssVuedWgHX5ZxQ7dOW5H7xqzsYlRm76Ut+dOn7bl3LLtunaL3fMjW+3V7xm1468YkbwBWxyq2b6XVOy+d+6xl7yyZNVmyR55+KItzEzbCI8I06e5WLGnvz1lj391xp65v2GPP3zOLi3O2dHb9/hj/WjV6kzLvvTZpn36Q2ftO/91xk58rWhPPvqc7ToyKP0O2T1v2Ww33Ddh17xkwi7Un7PXvu2YveoHy7btcNGeOnfWnr1w2o6/5Li94q1b7L4fnrA7fqBs176sYEfuGrHr7py0Hde1rFZasnMXF63WGGGhjRXLRRvds2hv/KlDdvfbJuwlrxmRnYdsz3XjtlC/aMePX2NbtyaBw1oSOPzCjO07kLO3/8j19vL7Ntt1N22yozdts+npZTt5asmufek2e9v/Zavd+votdsPLR2zTNUN2sfWo9Dpk9/7QZrv1VSU7dPuA7Tg4bs3SmO6z5605U7LR5jZrDczb1tur9sqf2mevfvd2u/0NA3bkjoptuWbM8uNzdsurN9nrf2yH7D5mN901aHONhp04eckunVNbFyas1SharlCwWuWC7bi2aG/4kR1WmQgTXY3llj33eMM++7tT9sn3n/Tg4aOPn7VlGeLaoxWrDKv35M0GRdtaatnXH3zWTi9MybeO2Ot/dMhufu24HblzzCavKdrAziW7+b7t9qq377Eb7hlQfUZs8/6yLVfzNnW2bLXcok3sbthbf2KHveptI6KVH94+YYu5c3ZItnr5m3fay986akdfOmAHjk9acWjRFi7VrXZx2MoDo7bEu+9Glu3AjWYvf8O4veaH99ndrxOfu9R/XjJq1906bgeOTtrcctXOT8/ZXLWqPj1m+44O2k/83a129+sn7Hb1hb3Xjthy+Zzd/cYDds+bJm3X4bINTrZs96Givfr1u21ik2zDxJfAwpGxybwdvXHSZhZqdmG6Zve+aYv9wDtH7Hb5xc13Ddjkjop99+FTarMp27l7t933g5P2pp9UH32FfOfl4zY4MWBPnTprtcKY/ejfHLe7Xj1st94tvY4M2fi2km3es2Dv+uljdtdrxuzYbUN2zbEx27pzs50+m7dLUyWrDM7aLbdvtr/xM9vs0FGNM7fttB17NluuPGCl4Yv2wz9y1PbsLVhJbcR8PcELJviOis+gfKm22LJjN2y2t7xttx2/eZsHo7ZtH7Znnpq3SxfyxiOIt+2u2q13Dtjr33qNvfK1Y/aSuysa8yp23Q3q0zewSnfETp48YXMzTfXcbcYqjaGxebv3NfvtTT+0xV7zJpXReHTDrQQPVebGzdJ1UO1mdu7MnC2pr6MUk4gEDev1ugcMZ2dnbWRk2N757jF73RuKdvJ03c6fXZJfjlujNSe9lu2dP3bAXvmqAfW3Yfva1x61UmGzr2zevGPWbr9bOv+AbNE0+/r95+3IDSV793uO2KFDm+yzf/Rlu++ea+0Hf0ht9dJhGxjI+Yqva9Xee3eXbWaqZd/8xv128OCk3XLLFl+RXq3P292vOGj3vHLYbnmp6nOT2uPQpJUGCurHM9J92P0irJ703Q7wzjTLjdr8/JIdlZx779psw5Wi/dYHvmXjo7ttz35Wiph9+atPiceg8RjYYq7kP2JpLk9ZJT9lr7hrn73xtbvtNfdN2h3q5zfcVLBNmys2NrggHiXbsn3MvvINs8efuGQ3XVe0d7xxs+pUsYcen7f5pWG/Bub80b9zNjG6YG/7wT126zGNtwtmTz3yuGQs2j13XGtvfd1We8Orx+2OW8p2y/GivfSmEdu3Y8yaS3l7+pmTllefs0rBXna7riWvlB225mz74Jz98KuvsdfdN2S33zpoNxzRdWH3uM1dnLLzFxZssTrqK+YKhbxt3VKxl90ybG+WjNfePWx33Vy0W67L2wHZfrQi+8/Mq09VjMeYDpSqtnmiaddfN2jv/MFd9hpd1152rGh3HKrYTQcHbOuw+uzsnM3Mmc3VxjxAVCmZbRnP2X23brYfkX733FCwO44W7CaNRSMlXdfLOTuwb8xmdQ25/+vTNq3+Wxwc1/W0YXl/uSIPh2RleVnXpCn7wdfusn3b8/bFbzbsk58/bws8DnpYduQJ0UWzxmDFBkYn7NlnLqodttnQaM4W9L3i0UfP29hY3m7SGFaRf7WWF+zI3lF7wz1b7C5d618qna4/oHFCY9HTT86qL4x4QIrA02Rl2u65fsDe8Yod9tpbx+yuIwW7U/S3qT23jxRtbnbRLlxq2mCuaPnpi/bGO3bYy1XPQ5sHbN+mOfuR1x+wl99csfx80RoXi9ofslfqGr1rm+wjB90ykrNjR4f8ByAnnpm11uxJO7S9Ym+4+6C99Z5Ru+toyV5yjWTqunDL4QFbmq7YxfMad+vL1hxQpTWW4OcevMPB2WqHIASrAFlk5tn8GEDXHbZx7GQM8seSRiJtvN6+NCsWDLTQhQADNPBlRXNeKYxpQTbfCcjrETgszqig+Cq1g4ekdlBJfX+gYifPzdhXvjlln/ncBfujzz1lf/jfHrHPf+eiffG7c3b/Y007d/6SFRqXbKfG/OEh9U+vy+pAjwcNqYv05BHvvuKLTpyrSYWcPfXsgn3zgWnnN6zvlZWyfA5ekKp8N0O+pRZUUZ5C8NmvX7T//IdP2Ec++5j96ddO2fm5su3Zou8rO9WvkIE9YbJOurg0au//xOP2ax/7ji0tXbCjRyZsl3h4JKlJUDT4v6sei7mdeqcQSAuBuXSwrjsFenhtxC8kgmjp8leeEv08sBr49ko88vjh5+bsl9//3+xr3zztffjY9dep9pST/9Keald44aZLyw174Ikl+9Sfn7YPf/Ih+9SXT9oXHpy3r8pf/uKBZXvkiVP63jhvY+Pyl9GylSsNfY8etF//+JP267//sNXmpzQebbbNW8dkO/FGT2RIYtheWWL1KoHDZoGgYV3+Q5vS/9SmMv7Zc8v6Hjdtzzx90ubmpmx0WN8jyjy5RP1Hfub9SpxU0eQTfDAGEGPCtCBQBmo08H6ucbS1NG+PTw3Yd2d22VzhGvnnksrN+Xd3y+taWBiQXqL3vk3qwhrZvZAFDtfBixE4BP2uOvQgI0E7+UG/jym9moFDHpf6D/9BfysIeQTrz/+H/5QcXTl279lrr3vtG2xmdkZfOnRBSuHOO+9SutsefPC7SY5uLMbG7M1v/iE7ceJZW17mpd4r4Nwtt9zmZe5Q2a1bt9oTT6yu87Fj19u9976qgy+IunTnp/Ha1/2AZNy+IU2lMmDnz59Lcnrj7W9/16p6R93YdqdeNopYTy/KrsWT1F2ml14RaRtTluMTJ55LznaiV/sByvWyP4DfK+69T+lVdujg4XX5Z8iQIUOGDBkyZFiNq7riUHe2yb2tbobLOiyEFYfXlOz6O7Z4AEp3rdbQ1/LvfLNh3/naos2cbtr86YI99ui3bcvOou3aP2LDI+FXuExvn3x4yKbO1e3g7UV76esqNrktb+MTPFYsZw9/Z8bOnsrb3W/cZO/8O9vt+MvKNrk9b6Uh7pNzVhrI2+hEzrbuyNs1107Y0WsP2Jf/7JwtLqr85IzddO92+7v/9x12+Naibd2bt5GxnJUHlYZyNjSes32Hh2z/7jErtEbtoUeftnw5b2Nbh+3etx6yH3rPTjt2S9HGVKfCgG7sS2YDKrt5a94OHy/b1u17bWrW7PT5mk3uGrJ7XjdgE7tUnuDoiG74lyfssW9dsJ3btthdb6/YS98yYGOb8h5cvXihaV//5rP+jqgf+rE99vaf3GSHbxzy8zwGsCh5w5N5m5Ss6w4VbMfWij3+xLS+ky/Yrr077PqXD9iRlxZtXPSjSpM7R+zAdeO2ZVfB6jWzi+ea9t1vTJst1W1iYNhq2vpKzNaIDeQ2W6mxyRZqc7brugm74WWbbFI8WL3QWMjZmaeb9vD9ecvNj9pkYdIDUK94y0G7+Z6ibdlTsLLaZmQyJ1uO26HDg7ZJOs7Mt+w7Dz1ne6/ZZz/yY1vsJXcVbWKr7Dwi28lmo6KnLnsOjtmNN2630ZGdui8jgPic7T4wae/6mcP28jdWbNPuog2qjWibrTvKor3GtsqeBET8UXdN1e18y778xTnbtGXR7rx7h+0+XHD+Y5sK9vhD8/bkwwu2/7pJu/dNQ7ZZfjGu8qObc7Zt13a77Y5JG058YFz23bWbCeiS2mPULp6dlZ0qNra/ae/82WvtxntHbVRt3ypJn+Gc7F6w7Tsn7MDRIdsmHxyUHUaVzqn9n3rkkl080bKR0iZ/pCyP6Rvctiz/2233vHXUgyRMpp4/2bTP/8mcfeRXv2SVxQM2bLq3OXvaTp0/YXsO7JIM2b1gxmMc60tmT59YsCdOnLc7X3GtHbmpYBM7CzYg/Xkc25HjO+3g0TEbl45MyA2rH+w/WLHN4wO2MFu2hx9/xLbtr8gvt9qB64uyQd4G5Jfbtm21W28ftr3yK4L3JfWFbbLTwcObbKCw1S6dHbbTl07bbOuMve6HbrB3/eR2u+c1m2zTtpxVhuWfKoN/Y9ft8vfbXjpuC8vjdubUJasuVOzIsUl77VtlR7X3MBN8asuB0QG76fZx9++F2ZYtzMhWoyW79siAFWhXJmeZ8JKtK+rXI9Lpu99ZsFOnGvaaN07aNUcLNiJ5E7L34lLLvvKlkzZzQT6yeZfdcnfRrn9ZST6j86K5NNOwBx85a43cVvvhdwy5Tb1fabDZvKVkN9++w7bvLngfq2gcYbzZu69gY+Nle/SxutXqJ+3o8S12z31Drjtleewlt8KFYtPuvGvMV0v70KjEHN0g44n0fu5pjQfPLdru/UN2653qA2ob3pPHIzmfeLxmD377hO3bu8/e+vYJe9uPbbJrj6le6iOMKyNqQ/rhtu05u/Fm9YOhbTYz3bTzZ5rys4b91N8+bK/UGHON/J1+zwQ5Ky/gT2B9/zWDdvTIuLWam+2hB897oIjHnzI1SWCgWCra0uKifHlYdRj11YqnztTtzMmGTZ0fVEXm7M6Xb7G7Ve99ssfScsseeuCM2nST1ZYH7eARs7vunbBDkvPNv2hqfK/ZoSNFu+uV4zagun/6449rnDpoY/LD8mDNJsaLdkZj/xOPNe1pjSkndQt/8dI523fNmB27fottVx/aumXYhuVTj8k207Ivbb9vf8GOHhu2ixc327PPzKoec8ajXQl2+MQYg4BvmRT3NUjqX/N2y02jdvsto3b2TMt+49fv1+nDduCAfFS+fWlq0J548pJMMenvV2xU563VOGfvfMdt9tY3D2ssz9tJlXvg0Wn5ctl27Rmw/fu22fZt41aQTt96oGnf+vZ527elaffdOWn7xfe7DxOwuKB+Kr9tDNnszLN2w/VD9spXbrGK2uVb327YV7/6gP2Nn3yFveH14ndNwaYXWvbN78x5wHZyU8muU1vu2T5gp8/l7Nw8798bsttvKNm9tzPmD9qOHVuMp+8+eaJpZ6eatlP97YDG4MXFgj381JQ9/lxd7Vm2Uu6i/chbt9vr71NdJiv21ONL9ugji1atlmzXzrwdPVySL4/ZX6hPzUnfTSML9rJbttpP/uiY/FF+cKppTz5dtam5vPqIxsTrCzY5PGrnpoftubPy73LThgtT9p4f2WGvuUe8VL+nn9V14okFXYOLtnPnsO3ZM+aB4gtTLXv8mZbNLjetUZBfKc8f6cqsOO8Hs5JtGp63H//hzbYoH/3cNy7Yt58uWH5gwurNZfW/RavLX+vqV/Wq/LY1YM8+vWjffaRkz5zJW76g6636+m03b7K96tubJgfUV6TrhZbqUDfe1bl7W8F2a2w/f2HInjuxaNOXLsrPhuyu23bZ33jnVtu1uWyn1a++83BVbVGzXdtLduRQReMBfIbsxGPP2lCzaS+/dZvdorHzyKGS6rdF/aVhZ86pfo8v23Mnl2xpadH77ya1JY9kviAdTuj69Kja64ln52zbWNNe87JD9pYfqHgg/dEnmvaM6tJqFHTtLNjhQ/hmxc7NtWxe1998oSgbFj3o5ZP/soN/3/LhUXkEEDjElPTp1ONKCVDwAwEevwldeIchfb/ZDijyI4KQ51wd8KUsOaxQpLxLXStwuHnJVxz6+r8WK371XQelnFcICPHo9oVG2T7zZ9+23//E1+zPv/SgXVQHP3Rot1137T612YTNLSzZww993b74509rzGupvfhewCPi63IVGOo7SY73SfIO6pL3db5v8m5SCZYwbeRbVhq2D3/sfvvX//GP7ZvfftRuPLbHdu+YtMHBYSfjkeEeXPWoTFtRuaX6/Nlp+9ifPWJ/9o2z+n5yUG251R8fvn+L2Y2Hhn1cc8NQjvbwpDrnBqypFFZomk3Vxu1P9X3r0eeqdlg+eceNm2zLxLDxPmB/AoGIUFukQtC9kSupboNux2Bp2V10TewuGf6uTX3HZq1lKClLUwelpmzh5/iywKk2P/SSTJUhm1bl8ckh/CQO6KG24TH40NfyBaWgmAdiGVsJtim1vP2LCd+y6NQO6OX6BN4EcmkqHokfzvHYfuiog67VrUE7PZW3L3/9QandtCNHdtrxowf1fVu+7kl6eeBQ7aov9Q8/dd4+9IdftA/9wV/YmYtT+k60xw4f3mc7tm+1Zq1ujzz8bfvaN57Qd94h27t7k23VOHBR3zk+980Fe+y5nB3VuH33jdts86Yx2TvYD02laoDXDZ3x2RU7N63sifXcGrBkDj7BXk35jqekbcL7Df1t1s4jry8RT51ctk/8yQP2gd/+kq7JdfXt/bpP2CxWLV2b6irDuxFZEYgfI4f7H4L3pBBARB6BVOzq+y4f22pHBLRGY2nJHtG17LvTO2yucEB9k8DhojW8P4gn44N48ihXSqC/MkJt4NPebox+A4fBGzK8IDh1WjcHpzZePfjmN77eU69g5ouB9/7MTyZ7G+N9v/KBZK83CEKyenEjzM5M2+49e2zP7j1JzgoI/s3Msix+BaO6YYW+F37qp9+rC9BeDyo+9OB3fZ+8bhCMGlXqxtjo2Jq8AYFFgl7QsF0LyEXGeuA8fJCZBgE79E8ndIUWW/XCRnqleQLo4nF38G4tvQBysOdRyaAsbcN+LxsD7AAvAohpRBndiPzBV778RZeBDxDIzJAhQ4YMGTJkyHBlYFLIbyW5oUyljhtKP1x9h0mevzcluV3kMVH+CJ8cj/AR74JuyHX/WiuYVXUv27AFGy6WbGtp3MqLg/bswzO2MMsKDS/uQYNdh1VmZNYapVkrcp8vsIqH991M2Rmr7Zy1619dsNHtOSsRZGi0bPpsy77+xap96yt1m7+o23CpMzmRs0NHC/a6dx618p4l23tbw+5+65CN7MjbwGioy/x0y6ZONG3ufNN4KlhJcrZfU7Ab7lN61Wa7lH/cbrlvk738VQXbuyvP08N8KuHimaadfbrpj06FU6tmdv0xyXrdITtydJ99+7vftbmFMDuBZYZUj63bm7ZYOGWFLbkQPFHBIaUBkZ0Tr+lL52zH/kV7xWtLNrE1b0yL1+dadvHJpj361YbNPNewkoxYkgK7r83bW1WvoSGZuV72R6kNJLLAjm08+i5vI+I/InqCGLzrrMp7IZeq4f1BrSWrM8mQW7JWftnyrMjksUsqz/wbj1TCvnkOCpfUjtPWUFs2bN6mL160+iIPupNcFRgq5+zGY+O2CYHNllWkz/jQpL3iFbs9mMRroGxJ9XymYd9VG51/VvZeVl1UlkdxvvwVRdu8c8A27WnZ8Tsm7La7irw2ylcC4RvLknXuTMtph9V2hZLkAJ8AZEKFX4DL95g3w3BCFYer52ywMGQVaQovHn3FvNTkSN6u3TdsuaWWDSifVGRSWrzKqsv1t+etsu+STW07Z/e+e5sdPi5/kw3LosvXWrY4w6N3Gzah+k6oEZmnkTETXVRRVZZ35BV4dNxSXVvpPTJoA+NFf4wl+uOjVZHOT5etWSva8BATb8vyC9mrNmYnH1+y6rwYN6WwaEuq9859E/LBog0oCxuXtR1S++zfwaodcz++IH9mQQ+rbwhY0AduvitvQ5sXrCwZ+I+6vOs8qDrtIfAuNWvqCy35bF6+zHmC6dfeVrBr7szbyeVH7MhtQ3b73QXbs78gX8FHeA9ny55+omGXLkomearX4Hje7n7VoB09ukV1b9rytBjKZvRhhpUh2ezGGyY8GOh+i7xLJTv1yKKdfq5pNfVno33xGW141OGz6gMXzxblc2UPMhJ3aKkxeUejPz5xuWl59YNCvcjTyqyEycQG09XUsWsiqvEoRx3HSe2xMY018s1xbauqR15+i78TfCMQet3xvB08Ip8bXbalWi3Mw6GX2oJmXVTbnD9btzOnpQ8r4FS/hpyrLn2W1G9PyMdPn9J4tIjThHI+WOgf842FAu/wmrI7787ZzbcXXKZU9MnTxx6s24PfqdtFtWeJyWrJvemlRTt206ht0fi1/5Dse0PBRjSOMGYSiHxW/viFP120xx6o24Lakm4woTHwFfcW7fB1m+V/JemW9/cl8h483kNXKpc9uPDNbxFcMNt/zbBNjA/Y3HTD5mbm7MABHlnasgX57KTGrRtv3iOdpm32Ut4mxzfLfuPGirLvfL1pjcXNNlje5m2yJD8aHNxh3/j6on3kdx+2P/6T52xhwezhhxr2W7/5lP3Obz9i333ggg0Oj2tckf0kG9945omm/Yd/96D90i88YP/2//uw/edfesw+/7maT9jfdlteulR9Ip93VvHOOKa9CUzEpJ6pcfeU7T04pjpP+Ird505pbGjttmeeZnVy0zZpDDl2cItsxjvqWvKLJasMVWXP7Xa3bMUPA37zo7P2P/6/7rf/+CuX7Of++aP2q79RsxMaf7A9K2Fo+3KubCefW7RvfbPhwcejR4b8UZ95q3nfHqgMyl77rKSB/luPNuzLD0heaZePQefPtewPPl2zf/FLs/bz7z9jv/CbF+xf/R/z9jmNjfww4qYbd9iF85dsZq5ki7JlQz6V1wD/h39et3/9gVn7X3/1Sfv5Xzth//m3pu2M7H/rHWN228t0PZicsNnZ03bPS7bZ9eqn9Kff+dCi/e+/9KD9/37nrP2rX3zOPvDBqp14pmlHDubtwL5J2XHRrtkzYPe+pOjXt1/7wLJ0mbN/+9tz9v/5yJL9z794xh7RmHKtros3HlW7y37VS8/am1++y27Yk7dn5ee/8vs1+3/+0rftVz4zZ//yN87bJ76wLP9SH8M/Nd7MLrAac0ktJD+pa6zIlzVGSZ4afWzQbMvEqL8XdmZ22aYW1N/0PaKGQ2jkLrYG3dZldbCSEu+Kq7YKdmFp2c4s1WxBZAvVRQ9yMQQ/oTb+L7/3sP2LX73ffuFjT9l/+sij9gfSK6c2eqn62bZJs2ENPFvGx1y/J+Ufv/6HVft3H7pkv/DJWfvFj5+yf/mfHrLvqM22b83ZDbLTcEn9RH2sobZvapw9ealpH/zERXvfR562X/zQOfvU/dP20MUF++rjZ+3DH/+mPalr9UWN7V+Rv//bX/26ffbrs/bMrGTu3inf01in7w//8pdP2r///fP2a388Z+/7ZN3+yx/U7EF9D+CVxxXVsdhUf9XYwTjnATwZ1Ffa6sPKJYJUjNMN5dc0PtFP6cvkxcf5+uomOSxbD5bpHCvrfEcJE7P6iYtBfP+hJDmf8B1QiTwNnP4OaOWzJdAYkkgYUFseNvJ+TKID1HTB9cdXatysqa0fenzW/tuXnrXzF+bt9lt22D987z32v/4Pr7B/8d5j9r8o/V9/fL/dcfsWq8q/PvG1U3b/o2eCXrW6taoa33MDupQO2nNTBXv8XMOeOFezUxpn53TOB06CPs1he/ZE1ZbyW21w52E7J+eYnh9Uv6/a7BSDv+xa4Odp1MuV90Qwhqv21NKiVZen9L3pgu0YWrTtg1XLz5/VOP6UPX3ujL6Tqo4EWnUxa8ieVdlsvlWyh04t2befrdpT52s2s6z2KVVsZLCs69CCVfRduKLvxJcuzdrjJ5Wky+mL0nFBYxaCuZjIphc15j5+omHP6fz0xXmdC/1kqa5+fKluT55u2GPyq1PnNR4vqK7+JAMukhr1qnk7qzH5qWdnbGpa/Uzj2iX522Mna/bUqZr2IavomqPvQWpfnDlHPSR/bj5np8+aZC/bUxcb9sxc3abkhHyXVy/01cE56Z9TR66pL56ZUh8727QHZOcnzukatVyWLUY0nhbUVnwXkm7FilXzw3ZJ3/GfVjM+cXrZTs7qutQcsIUlfffxRzmr7pKTl/8W1M6kvPtg09+V/aRs+pu/90X7wleftk2bCvbW1x+1f/BTN9k/+PHdSnvtZ9+5y1511zUaaIfstz95wv74c4/Z4qy+47Qa+k7asEHpPTxYtIrSYrVhz55dtoefXrQT2i7r+1ZR47O/i1D9uTg8aPmhUelXstNToj3fkN5Ve+aMvqtOYYdBK5SH1e4V+Yja+eR5O3l6Tm1Ykf2G7eSZkj15om6nLtbtxMVFe3qqbs8slO2c+uulxqj4teyZc3M2vbRgJb60F0dsblHjwHm168lFe/y5OXv06SmbmqP28k/12fY7TXFRbcK1TvbxfuVfFEyX8xBIdEAPhQYpvofIj/Mt3hdP/9D3Tr4zcU5jKAFOUuTcX+oPcM3wAoGgYT8rCHfu3O7p45/4dJLz4oEVkf0+ohT97v/6N5Oj3iBoyKNXN8LMzIydeO45D0ClEQNgBJD6QaT/7Gc/aV9WGdJnP/spXzW3URCvXxw7dty36Lte4PD54MRzz7b1Jz134jnX/7Of+ZTbqhc20ivN0wN+4hOPe636Wwtvf/s7Xcav/9r7vCw6/d5HP+T6dQcH06BtCQpuhFgP+KJXlNEdPM6QIUOGDBkyZMjQH7glfl5o5YxffPuvvoUmARxubPN1Jd3EKpub27ruV5l0a7SWrLVctdKibsXrI1adHfSgG3NaTIEwbTC6VTzHFqxRmvebYiZqAatIFkvTtrx5xoo7c1YcZQJNKtTNAzlPPrRsn/rDJ+zP/7hmX/tC3f7iS3X79oMNqw+KaMuU7by+Zodesmi5USIVus+YatkX/7Rmv/FLc/bBXz1rZ55t+Kqa0kjOJg/mbcfxnDXGz9rBm/O+GstXQknBqXNN+6M/OGEf/o2v2Vf+ZN4akt2qEmDI6Xtt3g5em7dTZ07ZM881bVH8VMoqhQUbm1iW7Gkb35/zFW9UK6/zzemWPfi1c9asL9gNtw7b9r3BlrKgPflww/7kD+r2hx9Qvf6IVWxMHMhG2/J27Ja87dmz2YZK4VF7lCImRKrXavbgN+fsYx+att/7rap94b/VberStE9GNOpqnxZTuFUPGjZzy0pVMcAu9fY0QUGugX19fqE4bc3CjNKsaJesVl2EFAfyevCeoZyKf+nP5u0PfnPO/uTjVbtwesrOnZ+y7z64bF9VW3xO7fLxD8/YH/z2d+yxbzY8wEvbsdpvYjcrMwu285oBO3TTkL+TkFUW8L0ke3/pz+v2a7/6F/alL83b/IJsGkykOoiHdGSCspVvWoNJEo51jvm4nByw3CpZsVnwNmIyjoBSQ/tnTzTsQ7/2lH3mozU7/WgIHAMm6LfsuWilXResumfatt5Y8CAaE7gEMefOtuwzH3vAPvArn7NvflX1uOS/F+epgsYiqOJAwx/jN1DM22ChaAP5YngPk87lh2R16UfgjXkzAixz0/nwONPWghXz01bm/NKQLVxo+sS6T/TqrzVovpKQX9rn5Dc8ObQgnUq0k3R/4Os1+9jvfsc+9QdP21n5Xn1JtpFcVt7tPCQfvk59rbDIHGUwEFvmLEX3mY/N2G/88oP2x384bbOyt/uSt0vOxtUXcpvn7PhLxm2f+gGrFOG7LN2/+Lm6ffC3nrTPfOpBO/HshTDJWG54f7nxhh12cNduayw0fMUxoCo8YpbyX/jjWfujD1Xl1+qnf75gX/mvj9l//fRTdgG/EB3eWJN+3/5W3T76wQt2/5efkZ8P2nCFFU+yr/jweFBsXSmULd+ouA/+/9n7DzBLjuQ8FP1P1fGnvR/v/QADbxfAwmO9xS6Xy6XoJJF6vNJHSe9dSU+UqKsr6ROve7oUSdHb9Vgs1gHYBbDw3oz3tnva++7j/fv/yFMzPYPBAMtd8oriie48VZWVJiIyMjIrojLLYx7RFpKxXW3Nys4H3tI98ljfzpplXT98Mo8v/tkg3nqtQp2gFTLEkeVr5Wx3X5r0itFqWLmmjGVmNM9oq83dZ/D49w9iYkIMJbBMGdNPHKviG1+bwgsvHkY6x8YRQ9WuPJq9X8mJ7MrV7di01bMVnnI8lsp17NtTxXcenscj3ziMV16exzz1g5zivSuov7YmsWZ9O1KteVv5GG8hY1muHFlTY3LgTWD3q1W88XIFbzK8xqCVYPqGYqo1RprdN/DkfJFjIJHQChfg8JEjOEvd0tlVRyrpmyOyt7uH+sVDOj2F0fEJ9vtRbNzYbbxtS0axrD9qztfJcTmPqQcLlBm1L3kQU/tEe5DLxTE9k8D8fI/xXI7ZkbO95FcC5XISJTKzrAGAbah+fYr98I1XFpFd2Ip8Zj1On2jF4YPz5hfo7mJf8Km71IfNaUiGGduJUCPU6nnMzJ/Bhk2tWEc9LIfn3v1nEI2twulTdRw7xDSU951bPPR0tSES1VaZBfbZItN3omeZh9PDRew9msGp8Z0YnVuGibk1eObFGt6kzprP1EH1yT5YRVdbJ+VFKwmLmJurYQd1/5oVYbQkqHNIZ1dnJzZtllG9gFOjeZydo5x2rMdLr9TwjYcr+ObjVTy/O4qDgysxNNeH42MRTFKm4pTvlctDrKcGbaAledWWzCNTdTy3l7iNxTC0uBLHxvvw/FsZnBmv2Yrs9h7yvSWFzs4obryqBb3UF8dJ74uvUL/NbWP9KzA404fdB3N47pk5yi51V7qC9rYItq7vwKoeD4f3VfGt78xi9+EIjk2mcGTMx4tHQnj8uQpK5Nuq/hBW9AAppHH9Zh+dfghHjtXw3P4ahotbcTLdgSMz7XjzeBYnTuUQIy1qmVCYOjBCHWdOK80Z2HYVjt9U0hGORTH1C3aKKicJenWlTBmqsKOEpLurUerPsL0MwRi2sceRy0eOip/N4ZyM1Yo5IvLU60PUz/sGyzibX4azhdU4NNaCAycrmKQ+7SWPBjjOdMiJzjnInr01fP3bZTz2Ug2vn2rBqcVWDBVW4NhUCmPU6wJtn+5J54bCev8BGaqD4Zk63jySw4nJ5Tg53YHxUhcykRYs1JMYXUgiyy6fJ03TlL8Tk0mMZBJYpALXPEjjhHTImbkWHJtux6HJdrw+WMfjr1Xx8OMVnB6cR4VzpDB54WmZJRPL2Sqd6Va0eeZErEuZkQfOMahvWmoUcrpJ/ULHYAvSwPEo56CCdJxtl6h7KpgZzBForaWjo52R7qjOS3COSBcsym5Loclx2HDfC+XGPNApY8pZvoa9h2dwgnOsWMLH1Vf24/5b+nD92jy2r5jD+zblcO91Ydz9/g246e6tSKy6ClnyMpfnfI04SF5GTk/iO4++hN/6o2/ht//su/i9Lz6OP/3aE3j+lX2Ym51nPRGOHUU8/gPOy/aNIhfl2BNfhcefeAt//ieP4Y3XDpNn0huUQ+OAQASQahJTo9I6PjKG8bEp9CQquG3XCty4bQAdfgEzUxM4OzWNkk/eR8Oc00pGPSwUynjj0CD+4CtP4Lf/8gf43b94FA8/+jyGRidRKRUp25zrUr+FKiXML2bwxW8+g9/9y8fx4htHkctyDsbxW9sKLyws4oVXDuKPv/RDfPUbzyCzSCErsd+OTuGHz76B3/3Db+H3/uR7+IO/eAJ/8CeP4msPPYMjR4fJWvKGpAyPLeAHz+zHn33pSew/eAqHD5/C937wCn6XeX7/zx7D7/7+I3j1VY5FU5wDcm5ob4ax3U4PjuHpZ/fgq19/Fn/454/ht//8O/gvf/otfOepl3F2dJzNqjG0bG05s5DFG3tP4osPPYU//PIP8Dt/9ih++0++jS9982kcPDpCeikHlNlQKIo8hWBofBGPPrUXf/Klp/F7f/44vvTIs3hlz1FMzRZQLJDfNp+qcVj13PzIHGUKVZQo94dPz+HwUBZlorp9+wp85L5tuH1XBDdvyuLWzVncc1UId9+6gXONazCSXokzIwVk5jJ6y4xjUcZWkS8uzuLkmdPk7Vv4ky8+ij/8i+/jL7/6FJ58+k2MT86zJuLAbrOYz+HA8dNsu+fwe3/2bfy3P/0O/uDPH8VffP1pPEH+jJC/5SLnVOTZ6Pw8vv/0W/ijP3kCzzx9EC++dAoPf3s3/vQvfoihsSxefusonmBbHqDO97pX4NRkFV//3qt48oU3MTE/ay9EnCVvvv7NZ/Hf/vAR/OGffQd/+sXH8Cd/+Rgef+o1HD8xzLkVFb/6t01YGMQW5gtWmLqtUnlL8w0GdUHrj5pccGxUhno1h1qJY6e+caxOabNUOQypgJTOzhlvE2jLcvnwHkElN+GvEd7N0RbA/xNOQ8F7WR0YwLs5QX/nt/43c4C+V3j1tZfN+bTUuWSr4oaH39FZdjHIISZY6jiTw+zhh7/2nst4N9AKOnNoEV/h916cYT8u3HjDzcaHyzn4/ibwCpyvcswuBfFWzt2LHb8BCHe1zT333N+IeWcI2nsp/qJLzsMmNKEJTWhCE5rQhCb8aGDGoffyQMjnSj12/jig59NkMgTPb0exEkemHEa+6tkWZFXZqgh8nG1YGfnvp/i8HEW5cU+G4wgfdpP1TkSyA8iO1221kkDPwHJmdA/k0NE7j1J9DuOT0zhy9CBef+0wjh08iaQfx7L+AbR3tjO9b9XMjNVw4KURvPjwSbzyyCT2fL+CQ89WcOq1CiYP1VCe7kRfa4+t3tPKFdVTL9cxeLiKPc8O4qUnjmDvK0MozhARFcj72nZ02UAIpUIRR/ZPIMN7ckh54Rg6+lJo7a1j+QbnOKwwm+ibna3h1CltI5jE9i095rAzfvOBXtuCFuODCHcNoxodga3MiWjLT7fV54q1PYimnA9PJjqBHtzHhop47fvD+MEfn8Azf34K+x8/CkyVENeSQTLTjAw/QagU6zi2v4KnvnUCj/3lXrwu59WhEl575iAO7D+M02fHMTY7goXiISRapxBLVuCJloYRU3IYDkXR09WJgX6TBHMmaCe70dM1vPb4LJ7/9gk88e0DGBkipY22NyfYEggMgvZ7jkbFylClOpyDZiFfx+GD0/jBN47hB1+ZIO4N7vlMSf7Go0m0JJLoTCXQ2sr2FK68J+fj+KkanvnWKTz3nRG89lTatnJdCto2rOJFUQol2H56nV2bg5VRr1bhswH1zn+AmnNsaSs39gO9CR5J8OihWCsxTrEkVd5znsjhGfJivFeF/HAyqMl4JFignL3x4hk8893jePWJKRzfyxpJoyqSYUwr01asbEOpkrMVcYFBWFv/nTxR4/PUMTzy8Ot47pkTWJDBnCQRc6TYZzuZt687hTWre20bTAmYGdBzdbz67CRefnyaxzGcOJ6mXLFPV33bYnLVGo8ByBZGzf5l9mlmLxZrOH6khG98eT+++ZUzePbJERzYPc64cRw5fBpZrbIk1Eh0oVDH0JkMXnnpIE6dHGQbFG2bWDnx1R+lNMwhGyavQhXy3vFUP1afBSaQgV1yr3sMsrXJEXLqWBXf/NobFl5/JY/pyUbdzKetBGPxGKKRqG0BKLkRiHVyasv+qm8Y7dtz3FZcWrwI5MkcefjGawfJk9Pkd8noVr06KFTZ+ats43Ubu9BN/aJtUxWv7XdL9SIiLcPUOVNsuynyThlrCCOGFcsj1C9hTE3mkE3LoB53ZfKnpb2G/pUlxFqmsZibwuDQCA5Sxp97egFTY2zNWgJ+pMJQoh52jRGlnIfqMZwdmsTYaI3t66OrJ4K2rkWsXtfBdg9hYiSOk0czyCyEKUMx9t8MBlZRJvqpwyiIJ46VkM3NGX+MR8QlyvbXNq6xOJBIhslL35yxWrUYS+YQjZeYRiul8ua80AKpTKaO6Rn2k3oJHV1y3IbIoyJ5W7R2s9Wg1KPastpWXQSefglBLUmmdrKNY4j7JWxe51Zcp+e1KvQMVq7KorX9FBbTg1hYqGLFgIcdm5ZxXMigVJxBJOHZltkq6tiJOeQyaazsJ75tQO8A+1d2GmcHJ2w1r8c+o43p2lJhlMolnBoZx4nhGpat9rF6QwtS5I9W9a5axfGDOnp+LoLJyTTlQM5b6vrBN3H81POIhw7ghh1DuOfmGTxws4d7bghh/TLnzNGq12RSTl6qD/Zf8Wdxoc5yhu2+dJLqmJ+dQHouDU8OCPJITttujnEb11CXMG5wZBKDUwuIsQ+n2G86eJzLF/DC4Uk88dKirR7tb0liJXmt76hWF6awo3cMH9gZwoeu8HDblhBu3zaLSPWg7RqgLal72e6ptjq6iGuG/Wxwag5TmWm0dauNOM5TlufnZ3D8zASycnyquSSg/A+CVq1pC0yteq3yvM6jVhx6atNamenNBcXrMukqIcw4n+kkB9oeULpSL4V4VIJeifq1SH3AfqLtnPUSEajnOtsjaOHY6LOMfLpAnOr20kIsFYEfj2KxUMbxY2cxeOw4lidO4dYNady9NYQHrvRw7w0JW22obcKlwivIIBzTKi3qL7b/Attibn6eMl2x7Y1jCcp8PMIQRTwVhxa1afeCBGW1hfHhcIEyVsJsrorTs3Vri7t3JXDfjjpu2ZzD5mXz8KpDOHr6IEYWF6C9AGzptF6EoeK3uRpDoF+0ulD2fl1qNAm+nbYUxF/xWeBWB0qjMl6lme5kZh5VltpHxZnyVJXKIx2qOILumcOQytbn/Mnak7HManrNwfkLlelyMaZSxVy2gt3sV6O5FrT19GHL+l4sH2hnO2o+EuU4lqCu6cftu3bg83ddiwdv3IDNfa2Gf8Frw4npBB55cQKPPrWfY8UwZkdmMHlmBq8+N4RHHzuAZ14fx2zG55i0gIX5UeSy46y9xDGiSJ0yjJExfZ9zlihJTzs+CEzOQhpr60jnPOw/OI6RMwX0sm/ffs1q3HTFALrZbjMTeZwaWkCOaSIc/KIcRAvZKA6dquI739+HJ54c5DznNE6enMaBQ2N4/pXdODtdptR0E4uYtYWcNCeG5vDDl4bw6r6TGFvMkDZtD5rEyEwBr+8/iedfO4SjZzjXI48nJ+fxwuuH8N2nDuOV16cxPT6Dxakx7Dk6gYdeOIOHnzuJ0+MZFInP+FwZrxyYwHefm8Lze4bx7JunsHffKZw6OIxXXhnElx4bxp88NoRXjsxyHsJ+5KVwaiKM770yg28+uQfPvUq5G57A2Mkp7H1pCo//4CQefXUYgwtRymIS6XwNrx8axlee2I3v/fAozp4YQmFsHKPHJ/DqC4eZ/kUcGRxBlu1VrIUxOZrGC8/uw/cfexWvvHwUJzkOjRyZxr7XD+CVN89gaC7OtBxDJSNOTCgoOqHwUe41dTk0NI+pQgI9Aylce+UyXL1jJdo4J4sgQV0RR39nJ27esQKfub0HP31bBFeviUKL8yW3xWIBftTH4MQMnn79qPH26IlRHDx0Bo+/cgp//twIfrCHer6sb9GCc49TeOTbL+Cx7x3Csb1TWBydIb/ZlkdO4ntPvoFvP/U8To5PoUC5zmQzbL9pPPbaLL7yzDE88co+HDp8EIMnplHPzqMyM4/szAznLhmOtVUUqrMYnxrH4hx5ny9hhLL08HPH8cXnT+GNw+N8RlhAnjr8xPEF/JDz5RdeegtnBifJCyoQgU1aeM5x2lYj6jzor8a/4FxX/NOF/Wh+V+I8R1shF9wOHpRz2wp2SV89f/zJwIVaqAk/cbDvKb4Hp+B7/bbhTxJ+VKfh5bZd1RalwcrF9+osDbbgXLpdqRyAl3OWXQyBA0tbW2q7S33z7ye5KlBlyXmmOi6F718HaBWfHIEXO+uWwt8UXnJOCv4qTthg1aja5HIgB6OCVjYGbfg34ZxtQhOa0IQmNKEJTfgfDcwk9CM9LwaPpn810HOsGTujPQhFu2z1od7cl1NFq2y0osKedxlk4CuV5dyLuhduFc9jSzyOVq8Hlcl2nNxTQ47pKpW6Gdv7lnt4/739+Mf/7AZ88KN92LmrFwPLOpm5jNHBs+hMtqKrvcNI1iagpWIdc5MlFKcTaCtsRltuI577eh4/+MsCfvDFMp59qIJjry9gVe8KM4TaMzyDfABnjxGzbB9i5QE+8CewMCMMCUQ+GiWepDMWCWPvG8cxN1GzN6vD0QhxjGDZ2hSWr/eQ7NSKCjmNWN4wacmm0NHWDn0GRQ4fVRfh/a1XtuIzv7QJ/+TX78SnvnAlBtb49kJxyK+ZcbK9O04eypFDXjBPYBIYPp3F4J4SFg918aIX9bEwOkpxJGsR4iOnHQs3g8RPBsoF4M2XZjB4sI7MYCuqo50ojiYwfiqDWDSFdRv7cN37VuFTn7sR//xf3oMbb43bN/G0DWqtxPbP1e27ixFea8WNOVaIougZO1PDyN4yWiubsP+1aQzzOpdxRk3ZRd8TFZaYbc8yBVnK29hIFbWFVZg+2oaJs6yfcSaAnsQying4gtZoGMkEs5PNFbatnFpTrH/yBHlZuQJjxxJu21UyXzJV4jFXrCDL83QphEy5JpehvbFfKZdQ4z1tY2iEEeQEa++QU4WNGI6h7sdR9Txr41Rbyr7fJxmXradWBQrile+hSuGwT+tQ9gWLs+TRyQIy7Bvl6dU4KUeobM8NuZVjKp6solBYhD6xE4C2rTx4oIr52VYU873IpzvMmSj+q2St6mtNgrIZRSImpEkjDzKgCbfJwRgi+e0oLvRjatLM2oavttRLtYRsS950btj6v9mSmTe9WMT+PWPY+3oeoyd7MT/ZhVw6RbZr+9Iuh7OS1tk/yUcvlEQ00o0w2wOhvDVlmTqjQjkW30VPqZKFbZFM3sr+aHU1QCtMhJnWxKj9tWWq7kuGRofqOLQvjdnJFCaGPaQXnFxpm1u1QYR1njPIE3ePeUXjeYdODIl4l0TmXJtqW0k5W1tbeol30tKqvuAFCbWltg0rFrPo6Y/YSwmBYEoMbrgphV/+1V341V+7Ex/48Bb7ziFz233pUG0/e+jAII4drlq7K6e2XNyyNYpPfmYz7vvwclxzfT82bFqB/t4uzEyEMDkaQZb01uo5F2pFM6BrFVWtFkYmU+b9ClrYZitXR7F2UxgrVrH9EiHqkjBOHMmQN759h7Czu4IBPoK3ss752Tr27ztB2QrBj2ZRqRZMn6sv1epF45f4JEelfBJaaRtNaNvIDCq1LJlZRYx6XVCkDpGTvLunjXK+iEyujAJ5VK9qWzvnlLKt9niuLfSqGjQE+q5aLcV0LYh6SWwn3WtXkE+sWwue1q/txU03duADH+zCxk1x4lYwp841V7QjFlqg7p1EJOmbM1Q6Z3KK8s8G6mrJUnKcwT/ZRrmolpCbKdqW0HIIheparV3HbK6E/RwT9Pm+VWsTiCUXydsZbNvqdNnQYA6zMzniT/nzs1ixOo4bbx7A5x9ch//5V9bhX//qcvzipyL4wkcjuHqbZNXpklQqbs5ByavGFfGxXtOGig4kR/VqEX61zJGyZgbwOoVPKqGTclIu5LGYKyJT95EjH2zMCOVQoqxNlFtxeqLIscBHR4TjESvlEIWrNrXh3/7yLvzrz0fxL4nT//LZCP71z27Ex+5fiZYeCjZxkM7St4FjrCNTzSBTS6PsF1EkHuJRNFQkImUschybTXMsY55CQauMJHMO91q1alts2vabPJfjUHiH5DRkp9a38TwqMFtbSD3gM85nGm3j64Wj8KLkDQdASgZi/KsWOF+QXiOd8rdFKVdRj+3s5ZiC5emNG+MBeUueFcinGvt2Z1cMN1zZiS98eB3++We68S8/HsE/vD+Mn/lID7Zv9dGmbyvH2dbRIiJxOd1lelff1UsNRZYnB4XkWm3L8qncfQqebdHO9tAqSa08j0RLlCFgmgPP3tNV5DjeffJ9YfzTj8Xxq5/qwOceaMWt16eweecA4j2dqLEerW9S/9AYaSs1WbGcPnKMeBpE5E0mz8wJSx4GW4gGKwIrlSrlSDx3cW61ophM3HgQHQoW1ShfndSt8GMaEzBFKo0cEoqTfnRxAuU1BURoJLX7wsXuEaSn56hbDp3NYrrSjZauXqzsT7pxnm05m/cwPUf5yFawLJXANbx3x9oWbO5rQSwWpXy14LHXJvCVp4Ywk6vgnjv68fd/9kZ8/lPXYO2yBPYfyuKhRw/hyOkFWyV/150bcOMNm6mXKfe5Wdx973X47Od34qprNpJOh5tzUgkoFF4Z2sb6zPA8Dh2dRma+huUdUWxbk8TWlTH0twILs2UcPT6L2ekS6uzvaocZzh+f43zkMeKl7aRvumElPvyR67B1x3K8tvsoToxksFDheBzSCwAhdHR14oZbr0WyJ47h2TROTUyjGm9Brh7F6GweU4sFzgvjuO6WG5Fs78SpoQm8eWAUE4slXH9LN37+C1fj7/+9a3DTXddiNroZ33jmON44eBbpbAFlrxWF8DLkKIN7Ts/h2Ogi9XgfPnLPZmzZvJz3evDNl/N4ft8E5yUVpKtRPPnGBB55YRL7T+fQ0RfFg5++BV/41E247epOjE+V8NBTR/Dq0XkUQ20Ym1zEEy8dxndfHqQCCOFjD2zGP/nZK/C5j+3AQHcLnnhqGN958lWcnZtHxl4MGsF3H9mLUydyWLliCx646zrcc+Nae/Hu6ZeOYHAuiaLXxjmwVlbrhR62hwkj28bTBvohDJLXU/kUujgp3rapE10ptl2xjEqecsj+pxF900AMP//AWvzHX74eP3X/TrR3tXEMdWNEW2cbJhcy2HNiAeHWFtx73y5cf8Ma1Dt68fJIK771yhjSRc65OEc7cmgIz704basK76d8/crPXoef/fwd2LJjFfYeK+AP/vIo9p4YRFH9g22Zp7DH+Hzx1kgIYxw7t+4YwIfuX4eB1jhu2LYet163i3QPYG5hHL0DSdx9/1bcdutOdCVTlLEx/P43X8VQbQWuf/9V+JWfvxq//AvX4K7396FQqeHQkRmcPjNOPkixkBDxhBObao24UlbYm53oXgLEwiW9k/OMEmnieM9xWeOnOQ3VUa2zNkLQFX5C8M7YNeEnBu/mFJRj8b18C/EnCXL0aZvS9wK25eofvTMNWmX4O//1f2tcufTvBeSM0mqzYNVa4PALVhG+V9DWltpGU46qttZ2czy9m7PqvcLSFZAX4/vXAXKYyQn68MNfv6yzTngJArzkbP3rwEvfSXwnUL3BisRLge5r21i16+UcgZbuie9bG+oblWpDOREvtw1qE5rQhCY0oQlNaEITLgQZf5Y8Xf6NgIzmE9N1FGozqEanUYxlEWqZx/qtveju8WDf7id41TomTtdRWYjA19aDxFPfFtIb7IvpLIr5GqbGFvDNr53AQ18bwdnBIh+K3ffTEvEQZBPSqoLlK33c8f7V+Ae/cjU+/dn3o39Fv3sIJ1S0NVosZM4UuXVK2oqJD9VTmSlMZycwvVjA+HQak1OD6OxoNUN98HBdIi4xli/HiraSqxDBsnjJ+sVUOS70gJ6KteD4vhHMjzJdXoZS4hgHrrh2JZat85BqC1kWfVvtrRermB+uAIUwPBIgNLX1oIyTcuzofHGubiuM5mdrmOf5/FzZtkfM65s85dw5I7psp4I6eefXWhCtdcAvJ5EKtyNcjyKkLTvrWi3FlD9BGZBMlUsx0tmOup+EH4+jf1Uf/sk/vx8PfnYzrrsuhnVrffR2+8iQDq0EsiWXJNbTa+L6l3GTQYbmsD4A2QBbyRT14ccibLeYrWaSEV2OCG3lJ/mokJ5KuWp0VUia+ODi5bBTXM1kQ/equse8ct745QR6khG0sG3kxDXnj9pW7JEXoa7VFXJYMJ6glW4y5ssBkkjFUKqUkMkxGYVA22aq7WNR4knhiodTvI6bvOntdzmQS+ma0aNt5tTO/cs8rNnoIdaaxmJpBAvlCVRjs+hdDey6wW2Rat+4I7GzkzWcOsbn55pc3w4nyb2cdOJFpVpGLBFDqj1ltMSW8FCGS21lVyTDJLtiuO6KXMllxdO2tSX2Q2fwLZGv2sxWzCJZiDJvrUY+8tqcuuSnHGS1eo18oNz6UeubplqYTbyQk6uzM4SWVIsZ1a2Ps38I30i4BWGv08z+WoNp22d6UeYnA4UewSej9E1LrTBra21FNBpju1SZ1tHusxHES8mLH83Bi8/DS1TMoa5Vo2or8SfCBBGmFQ1RlhVnfxaeBfY90dLe1kc9o5V7TEyQ4UurDQVaDVUhoWV2fG1vK5plsxcORcpPPl8kv0iDMglYrmRToG0CRWuhULX+obqMP/yRfBVLBdIXRjzBtORN0FqjozXMzrDPs4/MzdQszM/4lke6QC9WzM4u4C///Lt48/VJ6gI5ExzbdJQeHBjwsH2HjzvvjuBf/KtObN3eimq1SH2ib5R57BOki7wsUH/UKJ+dHb04uH+IddXR1RPCpu0+lq8Kkb46Th5dxIkjacxORVk2sHZjm8lsewfvE5/R4QySiQQKpVnqo3nyo0YdTN5pv1NiFfKIH3ukZEcORekrOT+0baqCnJeOL5INamQqTE8OmUje8bLuvvMXgFapaRWngnNikPmSG9IeZYardq3Dsn4PXZ0errw6jF/+B1fhpz/Xi1/4xQF8/JOrsXVHK8KUgVWrPXR3lc1Zi0pSPhq3qld4ENFqqWSG1hp5VaUeyS5mkZlbZFret60j64glWziChLHv8GmkyasVq7vQ0loh/hPYQf6rzfbv57gynUNHRwotLcDN79uOT//UDtxxVzf6BiLWV2cXajhxqozh0SryFCz155npSWvPMGVWLw1Yn6wUTXeIbMlLiG2nF0HKeTncNDZFKXceSkxTrhZM98i1rCwaQ7Vdb9kcSsrHYtQmlE/JtUAvVAxL7ohAkWwt8HqeOqtYacOxUxmcOFPDAttcK6I07tXUthT+KseUgvoCy/dZcIgIaytgOTyFZyv7b4v14Sj7fsTaeWmQPErOu1s5H0i2IpTLol6gnDBvmf22EopTFaVYWBjJaA1tlI3WcAVt7LJtVLqdLSybfd6cj8xULBSYt0zcGCiPckOKp46f1MnlPPVSHR/6wAB+5qeX45qrE0hRnkkqxhc4Ju8dYpvpBSbXVz1ffVerYYkQg7p7iMqnKh5Xs0xTtLFGcsJIW4Gvb9nqJQxtCx6WQ5F4ZrNVvLl7FL/3R2fw3KsljLHvdnSHcOONKXzm0yvw058ewMo+jiuFBfYntmk4yvLlJFGFVrXpFXPkKU4RduAYoEkWQf1DPI1zDLbtYZm2Kpw4ICqdvQhBQsxhy6O2OTWn4Lk/AttO9xQMNCjwX1ugazxVee6eYWHlLQX1jQDkIM7mSxgam7UXjKJx9oNUwvKXOWE6PTyNZ5/bi28+9EN842tP4JuPPI8vfflJvPrqEc53chgansGXvvEkTo2XsfmKq3HfA/dgx5XX4KY77sUnPv9xXHHjesyVojh4YggpKqirdq7FyhV9NhfTyzdrNyzH1dduRk9vO3K5tOk7B44mca9cDWOQ5c/k4li+OoJrrlqDztYEOhg2rF+FeMrHyKyHqQXKoo1RVZwZncXBUwuIpCK4+66t+Nyn78LHPngrPnz/Tfipz3yI89VZyiEnfxxXIpE49VEX1q1fTR0Q5b0ypqYXWH8M4VgbxqfSmJnJEf86tm1ZjRT5s2bdGuqre/Br/+wX8DM/+9O48prrsH3XtVi54Ur4rSsxlw9hjnPVUqmGAnVDJkd9U2XfIn733Hs7fuZzHyVOd+AzD34QqzZsRi3Wa/1b3+st1iLYfWwRI4ud5Ok2PPjgnXjg3ptw75034FMfuQ1XX9FN/VfD4OnTHKeqODU0jbMTi+hZsRY/8/O/iA995BO48db34e57HsCd996Pjt4IHntqCieHJzDPSibYbpNTFaxc2YK777gWH7z3FnzkgZvxcz/9Udz1vmuxrCeJZMxDgvpAq2UNrC0o19Qldc67itT7tXAS8WQCLQl9B51jiH3PkkqFE3bNz7TqPBYuoCWapaBRX5ARmpdrtfbkxAi6utrx8U+8D7/wc5/Fpz92Lz54z81YuWoDcqU28i+G+QXOh3JF3HnHDfhP/+FB/Otf/yQ++9OfxK7rbsbqjTvQs3yd+e8KrDbDsVOOPQ326g7Tk3OUtSvxuc98FD/3sx/GJz5yK1Yv68aGNauwae1q9Ha0oMY5Qoxzquuu2Ywrtm9Agn13cWaW+qFAHcI5UscABtZux8btV+MDH7kf/+h/+jA+9zN3YdvOrTZHlb7jDAbaxUI6zOlxdTfXN5cG/iwJzKqV2dT1FX3/tZqnPpaDVoE0KFhPV/jJQqM1m/DXCXKkvfXWO6/C+96jTzTO/ubgl37hZxpn7w7//j/8742zt4Ochr/+r977ysWLYel2pXIwyQEmR9KPCoHzTFuUyun2bs6q9wqunJX4n/7xP7Wg8wDfvw4ItijVdquXg8DJGuCl678OvILVjJcqN3CqXg5Ehxy62rK09TJORoHaUE5gtaHyyIHahCY0oQlNaEITmtCEvyLYc6b7e9uDpNlW7In+xwIZ+OOtNcTaRhDrO40VV03hngdX4fZ7E2aAltFXRoGRkzWceGMM4bkWtNSTCBMdL1SHrUzjE3xZK1RaPKxauwqnTo3jqSd24+tfPoqHvjyMZ57I2nfKpif0YMzHbT7wx1pC2HVLGJlQHrOZtBZMIEJkZPT0kzmUW2Yw4R3FWOQwPvyra/Az/3otfuZ/bsPP/NNOfOrnr8Lg6ElbmSTQo3Y4BnQtJy7xDBbrkyjFFpEc8OAltUJAq80YsnUUFsoozngYO1pDdqZmTgw5OG69cxuWrfXM+aUH7MJsHYN7sqQ3Di+XQjEXsW/+ycmSZ1nPPzmJ3/r3u/Ff/t3r+M1/8xK+9qfH8d2HDuPbD72Bpx47hMGTI2YIiMgzQwTkm1FryRZTD1dQ9kmjX0TZq6NCuuuhCPkZRzisICOzHInuLfxzK6suAt6CDIuuYDnO9J2gC2VCxox0voAyaZzzZ5HpncH2e7uweodvK6pUdH6ujmcen8Z/+ndP4anvlzAx3uCrVnfxvt76z7CMxQxxL9YRYb1aPdKq7Q3XFDFaOoTOVXVb6STnsFCS802OvGhEW0oqaFs4meoYWKbvRxrBc/GNezoP++SbvvFYYN3ktdpPdhqzK9bDqNYjKJZ9M6rHKX/irRZHtWmrvoEFTJXfwsorQ1i20bPt+Kpm0WEZlRL8chWRMvGr1M1B5EV9FHJVTJxZRH5MK38c/2KtIWzc6ePDn92CVN8s/PYprLvCx/V3d2LFJg91yrBA/NYWfGNnsohWIkiwnigRDmygfSs8tPSWkY8MIh8/gWXMK4OXAdNJJmdni0ilOpxTTPLBW1pBs3KDh3jnFKrRswjFx9Ha6TmHHRPV2FHyaWB2Ok1+eOSPVnKF0MoGbWGaaPsCpiuHKF/jaEuRs8RHBnzB9GQNo2frpLXDbFkByJCuhNqS0qLZv+vIQavV5ucXzKGn9GxlM9rPzU9jamYYmUxGny/CHPuM7F4m45IR1rdsdQz52jG09k8h1UU8iYqtAGKaEjOVtfKGtMh5K4e86Qc5GoRrKEcWZRnlHANLbN6UfWeE9yg/WnkkuTHs5WgxHClX7KxqT9WlbiGf/ALbKp2ZQp7yXGGnkBPb0qs6Cq3SyqA+OTFvsqc24r/R/vqLM/gvv/k6/uO/eRa//1sH8a2vncX3HjmOh782iGd+WMTsfB1btm7EQP9aHNw3iie/P4jvPzqKR75+Bk88Om/fRc1rMR/bSY7njt4Qtl7poXcghnKJUqzVedoDWChpNVe4BG2TfGDvuG1529UdwobtdaylXMsXoVWFg6fzOHOsbLhee/16bGN5kqPx4RoGT6XJyyQSSequWJg88o1P0Wic5YfIb+qFct76qdWprQmrCeLRwj7aRr2vFzF42eCPnDQIuW0GbbVFwxQpJ1RbeyuSCbeCR9vHxhipPGxZ5HKyp53G2rWtaKeOOHmiiiceK+HZZ8t47rkyXnqxgh88UcbjT5ZxYrCKles8bNrWjmQsgcWxKErka5jt1MU+2ZYkbuiETz61xilPpVbqgCQ62pLUJZSpUgUVvW3ixe27eidPj+AI+a4Vmxs29GPTxhbi4WGG/Jyc9CkH1PnRMPr6W/H+e+IoUtC+/lgZ/+b/yOJf/Oc5/MffmcX/+ccjeOGtNMemMKLmuJZzsiKRsm8mpsgy6VHjUSPIyC7/rH0LUAnJujz5vahP0Pplyjf1KHW/nN1CnBgiyn7cGSqig4NrSzyFEq9JAhZzdTz+5jj+yW+/jl/+/TL+X79bwj///TT+r6/O4H/9vw/gN/+P1/EXXzmOvYeZONJj36QMU7dWyiFkFrQaMMXmiqPGZouwMdui1NUc5+TIk/4VqD9J/tV2kUjYxpwKO3kmXcDEWB2dLT429w9gdTyGMPus/ASLiGGBMpuudbJvkYaFs/j4bZ345c8m8f7rmD8zizjplENVKzUr7Ochn7LH8usR6jDKY13ONqJANQyvGkaCun/dSh833RTGXLqOP3kojX/1B+P4F18p4Te/NYnf/fpBHDlWhVbBaiVnpUDdms1b/1QfEM/rVfdigF6oUN21KvU15ZhFI0aaVZd0jKCQp76rxFAteRwHczgzBvzZD+fx619K4zf+IIM//noJJ45XsZa6945tCazpa0WpGuGYqFVGLIggRwAVjTl/1c51jjFy0GlstkAemxOBcTamM505GcnvYMWh7lVKZep1ORBYJssV/xUkWCHySqsmldeumddWKgoBplc56nty9qhOi1wCdqVyJZw65XmYOLS2JNHf18Ub7oWFuvZ/9WPwOA/J5Eo4sH8C3//eMB769kl8+ckhfOm5NN46TjmeLWFhetHw6+7vQ76cwEtvjOKr392Lrz5xAE8fnMTZTBWLbJDTQ4McMYgXeV1Ue1F55RlfJ6Fqh0Qiag4lyZ0vOpnWo+7WPChXiuEFzjtHFrrR0rMK/Ss3cvxsRyjShq7+dfBb+jE4047Xjy5gvhaxF4YmKA/TrCvEieYm9vnlndRP4UX0JAvYsb4N1+3sR2cbRwviUGT/l8ysWdGJjWvakZ2r4ODuQeQWS5ify2PP7uPIzVWxbWUbNixLIkn2LBsYQF93F+cTZQydncOjT5/E733pLTzx7EGOgdPEvkp9roFIL8TEqZ9iSLI/ruzuwMquFvalKlqTWfT11rC83+M55yGc7xQ5Ho5PLmDPoTFMp6nTOvuwelkbohwHPerc1au68PcevAX/6689gE/du8u2MD5zdgYzs/q2tbZynsXXv30AX/7GAXzzB/vw4t4jGJwskSd1jtGkJ1vGAvughtnl/RFsW6/vyWqb3yx6Oiq498Y+rG0ZQ6w4x/ld1eZs+paiCSR1Ub0aZZ9jG1GEPI80Ulbz+k4y52Jawa809p5cWTolxrkXx7VwgnMX6p8E9TPbQ88M1ExYRj5sWN6FVr+EJOcYvZyLdsSpD9gPqsUyx2DOT+IJLOtfgdXL17DoDry4bwpf/+EpPPT9/dh9aAJtXdp6nbqrqhcT5WDnzIj0xflccJXoWxZHZ7xMHcQ5n5AOR9gWnEPxWYXTRSTZF0RniDKcjEewcaAdvRrwRvfixWd2479++TC++oNRnKJOqBHL3oFlGNA+2cxXo16vI+Ech7ajAuVJfLoEXBzrMY9PXKgxyK8MdRgncmSctg4mMUzhXhJz+sPpDs11flxwmr4Jf+3wh3/8l42zC0EOxfe6tedPCrTSMNhW9N3gcvjZSsPf+t8vKOtyDtJLgRxTcj5pm8334oi6GLQqTdtbvhcYHhm+pHMtcFheDIFzTqvh5IwMgmDbtu12/EmC26JzpTnOLgd/k3jJmadw8bcKxUPhsZh2jsXLgXibZhkB3heD6P7kJz/TuHIQOI8vt6KxCU1oQhOa0IQmNKEJ7wJ66tRzux3cn/75SGm3f1zQqqmtOyP49Beuw+f/0bX46C+swd2fGkDvKs++fSUDU2YxjTNHFlGcAOK5EGJaEcbnWNkcZTOrhfTmbR3dA6247wNx3HnnLmzfch3WrNiAVKQPxw7l8coLQ5iZqtlDsKAqw1cSmMrOYGxqCpm8HvtZHx/qe1fEcd3dG3DX53fhxk+vxM4PhLHyKg/Ld/ro21ZEvWUQ41PDmByvoZSum8NA2xeu2eTjqls24/YPXItr79yGRI++1QLIxLvIdFMTdZSzfIAutGD8WBlzY8ZIaEvVngHfvk+oN4cXFuoYOlrDzIkFJPIpzA8XcOropKXVihhzUrZ0oS/KufHCVnRGrsP65euwbf0m7Nh4A7Zu2EICI4iGZVCRIcyBHv31Vn25nkehnkbFL6Eig52MD9AKBBlWIjwyT8P4F/DrncAMj/yTYaFaqZhh0eyXjWyqMxJPoOTVsRCex2L7BMIrSUcXc5FnWq01Rz4e2jODyeEW6FuDzgBfh17iDlE+IvEo0tk8JqYLrmwyXEaIFRs8XH3fctzykS340KdvxOp1nq34E94ypKtyS98Idq2D7COVuq2s0YpPOUHEd7WjOflqBXKjAK+mLft4KWIka2wn5ZeROpOtY5rtWS8wUB7ljFm23sfdH9+Kez+9BTffn8DAeg915rHv7qntiEC0FkKi5iNS11ZcZVQpt+VSCJODGbz1SgVFyqFMfqpvYG0Nd35wFT79czfhwV+4Dh/7/NW48a5upHo8RJLkM5ONDFex760aRk9l4ZfY3iQiLEJIk9qwrdvDrfdsxwcevAa3fWQddtzgI5xoSAQLKJCOibGMORgaTc62ZF62zYbtPu54YCM++plrccd9m9HZS1qsk8hgDuQop+n5AsYnZpEjH8Ry3W5NhnD7/Wtw8wOrcNPtG7Ft6zIrW9tAyjk3fJZhsE7Z7Donmw6kXapsA60O0Eo0t30mQhX2dconU8jurKPw2LGzF1dfswUDy/pRLITYv12bClRfN/vfbXdux2f/3s24+8OrsJzyIdYIUeEqoZD/ya9TbiQbvCl9Yk5k0h/yCmxXBk+rB12Z54A8kNzru3JCyOStAZaOPzImygBp8sf0/Edvv4ebb92FjRvXMyJm9Ah0EE0yRMrRfeL4WcxOs2+yH0hehVtnaweS4V2Ie9egK7UJG1YtxzrquNXLlqOthW3PvrJixTLcc/dOXHfNFVi3aiW62npRK/XjjVcmceZEFZl0jTxlfaxLq3dTHUXE4vJ2aEvYVh7lVRZN2rZY21+GcfZMFqNna7bF7JadYfQu8zAzqxXPYcxPhzF8hmporo71m6JYu9E3OseG68gskImUK4/M1WpDXhgftJJJ/U4gvsk34fpoBNVyxBwwoXqS/NPLC5bNoaQyPOIaYodjSzbWW1kbxLXqmHoiQiGTg1Lyoy0Vxd8oedrdncIG6ot8voaXXs7goYcX8ehjVXz3u2N4/LEhPPKtE/j29yZxkHo30RbC+s0t6GpvR3YqjinKql5YWLtCzsQ4aZUzDMiQB62xFFYvX4WBvpQ5gbXCTi8WyAFSY8gWqjh4aMbovPLKNbj++pWIUocfPFRFodhBfDvZ3h46OmO2wmx8Jo/nX5/HUy/7OHI2ib0nWzGZX4aSn6SuCJleNE1FgQgcQeKC20aSJ40g2YyFE6xL356Tk7yO2bl5TC3U0NrThlVrV1A2krYFr1bILlAu2uJx3HbFWnz0rl4s649AiyjHZ6iPmD+xYjWGKltxnDSTHBycjOG1U52YL+/AitXvR0fveiyy3cZnKhwb60gkkuTJcrS39VOhuJcrCumCbeU60JlCTO1OfmkleLlcIl0ci3huxmqNKTyKNq3KPbB/BhXqxaupT+/ctgJtlIMylXbWtlqNIq+9vUNhXLWpDzdR/tZxbElI3IqL8KpEivww/S+++Nr2mXIVYflyhKnTMTvRQY11RENldLcV0N4awthkHa8eXMSrJyM4OUuaJzoxV99oL+8ovb4VGeYftYddm29AwYtBq7jDZLy9nEJ510sE2pZAvStC2rRtcyazyPvEpxbFir4e3LhrI1asW47T6XaczsTx5ukIfvhKFbvfrKKd5W7trqMjoW2vibcUNOu2Nuc9ip3xq65BUwOa5IHCr28PsroLwJyKyiTgwY3hPLIQ56fhlYrgQGAOA3UiBs2x5ITUyxJyKLhtzaXj2IFVgCrSkcDq7UcHA56480YCgvInEjH0drVxjPfZ1iVbKVcse/Z9vq6eHlx91RrcedsyXHHdFcinrsXhxc0YW2xHvRy1Fz588jmWTKFUS2J8NowzkyG8eTKLM4sRRLpXYOWm9ejq60aM6fQNUqGq+ViJAlGqUuYY3LavDieTE97X6zFlph+fKuCtQ3NI19ZivtiKN/Ycxxe/+i18/eHHcPj4KOdRvZgtrMATL5/ERK6CHMcOvU+WJg010teW8pDysxzvFxHxsuiM59GZos71M2wnrfakrqiG0NsRw+Z1HWhP+liYKmJybB6jo3OYmCggSVndvDyFAQqBttcdHZ3Ai8+/jG8+9C088shTeOmtSRwbSyFf5fhAfsajlEbioNRhykmMvS/OtmmnbmwN1zh+ZBH100hEF3lcYKoFptcK2TJy0hPpMEqFVurRBHWCxkdOWjlnbG31sXVNK26ibtxA/RAm37KFGvWHnPLAtL7JPexhN3XoocEcCn4CV1Lfbbsihda2DqQLFUznSqCap16qoyU2TVzZRznGRkPzWNWRQR/niDG2a10rgynHkiD7XrOc5JzThklLW4te0mDdmRx1cYFtqj6mVeocT30iLIdhMYTBsQWcGJnD+FyWXY9lUWa1Sjvm10mXj66ER95wnldNI8kjc1E4KPOqXy9N5Es4fuwMnnxcK12/jy8+8ip+uHsapycpn/VOpNp6KPKUf8qU9HJZ+oChtRzCqnAavZE8+3qWukHzBwmWWoRzwHoZ2t09wr7llcscn4uUDQ9bV3XjVz55JR68dSt504MXD4Tx5ccG8cWHXsTD33wKz7/0BobHRqjqtFG2VqTHeHSOQ215T05JeN8FrKOyO6vPa3V5FuXCInnNfmCDsHqpymFpnHiI/6aTrW+7vH9VUDM24W8A5Hy7lFPte4/9za82/NG+bfh2h6cchr/0i1+gsvsLO18KY+M/2parchBpa9JgddmlHHiXg8AZKOehHFNyJGqbSyv3olV7gZNSTjA5qwKno5x1hw8faqQ6DypP+CiorCDoOvj238WgeJW7NLwXCBxxwu/i/Bc7z4J0PwpePw588+GvneNxwDfxWDjIefluoLa43PcaVY7aQGUHbahz0RM4EJvQhCY0oQlNaEITmvBjgJ4ng/BXf3Z8G8hIL2PzvR9M4IOf7MXN96Sw6QpGygHEutLTNRzZncSrz0/BdvvyKlr/I9OpGZ5kVPfrfIyu1tHuh7BxZQh3vz+Cm98Xxo23hnHVjT5WrqugvTttK/aEvmzWtWwdU4drKA96mDhUxem9fIhWoXUfnd0p3HR7Cz77sxF84pM9GOjykOBjr1+sY/F0HAeez6M4246Th2o4e1rb+rHAcAhdKzzc9kACH/vcFtxyd9RW1MmwJ+fS8EHW8VoGiXwXUvV+DJ3kc8VQza124hN1zYetdtRKitnZGg4eTGN6fobElTAzXsKRN0pIn5WhAUjK2Xqlj7s+Fcb7P5HAvZ/y8b77I7jmjgiuuj6MZSs9FIoRFEsJcxLw3/hlzrGKthSrmsMk7GntmIyIvA7J46LgjAbvBkqhbT7POWKrVZTKWpnVyMuDzkR/VEadcgyxYgLJbAvqs4yXc4D3tSIP8RBWrK/jzvtX44qr9f0o164ytitRIlnBwmwRp49UkJdVjv9yfAz0e3j/TWF8/tO78P7b29DVLWp0u+CczsxbQ8mCJEb3AupcXImxRft+WTUkJwnrrJXIG23bWGs4AZysiTPVCNsoGoJfa0VtvBWn3mDbz2mlhkw2dXT1U/bu3Y7PPbgLV27x0U55kyFZzihBLZSg/EZRJmEVj+V6zF8hfuUkFsZjeP77I5SpKp85WR6RjMcjWLs5jvs/0Yb7PhPFzXfFsGJd1OgKw7etKN98tYrXns8il02ixBsl8qXE+yLSnAo8v+WmVjz4ya144L42rFkVWEiB/HwdE8M1TI3qW3Atjt8MMqLKcdZGub/j3tX41GdvxPvu7EeM9JgTq0QZnahhnPJbzrTiwGs5jJ8iR7VtJAmOUu7veH8YD366G/feP4B1m1Wgq1P1nTqRwdTkgm1jKVQNeE9mNfVpGdn0HUM5ob1QFNFwO6rkkZyCzrArZ1AIV14Tpt7oxM6d6yjXCZwhDlpBaQ1GOtqJ/3U39uGnPn8lrr85bCuYtcWgQPVq9YFPfeJrK1ZGmG2scdMd5ayUIiLyFtEA8YB/Su+M9S5aSc7Z12pR5LNRZNmWcgbL/q5VjCtWe7j3Q23spwNIpLSqj/QSV8OK+SKUL62eGD5TweF9NUyOMSP/5RDfxj5/30d9fPjBJO75CHXcHWHcRB2366owOtrdytN6pR2bN3u4ifRee2MY23eFsfPqKHVgHq3ddVuxpnaWoVdbnuobh7ms+FklfmXiLmJkOJXTjrJWi6OUj2F4UCuCgOUrOuxbdlq1Vy7qpYQ4FhbY/pSH/gEP3b2erfwcPF2jnlrGNtP2p5T7csQMrApageU6ZxvjO63cZFsIG7YVsZp6INlap66fIxYF4iAeK7CHaVVHNcz8EV7LsVS2fqIVLXK3u1VPcqjIMaOViezHWGR5VVx17SYMLPMwRjz3HBrCnqMncOj0WRw9M4rDp8Zw+MwUDpyZwaETWdtOcuPKdqxd04tKKI+9R2qYYD9ftS6OLVtTWLF8EAN9WXR0jOO66ymH1FnteklEJLE9Kz5xZf+OhD1E/BSOH5m21ZlrV/u4Ymcci4s17N1XQS4XRZj3xROtENJ3Un2vhq7kLFZ3jeHKNSFctb6ID9zqYddWbWtYQbGsr3x51Kvss8xHMs3RaoOIhEj9w4QpDE8rwMmOutq7VkY6F8E+0pKvJ7F9SxzvuzqBVZ2n0JM8i5W9Q7hml4877g7jasoOBzxM5zI4PVaxlXfX7aDc3ZbA1tUhbO4Ddq4Arlmbwyfv9fH5z4Rx3XWevdAylylg79GcbeF31TbK6/UxbO4dxcr2YWxYNoMdW9qwfn2focghw8YN9z1D6lt2EkN9CeQrMbx2ZAF7qGtaukN4/21h3HF1C3b0zmNz+yi29gzhqtVTuGV7Bffcvty2+j4xXsO+sTpy8RakKc9ldV/yQVsbcxTnHzUN5UlOmHCobP3BxDHM+n3tOhC3LXDbmWdNyzzWpcbRG6tgQ+cC7r62D6uXs115T2pGK/H04o+9bKDAPu6zH/lhtqVtQ8p6ItQVvGbvQpF80er0FRy7Nq7IYXlbBdFSBmt7qTNvIr8YrltbJc/qWJMaQW/4OJsibfjNlTxkSlWOSWlWLIdX5Ry/zIFI0Cq6upSZzqX/dTRHIdM0FJzprEawAhRNJeTrzQ4yQ3W5DAzBQR2NEwg56fVn3znUPV6rmEtBEG/1sKJGcQaGG/O2xWrYuiyE5fEppGemcPRUlvMe1sC+vm5ZF+66/SZ86pMfwp133IZuNkhrvIDWVBmplLb5Zq/32VbUUa1tHratJ+82U++tLOPWdR7uu6oPH7h5I67fsZZjiNaZUUD1ggx1SEiDeZX6jUetGJMcygFasbcYKBDU37l0CENnxjE1cZb9eJF9bRrHj53CMz98Ha++8gZGR04hFi0gHsvg2LHdmJgat+6XYNGJehbhMsewolYUpsjXDoY2zHJeNsVBepHzgALlpuaTjnoRXZyv7Fy5HD19CQxzAH/hWB6vHl/AVL6Crt4YNqzp4vgbwULZw1O7T+GbPziCl1+fZtvmyKcibt0FXLm1jXNX1hOhjqQs18IV6kDKt2Q8RGmVkKj99GIDaUctyflHgvzTtspxkk19RPltp74M+bNMkydvqEdCKUSQQqUQxfBECPsGqf/HKc8cI6KUb3PGRXJY1V/DVRzrr91UxbXrw7h9Rx8+cc/VuP/OLVi1sgNR1u9RMejFpvl5rUBMoKx5h8+5C8sfXYhgtkp8KCucUlFnWQ8zZ7ZNWKnPI+Es1i6rsW9OcOyawqGjRUzOarvimL1kForEKKpRDE7W8MgPz+BrPxjCm/vH2JZp061SBDUvSRnXinTJO7UBxwzNPSqUOb1Qlpczj7hOzS/i6ddP4IuPHcKbB8+yH1J/9U/j6k0eNq2JIeLlSTvFhf0iVGQ/ZueOswxKD+XAY+BN6uG6Xsyj8Gtr7ir7WY24Sk70OoUfipO/lEviFU8lcf+H7sBHP/Y+fOj2lbhzU5q6ZwKLE8N4+ZVRPPq9fXjhxYPmrK2RH3Wv2AgczC+z4vDtQD6Z45BlVAooFzI8ui2tpSIccM4iBW1xTEu9oH7/44D48hOFix1JPyr8OPn13b6/CVg28FfD8VJOQn3f8K8C11x9ZePs8nAxP3/nt85/i/DdQLjJ4akytEoxcBYq/NIvfKGR6scH5wAbtu0pLwdKczHIYaZv48n5KKeTvvOnchR3MQQOrOA7ekqrfFqtp3IuBZdyKCpOK+gudugF32aU8y4Il9qeU3Rc/O3Atta2c/Qtze/KaLf4paAtXi+Gd8JLEDhoLweXwkugvEu/PyicxON3WhmpVYgX16UylOdSbaj2lwNSZcuBHLThe3FKNqEJTWhCE5rQhCY04UcAPQD/mA+QF4MedysMBRab49NliaHIZ9bFhToO7K7iB4/M4rknR2yrv4o3i1I9Z04wPYhWSlX7dpK2Z8yOF7Hn5ap9E6mxUxOWr/bx4Y8P4As/vwsr13rQbjz6JuDcSA37flhFaCyG0X0lvPT9OUyerdq3u/gYbt81WqXVC2t9c0qGGJ85W8Pgm1VzHEYKK7Dv9Vm8+XoVk1M1yBYu++36nWFsuSqMzgG3uknbbY4cq+LVxwdx4OmTaKsOoD28AqNnMjhzOm1bF5ZlzzBDA4Hl6Ft/R45OIF/KIxytolJIYPhwFK8/XcEs8dYqvZYuD5uuD+O+z0ax/cYwYp1awVbH4HANTzw1jzNDM5id0zdunOPLTArkr1Z3aCVBxI8i4kWMh65mpjKnwbnUlwXZDXO5HMsTt5i1YXFwxnteK+iaoZSrwStF0FprRzKbwsKZNDLTNSvD1zfFyOfP/dw2fP7nl2PZKpcx7MvwGrJVIOFwAbNTOex/cx7HDlVtdVuRqGr7p1W9HnZs8qFvqs0t1JCn4PCuOWDk/JLRVkZcj0E4CR+LOxdqCNkiK727DcRk8GciOQ4rNfKOrNACjhLvyWdZiQNxvxv1iRT2/rCG4eOsk3UXyQbtkNXTR5yWe+aUS88xQ8N6qkNFThjWIjkph1RvyNq4Xk6istiFva/M4MlH5zB0SivD6ijISOxV4LWQllQI5UgIBeIk+tNEZvdrVTz/1BxOHa2io30j04bNcagFODIpa/FJmjzR9/v6+zz0dYds5ZG285JD6yh5ufu1GhZm9F3BDvu+p7ZkFZ+0snVipmL9oH+lj2Q76y5TVil7OZZ5ZDS7xWMAAP/0SURBVH8VB/dk4Vd6sfuFNPay350dorzxvj71JKfddvaFVet828pT9lg5RPey/xw9NGZbdcZiUZM0OUCcjZBpffY3tV3YbacXjaaQiHdiYiyH2WnWTV5b3yedcsxvZR1bt/ewzTqxb/c8hk4TBzkwrTzY9rUd3R4y5NlcY3WV5NJaxZaTymBWcDY3BrWT5NIFz4W6jnbb7osHcnTI+K1tRasNZ6QgOJNza2HOsy1ZpY+0wk7OBm2RvGq9h7Ubouhkeyi9VgZJL5XFXx5rtTCqxV68+HQNe95wsiCaO/s9XHNLBLfeGcHG7WIAM7PMSb1ccbiGwweq5FMRx47WkBEPWG6iNYTNTPtzv7QLN98WsxWPat+52Rr276ngwJ45nhcRjamPkDmUN0cFy69H2V9S6GhbibGROmZYT7DF4r69M+SDz+fvHtLmYXCwhiRpi7DtT5+p4PjROfT3rrG2rZYS0KoQ0SgnWYUCKoNruRjH/EzYnDQ9AyF86JPr8cGPbSRvfMr4BPlbNH+FVvy61U/ijTN622o7amrFyeFWYj+y7WONj3oRgqwhbwqlGYRjC7jxFh8p8mJ4rIL5HPFs70Qo1YqW7uWItw2grX89wqTz+JlxzEzWsYZ82rFtAMmOCN7cfxr7DlfR2hXCfQ904jOfXoXrr8vggfsi+MQnIti8xW3p6evFlKjPfkjZYP+Ohj3EI604O5jDqROUZ+LUQ1kcG6vj5ImzmJ4po5APcTzKYfjsCCbGa1i7pgUfv28jfvoDPbjrqjx+6j4fD94bxhXUkdFIgbqQfcPXSjOt2iQvzXHIyimjZvhl28jGrusSZVN6iWoEYSo1L9qDp19KYw9pWd4fwmc/FMFnP9iHm64o4JMf6MfHPtKCDZt9DBGPM5MTKFBOhsYXse9gFS1sr3/4sQg+f0sdH965gM/cFMKvPtiOBx+IYD11tuqtsJPEWzvw6t5hnOI4tJVj59/7YAQfvTmCm7bm8OCH1uCBu1ZjxQrP+qEW+2lr0qXBSdd5KNYSOD0dxQ84zp5kmZvX+/j7n+3FT71/OT53cye+cGcr/sGH2/BLnxzAFZs9c3K+RZ18SI4N4pKmJiyJ8XLosT6PfPMpOz6ZF+Y9P1S08Uovj0RS1JoUzBnqiXGOs9uJ/8duXYWPXpnCB9cX8bmbuvDBm1vR1dbAUvkohdTSNoJa4C2OCJRZvfjAeB7ruqasSj9PclzQSw/v45j9s5/ehZ1s71QlBz9fQifl5+ZtPn727hju3TiKu7Zl8LHbenDf7Z3Iso33ncxibGaOarJAWZczkY3bQCXwGYT0MhBpkPNP3zHTOGarBnntXsqQo08vMmj8dZk0n9OW71pNaAOkymRa6V+N51IHWv2lzqi0lp/XKkPluXZrIPKjAPNqBeUNWzqwIj6L8cFhvPzmMA4dnxFj0cIxIME+pO9cjo2cxdjQUfS017BmZSu6eyKIJYlfvA2LFNSuzghuv7EfH79zNX7+Q9vwmVtX4q6d3bh2fRs2rugkfdqOl3pDq7ypQ7yavussPRIlHZyrVd23HrUCVi8ooBZDZhE4c3KU+j2DZDyP5ctbsGVzNzZvbseVVy7Hli3LsWplG+uWE7SMQeKY5/yqLRVFT5IcYeebnchw3NPLDq2U+ThOj+cwnmefDUVQYDtVw9RVHH8ilJNty/vR3b8WQ/ke/GDPLJ7ZM4456ssVa9qxdUM/26KGiUwZz+wdwpGhIlasS+If/cpn8YufvxGf+eAqbNuUsjlTibJd8SiVPmXPo3xrxVtd8zQ3ZtlbahVtC51in21j2k7KfQvnYgmkUjGsXdWKjtYcirl5zM7mOERGEa4nMXZ2Ec++NIiHfjCIF/dMUKL1wkrEvkmYSpRw5dYOfPjuNfjsx7fgpx7Yhtt39qKf8ds2dKO7K4butiR6U6yLg9kY5+qj0yEs5rS9a8SObx2dx0SuHVXOC7xYxMZFNy6zPRqOw2g0j+3r41jeVsDE2SKee3Ecb+2fw0KW/byc57hRxNhkGq/uG8V/+9Lr+KOHDuPNA2OUoZLteKBt1bXNb4U8kEhbh+Vc2OfEpyaHMSdNOX23mKdz2RwOnpnHqYUOXHPr7fin/+ij+Mef34WPvH811q2MIEe9Hade0ecAopShFHVLK9tU6oYahtzWHhMKlC95PxlqHHydHOqSsljXSskk8aJumJnB8MQQWjuquP/WZfgXX7gC/8uvfhCf+/i96O1txclTRbz22mlMTaWdzvGLqKuNfW27S7kNlMDloPFWgJ43NPuo1wqoFHP2bcWQ+rPdbZTjLpSKP4p7D+VfBvyVqzb8RuP8xwI5lX79//v/RmtrSyPmnUFp5IjavGkDjp84iUwma9e/+Z9+46+Uf/OmjfjQh+7Dr/2TX2mkeDfgBIx5Vc7x4yctRvj/2j/+lfdU/7JlA1a/0r61e18j9t1B+/ffcdut5+rQtwOD+t8rCE/VrfBeQHsoB7S2trRY/vcKSi+e/tRnPok7br/FHLPvxp+vfu2bPzJN+pi7OQ9H3nmbUjnElEZpLwbFnTp10u7v3fPWZctRWt0P0iqfyr4UKM2l7r0TLgEOS4PilkJA68XlTk9PvS1vEC5Oe6k4wTvhJVD5F+OyFN4JrwCW8k3hcjxWPZe6H+S/FAT0q03erQ2b0IQmNKEJTWhCE5rwdujNPHDuYfEdgx14cnH8xeEcMLWs/KEQqn4OfSvbseuqTnS189G1yodJPsjyrjlrqrk6FmfqmB2tYeJMDd/68h5872vHcWJPiQ/kfUh6MT66ZrF2eze27QojkmAZxRAyYz5O7K4w3TxOnhjB7GIByWQL2pMeYhFW7TmEinN1pKfrOHGwjEe/dBy7nzyLSLHdXlA7MziKuVkPbSlt2QeEK8TJ2SqQmaxj6lQNP/xGCU98bQiFeR8dLX2YmpjC2OSwba3V16m3soEYidGKBm13pPrOHq7hq3/4HN56mnPTdBeSkU6EPX3jq4q2nhD6liWxrF+rjPi4zrqykzUceaOKHzy0D6l6O3kkI6CHXLaG/ftPolqLoL01jmTcGULFV31HrZKtY/hkDS/+cBLfe+hV1LPtWLV8wFYprVrrOV6XgIOvlzG4N4v8tByHPmq1IrHV5l0yCtZZF3nFoCu3ioXHSAF9q9tw1TXtaG9zeNYzdbz1YhEnD84gVIoiFWmDvge3efsqbNses+3+1PZeuo6Dr9Vw9mjBbdOJMAYHD6Orpxup1ghao0xD2kM1tv1EDW+8NI1aKY6eftJNHtaYf/8b2oozjelhOSRm0dPdhU7KT0KrCjPA0NEqHv/2C+TtcvS2y8CesHzaCvbVZxfQngrhiu199n0z+UZLaeDY6xWMHCtgYHkntl0RQTQehU/8spMeTrxRxNDBAiKhDmzYFcGWXb5920/fplqU/LwawuCePGbnJ/H0yy+h5NVIQxJ1vVFe8nHgrSqeoWz5sRLWbm41Z4nYeeq4h5N7M5gb8RGPyHiVNQdpOBRjP4ibYeng0YMYG0+jkveRiiXQwkr1Rr+gVqT0L1IWh+t48ck0Hv7iaxg6VEQytBwhv4JifQq33LmKdZIH2vaW9R47lMbB3TOo5aPobtc6RfYz8ubw7ioee2gKzz46g0Iui96BMG64pQtdA5J+fXurjgMHRnF2qEyexdCRDCHC8hbGa9jzYglPP87n1r0TSMW7oe/R7d87jOmZLNu0BS0JOUzYNnyklL2ykOdzHPvzq89X8Og338TE6TzaEwNo7fRx7U1RW8lYp2wusv+dPgrsfWOC+VKgaJA3/PGrGJ8aZRt1oaUlig7KViIsmTF/gK18PHaA7XLiGHKsrLOj3bZLDZOUCnGYYp969LvjyFJmN6yJm+Fe3tszx6M4SBrqpVbc8f5Oa2PZ3vTJn7Ona3jz9THmKWHD+vXYss23Fa6S/XIO5tCbHFtEV8dyXLVLW/ySVvaxOcrwsUPk0VuDaEm2Y37ORyQWs9V4cRIkh5m+x3jmRAjjIxWkUnHm17aG7IUF2ArDfW/mkJlrxdhw2WRMTof29iR1mvol2490l8jXeeqXIfL124+cxO7X5pHPdvB+CYeOHENrRy/pUVdmu5FJbnUX6y7UWW4Nr71UwrcePo3BUzniTf3A+qtiFuR0Ex88M6ZG7LtQYRT4LL98dcJWTA6zzse+cwrpBeoQyqfUezY/ia07upAhb157aQ6HKOfxeCv1i14KzmHtpgS27dR37+p48vE5HltRrqSZbwHlWgqr1/pYvSaCXupErYR8/Y2j2LhlFXbu7KA+kAHfx9DZWcpKO3z2HQnXsoEu3HxrDLPkw2uvZzE/n0M4nLSVQ1o5oxVmxVKevO/Bhz6SRIw68/Hvz+D4qUUKVgdp9agrqANlF2U+fUMwuziGVf3dWLc6jJkF9tlhn3jmOT6cYpmdWLUyjCuvjGPHFR3YsasNBeJ29MgcJify6F6WwMtv1TE+XSJPS4irsdnxxyemSddK5mX7sa5nX0jj5TdGUAt1QqvUJMiRaAmZbIa4tmHLRh9XXxHD9i0JLF8WweR4HQtptk04inQxiiefmaAMtGL7pijWrfQwyjHz6ZfGUQ11U+Y9cyaiNoXb37cK7V0h7KF+3Ht4kXXFkWEDTU6F2G997KCe2HlFClfu6scm1qVVrbv3zeKr33oF2WoHQuRRbmESM5PTVE2knTJ89c4ort3Vgq2bwujr82x7wm89egyv7J1BppzkWFtHhfyanckhGWW69T62buGYzzrWro/jFGVn9/5pJCjPHKax/0gJs+k86n7Uxh+tglEwhUmoa9Wvn8ToxCLGx6eoS0ro7k1h544ktm5uw5o1bRxL4uZYf2P3IvXxGRw4W8RCpYV9JEs+LOKaqwas7c9QT+w5MoV6LMoaONblc5wjxCm3rab3Xn2riGOnRzE6XcDEaBWr2Z5bN8dx5dWd7KNJ1kX9NKiXhEJgN8LwVB17DkwYttuvXGWO/UnK4luHJhCKJTl8qnHVY2WgZ/suLmBxQX3efeeybzV1ftSjbHkYHz5hK3+XrWrB5q1amdqFq3cNYMPGVvsm3GNP5/Di7lOYytUQbmmjLLpveLKnik3ul8rLvkFoyshFymFmziL1acqG0ttKIl1bHMdfe6PGlSO+KJ/PtHJQW5zSE+y7iExrTg87ZzXs4NreW84Rn/W3gOOtl0ZPYgZrejgP8+dZoke8qF/KVaZxOPgshCWxLt9Wnr/1+j6cPl3E2Ngkzp45Sf2vbSgXcODoCB576nV8/ZtvIJdbxO03bcUH3rcSK6kr6l4KgzNs1+EppGqDWNVR4fjfgmK2jCMHjuIbDz2Dp554k+N/HuvW9tuODvvPzGPv8XEUMyPYsKIFbTaPIu6UW+Gm7XLDYc4zPcrcZA7PvXoIp88u4LZbr8BPf+x6fOTeHbjqyvW44forcdVVOzjGxzA8Ooy58Uksp+7auHaAVCUwOjyOk5S1DPW3nHFawXZ6aAiPvrAfxyeKmFvMYPuKOm7Z2om+1oStWNP3+45PlHBkvIoc8chzIOpoi+K2a1bjpp0DZFUEY3NFPPHsWxgZZz/oi3Fes5L1+licm8Tzr53GS2+c5eAwiys3d2LD2m6OycCBg6MYGxnF6lVJbNu2El2sD6UcxhdDeH7vGMZns7hqQxg37+pDPNmGsakMhocGUZo/w3lsjnogipnFIl54dT+efG4PTgxOYsWyNuqCZRznCzg5OI0TJxeR4vx+RXuEc/Isx+t5PPP8m/i/f+t17N59lroP6O9dZt9EfuHVk1igHEeidY4RHhYyC3jq+f145NGXybs4lvV4WLe8BTuo/yPUjXL5ugksAwf1Zcv6kEtnMDM+g7GzeY7vI2yzAiZnpnByaAav7D6OR554FWen89h19TX48O3rcdXGFMcaH6/sY5rBGWwYAK7f0YO+rhbUC2wP6tc3Ti7g0HQVG1dE8OFbVqCWncSbR+dwZiaM9SvacMO2NvS2sR2Hp/HMS3uxb88c28fH9detwYZ1y8irDA4dGsLwSBFXXb0Smzb2cL7CvlHTynjSwT47OsPx+dgYx/8hdHfGOUdIcJxg/6sWqFtG8B//81M4deoEovU02ymMaKIDpwYXcegwnx+qRY4N3bjllivY/0vsg1T01tXdPF3bVWtFsLYcLpGmE3MJHF5Yhqy3hvHaTUBrnuXkduMSeyTzVNmf9WIU55mcN3vyrqpvs0yt3rf+zglHvebmBTZBcqqC4E7yB9wnz94NQjfeci9zN6EJTWhCE5rQhCY0oQlNaEIT/rbC1tH/q3H27mAPke8GjadE96DqoRrOoH1ZGBt3LjfjX8gvo1LRO/tyYIWQL+SxuLiA7GIe9YqHmckM0rNhVAqtiNQj8CtlRMMV9G+MYcXWJFpaI5BlemEmi7PHyhgfBErIINFdQP/quBmMe3o70N4uhyMwM5XF5OQsJidmMXO2gOpCClF0oMg8lXARLV0hpDqrWMMH/uUDA0glImZon5ycx+JcCeNncpgZKdv2ezKol/iwH0rm0NIL9A60YmBZF+trRzSurUKLmJtexOxEGmdPTSEz6SFU7CT+KT7Eh1HjQ3xLbx7963wsW92NRGsMmVweC7N1jA/nMHR0HLFaC8I1GbEAfQuvFl5Ae18NA6uTGBjoRVdvJ1pbQ0inKxgdGcP4aBqz06RmLoR6sRU9XQNYsTGKvrUgvh7K+SoGT4xj/GTBHIeeuZHkNJRh0FyF9gK2nIdmuq2FeeGjHs2ha1UU67b1oasrAc8ropjzcfTgFCaIayUfgleLIxTOYfOV/faNyFiSBTFdKZfE/tcnMDNeZXkVc+aUQzPoWA6s3tSJ/v4+xONRFHIlDJ+VcyePzq5Wtl0XtI1fRsb7k5OYHE8zjY9Ioozu/hA2bxtAV0c7MouLOHHiFGbn0li3fj0GlncgEq0hn4kgPRfDvt2n0dpeweatPeaoDPkybNcxdCSDyaEKuvrjWLejDbH2ErSF18JcDoOHFjBytGSy0b/Jx+qdCbT1JFGulSkLCzi5L4PcdAtppWytmkTHqixaezown13Eqy8fw+J0HKtXbMAHPrkWt96TMIeSHFxPfKuEp74yjjOvU35smWOWfaPEdggzRNg/CiiHFxFpLUMbxvQtYzlrlpNH2uYMmF/IY3h0knyaRi5NeZ4ssZ3biGc/atEsipEx/IN/fjNuuTeMRI/HflPHxMka/uy/HkKVdG1ftQHxaAwz87MYn1hk24XZLgnk/TFsuSmKX/7/7LIVs5IDrQJ78YUKvv/oYST9ODasXINatoax0+NIz+QwRTlbyMiAnKCs+Pa9qJZO9ruVPmWzk/1nGZIJ2IqnyalJnDkziXIpiunJImr5GOKhTsp8GTuv7UW8jXEUuHQ6hzH2yzMncqiX281pKGy0akL9Ot4G9AxEsHJNG1atJs3kazZdxenjJZw+VsJiZpxlprGCfX/1mgH09XWY4+HAwTPEd9G+c7dydS+SSbZlqWbb0A0PLlAmu7Dr6uXwYkX4kQIqpVZMjBZxcP8JFIsVM1SuXp9ge2hFXRJ19skjh8YxPTVH3dKJ7TsGEI5VUS5n2f/CGBkss40mELEVlSXqBg9rNrSwnE6EI77J+NnBLOugPovVsGlLt9Vbq0Z5r4bRs3lMjtaRZ79KtMyis7eArr4E1m1cTRlmP6MsFArURdMZDJ6eoszW2NZdVBK9rK9IOZ2y1YwdWuVBuV22vJd6AsiwvbRF7MT4NCYmKC+FOEolve4g5wH7uXSAGt9ABn45BeV44Fm4ir7lNXT3lZDL+Dh9oogqZU/br3l+lf09i3Wbqdv8AiZGIpieiLH92m2Fa7lSwMDKClatl7GyHW+9MYkq27ceypIfRdLnobc/TP3ZjmopjpGhOk6eOkp+J6gHOhgXxcxEjn2cchGSLqfesm9uhbFm7YCtqh4ankAhXyEdvM8OR7QbTqwyEgnybn2vFpZg6Owg5tNajdti41OY+LNBqV8jqNTZD+uzWLvCx5qVnUjnWjE0UsXC4jRi0QzbPo81q1Zg3Zouthv1GOXvwMEhjlfz6GpvQVvXWhw9Nc/y2UDSddKldbe9aC/Hhf7eGGIsY2Iyj5HxGmnppC4lEuY4JD1tZfadJPr7esHirB/m2GYnjo8gJr3H/HOLUbyxd4F87sHG1T7WUY/myxG8snsMpTrLUztW9TLCNK7Y1oq21jrGZiIYmZITyKdsZ+B7JfS0e1i9LEWZbLXVxXmtyJ1PY3x8GEOjGdQiyzkqtMCvppHwixxLklixvBt9/VHEY1q5DKavMExjfHIGsznqkVqn0VsvLyAZY7/pbcG6lRxLqcfknJ2YrLBfjLLvVbBi1TosZtluozM86lu7EeJOOSPrZNx2v5QX0hONJlhfntjPoCWRRW9nG9atWI3WJMc0pl8sZDA7u4i5mQzbqozFSgvylDOttIr7lEviEI+2sp8UMTo1g5r6JeXDK+uFJOkr6oSUh7Mjk9Sx7IfUzRyOsXlVB/o64vDIH63a5PCMyelRtlWYOqmNeAefWaqSj/1IpZLI5goYmZhCXS+vyHFo/UlGffGlgBR519/tg8MF60lhPhPDGPtivbiADtLTTzlp60iirS1qq3fF59n5Es6OTtv3//KU0SrLpgDw36Pe1NjtwLYk9cSzoBOzX/Na3JSwm7OPZ5WKtrBkvBqFoPR6cUA3qyxPjka3cwB1AO+VS9rOVTpA8wG9hKD7chzKUalVlSH2J45gHnUEBrHGH8GWzmN4/7YFdEcGWQ/HNs4llE7yKeDoxOq0UjOMIsfd1946jmdePI43946yDaqkX+3OFiSOM5kK8vM1fPD21fjIvbfblpytHXnKezuefHMOf/bQ85gdHkJ3guNeQi8C1JHJcr7BcV5b437h87dj3do+llXD914Zxl88up/zgrNYz7GkI+rj4/dtxifvvx6JGHnL+ahW3g1Nl/DYc/vxF198xbaa/sLP3IwP3XcF1i7X9/9ylFPqTS+OQyfm8J3vv4HvfPcI5yM+fvEXr8OmjZtw+PAJfOXL2s6U/WAgjM72CDo7Ikj1t2H3mSJOnJ3HR24cwK98ahe2bFihaRjnvFF899UR/MVjh7D78FH7lub112zEZ+7cjPuu6SNtSUwtVvDnX30Cjz8/hLHFKvGJoYt0a4/7LHk1ne1Aen4cP/XJbbj/riswOFTDt7+1G/v2nsAD92/AJz56Mzav5thansXBoRL+8b97BGdnK/jE3Wvxiw9eifVrN+PA0Xk88t2XsWf/cWQKbAviHov7NrdMcgJ39fZl+MgHb8C2LZ3I5ebZbmfx6FMncObkDFb1c2xnGs5MiGsZ89MVfO6TK/CRB66iPl+H45zLfeXrz+CHz03apwN6+yJoaYuYLLYkO3CW84QWzp/vfN8q/OznP8h5krYR18paBfYh9qlIrB1Hj0/gySeP49nnTmN8imN7L3U35UXvaC0S53nqpp1XLCcPbsUdOzuwsp1j6qyH3/itp/DSvlHcfUMvfvEzu7B981qqah+nzi7gd761F198+jTW99TwB//2s+jy5/EHD+9hewxa39yyLIbOeBgxtuN0toyXXklTrwC/8ss7ce9d12H4zAn8h994Gfl0DX/vc9twD+VlBefCHCnY2bVzRgLDUx4effIQ/tsfvcT5jEed7+ODt23AR9jGMfbrP/qTJ3H0ZNpWQCfkOGS/zM5z3B7NY9v2VnzsY9fhjjt3sbhF9j99GkCrFzWXrDGuxHGP9bCuzNwiHj/dhW8O7cJk+DbKK2U2xMGEY42cgVIKchqa41ArIL0koknOuVNt5KO2ctUAqqCiTThtPOUAyQgGPZSwP+t09iufZdy7Q9Nx2IQmNKEJTWhCE5rQhCY0oQl/y+FHcRwahGQI/tEgEokgGo3yAVeGzDqqFZURQ5VPyjJoabWIvnWkt9sN9IxqPyXUank+ANdsayyFII1tM1Uuo8K82p5Rb79HIrFzdcViMibDdsCQc7JUKtpbtFpxdyEFeju4htbWNqRSKYSJowzPhULBtuTUN/yEn3uaFpx/DJazLZ5IINnSYvUqfTabQZk02bZgRMAMckzrauUf84iORDxuaQx/8aCijYj4QM+HfH3L5BywOqWJGU1xxJlPx0K+jHRGjoCC8UpOTREsQ18kHOE1+eXpQZ98Iu3ig2hRnXrb/jw9jiLZAy4G0aRylV68dFt7absy8kzbltXJddaRTCSNLtdmQqNGnmftGIDuKX8q2WI0CIrFguGlMlRXmHirLvGxwrRa9SCDYEgmx0odrS1tho+2XtWuPEvzqH4ZVPXdlqIMzpSTaDRmZSsI1K7CQTxSuWZU9ZSvbmUKF8WHGW+8TkTNMFOqFjGbn0NbXzs+/OB67LhajlUzDWF0qoZXX53C4lwY113fgavfF8ayjSy3XEeSZX/9Dwt47uFTmDmWRNyPkwt55tLyIAdEm7iGDa8q5UA4pVpTSKRkKGbKkqNVciXDrdt6ztFUjmRRiM7jF3/tdtz0Aec41Baaower+C//dhrzh2exNr6KIlC2ra1yhQzr0Xfnokj7J7Dqxir+4b96H9bvkOMBKCzU8forFfzh70whP1XCsrY+FOcoM9k8PPK2FGY/Cucon+IZ+6H2JyUIl2jM9W9tRSo5Fy+z+azJupML+zVIJhMmh9ryUyAelEpLvpVJUJzaVv1QoDwp9rMy+4L6l2TE8jNPgXLkZKGhI3ie0VIe4nUuriEj+Xze+pviEknqoJre4hdPiYP6L/uU0kl+wuxD6ku+T51C3ZIlH4pFpmcbxOMJu69+oP5pWwSSQslPmXKmMqSD5LCUvJXZjkUGHaVPkknnDAxAtBcLcqY29Ia4RfzbujvgRyMi02guEP90mrLPuCjpFOLSp15IjhbHTznN2too+2wivQSRy5XIxzxpzSOu7fT0faQGWLdnGXZsgDRWnXW71wrOw/nWIQghtZGWjV+QTFuIypjpW1+NEk/J9GImzfovbF+1mfgk+dG1tgwM+moAuq++sRQatssGPuRUo1itmFqKi6Xh9YVa6O2gOOmyZEvK2lvtl8vmjAbJn8leqsXwkB6emZ4hLVXq8ITRoPRLCzb8GmEpuK1Wl4D6cVgr4WrUNbCg7W6rlRjSC+RhpIxYXI7Qkm3zGw5Lp4mnUePT4mKatJ+nTkzUPfEsAJMkMqiiMUa6jzS1sB/Fqd9K1HmiT31V99QnlkqCvpunvpRs1fjms32q1j9U1gWU8FT8EPgUugT51d6eYpl1ZNI5ls8+TJykG7R9oBxP5xxYps8uYhSvffKlwr6QJ+3FOvtr3UN/RzeP+mZgBfkq9XJJjveqpNXK0Oo68cW+yacydWRxQTtc3B4Xg/JozNCKOvEsKNPmDoGQCViOyrqgLcU5K39JJUG6JVGXArnr49QV0iWSJ7VRLpu1NllarQz4XlTbIZ7vD0Y/04vuQHcE/FQ5hoPkrhFv3w1lmUoi2jTG2LjZuK84jX/SsSpF5ToRE5aMIQ72TUW2h7aRj4Sq6AsNYnV4BFs7juKO7fPoiQxRIPQNXeonjRFyOAhsXkPcmUdznEKphmMnc9izbwbHhuYxk6sjWwuhzHHGS1Wxsd3Hp67fjCtXdcBrYVna4jPeitn5Ml587RiOHk9jasrHbKbIPGy7RB1r+yq4fnsnbrpxK8ckzjmI8vHxLF7aN4TX3zpJ2aXe9MK477p1+MANG9AS10sSpIdj8/GZOp49MIa3XnoRPeEKPnrXldi6YwX1grbBLxpf5NSe5dh4cN8wnnn5OPEF7rjvdlyxtRvl3AhefPUU9h1dRLYQQ4Lj8+oVCezcuQMnTs5jYmweV6xvw/uvX4O+gS7XCF4UxwdzeO7NIbx5+ARqsQh2XrkZt+0YwI6BKMLiFdt43+FTeOHQBPYMpU03JcjHFT0daG9ZxvldAnMLo7j6ujW48qoNmJ+tYPcbxzE0dJp1r8V1127C8j7OseqzmJit4k+//CpypRiu3NaDG69ZiTXL+lDJlHHkyBCePTyBN4YyWOD8Uvo0FfWwa1kct2/tw87tKxFLUl7YZ0dGPOzdv4g3957FXNZDruqjEs4gzHZb1xfCx27fhE3LOUZyHrNA3XXs5ByeffEUhkapDyinqa5ObFrRjQ09SYwdP2w6dMvWlbjtjuvIlyID50geZTCkVZmUPI5xlaKP02eL2HdoBgdPTmN8oYI05awc5pjc4mNVt4dbd/bjxq0DWN6SQL1cRC4TxZcf24/jI/PYtTmGO28ewLLlA6jUUzgznsNTb57GK0em0Jco4xc+dDVWd/h45egknnjtFEbGFu3bmKlECuvWL0NrexQnTh1Bnvry7nu2YfvOdRifHMG3vrwPSfaFe25V3Aq0dUojNfShHyUeCZw+OYOHHt+DU/NRZKox3H5lCz54y3Is6+rHvt3DeOX1Ezg6u4iZEPV7KYRuymk/9eUV1/Tg2puWo3859Wk9Z/2nXmUjVFPsh5yPcz7p+xX4lMPs3AIeP9OFhwflOLyd7SdnN+czzKO+bAsH2ZkD571elgjH2hBOdsGPdbJ/cexgV5W+cg5Gjmta9akXbeQ81G4k2s+VJTQdh01oQhOa0IQmNKEJTWhCE5rwdwR+ZMehQAamxul7ARmfZEyWccAZqCII+3GYvZUPsjJwRc1B5Zsxzgw5SifXjPYz5DGIU6hUnIFZ6V0ejw/BcgLJkF9tOMj44GsOFq1o0D2eCxeWqgfoAGS7kYNCRjo5AJRfoHIDA9xSsKzEITgvy2DKOvQwrRjdkoFXdZshrpHQ6lYGRiiWKe17gTKcylkpp4ttHQjicAnHoYw4cq6KdtXhabWGHEl60mc94otLr5LdkU/6iJkxWHjJ4ecMi6LN4etAKS82blqcymIeGYWdETOEWDRu9TreOEOkHBpWq1Ws6Drbk/VeVKbaIChPdJihNBpx/DC8z5fhjJgM4iO5J+dNqXTe+B2LxuCTz/lcHsWGYTfCa3nA5FDRtdpSZQQgHkfIDyGWzjkHr/gnY61zMjonRRD0PbWwV0EsHkaB1+1d3bjzYyvxwc9FER9gufxP57RNofuW3up1nn1bT7bSaqaOwmQNf/z/S2PvsycQWkgiHkmyDeS0Od++xkXxhfi6eiuUqYoJTGCMlzzJCWM8saDYEErRDLLhafziP7sLt34gjGSXjMfA0P4KfvvfT2HiwCS6a90o5BbR0hFFsZJj1QkWnEAmcgYrrqngl//Vbdi0k3yT4Wm2hj2vVfGHvzWLmcEZtPvtyC1mkIq77QjrXgk1r2jYV6qSKicHCsI/l3NOt4CftkpH7dCQPV4Y79XIcpJJnuWskCNZ6ZaCkqlfKp+C+GJOfJ57zCOHlJw84p3TByFkszkGrWgLsx26TKa1ull5ZTyPRPWW/hJgP5PjUN+IUkMojXiuvhag4/CSAzLK+w05bQRBoId0VJtJa1lZjTRGN8GSM96dk25b7bOU5ka7Lkmn1mcvQUHOFvYVybJ4azLMRNJxkhk5cRNamknBk+NSlalup18o30wfNoeEZLpAvixxXNsP67YrB3oJQy9FGC2XA+KvFVAX0iEnvNPPzmnrdG++WCBujSQE0SrHqraMVh+Px/XxRsU7eQrAnYsmdy1Qu4pO46xotZty9jacGw2wdAxBincC3ZUukHyoLcVTjVfCX/xWCjmMxc/2tjYbTyTTkhe1iTksL6rXQuM6AJOJxrkBafMow5JrL0wdz/bRak2tbo1GtDpfL6Dk2de0+quRRxSy7KDPvQ3sZuOcIH6oPwSyGPQHjTlKZ/ziv4pSmy3JaryruhtWrE5Vjsn6koQqw40pDWjckzM9AFe/66caslSGldO4txQkd9qqW+1rtmrKl7Y3T0biKFHfFyols1+bbLEdbKs+tr05DC+iQaC2WHp8JzA6WGYhXzCdYropETc6Lmg5lvP29mVuK39JJUG6JVGXAnWfCNtDzkLVKeev5M/xZ0lm6mA/Rtmj3hKuAuFpcxzml+6SnlBbqK2t3Smjbi6k9BchoktWIX1kl44Aw0H5g3bRt1ql/+xFDdateYpWnOv7rG93HM6hJzzETFpRpr5DOVMjCmxeQ5ngUfMAj2NEqZzE3HwIY1o5mi8jU+LcLVxCoi2MNT0prG6NIqr9r5VH+fUR43AC6WwVCwtV5uUxq5WIcvzH0a0V6m0htLRw7LAVU9piNorpdAlDw1Ps5x5akiks4/3+pLbXdrhp/jhT8jCWqSC3MI8Wjvur+zuQTKmvU2dKZ9uLInX20RAyLG9iNs16PXQP9KOX42vM14r8CkanS3aMcrzs64yhr38ZJqcyyGQKaOfw29+pFbyc70lWIzFkCh7LKmJyfhHVMOcQXW2GX4dPXpSLpruL5arhNjSXx+LsPFJMt3HVKrZZDPOzmgNl0E4c2juTnFd7WJgrIJfn2E3+dXclkYhSv1H3EyucHsmwSRJoS8K2dE9ybhEJaeVlCCMLZZyZymKGuKj1O9tSWNkRw/K2CHGWLJfdizDlVtIT47ynjKnZLGnQd/cKSHVEsHpZK3paSVs1Y33XtsIMpTA2UcDI2ALynK+1drRhzfI+hCvEc36GclxCqiVhu4Wo3TTymbww+OR5rUD8vTjbKYlMXtsD5zEyvYDFIucEPtu+PYVVy9rRy3q7EuwPetbgmFOpxzE4mbfvIXa0lDHQ7dtLPyDfFDdCPk3l62gL17CqzUNfSxTZUByjC/rk1jSKytfWwTbsonxFsLA4xTnGHLp6WtDaFiffc5gYnka4GsXy3gHb4cLT9wf1RxmXozkWbUG17GNwPIPBqbxtj72stUb5DqOttYOPOGGcHpzEaCaLNPWePpUQLdWwvLMDPQNRtLZL9vUykhuR65rDMdRDFXJJL7i8m+PQvQRgvZtyrJGdPdq+sajt9sPxdnapDuoWCoSNC0ypvqN2YP92Dy4M7MehRl+e+WrTcdiEJjShCU1oQhOa0IQmNKEJfyfgr+Q4JARGpvcCMr5qVYMcYHLUxKJJPuxq5ZhzhAmWGh61AkyGGrnR5DjU1m4yCgeGNK2e0cOt3gCXwUwOw6KMlHxIN2OMyqjL2OUMYM64zidrlhuW4XKJJU9kqAzVL0OZOW5kyLW6HFxs2DwHzKzVQHJmKI14IqeaGZWVh0E59dxtRs1GMapdp4FBz/FSxlJnHLvYcSichJ/RyrQq2veiKJXlSHP8k/FdK+pkUBTuFqwi1iH89Gf1Nwy/hoUDRV/KuGkr8oSb6LBgsZb4HI2Ei/ljBg6j68J4aw+lZQjozuVzDmdrX1ef0bQ0K2mLhuOUH+dEEv62MpTpZCgVLgLRqxAxWXKGchmSAyOoSDS+iC4GORwlf6pTji7l0blQFA7VShaxSBVxGWurERSKTNG+gL//6zdj/fW+vVkeCgMVsqTEwrUTKUs242J2rIbnv1PB9786gcXRSbT5MbODuVV652VLoDpVt60M0bUfQrIliVxBq3W0CrJmTjLhrrRBKEQWkI1M4ed/7R7ceJ9WHBZQLSSQn6jhP//LSYzsG0efP0B5zpL5LKuagV9vY2hFPjqMgSsr+Pl/eiu2a8Uh26qYBl5/toK//L0FzA1NoyvcikKpRJTlmBfW7L9y4hNHdTf1UAPdU7+Ox1w/Ih3qQ+KvDPG85RItgYBmW73KfiDZuDiN6FW/l8FaadRucmgZnOMDS2GDuTZ2t8zRzeN5mXbtqjqEn86VRw6ZwHGoctSP5STQfZOTRpDxr1ySE5p9kEGyqvxa/SechaOVy7RqYq2WVXlu9a9WMMvZf16gdU/KQAa8c8A49WEREcSa44bpZGgVT+Us1WpCpZUjS84F6TZ7EcMT7x3/hbPqk+wENMi5FfLIl1qefJHz2oFQEUJ2bMCP6ziUc0ogo730nspSv1+aSmB8IDi5d/r6PJ/cTaVxsnIelMJpNHelLErh9JVFGlg6Xl9Kty0FpbMVVsQ3kA0F4ePkUuOCjMBuzDEnbiOdeCzH91IcVZ+FxnUAVm7jXODShGwVbTQaQiSq1dY1WyWqttS2jfV6GdlcmjooyrTC67zeDWQ5AMVeWIP4onLPv5whXaK+EjjD1G8DulXeUlC7SU/Keai8SiNZkswtrcfq4Bi/BBW7q3q05aWTUTkw1X+YWiKzJLHSLQXrGayHldmqRyl1YmkLX+oV4s7Wl/2aqZjaOQ5V3pLqL4Cg/d9NDgRGo0OQGRy/An6fA91SaFw6EA7ueA6CdEuiLgmqh2N5S0urXZbYt6XvLihLwImEJ0eX/DDijfhbdi8B6CULaxP+S2YrjXHNcFD5lFmnyxyvFKc/UzkumYHiz+lIXqttlDcSjpnMGA56wYmZKhW2+xLH4ZaOo3i/HIf+IDPq5R2OqRogtexPYAMgy5Du4/itfh/y4ryOsR7iyGT5MnVWhLouLsQqKGTStv2vdKmQ1Ja3chhLDwt5faPQi0SRKxaYxsmgjQUMGntUh5ufMTnpkqPedKT2oS1yLJO+p3wJs7IcopRRvfSkF67qlN3zq3HVN9zcRGWZTmU6ImK6yBN/GzTUGa81uWHVSXnViwFy/qke3r2A1ypHSOvoMU2h8XIMSGdI+PE8mUqRjcSH+BU4n6vyXpRJNCeQ3OgbjdbH5fTOcqxnDXoRT3Lix/SNWc5z8kWbB0Y4Rss56RHHEHGuM6+pb7anXgyTM1dtUy6Qnw15oQAY3TWjXX1ZfJfO06p5N24XOScPEymf7aZ5n14eKUmG2YYsjvohzvziocYntTsr5X+hUDI61FYqRy97afw04XM/xkfmsrYiQywuZLz3OTYW7EWiSIJ4M32Nc2DhKfkX79Qv9L1h8Vo7OihIJjR/1MtYRZanV6ESumZ8nbxV26kNY7EEMvOcA1L2w1GN74zXKjxpoJocqOQN0Tb/mm1Dr50j3JxUfUQ8kOyYrEje1fKUW9HLyRGJZ1lqB17X2e51ll+L6nlG3yssmM7XS5OVql6ME9WqjHTX5MElTRzHK/Us8XgPjkP1OfGzwVdygHLG8vgcEY61IppsRzjZQhJYp2SSbadVhw3hcGGp4/Brn7Hju4G/ctWG32icN6EJTWhCE5rQhCY0oQlNaEIT/hZCT/qBxtmPDmZUeA9gxhGCTHt6ZDWDIh+qZfDzwzKcuO3Y7OFUhjqZcfSga4YmGWmVS7dk9ORdPkWfN75o1ZAzVMjgYA/uvLZ7Ss84GQ0aT97OyHgutyDYxs0FlaH0jrbL02fGdRYrg7UMW0ptRtVGXUthaWmufudcCUD1yWAgSuXEOQdMGvBZBznXZISQAe28wZV5eVMGT+EiGpXY/Tlazt9zbfE2cFW8DWTwMmM5aZKjwhKKne72JcFVL5waEQTxREY4gRnJGBQnfGTIC1aFuny63zCmKYRkMDGzh0HADzktZKSxNmdZipVh2hn5HCit5OBcmyiv/RtnrHzVq4bU1n3Cx/JIDmv6VppWfxQoF8QPCaSLabz61n5kcmFEQu1mzM4tsi2LdRTSdYyeqOHN50bw/a+fxatPTqE8n0Sc+Ph1fduz7GjBhW3g6HG4mFGzIQeMsuulTkNbsWPp9U5+GfOZeWzautG+e7mYLmJqKIzJ03W8+cIcFicyiNSjCPkytpOGWoH1RxH2oqj6BVQjJSxbucpeKs8tsKflgOHjNRx4I4f8QhpRGbuIalUGLRFKcHwj3y8hAIFDTW0SyKbwNp4HwPvqb4p3KxPd1ovnZTkA16dFq+6ZAY68kFNQVS/lhZpWwTnwHJ+UTv3J+Md6AseGHEBBH5VxT/rF59HJAK9YV8Brw4LpzNAYEY4yPlLHyOmi/HIiMu259I08OqpuXVl+F3uODnOC8r5V2ADhr3ilMXlV2jpbTYZryqJ4K1oCegOnoYy72lZX+DET8+tFAuHG8mT4ky5l0J++RWfG+yUvJhjGwteuHFhPMlqWxl4ClEx0XJRM+NlR/BIdDI7e8wlVfECL2kogh8d5OVAh5F2jMOPj0tBIEYCVbu3grgOg2lha7SVBt52D28lTwOuAx8JL8qPzqgzi1NvOkS3eu5WSF8B7qNOAaeSYMnnSGEeCKmVtV6mVj8JFutv1K1ErHkr3axtq4RPwJgCjg3gvlUvlFf7imHjr+KsXJRoOlMZ4oLICmQ9ApZsTvFGOItR3DS6iT/mD8i1IZplP/VH1a7VWmOeOx41MDbiYDiZClHyVo8eS8rZkSeOa+C5aRKP1aZ0z0UVFXgjBzcsmcqB6lE49wpys1BcX88XKeVtZAV1LbgTp3pb27aD+nkymrC7bspq8c1J+HiTLtuqORxUpPqs9nG47X4niTYfoQtHGP+VzY4yOlp/0WVm6Vn7+i36TBaZTKqXTeKUzlaf5muTQtiwnQj5lNBVaQLuXRk98Bmt6Ckh5HEy00lCODo111gkJNq9xNFX0DUXWWae+qnFc0qqpcjnN1EWOqQWOSRyrvCqK1SJCEd8cyWxp22lAslHTyxSVPFVZHrUyxzm5e8p54q6tyN18TH0pxAEsVGYcg43D1RLqHM+rcs6ybY13TGtbODKvXH6+HC1htoNWepNFeknL87T6nSR4evlEFDjnkW0DTlzkwFN5+jZctUx6tMUmeRQiP2Oql4NsiHVLftWDNGdVn9L21TU5vyqkk3PgiJxqnM+w4xmrNBdS09Q1x+H9EPnhsw5ig0ohR1nJETc5+ZhefY1lu506yEPip7wecdOKXb2sp/7nkc5yPgt9sFWOV2tltrn6kXhYzS/CYz2eJgYW3D0V5pEWOeqcE41jUylD2tMsn22hHQ1KDGxyOSbFKPV5kwLS67PeejFH1LIIkWbhVxEPG/N8ya05TTXp0AdJLafahhhaQyiZXvbKkma2fzXLKMcTTohJF8cbypXhKQdcjHJDXkS15am+TU5avYi2l6Z+VT8gT0NsvzDnZj71HCu3NPIEaptTj7hFfeq1SoF1Mb/GT9JQ0ep58pQdgDRrBWrZdlPRi2xO1rV6k8WxSE+OVdPteqmP82e1F4MctuaIIx9BOkIR4sJ5msd0HtsuGmf/JY1yGlbZ3nppyTFAQXXoQJmgNMkRq2LKhSJOzCdweGEAWW8N20x9TPXK2UtcyQ178cqC+pM7BjpZ8ijns2tsl/5cXWoDnTf6cv7g1+34btBccdiEJjShCU1oQhOa0IQmNKEJf8vhkisO7dmw8cBowEe/i5/+dPsST4RvM7IRFCdj1HkDoa4V74wWvAMZ5S/OqjshPhorBDECOXWWggxKVQZ7EGYwQ5huqMBzdbrcVuMFeC/F6zxJrqbLgz2EywChB29dKywpKwDVx1R2DGhUMhmRFKEo45EMDKGahaUQlKiUzsAnh5kr4/xNV865CgjGERnEdGzECYIsAQTFNGwCDWAM/83QqCtWJmNXyFFicQG8nWamYzLVG0DQxua4bYT3Diys3mhfFcmDqFW9ZiTlUX+yd8gXZE4Kq9rVbwbSABXVy39nODmPn0AOjPOOQ5Zd12q0Oir1Ms/jlLEYJTFHPqXR05dEe3c7oskIUSvBC8tgJYNcCLnFKtKzNRQyEYRqCZYpg1IJQsMPyRAm4895CHjhDoEcsP6G3AtP0Xsxz6ost1AvYGBNL1q7mSqaRq1EHIsdGDudRjVdRgJaFVBG1cuytCLCpMNnKHp55CNpdK9qR0siDttULtRK3MOYHEujJCdnNMzKWTfbTSAsznHsojYXZs7BoTPiojZRGic+bwO1kTOKOprUjheCa1sz5Fl5LNmMx/xjHuUL+OXKED4uzpzcVTljGLMkrY4OL50ruU7UB1WPI+mcrCg9Dw58aKvcYKtSgZVlCYN0ajcdzsfrXFFBnqBu1atuJWPeOeDpuXwN0OqVMnmgo9FAnpkziME5B5ie98xRFPJd2QaOZtMvFwBpa9AbgPAL8AygJs1hdCyNvQQQf62OdQy7FDh6HV/enup8e+iOo+1i3S5QuqWg1CrT5dKPa19zgi1Jqvu2AmhJ3DsCeXsxfiaTzGsvNQhXySP/hK/qM4eayeeFYLgpBNfBGQ9L67A+zrK0gs7pHUe/nG0OhLhC0GaNevVDcLrPTh3onnTfEhC+xlf9Ga8tmUtn+DikdHwbn3ltrcH8lknpggovTPq2vEG9F4DkRYW4Us9Bo8RzYOOqH2bb8aj6LAHzsjzxS3GqzxWvmxeWcBFq1hZLj5cFFmW0KK1VpQh36xzwemn7OnAyeEHiIN2SqEuB1ICCnFgqNHCkW/9eUovkpcr+a2JO4lVf8JJUoBcEwlm6WDIlGTFnq8qVE9j4JoQY9M8sQdsHQSU6J61z5sj5YXqYzebGJr2gpXRhc7T14gzWREaxres4btsyg15949C+b6iVXsrn8HIy7JzktqrL8HX4q17rbw1mEUvU/RpK+t6dT/xqUXgsM0xdHNagUq6QZyXm09jKfCqLRdXCnAuG5TDyWR55wLHWL3vwtS2A6Sr1JfFD8yzp4aDfMbOhwjR6SSZS47gvZyDHcH3Q2NIIf8mhxnoG8t5WYEnJMF6oS+71d14viLeNc6avkpYKh3+VRJKh726HycuIU/JGh1DR2K8ZgEC8sZIZr7LVXrYzhRxccgzJMcYR3A8liK/6eokJK6SddIfYBrbi0zKrMJ4yyMmpa6Kmccjq01F1KynTKanqMxoYtPq9Kj3JG3JUyZmnuYFP3HV9TtlGKHfhEMpyaDFOeGtFnM0jqgw811ga0twqTFniMWQOMdGulwV4bnMkIifHL9tMTjfNo0RbXe0ullqbMQ/lQm0kp67pON6rRsosm3MY0hkj/fKrVkJR4k85YjbmIB5ExLFYhBLUVvxVHNOwQpbl9LPAeCJsxLvGtTLKeUfiXBnCg0GrNyXPNsabvBBnlU/85Aita+UgQ8hXfyZtZFBIfYZyrv4VovxxNtmY50ueRJuIFk9cvWq1KmVAoi/+BisOvzl0VWPFYZb5FFg/0woXtoiVoaOVx3mD5FOOSS+aRLKrnxNB25NWFZMGphSzxQ9B4zj71eaKwyY0oQlNaEITmtCEJjShCU34OwGXWnHoHpDdc7AL+r0Q3EPz2+Gd4gVWrgVd6QlUwT2l2xuxFwVZHOxhu4HFhRDEKcj4oxUjzsBrOLhK3LER3J/LcR7efnVhzGWgUW5AyTtBUObbym3gFNxxBiEeRfs7gKUhy2QzMSNCAwfBpXjv+Hd50H3Vq+P5oF/Vw/pcZVa++5Mxx/1ZfOMYgF3xZ2ms5VL+i3C8FM5vB6WxEs7hYHwQXqqnUa6KcuVdgn/uZuOikeL8pfFTeXVskEuehFBmmkoojJIXQdGPwK8lkKx0wFtoRXq8FTND7Vg4G0NmyEN20EN+uBXVyW6EsilEaz70BrkKNNtdyCMFMowtqZjgcD4Pok2rxWQkDwyairN8S5LKQBWtt6E4H8XiaBwLQ51Ij8WRnazBL3mIypgoumQsZT+TycgnToqTgapaaUFmJon0SBfSw11YGI2huFAkhhXUIyEUwzKZsaxaDWHiUSP+VTmoiK9JgNDhj+FvNCxBrnH/gqgGOAO3u7FUvi6EpZldHc5eZlxwYNmkK87FGCha/ApKdeUrBDhbtKUI9EwA7t6SOgwkuw0Dm+pvBHdnKfDK4oPgwJHn6tDtILwdgnwumANFRn6GoD7Rcg6HJfFGw7kgndoIF8QzCI9GFoGdqiy7cmAaw8pdGnsJsGT6aVw34Bx+QZAB9hLxF6e9+Hpp/NsgqHZp2nOR56FhY313uEQ9S+s3vvPoHDRBfQ6CNOdAl42oQArfScSl652zr2EsV7mejLzqs9JHkjmLZnh7IefvMbiY4OSSoHRvu68sduMiYJxk0HgYwKXyEy7OH7TFeS414BI0XAyq080K3I85JXTKotw4xb/GTSdZjQQNuGR7LD1eDi5Oc6k8intbPHGyuCU3gnRvS3sh6Lbk6pK6UIWeC7xniamPGjKoozm0mT+g244qhkcrk3/OQebyWCEuqcuvxLpnsu2cjbYa0CXhudPXurbSNAGx+xzf2FIpzKPDT6M3MYs1PXmkfK041IsMgfOnUZk1GscRRlXDIXOg2faMDNa2hhfxrDtHkLZsr8mx5Mt7EqY6iyFUjXBA5hhWcyvRmEmF8J5wdH1FDi6thnTxYUQqMdTLSeaTY0blB7wwaoQZgemZFhVtD8lTlM1Ja/VacOUbKD6kVXwczath4sJymV2Cao5K4clybKWcaNbgL7xZvvgt56GxxHQKx2k5J4lbXUftbKB5g9BnXtFjwAxGs8plnirxtnL8GoO9ekCatQ5RLzK5OOGi9Fa3ChIu4pPiOP47ehrx4rWcZBznqr4cbJoF8Nzame3N+Yj4qu1cy6xXbaO2Ex8lH24nBZZp29N6nDMpfZXFkteiW0exU/VXmY5tIpy8cM21r4GIZTrpwkAfkvfmvPMqTFdGjWnrlAnX9MKdNKpO++6fHNxaXc0qwkWUwwWWRimtsFTylTMZtirpYQKbFxkubFvhowLN+ccbqldtKp4yiYK+uSpnm/hc1xwIqkfB8dZ2R1EwWWFcIPvGdzkW5dzlweLEV/FZQXMt0cWjOQ7jLJPZyX1zSDJHiPXo1wGplqM4pJWacoCrDeQgD1YcJnF0cRly/lrGy9mqVacON+vBooPB+pnwtjLVTiXKD6nT7hac59qYLZ4oq3CW/BsB/OF//sB7W3HIXE1oQhOa0IQmNKEJTWhCE5rQhCb8qKBHYz6RmkPjckEPujw0oQn/D4AMJrbKoRZFtOohXtUWYbJClVHxS6h5eYT8NK9zqIbKKHs11EIl1PVdmVCeucvw6zLYUJZlRDOZltz/pEAGvCpDmaVqlUGBcUXUiUMtVEHFq6Ck7d68kHN8huJ2LIc8VP0Q/HgY4WQIkVSRIY9oIodoxK0jkWHNt5UqpMuvouDXSKPq9CDDa7Nj/vcEDX0aGC8VgmuTtyXhf6RmM4Otgk7104j/7wQCp8TFvqDzoBtBEPIyNuuo68b4Z9dB+DsEDZLtsIRF5nBpxFvc3ymgztbKIG0pKOM/ry/FAsmdnH9uC2+NP8Yt2Na0ysvxwMVcmoGBA9P1rZCV4VYDKo61Wvy7uASCoi9RherWSjSttPM5rsr55snpY44iOTaoqeRlYuYQ01kaliN3ma304/hbY5BzzN1gBttqgLgSL+ayekxwqAPllAlFSo3A8TtMWryG824pyPvCe3VzjPGmjXME4bI0CIQn69EiOznRiCLHf3DMFT4qn+l41Dbfcnwt1cvhWl0LGg0NnWtXCN3TN2g56KIqZ5rlcVUZ8FxxuleRY5C0yTHpycnIOYo5CZVF7S0UzHHFTKozwMUN6jx3jqwgXnwQLeboVJlsZxdqDCpT8XJOecTXtVu46lu7ySkYCpyrAiuTQSUyr3Awh5vqYN2hMNsizPtkgHyNai/nZHNt7xpFGcUTppPDrV41XkXI5KDeC+RFOZhW26nXWKk5xjhn8ytxFqFVrwyIUo5dnnPzFyEofqgxdFTVAh3JK2s344vmPDzalbU65Z/zOeFmKwlFL8HKFTi8LQT3yAPxIQgey/PZ9mGjifOtipzlvCf8mbpmgiW+qK9bAQ2QQ0+rD+XsDJy/F0IwFtrxHIgvrmz3MogCLxhn30DU/LFWQimXQb0inqsIFaLyG0F9i/1M4b3C27FrQhOa0IQmNKEJTWhCE5rQhCb8Dw8XPpD+VcAeX1mQHtYvE8zYrbRNaMLfPDhjmVYZRm0rsUStat/DkaOu7JVQ83MIeWnUvRwqHuMos1XG10OMDxyH0Ca6chrKkPSTlWcZgpzjUEZAOQ6LDKpfqyXkOKyi5FdR9IGiF0HJi6MUihB3Yuaxd8nWFyFu0QxCsWl40TTxLBPNEEKVGryKtriqoOxXUDSDZcATzxmVmvDfD5gBsHYuyOgaHM+Hht79HwCc80LBnf/3CvV3ZXfQJqShYeyXcfq8rlD83z3za8AVY4VCELekqe3UEv3dANHrnH6OCebgqzlnwFLQ/eB7qFoNpqPSygFo6RWUlxnfnhf2TWPrWJamblucWnqXxOGg4NC4NFh+nejnwlrMacIoOaFsBbycQBqMGLSKUalrHLs0vjkHi5xjcrfIUaPtOSvmDKyaY45piW7Np7bzOdISL6V0lLBmjck+x8NI0b7pWw5rPKuaE+5i0Iq7io1z5JXlVzlMZ31RTqClY7irQ1yRw0rlVYhDVbgojcZlxmvMtLp4bjqYfJSPSr4zBZ27OnRRZRnVBn5sK6vHgc4VZ/fMySXe6MD2NQceeaRqiLl4pms5u6zzNPLI4ahgjj05YFmn4m3Fp+i1sZ23hWMjGN8NDec807akEXMcyuEbYVER1tVYYWcsE24iykq0X7WH/GDWXmw3rSKVJ9B4JT6a45EX5/ScCFMZwrNiNDknG+tnJq/hsDR5YT5bocyybYWqyBCucqaa4zBOuY+x5aKMF65yHsp5x3TkjegPeKpr3Qji1W7C33gsngot8sSNsW5OZ/Ml8lG0nsNfbbk0CHRPuJp8u/LkNDZHbEWOwyhx0z3+qb+KL7bSUEer2IrhCS9Fe5whYvS/DaxjGkbu3PIqqG2COAWdK174kw7Obev61jznuS4Z8Wzgaysu5URk/3Jb/r43aHCkCU1oQhOa0IQmNKEJTWhCE5rwdwfe60Oje1i9+M/eCNad4EHYJbsosA4F9/jKUz6q81R5dVSce6BW0H07EJS5YXCwc0YuNUbYPT30O3OGy7b0PChRP0zPoHM9mlspwt1wcHgYDWY0WFIfwzkjg8XJeOAMKXabcK5OvR1uD/PunlIHfHIRMgb58FmevVivZJZU5oca47QdFcswY4byOFzkqHJvizv8BcYxluOcPo53MtpoK6oKEzmaGHhH8WYskNHAjB0qXeULghIFQdzSey7vuaifBFhZjqfOqCUHXtCOAUZKJOxl3NO3cPTntqc6HwK6xA3+WhnimTNOWfm8Os8dpmacDGhhXkfqFR5lLJJRU23uDEf69o6Vw3a27z9pWy2ei7eqVxg6g5xRseTP4e7ocLJg20rxaC1h5wKmMjnWMcglcPlkBJSzUN9a1EqMGuuX4dWcimaAVXkutcPPOT+rFYZSGZVKAeVqliGDSj3PNndv0dsCBZMZh6sZE1mdjsG3M93KhAZtRp8LFmd5XHCyyBMDu9M4BnxQyzR4IJpYv/qWbcdlwfFEfU4sOPfWvOVcGi4GxhgfeVcIWgoF8c2dL411oVGX1ce6z/0tTcM/4XSOt5SWAB8jiLGql/lt20k7V/qgLOV6D+CI1QmDo+PS4OrW0V25PO5K4LB094NY4e7Kc3cbZRhfHO4B3g6UT23G+3ZPQf2NRythadmu3AAsljLggs4vDvxZen3+hAfmPhdclMqTDdPoXHpvadDPuXZo0LOEh05Pq6RGYPu5U3KB6c+vKlFwutXk85wsB+F8u5+TU6NHukT9Q7okkGsdz3Ha8rrA9A0+2p1Gfw/qERnn+5iLE7hfQVBOAxwyRp/lsaDzxoob3X8PYKmC6t4hXLqkgL6LM7w3CHi0NO+l4hqVvB0UH4S/ERA+wfGicE7u3yGcS7sUlsa7YL9Mr1CrUo9XFOTQuhB0v1QqoUzdLqefQYMPciL6YR/hSBSRaITR7oaTqwAo6SzbvtHmeQj7esPElSskTI6C1EGmRn71DaNJwcUEong+EUFluHFDMunGmKXybaFx36+5FVpu5A76ckOXsjw3NyTODf0b4Bf0U/XJYExUeqenDYtG0MGlk1NS5y6/G7vNIUXkbL5nOXXPYWM4NJycAl7ZtZxzKq8RbWWaU035DQkXZfeZTve0xagcYE6HBAlEa0MPNeYYjjeOZzoyAf/EKzceW5zmbYa/0yOqxiVVmcKvUaf9NcqwuaHKdeUEzkPjp+5Jd1hbLNUhhg1PeW7BSNPB8glcOwX06Pw8naLP0WOlnNeXnOMJzzrbTWOw5bXCSVNdTja3ylLzWYFz1iqf5iiNYLg7fBwqKv+8Hld6h4vmSjoXfkymsmxuF+DGqOCWQgNXF9TGqsQ410infEuCpXft4IKgkZ/pRZPxVvdcBM/UFqK1wWcrX+2wJNifA5UVHM+3uIBHOw3qDkIAvNmoU9vRVoo5FNPzqBTydtdWKAfpz2Vbmv/y4De/cdiEJjShCU1oQhOa0IQmNKEJf7uhN/0BezA8/3dpcPeCh8ggEPRQ27h2KdzVOWMBH0j1rTZFKikf0xVjb8Lb9970jZJGQOPteD0w20OzAuPMKMSCbRso5dMqML11KwOQjBVMfc4YZEYGGdNUob5TonS6I6NLwzDh7p4/8kfxqlUUWiRDjXm01WSMF77eZmfZemNb+NT0ZrsMFQ1DhHLr+zIyAJixi0WY80PbQvGuva3rSrd6zTHF/M5RpLKIAemrQNtOsjx7jT4CbekVZXkRo87RKcOK3p/2ahV4tnWZ3rwmHqxLBibREmZy1WMV8se+xyPjT1A7+V1hWSWPFDBKbWKGFMNcb5DLWCjDouOf4Wm8ZmLRIp7y0pwxokO1qB0tj24oj3C+PARbrl0uCGfnQPVYepW0OxoFot3TG9D8r6PEc71JL8dYlBQlGPStJLYNg32bRjhacrWd+K/2k5FIlOkNb5bHktQ2FuxcsuN46zBysisZlCyaUdNWI4qLcsSKpxGHQ4gtJ17YHfGf/CQtPCGIhgafjL+ShcBg1jBkMQ9CagPH94C3Akl8ECSLeqPfnL+UIx1Fn+RXLRqPhFEpZFGrpeFHCohGyAdt+1WLEneWa4Yrx0M/RlzD5EY4ikQkCa9ct23CtF1rRAY5o0V8Y91EJZAq4eb46FC07lphC/gyYrLkclEvsyMcSTBnGFXeU3wsJkMgeSsZNj6IB7wnHpwLpJEFWz9hDecpFz+cNCwNRNMgxHyeBZ6z4a3tiZzjudNR51SYlaX4Bg6s1+Gim+dXw7iiiVNj1YZzgqqdeZ8VqTzRYStkxCsrL6CB52KQwAniOwbTadbu4qtwVlm81+B2APoWkbY2qzLI3ioEZFi0b5MRWZMjq0tlSfZ4NNqckdzdC4KyKE50N+5b3R7bKenqkmPZK8IPkybSWKmUIP9EiLIeiVAzEQkrQ0EHA2upRnBy4oyflB7WEdwLft3BZVZ7Ox43ovmjtjRoVKOSYvG4laVrGTz9KGWM+GlFbo1HbbvLH9OZrt6G5PLoeK1yVGBDvtm+Cq4d9UIG21T5lYZHkwFmyhf0ogLL9Em1T9pZjs++b0Ztrd6olajPWQ5xYkFWh5zp1o4STOFD2XCOSh21KkZjl6hSnerHLo/hZ22m7NQm7NdKL/4Xi2wX0mGcERJVyQPzMo61MBvTaqWOrpTI2vYyoLKIn33XscFv9Vf7Vq1uN4LAtYfaUXKnGJXN+pneHE6M0xiqWFerKCFXiR8lUQU04tR3eYd1WoyLPhfIJqPFgaSMf7rHm5aWlbutPC3SylP17w2oN8lrlam6VISVE/C7EaxMnfKevlkXfLvXvjvIePfjKrVvCzLe15FpalX2Kd7ylbaR3r4ZyMjgu7aqz+gnoVaPmotphZd4KKeh5dFNBq0QlHNP5TdYrULtaG3XCHIGOjxVNoOrnfgLN7YN8yqNtRdB9/WnSyvD0hEL1q1vCJapv6Wzk/V5dPpp9Cdmsa4nh4R941DzAI2BzM88Go/Og2tnd9SZC04PCB/Xxu4YYMEz1kkszsXoz1HrQvBrfyzSnfFo5zoqnn3NVue5e/ohipbI6Vf1N9ZrcyWOdEREK+MkYxX1JS9s28WGqUe1qrNGnSKVqj4WZT+MhTVWa2yQRqAOshVuLF/qi8H6kfSC+K1TuyTVGht4rvZhoSybaZmsUpWe5dyC6sC0Fvu07QbA/m64MF7f/ZNM8MrRp3FIOoRH0SC6HbGB/mqAI9z+RK8oFrLCRWnCvC9aJbvCV1oRnNfUqecNT+ks3qpKx0mWRQdprRAX9SPX3znuVzkfq5QRlwwRH30PUfzXC0pyDGqc8Vmv1Se8KIPSa5QalKQ3w5pxaG5DCphXcyoxq17mPdVNZoUiEWuTsOhgO4XD1IXRMnHgvEjphC7HPL3oBc5xwpwg11i228qXoB+GEOeSRinnI05vKpK0qRFJnLb/Fb8MrPEUGrxr3NGvkp87D44qh+cC4aMLZbcjD6YHDVzftUgLjYSWuBEnsDGa4xIrE9/KhQJOzidwdHEAmdAqllFk0EtgkmtiSP6YsArbABfmVZ/Thc3Fdao4trMX5nhKGTuXxtI7PAr7vuqu3wXOyVoTmtCEJjShCU1oQhOa0IQmNOFvJ+jh8cKgX4I9sJ4P9uB78R8fIC/8C8oIHjRlQKmhUi3zitceH7x5XZLxzB5eG4YNhN1RRg9zYOhahlOt85KhwEeFT9plX/lVgwwP+r5Hw5gvIwyvZLBxjhcZ9HWuB2FngNXDr/Cxh2gzAhNHQ4klKFhJzr6je7W6DBo1RD0PCc9H1Air2dvJtr0RaXFvOcsoIWOEKHSlmHHEjAmqU6vBnCHdcCQo3gU99Atfd08GpEgiCi/G/H4EfijJ+hOIkiexGrnCcA7nagmRWolxokVGJBYjA3eoyNrL5F6Fx4ZRhL96Q9xnOe5tcbfFUyUURtH37Rt4xltPxhlxSDnlANC3YWLML2Oz2tRK4p/MJPyTQYE8sPY2/iqF0iq4mt8buJLfObA+w99DhLTH62ViVUGcuEdIuIyw1jbQNp0F8rFAOsAUTBVKkBtxO5fLUc5dtZErVbxj+8nhyBSiypyBPJqTwNqH9xrBnAhsL0ldhLiEyUOf8mXHSpXtUbFt4Mxc40dRDMUsiJeB49PJt46Ok453TiZd+zlDmguSDSJKfIPgJEe5xG+HI1vS0mtVhVY7aotSk027J3y1UZcMdzyGS/AjOfKsaLyMVYh/NUb2yZnHduf9ajhDPpZZPWksU/7LYbSUfCSIToz9Qisvg9WucmZo+zJzlptsuqBzfZdITm+/onR1hNlOPJDGKIOMUjzKQMX+K6rctq5qB9HDPqXvWFkgXX6Z9Ek+STllNHCqKQS9WhSbcZFlVbRipsoY4iiDoS+ErL8GR8dfcxwyn/GUeZ0jkfGs09WtEKQT3xVUj3RbI43dEx7qNzyaPlI9ak85nxrtyjJtdQPxCQzFlwssgEG92zq34StZkUHWnF+sRzfkvNJ3jypl9mP5xtRulL8Ig9CQg1bGXOMZyxKnDWfRdQFtSs6KGrRp21unS0kn08g5aS80iNukW076cIQUs6GFSuAUFz7W0CpQPzy3VRcWmM6ODfnX0YIlboART1CLClg4y9XR8FNQeratK17067Jmjg/bWpH9UDopTMUd0ve0wpQrBj9qCPCeK0d9MeCxyrZ2U7A2U7/P81jgXQXqVuoej/LvXjZgh7C0xC0UkZ+OoYwq78v5or4eYT1x3o6F2efVn814zTxymBFXN4Y1jLM+NQfv66WNej3Oo3SF+hn7MOnRDn/qW45XdsJ24anJgXBgfZEowuEwwtTtvoXgxQb1U+pKbS9ozgxlfHewVI3qTD/KiXBJEPfcMXAUOhYrM+WJbWXf3WOwVmU5cjTYuRKKhoaDQm1zzkGr8hzRxJuyr1VwZuxnziXtaLXwJ3BUXhyMAB0vE3QwcEWeDwa66YKq9H3Kju4RF5VvGEgedZ+/chA5p6L4FhTFe0xmw5XuM8YM+ArSjYy3FVD8q8qJyD85MhRv58oosPpcW8hpKFl3NDTqMh6yrSkHzplD2lQ369G5+odCjXMHZQuwU35dW/4lWJt+pr4xPqoOXquvCSw7wejifen5RqHEW3qGI5TwpwAGW2JaEC5WPNOSZvWNQIMGTnK30lAhmE8Zxy76c7ieu5asnwvCSTxRjZIbnqsPmPyzv1gQnYLGWGpjG8+tXvZD0qAXq6qaZ0Rj1Hmad4rnLp+6Pgu0OtQ/RZK9xONrPCdoy1ClZ/IKibL5q2ViDp7rBTTxRd8f1FHciahd1da61osImlFoG3I5KakzNI8QT8RYtYN2FvDEMKYkGaTNsGEzcK5DGqRjtFLQjdO87xgh7By/GG/6gPnEQzHK0hiuwoPxanOVaS9DMUgejH1MJ1RYcYkyVapq7izqmMeq4A8Zo/HXnFDmhSUzjDzOyMjOGHVy2HhIBmpeobrtRSKNl9peVdu31jmn4vjGeoNtRyOaO+jlI8ki+WUtck7+NF/LkS+c50So+30Gj/NljlkRNRTvazwNs9xomPNuBnvhSvQYHprLcQwkPk5ihTJ1EG8ba8gvF0hn41z3XHC663wQP9w9K8sVYLwTK2zOYhUw3uSUR4bz9aiOoB6VwTScz7kxSHxz5QZH47l00bmg8niXDebKUbkq39ElnVs3B6HYSJqrOVTLeXshyF5IVHkau3Tkv4X3CH5zxWETmtCEJjShCU1oQhOa0IQm/O2G3vQDjbPLQ2CguxxYCnv45QOxpXful3JNTim5BfjQbw+wIUR5LVtHUKo98PLh1B6smc6tuPDtcVjBVowhzDx6q1h3ZNxWUD5n5JahV/W7h2O3Wk7mBPeg7bBxRvwyy3I4mqGOcTK+yKhjrguWka9r20eY4Tdq6bS2RkYc1k0czAirJ+gAB7C+uupTuTK0a9Wb8BI9+hMeLJD1uDr5/E2anCNLxp0I7/pIxpJmECrzgb3klc3w575Xo3V2Ws1WZ54airUSSoypm/NFRmY5FeSkkOdAPCPVrEN1CSdnVGhwWm3DYKsAGGQsk3NJjqCA98Yv5rUWNBpkANOfzp3Bws5lUGg41dy9RpyMLyrkXeC9ypVkyvFS4JM3IRT8CvJeETXKV6givH3i6nhpDmOWLaeuHIM+j2EewygyrkjiiuSDHI3ih2RLRja9TS/eNWTDUcOgOBn45UiV0UrnjLO0lBmWXaimeWS5jA9TDiQz5ghTezBIJuSUFQEUfwbJgZMF0WXOG8WzBLdq0MlIIP8unZM1c/yY49x35SmP4hisjcQq/jgncYT3QHkpU3ZkKEtQpttQq8RRJZ6qI6DQDLe8JhdRJdqVAiVeRmby2gLvudW/xNsX/0SXaGHdVqnDMaDHaJCTnX1J31kKMV+pyPagzMoxru9B5pFBuZJnvc4w7PjgDHjWT3h0cswf3ncyGIA7c4Y41Stesy7KZ6UqmWQOL8ayW9gOcbOfOSDfJCOqT9xTXsVJZlSmlafErtco3r3IoHy6J/nWfdWvfIpX36Y0KKhvCBdzKoq77OdaJcE7TqKUtFH2u4ClJm9cPa7NzbCq/qUy7PtSckxHQZJRZTvX/TLMZ6hvU1YK5kyTsyii5Skmgw0aRLcMyypXxyDeaOQhoF+BNNYqlBBVK4MuQ0VGW6FicpZgqpTLI2Ol4djIG4DF2QmD0olvDIaL6m3ks3SKC8po4NEoymREpBtv1RfZJ8mjMpEraftdISVjd5g6opQjT6TbRD9ln4Gq0lVjpTZOGuCc+Go/jUWN8agWY6XUy6SxFkowlrIk3W28pNRyLJOhXw5vraypFORc5DX5IOeqH61Auz2WSgXrX9Lzcu6WxMwoZTAYCEmUGZ6li6WzGGRcF05aqSpnhHSGDOxmnCa7vKrwU3aOdqQ5Yat3WQj/1aciWgHFDmRjD3ESbeK1reI1/l4GRJ9ysC79aSzSKitzVL0NiA/r11HpbXUa0xtZ7jbbhf1Zjj/xIHBGKK2dM60SM4eNCe7C8gfh/ImDoJwgrTnILNjVuaPAjTOXB6tWOPPEwtLKlgLv+Uu372zU5epzddnqwwZdlsLuW0M1+BSA+CoZUlrdbtSpDJZWut7R5fK5Sgy/Rj5tVxrUpT/VrbpCesFAPNYf20xpAweunC0BvqpYeQOw1ZE6acSrbMH5tpNMEBPGa6VYCxbQ6aXRl5jF2p4cYo0VhwqqwupnOpUi54fB+erOgXAPzs7BJdL91YGFqTx1GI5FpnN0NI+Ow9GCdBKDuWQsHedxPK9Uwzh64izy6TRaE2GOpUaRGMHhTUcVo37tYz5dRL6gMaiGaFJjs+Zm6rsqie3DOiscG7WLhqp329GrPSPI5auYmi9jbLaGqcUaj0XMZOqYnCpibkEvayQRT6YwOT2LsZkZFDlGt7W2mwPQGrXR79y46HSGUxIWS1wYTC6k+9VGGr8dTtIPolzj/8kTY0ZzNEpabfjiAONJ1kTL0jkg65GMah4m6kIci6gjZxc4h+atVCJKmeAYITkq17GY9TAy62NkroT5fA3TTDc5BwvpxTJa4nHTb4u5Mmazwl0viBFLjqmOAtc62nJXL2DMZcuYz9UQjiYQY9zCwiyGp9MYnilhaiGMuXQSk/MR8rSC6fkS5hYLyBUKtkK96rXxfhRnJ7KYXixiYq6A2XnWvehhfr5oq7ijUc732dbn+0vjuASW9p/LQkDAZSC4/a4lmqxSfli35KpcKNqKwyOLy5AJrSZOS+blbG/+uKCSL6hEhKntGvck/+S5vXxA/aMVnRZnd5WOz0f7v2bX7wZNx2ETmtCEJjShCU1oQhOa0IQm/C2Hn6zjUIYKGZdkSNCjrBwTPuqRCIp86i5X+fAdivLhPmrmXjlW9LDqSq7xV0ZSPpjKUN8wksvc5AwbyiHHYQjhurkgec0/yywjfYF5tdZLZpkoQ+A05B/TuKOMEHIalRpGZwbia6sIFfigXCW+FaIug462SUKlzPpkAA6Z4VMlycCjLZECg65WHwlnGadl/A6+Ndew6PJfeIgfZEujPq1KktNQQUZ74WuOnkoIlVIVuXoeWT9jXPFrKRaVJG5yomjFUhWVcA2FurZi0qrEFGpVrY7Rm+lyWMr5KV7LYCDzF/lqRmMZD4SHo12GB/HdGaoVRIfw0Ko7pVJ7KK/e+JfzhCXIEBEYI5TGDEiqt9SIE80KMkYoxeXhvciVbpNyV6Y5G2IoEK/Z8ixyoSz5E0G0nqJMSGbc2+jKIzzdasKG05A46uichgXUfDmQJWNaFai2cM4AC+KG2ojluGumkeNA6Sy+kU732d5VL89QRDQUQTIUN2esZwY21aVVgGp7F5yMMDT45GT4fAgcZratpdqL9RhP7Vo80GrQROOe9QLmcUZAk3Ne84K3ZO2TEQ/IVXPIlnIsooW86qFYs/eRlRXywEyI7J9qczk8on4M1WIF5WKB5ZLGiI9SWI5DF7SyUas61eccz9Q3hab6swyV4pn4ojWglMeG01BvsWfSOVQo45FYEgVkMFeaRL6QQzKSIg5y3Io3knHXr+ytfNbZMDs3/qwyuzY6xRdRyXYwPcDrcGOrVR8tTNJGfkluAv6pz8WsDDOqsr5zcY0yHRhHGNg/rW/rXGWIowLHc8vDcs9jqTSiW/KlWCeTOpPB01HgUl4elENlM9Qo2zXn/KxoRUCNbcO65bDziHeoEmXbsnTKXNnPU3eRz+S+eBkJxRALMZ1kXTwV/uKDgtEgx5j6jMPbQcNYaHxWOuY1WllHrYIiZSOTzSGfp3yzwT1zzrbYuWTAyrqAvkZ956JIf6M846fpFdUfBNXpyjivtwTiB+/4ci6zCI4nrv9Sg1EfVtjv5DCJRNn2EQ+jYyOU9RJ8L4aIl2QqyqocIMZZ466VJzrtIJ1nbRToPkbKaVhtYf9Psh8zqE7DRzf5W62wbFIkp0yhjGI2D60Es/FGuoahqhc9CllEw2FEwnFWFMP/n73/AJMsuc4D0T/vzZveVJb3tr3v8d7PYIABQAAECRqRIilytZJWn552H6VP1Hv7qKWkJ2klUiIpGlAiRNETBAnCEh4YizE9Pe29r+ryVVnpzc2b7//jZnb3NAbTQwD7LfmUpyryujAnTpxzIu45NyJq6k/Edrb0Lss3/YAkqkpdVWZ+ml3kt5frUH40c4Z4abav9vDSjF6wr5B1Xg6mCOusutWqLK/OuKxT2CFtTHP4/ZU/81WyJdoZ9L89qO0Z2vGME4l/vrPsJjBRFdF/ZgzVOpoH5tQ8kWPOLEWqc8aXM8s4xHhP2Zr7cnwpgc55IseKQEOKNi7te6wkf/wLU/ybjizdBB+XWwLTWWZmKE9aebTzfjMIP3JcG3eC71RTWX65imOOrbr4jjq1kxwQTK3r1j0Tnfd9p+X18nXeprWfp6L5+coB6DtqyKmNhslX59fahtHNKY9yHqq8Nq6qk8GJf35Zfp7tMoSXqZtxGLBumh2rskwZaifWQw5pcqqWgY43s+iS4zCyisne8ls6DtWQKv3/Vsch8xIu7T7GP7Z0Tfto4pge0RzlNNSYx20EcPlqFr/yn/8SG6tL2LdjFOFEHPUK+/aaRm/SYxouNimhEbxx7DxmFxbZ/XrI9HD8xn5QY9b2OExL3tfkOKQekxwHOUAwY69IHGdOX8Fzr5zDCwev4viFdRw4PodTl9bxxpFLOHt+Hk40hsGREbz48mt47Y0zqFTr2LZlk9FDvs4UKmpb1o/4q64q1f9YhbxAHtIYxv9gRB9Dqd/gKXGSvtGXFflcFb/4q19Gkbqzvz+NdEZx1eezj7U11pSOJJAXXI6RHfJKSLOdLQcux2P5chCHj14iOi4Gmd4ijwqrRqWB5w/N49PPXcSRc8t4+cAJHGK8QyeXcOTMGmYvL2K0rwvpqIPTF5dw+PQcwmEHXUnqTY2nxFAEcaZZIpj67ejxC3jjxGWMTkzAjtr46ksv42svncWBo0s4emqDz7I4cirL81kcPn6R8c+hVC5ieLiPY6IkXjwwh098+lmcn1vFQT4/cXYNp84VcOzEeRQLWQz0xRGPx4wMaMa0WW7WVP46tGXnlqBot4jafnzLHEkM/d3oODz7XToO9blbk3zi6yVyRpDvNUHyiPkgj/fEHzyWj35cCW8JHcdhBzrQgQ50oAMd6EAHOtCBDvwNh++l49C8WF6z6Nl8ybShpUnlBBueGcbYZD/CsTg21lYR5ouslnvUK6//2uu/tsqwodk9eoHVzKu61UAt6MJlPjJu+MthedCsQ30Va8pRuTLSmhdbGdNDDDL261m7DN8o6+/5IQOLMT2wDJPaGFLkFGrwBdmKNLHj9gkEwkXUS2W4ZZcv0kHz8iyDku9ck6FIRii/vprxYxw1LWONDOFa7sp3OPjBOEDMczkOVa7u64Ve8eXMLKPa3MDmnaPYfd8ApvcOIp5KYGVtEa5XM45DGeMC4SZm9gxhaFOGVQ4jn1UNlI//Uq86yAkqG51pMf74hjA5x1RP/5kM9qKF7sgh6+Mr2gsvpWFgmZ5VhWcXGF+GLzkR5ZgVTfUnmraMVS2aq0DfsG5Kf1t4J3wl4wgzZp4ytFVRDxbhxSvYdtcM9tw9g8mpXmhZvrmlKySPjGDEi/HbS6f5S9GqFNGZbWl4yZh+mbPv1DFtZHBuB9GAeLXaVw44IMLgt7sB07ZMG65jcnc3RrZ0wa6HUFklJ1lyQvn8Iee5XN3KU84b8bZPO/0xOxXDuP650vDEXPkyZGZ0tfAy/CRHkYx+Jn/fAOo/a7eJn59v5CvASbh4+F07MTI1jGrZw/JSlnUnfeTtYGRNeBKNlFIzHmpuAz2DCUxu7UGiO458UXsT+rMxDd+qPFMmyGdaAlZ0YXG8J17yHfD+RwNOSE4dYkp5SKbD2LR1K/qHB7C0lkOiz8EjT2/Bh75vHGdPUMYriudzlJnRJZ41MicDtK8TBKaGpINk0hjazX3eM+3i06LRoKTXXJRKBeRyK8gX1hCNRoij6Kd2Ez1Vnn51j3Xw/Hr4dVPw20wOrgDUnjy/VnemN7zePvrB4p+y1FKn1x2HfnlG8jSDjFc+vj4O3x5aXGEYhLzL9gyGihifjpKWzCsQhVuLwa17iMdDGBkNYXJzAuMzvRgYTmJwKI3R0T70dfcgHIyhUq2wrcT/pJNBgj/tOuhaOtTUTRfCTcE8IK1tuG4T6XSS5XRhenMfNm0ZxubNIxgeHUA05qBazyOXX4FDvvLlWu2hIGjn2aLVNZrpnh/Pp1W7zHb57TgKAvEGnxs+9A38Ji//Fvk3YAzY0WgM/f1J/PiPjWF4cBiNWhqFHPUH66C4anelF6+qHXyDvh4RC9PGKks8SN5rymmYZFx9NCDnq9Iont/nCDO3VkWIqAz3Z7Bj+zBGh9MYHEihrz+CTG8A3ZkI+nu6MNjXh0Q8SfYKoFgpk7Wkr0QP8pj2G1V+1wy+wsvXZ3Ly66i6Kp5xunrU83XSjVVyghbisRAG+lNMr9mg9dZ+dWq7lhwpOZE1TkP106aObwMkaHtWm5m5xoLkpHqrdIonjap29+PK2dS6bqVnqSbPtlNK+QlPybDiGmeayYwFtMrQwZzyx5fVa4/MifYoa0dol2WuVIYJlEnNFvJMzm8PzEfLvF4vgGWaZG9O61+JrjoTH1Crsz5+2UqsNmEwDl0fH3PNoPzNzCsBo/q08OuvfHyclUcbCZXh103pG6SXmQHKIDIpP98p6MtA2xnp79XoJ5dDMuiQd028Fk3aePHPOASZmQl+EpOPnCSmHP6100o+BGZfZeXDNjeOw0AO/dG/3o5Dgwv5XvqvfVT+bZRUU6NbhKkERQ9busCjDFXrNgYG0pgazaAr4SAWS+HyXB4vvnKKctFE/9Ag07CvD0bw8utHkS0U0E15zHRnmA3p3loiVTTQWFZLwwuHIC+0goVkW/rp9LlZHDh8ASvZOm67404MDQ9iZGQIIwO9GGbopR5Jd8XY9kBPTxpDQ/1IJVOqAFEVzr7OVF0abDN9iiBQjdr39IFce7ym+qt46QXF9vcaDnHcEGZ/so3lJRCkPipXS7A1Q5rxzEckRg/ZqLOfdZygwX15Zc04/NYrEZybK5BniE6jjksXLmOwvxeVShWff+44Xjy+gH133IHJyQGMjfSif2AEfb1DGOxNYow0SyVCOHF+AUfPLPI8ihGOR8JBOQ5VQ2lG6UnJNfD5r7yG5165iD37tiESZb9fLyOe7Gb/N4Wu7jEcOXYFkXg/piZGsIX91cxUD8tMob8vg0I5gjeOLuKrXz+Ehx7eh82bxjHQN4LurkFMjPWy3Dj6u6OIRCJmhqPPo+KkN4Nk5x2Bot0iavvxLXMUHxs6iB7fvePQv1BOvpzrI5UAZdwO6SM18YrGBn7dy0f/1BxvBXbHcdiBDnSgAx3oQAc60IEOdKADf7Ohv/BuvkvydfhakJHENxbp3P/CXa/phG99X74JlM5//dSrrP5cq4pyMItnfmgGd93PV1Hmd+rYeXTHehBuJhjPd1RZgTCCdpyF6wU1ANtqwg3XsOqtYOr2CczsTiOUTGBxfh7hQAiWK8eBlveMMB1f6i05BWT816wLlhxwzMwOP3/tFxgxy6NqDaag6sUXYd+AFmL9YghFMmgwv2Aoji37BvCBHwsh0m2jmCX+62G+ASeJewQVz2Y8vUxHEE8k/b2kWkuJyunW9Orw3DJrJHON8Amj0WBZzFcuOjlWbUeGmSbqtRqcUACNwAbrVsb2uwfxrh+ZxO3vDmH33Ta277awZbeDmb3daMRLKOZdVLIx2NEanv7hAWy9M4ZcNoKrl5pIJTOo1vjSb4XNcrBaBk+2UjsY4j3iFozCs6Ooi7Zazk7LPAW0h0nJ0DsILWGZhE1aynBQ89iCYeJMYvVOB7D1njBmNk9gY9FGsNbDeskw6CHkkO6kr5wYQcTh2CmEWVfNztTsDYFvFBVXvBnETmQ1Y5wUvDnOdU4S/4Uj2quwhsx0E3ue6sFTH57BfY/HsHOfhU2k0/RtIUztHUC+0cRqfgNerYmI6kM8HbaNLSMms9NMUi0b6QSJp9NleENb2RjjL2ug+oRIK5s8ptJlnNMMK7WtZiz5S/9pliUQCWXY/nGU7Sze+9Nj2HRPGqX1KBbPSg6SCDhxWE4Mls02MzNDeWyE0Kg0IcdzhPzpWHJCMzNThkf6BRBxosQhYXjbIv6aSRZgOtuL8lwzzLQ0oo2QeIc00QqUxtbckNGPMqeJsvzJDJRw24MJfOCHtuG2e23s2Gtj8w7ike7CqbOnEWKbhZQfk8oxZZznbP9CrYJNd3bjgQ92YWQiiuOvLsApp4gbZYn4yVEXjXQxkXjan4UVtMnxrmZKka9lZKUcBpi/Y8VJyzCxLGNopgc//FPd6B8P4NCpKoYn03jmfQ62b7Jx4o0Q1pbK5GHSxmbdrST5N4ZaXQ67GOUmxvzlFCIOMh5qVifltslyQo5mu5G/GzbbirLJ+6QikokEtuxIYcf+IJJpC6ViE003SX6TbJD3WXOVY1tpk168wIL4rMp6yjEXZjmajSc9oiUuqZv4XKR2XZe8ofLY1s0w47K9pQPIW+LjBunZgJauldFOXHx9iUldqWyV9fZA/Gzyi1l+dAXDEy6e+cBmPPJUF2a2dKNadrA8z1iOB4RWcf/jaTz4qI077rCxb1cY+/dEsGeXg81byNvhAI6evEqZ1D54rBfzplhSN7nI59dZDrWTcSBIL5LHrxkJqSeMXgugWCpgfKIP9z1s4bGngth7m42du/2wa6+DrbviGBjKoFKuoUoeJ0FIW9a8QTmi7jGzW9g+TbaT6i9js3RIrdYwM2DVjg7lRY6uhmlL6mPWX9Lkz+BTu5P7gpRZykCYcQOshNeoMC1bjzwYpK4jmRGPxbF7J/F8mG3Gqpw84eHihVV09fShQoRc8nHdckwIkK9NT8L6a0k64e2yH2pS55fdCHmXPK6lddmOdeqKMOUuyPQedadmM2ovSUlFKmVj27YuvIu0uW0/z7da2LUjjL270tixNYW9u5PYtT2E6QnqM+J6/uIq85ROZp0b4nM5WtRH+A6MOmlQJ895LDsYjpg6N7w45bTL4FZrEHfqKu1FlUyE8OD9XXjkkSAKRQfZ9Sxlh1Wxw6gQ5yb1mst2rSoPQ0PKCRWP70hSu7PMlh6+Brwn0F0ZqM2JwL/9JlAebSN2e7xwLV/+GUdWi/fbjiqBbrUdZe3y20tlmigMcmjoaA6M0r4vfS5a6aKVnclXTjxl7Gd3/XgzCE+/bEUnjhIINr/BQ+nNEwLz9McKPg+qPPGjnJ9tunntWX+8NlGEk/JWW/KqXTcdr8fz89IT5aXyjWOWd9pxpF+URlF1T/XWcz3TdXtWoImggznlL4Ofvw+qTRsH3TehVfdraQh+WX6ddBQt245OxdB9OYUbxItdLeM0jOMwY+XQF+FY7a+145B9E8dF+XKR/NiEw3EQicjzAPsdD9U6dQn7T8fMVKfuIs4V9qn5ehM110KIcp6Jx9DfE0eC8laohfDqyTUcOptDJJbAYF8vymq/kI2Dx44aGg2Pygk1jJVFjl7K7M+p28z4k/ioav6SxmpD4qHxKcuem19CLpfHUF8Sj96/A9MjEUwNhDDJ67HeFHqSIcQj0p9AMhZFmv1ciOPRYqWBYo1ZcVyh+Y1zi1nki7ym/go5jG9TL3P8W2QfC+oNM7anshQfWCy3QkWh2f+eVrKIRBBmnXp6exCNUve5zFvPqVOqro1qNcIQpe62UKnqozegUnOxSr1zenYDJ+arOL/SoB7KoVQoIxGNsj4cYzdqOHRuDsuVGh57dA+2TUUxM+JgrD+OiT6G4Th1Gfk6RP3IfBZX6hgd7sPkcIrjJTnBxJusEmXF70stHD09h8WNCm7fvwt9SQe9UQuD3aTVQAw96RhmL89ifGQA+7d3Y8/mBO+H0dcd5hjGwUbOw9JyhXlt4P1P7cOW0Rgmicv0UJzxoowXQSTsy4Day+iIt4C2/NwSFO0WUduPb5kj+VN/3zvHoXSO6qkj01DO9Q4hmVAfqVVXFF0fFVSOfUIJbwkdx2EHOtCBDnSgAx3oQAc60IEO/A2H/sKbZxzq9dG8mfMF0xiXWi+b/hf77bfNbw8mOo+avaZX0FqwiFJoFe/6wc2Y2WpjcbWJ118+gaTdC6saZ1l8KWdw60zlReDK+QUXQacBN1LBUnMJd71nBnvvss2si4OvnkM8kEAYSaDhMARZShiuK2NhxCyVJCeGFWB8l1nJKCMnl0LD05ZS0IxF84KseiEEtxHmoxjKNd4PhjC6xcET3+8g7y1i9mwB2atxBEN9KBHHiss0+vpWX9xrfymWoYVXZVzXclZyHIZ4M2IFjAMDjSiqrgU3QBz1lbeWW0KZiMlASDqxnpF0DZv39ODpHx7B5geDWEYR88tlZNdC5qPuTXcHkRoLoZZPIXcpAi9cwjN/O4P0pIULZ1ycPsK8mkFUKjJAyZhMfGwZv+W8C6NOvKokXtVjaGhJVpLDlK89tyrE3oFVjyHYTBkjQd1zfcdhLI18o4yx3S7bIIbNmxI4/HwAjQ3xhRwkmgEhwz/r3dDX51G2ZcQYzLT0FzEwhlAZG81MjrcAY/sxRxkkZWC+0bDq85MMGnK7dPUnsfuJDG7/QApDbKP1dX3h3kSObRodszC5y0aiJ4L5xQaKKzVYJeJTs2Gx7kHi22C8OunSNA7mGLx6axk/Y9SUs0LGEnEteYXt2ajXWBftiUj8LTk+HNZVy7L6s8aajQQarHstnsfjP9mD9GYLcyebmD2k8kgH5lMnj8px3CDvaEZdwBW1w3weQoA09lzSqF4xRhr5WeU41LKK9Sp5pmpDDk/HIo9WSfeqgyZxlsFMy6+6HjMMetDStU3mY7G9Q8ZZTjlq1LDtNguPfyCDLXvTOHB4FYFQBKObbMT7AzhzehVeLoRwLS2kmIeW16XMsJ55Ijpzbwj73p1EPBLAwS/OI5zvIc80oX01G14QtQr53Y2jULdQJl9Fwg68WpH4NuDZMdTIC9UKeahBfiX/lwJZDGxO4b0/mARJgJcOVCgXq4hFUlie83DuRBWFLHmTDN+gzBRLMuaGjeOwVg+SL0IsQ/zlkfDkXpdtQX6vki5uLUh62ahVZXi3EAolUC03EYnauPP+NO57jDRhHY8dXiGPD8N2yLdegXGZviw8LdQoklWSU/vQmX3pbI/tEGWcEEoFObYclkX+IU/ICaJ9n+SALBaLqJRslh8DHzEPfQxA/cB2aVC2NCNUy7SKZ8wsCcM5/hkfiLnfBuQYYBtFLGzfHcP9j/Zi5/4YpraQz7tcyn4Bp4+5cKKkSfwqHntmGJMTFqoFYGWhTr5i25SAbLGJKyvAuUuzxNmizJPvRUaex+JhTE0PIpnUjCTWj/SUg4QUIn6KJFnQcnaiTQnjk124814HW/dQ39S0X1UTJdIlRFU3MGpjekYz36JYXY6iXC4aGlUrWvaWNGYbFYt14qR9LilxzFozqQt5F+Ui8dKSyx7xr5KH2DZy3MqJWSoV4TiUKeoQ6QOPbVwuke+l8+U4t6jHSEo5DesVLYnbMMvtJqKUGbbJxfNNXLiQw8YG5SkSodbzUCZeBer7PEO9WkezVEHMKBxqLT5zA+RB8l++GkGJuGirLRnN1ac01a9Qh1tsX/UgQcork7Hdi4gnXWQyceLAfEiXwX7LOAol1wtXPVTIZ6Us9dZcHRcvL6IaSJKGISMr0qPVGuWY8iEHb9N8BELeZjPY5INCvoZimfxYJ06Mqw8gLIc6hu2SjgVw7z1J7NsXZF3LmF9YYftQh7DfyxarxmFYJE4l9l8BJ0h6sW+gLLf7eP1J/74ZVDuFG8Do47cAoxCJaDsCE5k89dfS7QJTlhwWrWg6GKO2EigNH/gODf8ZWdSf/EXQBxbmIwtC+x4b4VpebVAeKq5d5o3OwXZ9/UfXr/3nflrdvw7+c80KNI42E1W1Mo8M+PVr1/16WtGulfU1MDi0HHE++PElD3JKyCivfIyTkGDq4CNm6uGXJbx1y+8nBfo1oX197Ya59PO5ARRP6f16tT4ME5j7LId4XM9POKgtde2XbWbrElXNMtceh1qqtDe8gqm+v76OQzNbnirjyImzWN/IIRyNIBSJGh17ZXYRB14/gctXFjEzNcYxJOW3UsJrR87i0Jk5DA+NwGYfe/iVA+wDSujqTuLcQgUf/+JJnF9x/Nnc7Mfj6Tii6RBOnz+LfEHjhyDHcR5OHVvFG69eQHZlBYlwAIl4hH0l29TQVcvj66M6Isfx5/zCEsqFHIa6w7h99xC6ImUkIlXEmS7uWIg4AaM7V5cWkF1dJ02bSKa7cWUxi+PnrprZ/EvrGzh64jJOn17C0mIBTrCGri7qnloNX/7GQVSoQzVDOc4+Uvt1akb/0WNnOXaa17dnCFOHv3rgsBoMiVgcdeqNM+fn8MaR86TRGuavlnD5UgEnT12gHruCNOkRSySMY3Y+B7x4KotjszX2q3V0JzKYmRjFQA/HUNS+Ry7MYalcxn33TGPTiIW+BOkZ9kxIxMglpH2dbXJxtoDlVWBsqBcTw/r4SuMk8pORkxY/cSx+/PwyljYa2L9rOwYTQUQd5aNQRZR5nTl1CQN93dg+xfHPYAOxcA3hIPW2zTEkxxwLi0WOfzfw1P3TyCRrpLVLWjNtuIFwWH0OS1K5LE9ybvj0Jr5sy90tQdFuEbX9+JY5khj6+14uVUqJNnHYu5A3tdIK+zyNGeRM10cKfCZd0nEcdqADHehABzrQgQ50oAMd6MD/IPBWS5Wa90u9RLaOeq30f8xb5tuAXlD1AqqYNl88HdSsGopOEfc8uQnd3QFcuOjhwOvH0T0QQaLXBZIFeIki4kMuogNF2JkN1Jw6ykxfj1SRHnbxxDPj2LHHNisMXrlyDpFwAKGohXBfDXZPEeXwHBKjVcSH62hEmig2bTRiFUT6C+iaKCE5VmfcPJrhnFlOz/WaZi5Q3bLhxVkGn0dH1hAZLMDpK8DuXsTdDw9heSWP80cqWLkShh1tIti9xvzy6J3wiG8FcCrma2vXY827igiNFpDsceDV+aKNBKpWHZVwCU6vh65RC83IBhq1IpoV5uXFEQ6kzeyb0S0R3M863vVwCBeONvDspxbx2hfO4czLS1i8XERvJoNtW0KINAOYm2tipTqPp35gwPhNz51dwvLqOjKDQWQGCggn1/iSXyPtLXiBOnHIwUqWkBhmPcdLSBHvSHcZCOchp16jHoHnuEiMNWD1r7Aea8S3gMxoEMEk84lmsfO2EO59cBDDQ0GcOLOComehaG+gaJVRj7LOpF9ijGWM1NkeOZSba2YWjDy9/gwKksoJmeONYPjEGCJgHIZmxgWD7yC4zmv1QBVZdxm3PzaDh98dQ+9AEAeeLeLFz53H4ecWcOHkKirZBAYyQWM43yhamF+YR7FSR/9YL8KpJsrehmknqxmHZ5EG5Jtwf440JL+4FqpBtntqDZmJMjJjHmIDJQQSZayV1lC3A2iE6wjEa4j1VchL6+TVHKI95PF4CG7qCu54fBjhaACXD1Ywe6SKZshDLbmE0NgG4qMlRAc3EOoqkO4FNJ0SEC0j3BVAvCeMjeoG+bGGRjAAT/uURSkL/S6acdLRbrD+5NNwBV0jDfJREekRpu1ep4ysodqQc5aC4QbIUw5CwRhsyyEdK9h/3yDufrQPKxtN/OIv/zGW1hMYHcugr9fC7PkgVuaIpxsjrdn2DMaJHwhTRkqY2RXF1v1xNIrAq1+Zh91IUZ6qCPauEc8FJLrK6B9pIkp5aSYW4TGiXaOcMF6DcmGnsugaqKBvtI4UaWUllnhu4867+7BBfF55tYCFlaOs+3ksLlSxOk+5qFF2rHXSZwGRdBZ9YzX0jlQRS1N2g2vkkRJli21B+QL5OpZeRz/5OtWbRapnA+F4EQG7zHZeh+XkMDwWxH0Pp7D3Djkfo7h8IUs+TMDDOhpNtmGihnRvjTJbQqxrFcHoHJ9l0SAtvUbYPE/15BFLEafgLPmO12wz2XcVL0TZiKcpK30WevpBmlTZHktoBArQPot2IMqI2v2K/CzaygkH1pF3DPffwONvDZrV46J/sA/335fC1k1RnD1L3kwIhwaOv9HAiTeoCyM24qkCHn6UOoFi9+w3zuGzn3sWp06u4eDBFRw7WsLspSrqlRCfywhKuWQdNQt7aCSD938gAiccxdqKi4114mtHWLIcGAI5/GVYlsOijoHBDLbuCBocXnhuGc9+dZF4eLhwtojCRhgjQxa2bbepk1wsLCwYh2CqK4IkaWOF5knTHLp6aojGXWQ3VtkelAHSsHuAbTlaIb2LjLdBXUDaNLoYr4lkJm9CsxlCpRBHnTo0wXwyXZRBRx8GEN+69tkqIU2d1ZVuUg7yWM/OI1eo4MrcBRQLVSSiKfRTP8cia4iHlpGJFdCXLCITrcAhbzVJPO1R5tVD1BPku/AGBonPIPVld2wDMfJ9ijKZIq0d0r/pataeA/l4KO2oeTXqniIuzlZx7HQJ5y5RVjNxDA1YOHvJw8f++DUcOcs2PFfDlUvrqNZKiMeK6Kbe6c9U0JOqsMwiHOo7UV0z7+Qh8+rrSFHPpsLrjNtAb9pFmjjHKWchFOFRf6RiEezYkcDImIVjx1hn5l8vOYhQ7XYlK+xDWE4ijy7WIxmpkYYV6g2f/6Rrtezft86mafHordjUgHEP+b/m3z8a4NFkoXJaDjEDet6615AXinDteavMa0W38+KNtu+plekNkXxoO9f0QPlpFqnpY+QMa5Vn9gg0eXKEozr6p/75m/Lzn/vOTv+B8jFOPj+DVp6+Qf3G4MP1zPz0ftybwTgTeZulmOcy9LfzMbGFA08886WLHHbX8XlL0KObHitvU5dWUDntGYttfI1zgGDqpxPe16xHk7qVTvTUEob6QEh7HLYdh2bG4V9jx2FT9Q2G8PJrx3H1ahbhSAQD/cNwQnEcOHAcn/nMSVxgH/HA/bsQDQeRy2XxlW8cwanTy7j/nj3UZTX86cdfZF9Sxsx0L9ayZbz08gloT+o4+5OeSAUz4/3UQWlcujCLq3OrjJODV2O/wLxOHzuFS5cXUCNNRyfGoAmPNsfHIokf1B4W5uYXsbicYz/I/np6C0ocJnsBzTznOIARta8fFTYOHzuLC5fmWTMPg6NjOHdxCV9/7iCWl5ao26vI53JYWVvD+YtXYDcr1GUZlhHDn3zyNZTqDfT1pDHQk2TqAAplF5/+3NeQXVvHJPuESDSBj/3+S7DCYQwNDSBKXC9eOo/zlxY5riqhUipjQXsCHjyDbDaPnTsH0cv8q2WOl7NFXF1cRnZ9EUMpD5vHUtRZwFC/PtCr4I1TC5hbaWDXjh3oZt+gPq7K/rbqRRjIK+w71X9emt3APPukEfY5E4NaBYKdmz62UluShpIBdcZHzsxhbrWEvXu2oidpQ3sh+nwTQIVjilcOXWT/3sfxaxyZZIBj0yqovUnHEJbywNm5EpbXVrF//06EHS3VHkSZY0LNLpf+VVbie4Evjzz3L69B+/ktwWTmn347aD++ZY7fc8ehLvkncdXt1h1Da/KllicO2GSEAOlz9E9MjFtBx3HYgQ50oAMd6EAHOtCBDnSgA3/DoTf3rtZZC/iuaPYj0juj3if54xuV/JfItwXzxum/dcppqL3wqnYNBaeAe56aQXcmgIsXPBw+fgqPPLMLj3zfMNJjMSSGgad/eBR3PtmNqf29qIdimF31ULWy+OBH7sB9DzhI91lI9Vu47c5JNLwA7LiF3Q+NYNej3ainFvD+v70Hex7qxnLZwomLG0iOWnjP35rB4z/Yj3vf3Y0d92XQM9yNQ4dOwK1HUCaSbiiC4R0xfOCnp/DQhwZx17sGeZ1Crn4Bd907ifx6AJdONbBwIYhGOIuHPzCCd/3IGB58Tw/2PtiNrbsyyGWTuLqQRff2Ju7/yATuur8X54/W4ZUSWGuuwOsr4u53bcP7fySFarOB9fl1uOs2ws0MvFrc1GUP87rzmRgKrPNH/+URXHjeQmUuDG81htyyi+NHljE91YOeHgtL+SaOXDyF9/zAJOoB0rZcxvjmQfzwT6Tw4BMp9I+kkV/LIbtQRSQZxEbjKrbdM4j3/NAOPPNjw7jjoUHsvacf8XQEG+suVq5acKMFvP/v7sTo3R6Gt4Ww4+4hPPKeIdStOrbs7MXtd2cwPRNCJBXA9J447L4gZnOLWKlUsf2+UXz/3x3Ggx8cwB1P9mDq9h44URtXzi4i5KWNYVL8I0OtMQq/ycASQCikWUUye8DM5FLcmx2H1WARWXsZP/wPtmD3XhsHX27gl3/hU6RRAtWrCaxebmD5QgPlUgg79zvoGXWwSBo0Iwn89D/qw+a9UZy9kkeO9Q01elHBMu59/zAe/cgkEEnj5PkcaqF18k8CH/qp3Xjs+3qx6/4uTOzI4MpyBYvZEopYxcTODD7yP01iYHMYW+6M4/53DWF6VxAXVy5iz13jiIQCmDtWx+zxCiqhNQze4eGJn5jG4x/OkAd7cc/j2jMwg9nF8wimGrjz4Wm86wNxLBdSWFhfQ65WQyAax8BMEj/w0xNmht7SxgaWN1xsu2MYP/B3+vDw+zK463G2x75+WBHgwoVlylkGZhajpvI12J41Fx5rObE9hrGtEazkmvjCV08AwX7MTPUiEQvg4DfZfvOucRzKaRg0X9KT7qDMuiVM74xj294Y3CLwjc+fQ3/fBO5+Oo0d5O9GcBYf+eE78dR7uohLNzLjYZw5eRZRdwzhRhrFwCJ6p4v4ib+/B09/kHV/ogdd/RHEkw1s29qNHHn4xZfWkBks47H3bsadt2/C3Lka8qsuyu4FDE6U8aEfvR3f94N9ePTpLuy+vQtaQffg62+wnj2oloIYHHPxyFP9+Ah5+rF39eK+h7uxeVuGLOXg3PmD2MRyPviD07jjniAi1DtdCQs7tvVibdXC3MIZBOwSbr9nDB/6oVE8rnrc34OZ7Vp+OIpL54vIrTkso46HyNPPfGAKofgy3vehPXjgwS7yZwIH33gZ2/ck8YEP384wiCffnWJ+CUQSPTh36RRKBReJ0CBsT7PRZIwTj8tp6MDfI08mOqNgvy1o1l+1XsT0dB/SiQAOH/Dw+7//HLZs70LfIHXkuSDOHJWsNDEwVMO993ajUgFeO3AVr7x2DstLmmlXxspiE3XqIy2rq2U+2eCoV8kOdhRTlOv3fdDB6noTZ08XsLYURiwaazkLPCIhR4Jw12zQGvoHurBtB2kaDeCrX5rFlz87j7WFQRw7tIrXX7mKajWF/XeG4MSbOHeWz5aDeOZ9Y3jqmW50Dwbw4KNb8a5nBuE4UTz/3DexadMMnnrvNN734TE8/EQ/adiL4bEelPIOsitBDFOWf+jHe9EzGMLygofL5yyiX8C7nhrFk08OIRVOYmXWRr2cQyySw/vfvxX792kZYn2EsIL3f3AbQlHGWVxDVyyNn/yxOLoTCWyftvDUA9P40FODuP+OPvJ3Hy7PrqC40YDtptGoLuGxBwfw/e8bxvufyODB27qwaTKCsYkmHnhoCjGWu3ClgVrNQzDcNB9paLa6F4giWwxQZgNYy9UxM53C9ISNo2dr+C9//Ab7p1E06nEE6jGkYlXs3OLhI++fwvvY99x/N+Vrcxq1chCFjQpqVVmubcTYf26dtPD+JzfjvU8O4KkHU3jgziTxZDsWlykPRaSS3di5K9ZyHNZx9uQ8GuUI9u0kj7+/F0881INHKbu3b+9FyKa+XCmgWNHymFpO1p959l05Dk1UY1KnDm+dy1FjjsrfNkERbuR6E4+hXbZ/zaNYrlWuDub02smN1/xp3Xsz+Df12HcU+n1QuzxjDG856BTHf940OL85Pz/+jY5DxTNH86syWE+L/Zypg+K0wg35tMtthzcBL2WUN/iIVgyKI3zbEW5M0l4m1Tgg9aCFz5tA8W9IwxxMviYwrVkOlkF0b7j+zFP1u21a3dgeykfpfdx1j7TiiZlx+DfJcUgMPCuI5fUNLHDMVq972LVrH4sI4cUXDuLEiRU4IS0vPIlkXDN8s1hcWmefEMLtt+1DuUx9evkidUUMO7YOUdbGMTjI8Wi1jkdun8T733079XTMrE5w6vglXLyyZMZZH3z/43jg9p3Yv3MCx89ewosHZ7Fv/w5kUmqPipERLRMuAgVDtnEcnr6wgrUi+7mJbVgtuig0bBSq7A+8BpxYgmOzEM5enEU2mzPLFA+NTLBfK+JLXz7IfB08/cQ+3HXPDtx5725cnruMDcp70olgaGwbihwjLKwW0ZUMYXQwyTEkR0TrRfzFZw6gLxPCY/ftpLYP42svn8DwzFZMjQ+iP8Ox8kgK99w/g7vv2YJtm7cj4qSxujyHvXuGsXvPNKocD548dhZnz1/Bnn2bMTPRg60TXYjbFZw7dRybpzNmFvqR02ssn2WTflo1oerVkas4WC/Z7O/qiEa0R3QDF2bzmF9pYmSgGxMDMWpCfe7Xkj8jq7wgvx45c5XvC2Xs3b3V1D3EtOYh+65SzcELB88h0dOPkeGk6UcrtTIsx5/luVSwcWG5hoWlNUxOTrJ8IFul7mbIlSrw3DrraVE2rjvYDZ/exJffItPfDhTtFlHbj2+Zo+RQXM2yRYrviePQF1X+MJUhMJ80XA0ZOGbiWCYYM/1c+fAfmWe3go7jsAMd6EAHOtCBDnSgAx3oQAf+hkNv/ibHIcHWlBq9Rfrv5zy0XpZvBXzjlFHJP3UY5DisohjK4d4nZ9CTCeDSOQ9vHDuJOx4cw757khjf5CDTl0AgFEAoCYzP2BibcohEBCdOX8Le/cOYGLcRigRQqgHrK1XMXlwjRja27E/htkeCmN42jFCYL/rZJo4fW0PQGcTf/0c92H5bECWPaUoF2AnG3xzE2NAEFq4GkK2sY+v+afydf9iL6d02VgsVVLwA0r0hjE+OY2zExvJ8E8cO5NCsDeNHf7ofj7w/hnB3AEUtWUcSjQxbuO/uIM5dSqCZWcf2ewexZ1cQV85GsLzUwBquYmB7HO/7gUFs22Xj0KF1zJ5cRjOnvetiKBTqSCRi2P94DNN32Dh7rIBvfmoJ6foWRNAF1G3jfM1nK6wz6XHEwoXzQKV5Ffc8No50v4OB7gT6U7ZZJjFN3Ga2BI1BZ20phOX8Ch54911470cGsInla7JRrlhAT38Yu/fEELHTWJpNYd2dxQPfP47t96UxMpZBNBxBpdTEhbMriEci6BsIIJGuoFoPoVACrszXsLSRxcjmKfztvx9HcsDC3FoRpQbQN+Zg97Y4yquDWLpYMssAxiMJ+R3ISL7xsWlpGUcXTbuBeIq0cGSIbDDIsOsbemVF850tNhqRCno3R3D/UyNokvaHXmrg7MEshuNb4dS6EESKbZTAWu48tt7Wh2h3FWfPrGJjLYSHH89gYrONkxcKWFsso1lJIJgq4SN/bwzD2ywcO76B1XXgp/7BNrz3B4cR77PJLy7qVgBTpOV9D3bj1Pk6lnKXMLl9CM98fzem2KbJTNIYa1YXmzh78SL23TmJTFcAFw+5WL8UxL1P9OIjf78Pg9tslFn3XMVDNG7hdrZz1Y0iW8oh2dOPx552yOoWTl+sY4U07RkYwANPDODBpxwsbtRw+sJVdA+O4x/+kwwywwHec1EjHYfHLfKanMRDuHqxDK/SQCKShJbPlSGpWhfPb6B3LGyWt0x178CTT/dj85iFi0c9fObjB+ARDy3LGoQLxzgOZUx2mLaEqd0xylcM9SLw9c+fwUDvBG57zMa+Rx2MjI+hr9syS3tGewIY3RrDUN8422UNlXwCdz7Wix/4iTFs3WGjQr7cyDWR6kpg6/ZudDPdBuX0xRez6B/z8MDjUxjocXDiQBWLV3LYd9cAfvSn9uOOe0NYWm8ame/tC5Bf49i+ZQbPffkqZibG8IEfyODJ98QRiQWwtOYiGLYwPmFjcCSMjXwD5XIJoyPD6CfNFKdAHKqsy8EDrlki9d6HNuOn/qdBpDOsR416i405Oh7DnbcnEbK6cfmihcGxMu5/dADbtjvEgXFTFuqVJpYX2O7ZFfyj/+1ebOazNeI5Tz7o62eb7NUCdCNYvNrA4lwZsSh53xgbpUct3xhHXveNelWeuwyaIWGsdYwkrvJ1bVP3KCtFyuKh10N4/RVQz9Xwvg+Non/QxpljHo4caKJez2PT1hBuu5M8yaTRWC8+8IH9ePrd2zA5OYOmO4jiRh2RSAh1t8w2ybFNFlEjHQZIrwceSeL8pTyOHD6Hq1eyZkaRFfRl8RouFOByuYDBwQy27XSQSAVw7HAFi7NJpKLd6O3uYhX6qAsP4/Z7KUddRer6Isq5bryL7bSFvDA8lkKK6Qpsh4WrddIyjB//sWnc8wB5kPo9m19FJBrC9DT7hGQQqwtNHD52Au///kGMTsZw7lQZxw/n+DyGH/zhDPbu1UzbJi6dCeD0ieO47fZePP54D7Qq8txs3tTh8Xf1I19wMHdpgXoojfc9k8Bm9jEjgwnE2M1E7QDGx2xMzVjUA0nMz67Bq4Vx7z0T+NEfSZrZguKbGkOmO4zpTV0Ym7RIJ/Y1R4tmeepYnDqqqQVQbbZZmDQOwQ6mzUchO7dEjNNvbimAFw4yjj0Kt1hFnLg98UgffuTDQ+iKh4wzXTOiR9nvbN8SRqUYx+LCElyyx523TeJvUYePDWv/XuJSbSIeDWDvrjCcQBfOn7+M1bUq+8oB0sbC8eMeeW8dmyY346f/DvuIXvJtmbxEPu8nv2/eHMfyehrZQhC1GgWMoD7/Rseh8e8YBmDwWeDtgYxn9sMzf74ON8tU87xtVDe58ceYuyUTPJfzS2MM4wRTbF7IiXmtTN5qn+pEeLWvdTR5t28YIB5iAFOGya51rvL8iMbxQNC+hErbdqh9a14Cv8+60XEokPOtfan7ps8yx+tB9zWTvh2nHW4GxdBMQrOfIdvAOPM0s9CU7ac18ZiXaSPd45/SmSXkzfObQvu0DYymtMrDLPWovMhMOvfr7uOgPU91bpaCZDuIlsbha7IQHYkf6SanoXoM7ZP5do5DcZTSSb/5KLWQuhG3NrBg/7b/q/q9ZbzvFKh7bUdLYTdx+uwcVtZKuPOuu3Du/BzOXZhFdyaEmakBMxt3anocp06fQz5fptz1sG+YQM0L4uDRU+hKO5TRQdItjNnZDWTX8hjvlxMuzDEb9Zpr4/VDpxBLhXD73TsxOdwLu5ZH3NG4s4laMIWxsUGO3YIIcnxMKrKu2hU7QH3iUQ/l8eqB83jlwCzWN1Zw5NhxvPzKQRw9fAzF/DqGR4fYLhHMLyxTF5SRScfQOziKC3MbWF7LUi+M4u7bZsxerHZIeTeQWyugygHa5h17EIwl8drBwwhSZ02N9rBPieDy1TX2B2Xs3TGCmekBlDheOXD8CoantmKkP0ldqT2BKyQhxwqOhcvnF3Hq2EWE2MwPPrgXPT1JREJh9Pf3Ytu2aSQTpM3FcxggrW7fM4PpiW6EQuQEtsHlRY5rLhVw+fIFXLlwCqdPnsFrr57gkfmxPxwbSCAS5PiTOvzqqku6cgwnx6HlOw4NT5F/jcog7x45s4C51TL27d6CHo6FQxb71tbYsVgP4oUDpzmuH8TEUBoZjgVqFQ5ilQt13lrRxhunFvGlL74Kt7yCg6++gQOHjuO1N47h1ZdPYvMkxyypGBxVVKmM/L2ZKXX1VnL9lsBoJv7bhDbceP7WIHqyGgoUFjkOz2zEjOMwb00QpzqfaZzBvPwfpmkdddoGI5tG2nj0/3ynoR9Jy43zh4Voaeww368clA7/sXl2K1AuHehABzrQgQ50oAMd6EAHOtCBv8HQNqLpxVIGJH2J7huUjJnIf6a/9vvmDeGtwE/hG5VcRvL0UsoXT5sPzJZZOiKIWCRk9mqp5Zo49WoDf/Abp/Df/tNBnHujgZ5EAJtmhEsdX/3iAVw87aG67uHK0Qb++KOv4+iLS6ivMw++lYb41lxYaOKTvz6Lz/9aFkuHPXQ1LRSuNvG1P6/jT37rNfzOr30df/nJI6iWgL37bCS6g+ifcLHrbs3UsXDuUANf/P0s/uA/HseX/jCLZrYJt9REvqgZUBa0fV/DDuD0KQ9/9N+P46O//HX80ccO4bmvu4hmApjcZaFSKeDsoTxiMWDng6ThaAnVeA7p/igmJmysLmlfqwCq5SBsh8+1/5lVQjjeQCIBODZQLtVQd2uoeh7KyKOAVWPkjzejyB5bxdyLK6ieyKGrFkGNdbEiAcyd9PDl/1LHH/77WXzsPx3HykoTU7tsjN2WQLZZQIX4y1n72U/U8ev/7jV89D9+Cb/5K59GlnWc3mZhbDvbyakgkQwgGgzgMmn8uY/l8Ke/uoYzL4bwypfWceTgOlbyTZTYVn/+m0t47U8rCJaS2LLTQSwdwPPPlvDJPz6I3/utl/Fn/30Zp440jPHes13UtJRrkdxQt2F7QVj884IuAukG0pMRpCYsdE8HER8iXyQq8MJVNNjuvnGIRPHCsANBDPWnyTNgvYmH7JING2U2aNUryz5k+C63QZrlGog5UXRb/cBcFCdfdGVbwvhOIDKcQy21ii23zRinb3auiezyCvoHGrjzTpu08/AHv/cqfvVXPo/f+PVn8bH/dgZR8uIDj6QxuSmOOkuJ8zrC8r7+2QX8wS9fwrN/UELlcgxWDdAEoWqNsSg7YSJUnPXwl79bw8f+/VH89i+9hj/82FHIVr15VxeCCQcX56uoMN7m3Tb5KMb8tUdaA9u3WmZpsBNvLKBUKWFmTxrxngBefJn8/0cv47d+7Rv4o99exMmDDVOOzUzrbpW0qKDu1YyhJ0AcLp+bY9udRZjtev99QXSzrQ6SZ5/9gxqcjUHU8kXiPIuAtYFQiG1GIQ1qj0XbQoBpmsRB9l/NUtM9OXe8UACX5kr47Y+u4tf+QxGf+/M8NshzO1iH3mkLiYkypndYmJ6ysXjJY72X8V//zyye/QJlkzJgzOGkX8C2jZMz6NlIxQIos559Qz3Ys38Uo2MW3qBM/vZ/OYFf+cWL+PM/rmOWPDzST34d60MyLecJcPj1Bn7lP57FR//zG/iVXzqIF191kRwMYPueTZi9WMeXP7WBY8wnV2ji6DGPdNvAkdeqGB6bxl2P9ZhZjL/7sQp+49+v4zd/6Tg+92dL5FHgkYdt6gWXNF03szfD5J+F8018/GNz+C+/cg6HXsvj7jvvxRB56I3DS/jEJ14jrq/jl39xCa+T3zyWFw13m+0BK42yWYpN+pKaBBbbJxSsYWAwjFHy/8R0FMPjQdbJ3wvRMLMxt0nraqZDBOVyDZ5XRzhMPtcMAmZm9C9DvVGlHKwjnUmYfa/kmJ0k/VKU594+C48+EcT7PxTEzr3dWFg+Qblaw223j+NHfnw/fvLvbcHDTyYQTwWw77YUfujH9uBn/uF2PP3+fnT3SW48uF4VbkNlSsJkNOVR+p8oyoiMQJ71E14yqgL5XBUF6op4PI5IRHtasX0pM3J0rSx5+PxnsvivvzGPl54toCu+CYU16ukv1PFbv3oUH/2VF/Crv/RnbDsPA30B0jdAvTqPjfUmeroCmJrqxsSkhcERCz0DLJD82c3j8AT7Ea+EXTvHMDhgYYH9wYkzDURiMwhpPzA2qoyosGuwmCbM+n75+QJ++aPH8J9+cwWf/kvSlny9e0cIfYMu0oN1PP0B6iSW+cWv1vFLv34M/+E3z+CzX14ydZSedKjfrFCIfCznG9uuwTZRn+nW2ddRlngMe8RBaDIE2bRpJ4wQSZYM5TE9WcFtt9nsB4BPfHoNv/Gxk/hvf5TFJz9bNx/Y3LnPMsuXRp0yHnjARj/r/NxrLj76+8v4xf+6gV/7nRUsky7btgVJlwG2PcuWMZ1toX18uzIWBkgXLaN7/kIDn/qLF/HbH2O/9SdXcOiwa/YAtdloQTlT1E+zYmpD046to4IVpMZmHHGjoH18E/CWeFIc4jumWrhIxtk/y3lmHFyMoT/xbpuHTXzSy59dJ95qOcf8zPw0Jo7OzeNbQBP1mnQgaR7U/m0WXFd7dZEHxLMGfeJGvOQYMziQr6+VT9BMPDlB5TTTsY2Pjg1XuBIf0cvgxUdMK4ebjrpW3fhr4htdyusb63DjuaEDj2ZmpsoxZXnmWv2Wn5Uy5b88BLzhNeRY9MtqZWNAeRknYCvem/50zfs+bi0cTHmsverEcz03TluCoQ1PNX7TBwxmliKDcZASVDczi4lg8uLRlHsDtFETH70JeK1n10LrWtA+b19/L0EcGiAvDPf1IpmIYS1fwbnZJcyvb8CJxyhHQxjqi2P2ylWU60EcP7eGUrmBod4MacQOh7qkwbGbtuOmNqHsyzGqRvJnr8lXVQ1SZ0aaKATKHP802I9TVwRcBKkrtXdgPB5BMBplX80xpva85tim2eS4SEtaeyEeI6jkXXQz3j27+/D0/TvwfY/swYef3I8PPL6H9yaQclyqvgr5pWp4oc4+1LUcjp8icLrjCDGtxtoux5O2S10cChuZ3miwHwk3MDgcQx/1g1cro5DNoVFr4tiRM+jOdGNwsI+N3yBbyOFE3mCaJvsvi2MD2woy3zCuXFjD668ep569irvu3G72D9R+zdprMRZ2kIqG0Ud63rt7K3ZMjSATD6K3J8V+JkXlFCVtK+wb6nj43p14+oHdeO992/H9D+3B9927G7dPDoOxOOygDLK/bHAkDIdHvUBoUMl6atlW2KQVrw07S9+wQTxXy4NLfrQPMeXRtA31c71BHcCW4pjRJn1jHNBHqgHEXI7l2Hmlqcy3TsTw2APb8d4nd+D9j+3E9z++Fx9+926MDnKcwOcux1gKbd68xqNCoCVT7wTeacx3Fk805y+FRn++oMnpx6MJ/odK7WvFNXAN+Ra0r5le+oS9mUjKoI8LJNsB6tQqauUcPI41tDz2O4Xv+YzDSDTOl5UuJFIZc4wnODjuhE7ohE7ohE7ohE5ohWgsiVAoYgY/Ll/IO9CBDnSgA9899OXeRbXKl0q+YBqjEoMxaulFsg26rZ+b4dqbaAvMW6w5gcfXSy3LVwuWUA2u48EnNqNbM7LOezhy9ALuuXcck+NRXD7ZwAtf8HD60DKunF3Drq3jmJqyUKwCL76gGTB53LZnEwZ7LFw86eHTf3gBtTUbg91D2LY7jCjzfO3LRbz0J3nULvXAKztoujmUchEsztXh1ZJw7Ax6+8axY4tjnCcvvJBFOLOEOx/pQn9PAn/xuy5OvBjC5TNVFFeiZh8szUC5cLmG40cqmJ1NoFRrYm6hifW1BpzAEHpS48ZIPb3FwvzqBk6fmkd5vQt798cR6bPw0sl5FBsr2EXc770rjtdfcnHghQKKyxVEAiHSWEb5Grr7o9h1bwyDLO/SqRKOvryGZjWNWiCHmr2BkGUj0YjBKTmwNMOr5iAUL2Lnk/2wems4/SXgxCc8rF91ceHqGey8ewrpQdJ5tYnnXzmGhuuguJFCjteN0gASkTS6eyLYs3cAwSDjXfFw5spZPPr0JrN35KGvuHjlk6znpSjcjSiyywGkRyyM70kgXA/gM7/exMYp9sWJIgZ3FTGzNYV1xqlujKBe6EN2PoaLJ5pYnK2gkN1AoGIhaPYMI3+JOWygHqkg0OOiezSKWHcTVoyNHWwYp1ehUCQb+bNVZaQKeFGzL2DfdAB77uyFVwTOvOHh3PE5BA0dlWcQnmehHlzAHQ8NoW8giPk3HFx+sYlCqYGdD4RQiq6wPZdQdkN44t0D2LLZxrNfdXHm9GmMT/bgsSfTmJtv4uIlOQL6EA5vRoTVvPMO1jtSwIUri+TJJB5/uBfZpSb+/HcXMfuai+haD2puDXc9lYGVCODc62VcPqwlrqKYI22X52SH60EyNoje7l7s2W8bh+qhI8ssy8Hm7Wz7UQvHToSwvHQVYyPdeOaZLjRIkk/9xSUs5RYxtWcIO/bEyXtNZFf6DZ9lryZx6SSwOtdEeSPny6uMxiRHREsmNioYnIxj712bML01jIj29pGB8MsNXPoGMNbfi617hhmZbVSvwW7IoO8wjwjKLHxibxQzd8Thlpt47rOXMNg1xmsLVk8Tz37tCr7xKRvnDsdhR4uY2NrEyGgYr1OG030Js6dgF+XsG39Zwhc/XsPy+SQ2ygWEurLYsj2N7AZ58/l10jiHndv70Z1w8KXPzmFibBj3PGAbZ+2nP3OechrAlUsjrHMR60su1pZshiLy+RKWV21cnbeQXU8gGhpiXv2YoCwOzNjkd+C5z7FepSFs3h1A36SNQwdq+MwfLcMtZXDXY2HsfyyIq3MePvarV7F4LoP52Srq1Sb27U1ijPrnjUMl6q8VzGwaxGi/g699jvL7XBmXLmTJa0FMzCSwc5+NjRKQXetFPjuM3DJ1zsUmrl7QjMSqWZpYnpygRRalbtQHFEHLQzzZRP+QgzR5n8NbhLTnXL2BcpG6t0F+b+tVNqaWMNR+fyGHtLbJ48158u8w0pkATh/zcPxwgWXkMTDioWkFsUianDnlmb0NL15ewfBYGqPkL+1HduToWeZXxR13zuD2e0PYsruCvqEKurtTFKEAkqk6egZqHHOHcfr0LIpFx8waE8hwXK2VMTScwfadIeIdwNEjS7h8KU90u+AEg+QvUE8uUdePoncggOOH8liaC+Hhh6Po7bfY5jk897UszpzsQ7UQhUPZXV+mXiUPl4o9iEX7Tc+xf9+IWVJu7nITBw+9hpktGWzalCZ9mH/Rw/SmOKaoy9dzmv0EM4P11VdP48Pfvx39vSznpTJePehh85Yo9uyxsDBfwdmzs6RfAnff34W1fBOf/OwSXnu9isXlIerIJu67V3tQUrdcvIxAOILv/8FerFDePvmpIg4cdTGfHWV5Ody2N2Vm8J27SNqfpk6l3oFXZTO7ajDKYcshxxBu1rB/ZwLbpm32IRW8/E3qdrcbQz0bvC/d0oUzZxv45KdrOHoOWMwRt9VlswxpX0r72S6T/lE8+XQPynzt+cRnyIPHXMyuxPhsHXt3pjAzZhGvMFZJi9GRFKbJ6yeOlbGwMotMH+u/L4FKsYml+RByhS7kiwO4ugjqwjLKWtfWKA7TafNMTiIerwV/XHBtLMCjMSNLydwAJq4e8ijnqRkGyIlExjezZkkT5uKna/H2TVkY8Mch/gP/6F9fG5vcCMrGROHPzY9YnuK3nVxy6hmHmIzg7HdNEhOYtx+F4Geo+z6G5srEMY7DdhnKo3WqyD5e7Yfmln7NudK1Z+sJ2nVoOw3boLtyFBoHCP983Nt5Cxif57o2z7TXWAtxHbVMqgz9iqNgym2lvzmYwlrZ6mCWPVWputAHHWo3Qz9ei2Rsr2v0MO2goxwKPGG5VsBDrJlFhjqoP7aGyd4SIhb7IznENONQ2Zn8W3zRLlyg0/alObaemsJ19A/fK1B2Fgnl2A4Ws0WzBGggFKGsrCMWj2J6tAeJIMdUp+fRPzaJN45dQjruYPfmEYTjMeQp668dP4WupIOtm4YQdFKYX6xhkX1SN8eMQ2MJuNSjbsTBa8dOoum5GKe+HMrEYdXLamRcnMvh4koNg0M9GO6LIcyxgL7QCXj+eMcOxnHxwlX2YVlMDnfh8Qf3Yrw/jsmBBPvsJHpTYfNhgNry8pWryOVK1Ne8PzaFK9kCLq8sY6w3ga3D3Wbf1yDrury0jotXV1C1A9i5dzP7yjrHdXNwi2XzUUM61YuvfO0gx0FT2DzVjWSiYT6CevXQJerxIYwOJaiPKUfso2qVAL78hVdxdXYDMzO9uPPOXQhrn1lSl9nzl/2Qy3ERebQnwXQxm/frZBX2bRyX5NnHHjpxiTq4hKcf2Y+9k10Y64liuKcHQ90sO8qxH+oIUF4vUsddWS9hYqIPowNxs3ehZnWzFzU8qg9lxOuHji9Qp9Wwb9cm5sHxZqDI+9I9IY5lQnjxwEn2l32Y6csgE+WY0mX+1ANy+JbYfV7lmBz1HD7w9F5sHothtC+Fsb4utl0fohGOpci3RgZYP50bGdH/W8jT24F5fkOStwvvBEw84mNkncdapYYzG3GcyA2jaE8wAuupj3sYyYy+W5UweLeBp2wZQ0+dGUe4CQI/nvoBMzubfZzGL2Gnifyxz5tnt4LvmeMw6ITYiL1k6KBZ+qCYz6KQ30CxkOuETuiETuiETuiETrgWKmUOBDnQi0bjiMaTxnloNonvQAc60IEOfMfQV3g33w9v8apqXi5vEUegKCaafrRcmAXXLqAWXMODj29Fr5YqPe/h8NETuOOuMUxMxHHucANHXliHZjXkS8u4/b4p47TLbTTx4gsXUSpp764tGBqycHW+iW8+PwvLszA02I/N+8IIpgN4+StnsHqyge5gBm5kEcXwKdgpD1NbtD9fFLvvTGN6q4PebguRMPDSN/IId5Ww564RRPk++ge/dQ5uIWNmR7iBKkIJB7fdE8Lich4nji5g9nLJOKfS3cCdd2dw7z0x7N5tGwdnmnnOXqnh9LEsitkezGyKYJj3Xzu0jGikjrvu3IKJAQtf+LiL2WMVWOUmopYNWdRchngmhs13RNHPOl++UMSRVzbQrPYbg6YMXNFoEPnqIgLxMjwt12o3UOpawm3vHkMzVMb5l+pYOho0S36uVi9j/32TZjnACxeaePW1o4gmSsaRtn1HF+6+y8b+O1KkySD6SU8Z3M+e9nD24iU88MQMSAqcfrmEy2+UkdLeg2ZCQgnD2zzM7A8jwTY9+IUKmhtBFOrLaIYr2DTZg62TNmYmApiecKBJRmfPXMDC1Sto1mXmcZiPDTMrg8HM9GA50UQEme6UKbMZcMkpIXi1ALLLRYSaMQQbEdjNMBwvjKZTRqyvgT139plP/U+dyOPciQvoCvUh3EzBY55l1NCILOHux8cQT9s4d8jD8ZctrBQXsP/xDKK9Ni5dWEOtHsQHPzSMYCiAj3/iMlayK9h921bs2eeYZTWHh+LYuyeF/XscbJ2KGwN+cT2K48dyqFZsPP5QL1auNvHS167CKkXQF0tio7mEO9/bB6cvgDNHVnH26DI8x0LRymPPfSnc95iNO+61sX2vjXSvhVIZOP5qFXPH4sikQtjB+2vFJnl9FsMjSTz8cDdOEf9Xvi6HWQmZcJ8xaG2Zts2yvVOTUdLZwpnTl7C+toSG1o0jf+pr/ECIMue4iPeF8PgzU3josSgWFpu4eNEzM7+qlKtK2cX03iCe+REHq6UMVuazqOWZhxVDwwqj0NBSpSFs3Z9ArdDEVz53njw0Th6wyIcWXvnaPBaPkz9KMfSO5TG5GxgciOPAS6sYGejFpq02irUmPv/p17E2l0YiHEW+voBAdJmyM4Y8+e6F5zYQi+awa3c38Yrg8589h23bh7FrfxClahNf+MwRuLlepJ0kyvk11vUwTrDNG005gzdQdtfQPRDGY08mcSdpu5u4TbBcm3VcoZ547RtXMZDpx+67beJo4ezJGmWrjO5UAnc9amFyp43jRxv4xhcX0Z2m7GvvHqeOrTtjZrnkoycCaNhZTGzKYKA/jK9+oYjVBfJpMGhCrpjD+GQS01NhbN6k5TUDGBwGLl5ZwdWl4ygWy5SWJCLBiHEcNuEb8BzHQbIrRL0RRDiqay0lpzYJIJ/jmUeBaAP1csA4BTQrLMp2Zts25/Gu944g1XIcnjkeYB7k0coSzp8/jWOH8zh2KI83Xj9Dnj2L7swM+cVBinry4qUallYqlLtR5ttELhdBpRJFX7+N2avM62QdF85EKLvAhXMl8ruv0OWYkNWxVqtgaLjXX6pUjsNDZSxcCVPGu6mnVDuthjmLJ98zxjq6OHJwBcsLQfJzAj3k+698ZQUXzjdYl6SZBQjrIvG4ivGpAdz3gI177o1jZmaY+NrQxJELZz1885UT6OpyyBsjppuSrpiYon5wqAdOlaB92UhSnDpzHM+8dzvqfC147qXLOHuhhu0702bp2PmFBs6dXYJtd+Oue1LmA4EDrxdQrUaQTMWZvo6HHghplUGcPr+CRqAbDz2SJL08PP9SkXzQg1RvAKura7hjfwbjIxbO89mRE3wPaZA+1D3U5sbA6vd9UmpR4mth746wkdtLszV8/ZvrqFvdGBlsYtf2GDZtieDlgw2cPJ+lWkuSHkFUS+u4Y0/aLAW8siKncS/27guy7/Pw3PNrqFRjxFlLj5axdTpuZvbmyzZW19kHxINmpv6JEyWcPbfC9spgbIj8TF0/PpLA5EwK6Z4AFleauHJ1AVpKVbPrRFi1ne/gaVXBgAiuX9/YLIeXcUqpc7oWR+Dfl0HdJBff2uRrJZdBmv/GcM3nb07ng4n/lsE89M+VtpXXNWg9vzlPw6+qC+O3nXT+Uqz+O6Pyu3Z8U1peyGbeSqc/gTnyv42XnvmzFdt4Xg+t4vxz/unYvvbhTQVeAz32y2yVw/r6bdHKm6d6JkdkkMxvrj3ioY9FFFf0V3QGLXNqHKXtGwpvAcpVszLNXof6M05V3m3V4VpaIqLZ4XpmHJwE40wJ+I7DeDNrlirtj65+W8ehMlW+fk18UP2uXwnaT7/lwfcGVA81EHnBpXYuc3xy+dIV6rsFTE0McRwzjDCf6KOJ5dUSCoUGZsZ6Kb8DcKIJ85HIoSNnOCZwsGPzoPmYY2mxyvRr6OkOYXyshyLssI9yKIPnEGRRo4MD7Ic0RV7LfFq4cCVr9k0eGUybpU3DraVK2QEZp00wHMb84iI21rOU5zC2b5si3TQ+Eu8yQwYzS5GDqMtXFoljCclkBAMjo5hdXMfC/DIm+hLYSlw05tK4YHE1i7mFNcqkg13bphFhHe1Glf1Uibh4cBK9OH3uAnbtGsfESBrhYMOMk1574yL6B0YxNphCMsLxSYF9xOk1fP3rJ9jX9eGxxx9GuquLOrfO8VTQyLyPZZO6lm3JAWQgoDv+7Ngau8By1cPJ0/NYW69i/85tGOhKmtVIzHTMoPo+4kyeClAXXpgvYSEXwOjwIEb6U6RnjU/1XkFaNRocH1vkS+DYqQXWsYY9O2dI6yCfVhlPPETNzLHnoSPn2Yf0YbI/ge6kZnm67Ov5nPiuFWH2RywVs7hj31bEwqQtx5xoRsgmHHuyNNdjfMpYW4f4ssz6tXjUv/LDLeEdRfqrgHSAZFZLsF5fqrRo3bjHoThLcRhdSN+EuDSVz1s6000pwVYcHvXX1mUKOq+c+Urr+duDcvquQU7DrkyfMQRm15c5MOHLEBVeBzrQgQ50oAMd6MDNoDGCxgoaM2jsoDGExhId6EAHOtCB7xzMy2DrJdEYrq59Xvudgl4VFWQA0BJ9vtFDprx2kKG1Vq9A/g6ZAcINxihrmcWSWQZK6DjMIiTjg/a+47kJvG++XLd9I4vQVDfQlU4gGWrAq+YQji/h9se78Y/+31vxkZ8MGWdNIqOl7IC1LFMlAwhFHNm14FouyjUgkehGmIjJIOOizns544dJJC3GLWBs0sY/+Idd+Kf/LIm77rERiwdQLjWN4035OMGAWWKqtK59XTyDe0+3je07BrBps43lqx6OvzKL5noM0WYKtucbISLRGDYKBaxtNOCybvFMCq5tIxAJw3G6ELF7EUnEkQstoPv2AEYe7kF4Vxi5eB5WRK62MJoNF4XqBjby66izklpWMUK6yRgTiwTxAz9yP/7Bz87g3e93zCygchW4uugZ54yaSW/fpWrFGAJlQ3ZsF0G2Q6NShdNsMJTZZr4BQrbbRKiOLtlVcsDpF9fx6d+p4cSrLorrTUxOWPihHwnhX/3bLXjkqdvgBuso1HPGJuSpHWXI0pJ+tSDsShhW1UGj7tsF1Li1qsvyNTvRJv62WcYyyKNVt7G+UNQKVKQ9Q5o4OnVk4mkknZj5qt4LebL1IBQPotbQXo5AoRJA1Y1jds7jmKELvUNJxLpr6B4OYG7Fw1pBju2Q2WOwzvqrTTXrzHyFHw0wb2CZ7XnhSAOFJQdRLX3HeFG2eYwM47pFFMrkm1DNLBurZWutZBlx5v/0D/fhX//GOD7wEyGMbiV/M02W+bNKxoCYtPvgrMVw7EXP7Cc5s7OK2+7rwvQOVoLw4tcaKC/EYS134/zXV/Gn/7mOE6+4ZrndLczvR5jvL/y7TXjg8a2UmRLWC6vkIQ91ysGl/GXsfnwAdz8W5Lipid/77UP497/wDcyd93D/Ew4++A+iGL3TwvB+G05a0ugaJ4Ic2VVKVZVt5TXZ3q72NWLbsa5eTPXUBf8rEQRrdaRsj21UN7PlZKf22H5ehUc1s0MejIaQSGkfJ/IWMwohDbKkVnxjII+T17VEr+z84uEi263MhpDzJ0ymCbOMNM97o0lkkn3GcTa3cBUz28fxM//LPvzjfzaA/fcGKTcBlFygImamLHoB1qiZR75YhyZVsThjbA+FLGi1NMmvZtjZRETtUWa6Gvms4oWxQr4WL1gx8lPYRYW0lU4KEfFSuUQeqaBYrODU8QX86R/m8eqL1BiUqa3bbbz7AyH8s381jA/++E6MjlM2iy7CZEoZ9aS3ZESXQVM0lfFNC7fq3Fds5oRBlRAIaxK1rfxaOtrfE/H6ZdPTTL8wFuYqOHNyAysLQSSj09i++WFkErfh0tkmFhc8aP/Tiel+yr+Fr3z1Mn7xPxzCz//zb+K//dfTWFvTbMQV/P7vHcO//ZcH8eu/fAyry44x9vpLNsrYKl0s8yPPVTyfBZoJXvUgnWR7hQPG7js8mjJLzQaDlClXwlHlecDQyLG6qStjvC+dM4/9d2bwT//3/fh7/0sYe6mn9VGHSFAqkAfZbipfswzPnF7FEusg2R+briPZFUCxAJw85mJllXqHOva9H9yFmW02cuUydeoGSUdeZHr+kx+bZi/Chks+Jj+JV5ueY3R8LEF5jrNVyAfsERif7US6qxXEG+ILqh3UWOkqb7jM0G0wP9bB5Y+C8LwRtP+uZts3EDPli15q4gY7CyP/jgOHijoUIy9Q2ST6bJ47qJJG+jhB/C98Qo72+mJ/xbRmKT7N+GE/KbIGqYyvLsxTvxEXFlJlf6oPX2xGdsIOaejgwKvr+Nhv1fHay+qDwb7IwqNPOfiZvx/C0+8ZN0Z/YSvn67cD9VNyQrWD+KHNezdD+3abHL6jyAfda99/p6DxiJYGrdc5XmgtP/pOwOzV11pSVI41yb5A9QyFtP+knFrfLjPSkIyhuOJ5V0uQtpyiAo2P2uOlm8EY1VmmcU4RVLY5NbLDNArvkApKp2Uo5aQVvsa5RzwUtBSr8NIyguI/LQfeLldBHyeomBvvtf/eDE2Ow7Q8uj7E9fWOqVu7eorOoEs5GAWagdyehfw3D8hPcjiFwxge7EMyFsKxw5dx7vQKhbmKOPurVCqBbo7D/uC/H+CYpob+3kHEkkmEglROdcoAO4NGlf0jaRblOFIzjctURlrS2rYjbK8wPCqMrlgSKSoXrYpgWxzTqE3YZg2mszkOClI76GMD7XervZ0NqdVHML9UKk5dx/6DbXKd79kKpp/w+wPt4efLF3nTjLHZXzP/OgckLsduehigDg6Qd1R2MhlHVyJJ/BuIcFw33t+LaKIfx+YC+PzzJzC+aRQjw3HKB9HkOLJSrqNarJmlu7WCtstBVS5bxx/90bPYtesxPPr4h5HMjCHHjrfEPF2i5ZJXpeOCkQiaHCg1zQxByQ/rSLlpUlEFqRfDFvUfMW5wXOdyYFGtMX4zTB6X05X0pa7WoNGJpMnLaZQ0btJ+6RwkmxneAcbTgLlBHW5FEQ1FEZHjUuNL5qv5dWprVpYy6CKdiLItoggzjqmQHJOSKUduYmajlQDCEfbPUZSIS9WL834aNVerpmj8QhpqcMwijf7jiRHl/4FAHyzogwzxZJV97DsFtcR3DclUhh3+Bgdf7PU70IEOdKADHehAB94haOygMYTGEh3oQAc60IHvHMz+Ra2XYBmW9NX5dw7MSMYNvVgbU4gM4y2jSDvwsSdDCY8y3Gp5zIgTMS+k+rK3zjiyDeg93Q4SI8Y1Bne+r3uM3wjmUPPyfNG3zP1SlfeYVgaXSjWL0alu3PPYNoS7A/jo787hf//XR/DPf/5T+J3f+zpyJZbPAgrVsnEq1Koh9iMBpPocFLwC8rVLCCeKmJrpQTgaQLWu5QpL6BsMYeceG2cvePjPv/4N/Pz/8ef49d88hOdf3EBdq71ZHqxGCMvn8/jcx0vIrTVx+x3TuOP2LZC9SDODSitlJANhxOwoApoRQNw1m6hcbeDq3Do2mGbHrhD23b8Ntfg61t0rKDSWzSzC6Tv68czf3oNnfrgLm/b0oFCpGSO7Y/l712j/F1vOUEsGTxl7mTeJ7YQsbN8dMw6r3/nDFfyTn7uAf/sfXscv/9qf4fxl7Y3TRNmV0blujOGG5szLsrTElfY1qzL4s2kEape8N4ect4RY0kZPegALcyv4z796BP/qXx/Av/xXz+FP/+wskmkLTz0dxNjkKMIxxzjVmvr83vL5S4a32kYd5bU67FoYbsFCeYNtXyQdtQ+icZQQ2PZylDRcD5dPL2L2tIfujIX993UjM2JjtXQRa6V5rNbOITpUxPt/6D5s2qL9JD3MXS2jxLau1gL48hePmH347rh9Nx59cr9x9n31Ky5W5pl3JYJSvoHCRhMn2E6/+evfxM/9s6/gZ/+fr+Kf/OwB/Pz/fhR//qdncPniIgKkkRydLoNkpUmedEkv1yYtia525EGIOI6msO8+Gw3y9i//l4P4f/zTL+Gf/X/ewL/5P7+CJeJWzNfQKDB9Dli9vIEs2z6VcbFz7wimtnRj/qqHg9+8iEYuhpHuaQz3DmNtaQO/9B8O41/8/Mv4+V94EX/4p5cQjAfw6LuCGBgfgJnewPJt2SeDLhJ9ckoAl+aaeO3A61haKOH3/3sBLx5w0b/Fwp4HguTnBo6fPoX1XIG8E6UcBY1hTg59yaO8LHK0FMpFrBFXLTFaLjbZJGzTugen4SIUsBEO+bPqany2vlAzzkrNxO0bSqPWnEe9Sd7v8jAw1I2INn0jaIlZ36jt6xutJlGvwThNnFgA6Z4oeWUVudwV6oA17No3hZ/8mUcwMjqMu+7uwQzb+eSZBv7pz30O/9s//Sp+4V+/iGefX2R7uyhXyqxDA11dISSSrAZJU6vn4DZXyPfruHxFxvcmEinplXWUiEIFS4im5YSyTLtenlvFynoWVihAHiZ5eUynY4jHo0in0ti0aQvy+TJ+93ffwM/+7Av4X3/2ED76sQWAcnnnA2nqkD40iYt4RnuIUc2Sl6lTeG9jo4RisYFKKUB66iOEACpl0aLF998CPs0EMiLL8dbW2eVyxSzd+ugjd+F//rsfwO23b8XK2jLrOGv2oJIDRE49zaarVlwkE90Y7BvFcP8uDPfdgZH+zYgTZxsZRINaEnoPZia3kTBR0z4yFspY6js+WCCP5pSoemzXuYWzmGe1z1yYxUbpFO5/aDvpE8DKoj6sqKLRqLG+TVTIEzL2anas+CscreOBh/vMzMUvfrmOn/t/zeEf/68vUI98HFfmPIQj5AnSvad7yOhGyWdvL/XZrl709gco3x7OnXOxsOgimgzg9numjLyfPLtAfi4iGg+ZPkazAOXqEZhz0k+SotlQ4pONQg01N2f0vetVyG9lyqOHGvHNELcA1nF19hTOndbqaJeQIj+JlmW2V50n1apc7crxOqg802exPB19PHhXs0tJN/U961nXOMzTLGNt9QQ21k+bJQhjEdfsnVlzm6xbHivLbBum72V/lk6UifUKKvk6sisXsH3bMNJd1J3U7xvZPHUTdRGDbNt9vX0YHZ6QrwIf++15/B//4hz+xS8cxZ98Yt7Iw/7bbPT2aKln1Yf6/y0coG2QA8sl0307h5GoZJa8JFMoCzmhJH+G0vz3qf/tQX1C2ymm0NYJSilnpRx/xhl2q4xaIF5VurYjTyvUtB1oqqfL+ppZk28BKkK4G5qwzsZRyLhmqT6C8vXxpVzfhDOLI/jl+Dzhl6/bwkVHXb8TUF5BRzNORXvtm+sZWdZR9wRyZpi9B4Oa0d8ql0GORbWV2u3GYFC6CTR7Woj5dPadpQZuPDCd6KG8VabRBxos/A0D1S0spxbbN8QOy6JuunSmhInhKPUh+6ZQkOOqEKanRpCIW5ga78cA74sI2uNNzr6FSwvsi7NkWvIJZT/CPvYc+9DPf+6b+Oxnv4JLFy5TjwaRXVrD+sqG4RtXbSj6U+ALhTzy6wtIxCQvbC/iZLhFM/M43pFO2MhlcfXqCpaWs6R5SxakROSGkQIxCkVotXiLR831C3OslKfCyK2vk885GiGPal++eq2ONea1triCmHiFeMfCYYwNjZEOCbzw3BsYHx1AMs72V8WIU4O8v7JYxMbqAse47B3nV/HpT30Nh4+s4tzFy3ju+ZfwiT/7FL7x3Dfxqc98BWfOXkRFTk7yRZXyVieNtcKEdI3wtjhOiMVicJh3IZvFRerpV19+EZ/7yy/izz79Bfz5Z7+Iz3zhK/jsl5/DRrlmPmLKk1bnzpzAl770RXz281/EJz/1FXyKNP7c576CL/zlc1gkjWrFGlaWVrA4P89xSPtdhhTxT0j/OuZnZ5Ff4zjELZFvJccMVKrEDgGOm3K5RXzpi8eJy1fx8T/7Iv6C9fncF7+Ov/j0F1nfEyiVSobvxf+SvVbW/0OB0V8MokGDOvSdwnetJbSnoZRex2nYgQ50oAMd6EAHvhPQGEJjCY0pOtCBDnSgA98ZyAiml0GBMUL8Fd6K/fg3hPafMXLIvtEwhlMtFyTHSt0GKnyTLDU8uLa+kdYzhQZDE3Y4Zoz2DcbxggG4VpXXAbPsoQzyA1MWNu0OIpjMoh7Imq+cNWXRC0Z5HkctkEC1GYLrBRGKBuAkPeQbs0h0V7B1ZwZD41rqjy+ziSjWVpq4dNRDLBLA3U8nMHLfIsZvy+L2+2O496EgwrEAakROZptwNGQMyw2mLdc24ETzGJ0Btu1LaUU6VLw6wp6DTD2K6vw65i95mCCuM5tYx0oTJ47m4BDRAF+4PbeIJmvebJI2zNxzHZw/sYHjL1eNU+w9PxLD4z+Rxs53e5h8qIa7v28EH/yxu7Bli4XiXBOrB5roqU0iLDsTaetaFsp2EG4khGbYnzlX4TPRtql9A3kdDAdgRWp8CV9GoqeGO+7djq5e1scKGHo74RC0tJTwkTOxZtVNsOM28yS9wmFEIgmEugMYfzCD0vgl2DNZ7HtyHB/8ySHc865JRPty8Jx1hMIqEAgxX/kbZbhq6KtzfenN+2bqGaFecbF+NY+Vs0Wsn66idNVDoBhGlO0oHvRYvmuXUQ3myEdNOLUunHi+gSsXG2aZyQ//vcew9fE4Bu7OYfsTHh75wS48+HQQbAoceLaI2YuriCXrcJwGLh7PYeW8hyHiv22rg9yqh1MvryBayCCwnsLKmQaahSZ2bbOweWsK8XQOka513PPoGH70Z3bgzocn0NUfJS+QHsRdTux6IEhedlB2yKfBCGQnd5pyevK8acEi/2o2qu1ov54V9PRm8cC9k0iR38QrlssErodGpYZjb2jfzBQ2zfQxXhgXznmo5ykHlQBifRa2PRHH+36mG3c9MYEk269cX0KlnkMoxvwZmo5tZvVF1Wb1GnnDwcZCEwXWqXs0gPse34SxaSCRXkWA9AiEAojGA1icbyK/lkejSj7wYuRF8gHlRzM97UCIbRlFKhlAmvxP9jdGP5UTJM/FnBRCjCNHb4DyrOZNhUdw5UwJV4h/mkOzJ981g217wxjavIbbH+oiPfvAoszsrXrApdxopq1l9rMby2zC1eMezp/xEGU7PfDMbozfEUbvrhLueLoP7/uxJO54QF+9s2zSNUm5ixOpWKyEaHQNt93ej82knxOwiU+E7ZAye7uVS+RF8rCWadxzR4z8fwVLq+exstTE5JSN935oK6Z3LmHr3hzueiiCYeqIBfLi2mKSDd1Fvo+aNm80y2zXMorlDSk63H5XHB/5W3147N396B8ln7pzjFcwciS5NDMsmv4yYZpV4nlyzMhEbJlZZUtXycsXFGqYv9JAfoO8pSXSZGpjeuP5l2mTDK1Z15JN7SGovZvMY/4oaGZfLG4hmQb23WHjXe8L4uGnohjZdIXtrvMg+uRou+jh7Il1hMmUAbeEEKo8196oTRx60cXFI+RF8ksyIhHVrCXN1hAOTcPbhggytAaou1huiHw8Nt3EE8904dH3Wvi+H+rCD//UKB570jEfUxx4sYHzp8smmcX20nKqzUCF8uAy3wY2cuRF5UPdpD0ttaRyIl3GHXdPoG+AdaRu0vMweTDQTOPqlSaKxC9DHZkgT17m9dy8i5W1DaOjh0dD2ODzC5fZCmWbsh82eBoqUte6bAsPNYOL6e7Iu6yN6f+0dLImsCCkmTsplFYz5iOFfuL14aeH8aPf14sfeiaE//nHd2FyRA4Wv4nMbDw5oJif6UPVviZztrU+eEHJ9G9V3dfs1kDJOPY3cmyLsw3MX/awd7OFJ+8exh07XNyxZwMf/iDrz/a6utjE+St5nL6Yx2sHG0izzk8/3ouH7glj1+YCnnx4Enu22ShkPVw8s4TsYgkZ9lkR0s2rlhGPlbFvXxAf+aEgnnxqEAODGwg5y4iGanxGerP9NJOn3Jo90nYEtaph6GaMxKbx2Ybsr41jUHVhUN01E0dHxZZcSm8bZ5bTmqFDKtlMYz5OauWvYzuu2tfcM+dvDm24duYjdMMz3uC5JKqN042hnY/O23DtzKRTdn5cc0t/4rkWngKzPKEcogZn1ZPA6GbWEdP599t0a5fr180vrF1iu07X6+Wf+0HP2g7AtpNeswmFmvjTgO5JCRAMTmoLXssxJaegyaOFj9lXkVm37/llt4B5mrrynurKUqCZquYRdZZxkBq0WnFaf2rnG+mljMwsTOVtkvP+tWd/jcEQ1UOYenrT+BC+/32jePS+7ehOsN+uVc2M1E2bhvChD0xi1y6OBeIcgzbKqLNDDtlF3HfnOPZsH0M0GKeusNHbHcWTT+zGrt29lHk51yvUnxXs2zmBPTvHkOkKkzya5SjFGsTYWA9u2zeCvh7NRJTO57iNMZS2Sd3a8KpId8WxY+c4du+eoq7x+c7/0EbB5zctEdvf34XJMcp2zwD7YgvDvRy73j5pHJ4a2DnBsBlu9bAz3rNtDPuJt0PdFNB0Zg7MJ4j70/tY1wc3Y/tYPxLEUbpfTapljx+6fwzb2KcmYw7rHsHQUAbvee8EZrZq2f6a+SjHCXpIcjxdq9TZ1+rLvJrpkzRlWvucU6nynpbWlQ7QhxHA7l0jePD+YeryJiKxKpIZG+EE+Z7j1wjzkvOxVKlgYCCGu+8axrYt3abfcDgOsTWzkGOraFwOYPIj2XXn9ik89vAepJiHR/ppOfMm69/gOEhjlQfu3YZtm7WcNu9TnwXCDnGj3Fguulj2np0DePThAfM8ynqH1FTs/0JRCxXq0mrLEd+Wp/9/BiPzbbG+MfhC/leG73qPw0Syy+xp+FfxVnagAx3oQAc60IEO3AgcApqv1CsVDlY70IEOdKADf2Xozb2rdSbwjUTfAt/2xVH33hzaf/7SfB6qdhU5FHHX45uR6rFw5qKH1w6fwF33zWBiIoGrZxs4eaCMjXIJJbuMvfdMYGLSwtpGE1979nXkSwEMDG/FyJRl9iqLxRw0akAoFMXw5i7E+wI4e6SOi4fqsL0+VGKLQCaLya19CMWTyAx0Y9vOPmzf0WuWa4INvPpaHbPnlmCXkxieiCE9bSE+nsfkpjimJ1OIxqNIZSxculzC2VOrqJS0H1WXWe4vmuzF5EwfNm3tRVd/BPHuIM6dXcPiGwHYs3I0VJGcBCb3RdCVCOD8aQ9f+bMLwLqDUF1GhyLJVIYWb200I6RTBKVKge/GLmI9CQxst9G9pYGBKRvj2xLYtq8P/SMWzh4n3T7dwMIrTYSCUdzz7ijKTh0nXq/gwinbLF1acOdw78OTSBHP81eaOHj0MMZmetE/nEAqnUD/wCA2bx/E6FQcY5Msl6icOuHh3MXzeOypzQiHSMvDJZw/lmPv6sCO2Ch7BTg9eaSGm+geSSI5kkIhnEPeWkKiP4j7Hu/B6OYI0n0pTE/3YHpiAEE3iJe+3sCx1xdQzpcho+uN/CNDBDz+Vzx47L4b+QCPFgIu4zVtYzSVUadhnIc1Y6CLWRlUsh6KTgChsSDGdzroGo5iZLuDzXfHMbUviKAVxctfdfHi5/NYvZpHxAGCYQ/5XJm8NoRR8lUkHcCVkx6++el5xMt98KoW6qR9PBHC6ISNnqFeDI6lsWX3KO5/sJ90snD6zBzOXriMdGoYjzySNssjvvTNDaxnxedplKws7nqM/JUJ4NShIi6czKO7vxv9ExaCsV6MjfZgB+m+Y8sAhnuDqKw3cfbVMhbPNBEjPiu1c5jePYBRtnMu1yT+C5g/yrS1LtS75xDbuYY9xGWKdO7pHSb/9WDzlhGOf2y88FIDhw8vk34VpCw5LgGZWFzPQTQdRv+U9vocwsBAD/bsGSa/22gG68htkKqMe/WiheKSBa+QRNOLQLN7NNN2ancYm/fH4FaAF79wEb3xUWzVsr+9Fk6+VkD2dAxOzUbXhIexvU0M9sRw7JsBXCRtXTlKR6LYti2EZCKDkcmEWa41M8q2d4LYyDfx7PPrCMc3sGvfIIa7IjjwFQdXjudRC60jM+VgakcY0a4uTGzrxa57Yugft3HxfAPPf+kCehPDGCStegcD6O7ppr4Yxs7dk2aJTBknN65aeP0bFbjFNPrGQT3BuNQ93eku5ApzWCteQp1/E5P9GBmPsL2D2Lozis07EqRfAM9+xcXLzzcQT5WwY08Kw30RvP7SBlbnS6jUXITDCQwy3b2PBTGxNYa+wTSGR0epY4bMHp+vvzaLo68tobgcRSgcJh9XjCNcyicAzRoKolZ1UCk7KJPva2WLbdY2sMpxIOMtBcQ4n2TIZ6WabIsa+c1aw4OPDRI38qXZ49BjGVW41izp3EsetynfYeJXw533DlBPpbG00MQ3n6WepVyTQ2B5FQbNhmygVqpj+aqD+UsuqgXXGL09L2cc3sYbrC8LGCiRxLlIuqexdUfElBOjzGza2oWtu4PYvtfBxKaq2TPxlRdcHHgRuHJ5FV1dCTz0UMY4A18/mMPcXAnVqpbwXMb4eBhjY9JNbMe+LkxvHsP2nT0YGomgWm7iwnkPRw4vIBrWEqdp9gMBDI3ZWF318OlPubh8mf3XQJa6uYbBwST1tYcXXihiabWKRCqDwaEo9u6zceVKGWfOzsFxkrjnvgw2KGMHXm9idS1P2sXR21/F/Q+lUSxl8carTZw5kkSYbTDcG8DMuIvN1JUzY8DYUMMYp2MJB6eJ27ETVUMbm7rKkuFfOo7KTc5hOS3tYA3btoYwzv7g6koNz7+6AFiDJCsFr2obJ+4m8uw4+5HxsSg2bYpg584YauzfXnmtiOOnSlhZT6BMPblpJoip8bLZG21qLIX9u1PoYR919FADL71wGnn2L/v39GLLjI1jR9Zw6cpZxJIB3HNXL7ZtsdDfJ51PeZocRDgSwME3GjhytMy+p+zPbNMHREY73wjU2kZZmzP9+EddG6cRq68/4zBSvXk090wMP6bq2gZDm3b8G+CmSyVsl3sjKFn7vjlvOa58Y/f14Dvw/PNrcc25X1A7ZxPHL+zaPZ0LR92Rk0BOOoPvtQg+qI8y6YmDslYUge+8U2QfD1NmK62uDW6MozTXA8uSI1DP2zjqQetckUwW5rkumV7XBL8MlivHrvpZk86/f6PT0J+5JlyvB7KpGafpqBJMrrpv0vC+xF/tx6DVEfyiVG9pA8WjNqGOijfXzR6HfdFVTPWW3/EehyaL1qkP7advvvu9A+bbwkH1j0XDGB3uxfjwgFm2VEvMa9n5aNTC0HCc46Uw4yiuatCgnDQx0J/C6FA/EtEEcxHNqSdGMhgYSnJ8GEVPdwoxx0Y6EWGfk+S4ImL4Ici+2WuQIlEH/dRVPZk4QnaQNAn6mBnHIcshXlqatrenC4Pss6NaWkL0N7QX/gwiD9VykOWkEmmkkz0cd4bYL3no64mYPRUjWgWA+WvZXi3R2dcVZx+dRCSsrx5Y0XoTcR7HkiFMDqUxNNjF/MQvcixydEp+6ulJo7c3bWYnhqwIkukIpjmu7mff3kd90tvbhUxX0uCaSiRYfhAhjrnEd56nPsMx/em1FSQsj3RQvxqmju8yjsH+fvaf/Ql0Uf+n2Jf39GY4zmI/zDpGU6TVUJy4Udd1s5xePu/rZp/PtIybYZkRjleSGV6PDnJ8r48Z6mwVrXQSIu+GWReLuCaIYxTxqD50YMaknRuowbNZz5DFdA5pnaSO7CI+GfTy2NOTYjrSNhVHMh7juIhtxbYRTdsy2gY1RzvcEt5RpL8KSM7Jo0Tpe7HHoVEGJrQeXgs3QgCNS8+1zt8evnvHoZYpzWvq7ZuJ3oEOdKADHehABzrwTkFfW8aTXSgV8607HehABzrQgb8K9OWfbp29DfC9UcaWWwJfSGX4kG1DViabJzKGaHm6bTPjCFeamD/RxOUTG9g6PoOusIW5ox4uHinBrfJl3/UwPTqIRBCYv9jEwW/OolFIwqomEbUi6I0HMN6Vhrc+hNJSAGEnxDTApSMe5k5tIGLHUCovorqRQ19iBCMy/I7G0GunUZ6N4OoJDyg1cexVDyvns6ivWSjnU0gy35G+DIZjPagsRnDw+XkkAnGsXI5i9mQd65dZ+3IKk4MWNo3EMJDIoLIcxbkjRQRrDmZPsB6nasiuAY3UOqqxy9i2dxSafHfklQa+8enDiDVSCHnaR8U1DlXtnSLjmgw09VoZ2eUNzF0qIRJMI24H0R+JoVuzbYrAudc9fOFP3sDp17U0ajcQqWJyawSrixYuHa5h7XIFQa8Mr0a6To/xHLhyromzh1fg5ULocTKY6glgy5CNlGXh4tEAovUANi57uHDYw8LZFeyfGYW31sQV0nLpwgbbromAV0OzUUEhl0VprYauUD+mBiyE6r2YPeJi/mgOg4kBDKQCGEyRLlG1TRDHXmrgK588icJyA1ZDzsCAMcBqLxntddgOAtkz9dW4me1ggthIRg5xnM91MqrGIlGs59ZxZXkWK+slJENdGEqFMNKdQDqURH4+jNe/WsGXPn4a61fqZi8f7TKmbW3cWhWJaL9ZVkyzlk682sDlo2tw3Bi8Rhn5bBZXLuYRdVKGZyYGUqxTDDZp/8azDTz32eNYvljCUHoCW0fJE6c84+yuZlk/14Fb38DMVC8ajH/pDRdXjmbZngFkklGMDgRJ9zTYqlg8zcpsANnLbJtDpPvVKoJdZZxZegG77pjEyEAUVy408Zk/PoLaehQhO4H1yhxWN1bI/2OG/wbTNsb6EoiSrsdYj7/8xAXkFz04zRBszSazNMMhjOWFdeRzOUTY9pMjpNNgHD1dFkpyWrL9Lx51MdFjo7wSRXahgfx6AVaQNNNSp24Rfb1xpGMhrFxq4tArC2ZJs77+iDEmnz1Qw8rFKixEER9oIt2f0JZyOEY+XV0qYGnlMnKrecpJL2b6A+hP2lhbdnDhbAk18mN2XnkWEWEbj2SG4bFNXnuuiOWrWayvr6KaA/pjSeIXZFuwTiXgJOv67GdnsXy+ikouaera121hZjyJ7kQK2aUmVhaayK00UeD5qYNFsz+eF6zADoeMEz9DOV+Y68bJM5dx8coaZW0KAxnScyCEvnQU5WwTrzxP3v3cGuYvryCR8EiHLsQtBycOanamloEkE5E/l1evIhzLIJmkrPYmMMS2iwYDOETd8vXPn6Isu7CdLjQpjB60nnGDPC1ZYH3E1caWeqMtrKVfjXWvdV8GPhl5+cwy55TJYBZT031mP7wzJyqYvZyHZdcxO3eevE1+CvQSZwsTo71IxZOYveThhWfLOHhgAS71q9HRLNwEZl2njJ+7cMUcSVLqaxculaqlqXG6IbzkxGQtNHs4ne5Cd3fIGNS1PGXE0ezUAPWShdmLEXzjy7P42pfY/uRzLROXSMYwOZnkOXCYPD8/X2VZUepcG7n1JSRjfciQLweoV3rYFkvzQRTYDtrT8DL7gIsXlhBnPYqFImKxBNiUOHXaw1e/cdnsZZqIVhFzgpTtOI6wLzlyPIsi+SXCtonHHAxSni+cDeLK5SpJSbkejGJhmX3ACcp9oYBgKMQ8SK/hKNvcwRF9OHEhj+xG0bSIjOD6uGMj7+Dc+SXmG2AecZw57+Hg4SLbxWGgvrnBcWjoxXtOqI7+gRi0p+7FWTka10krym7Io4yVcXVhjXowiXRvGL3DrFsygvlVDy+S1w8cWcJakbolEMXi8iVj/E8mutDT56C3j/o0FMDBo9RN37yKs+SBJnVgmrzKKDh20sPxs0tYWK8znmYbWsj0hBHPJFAmzY6fbOBrX88il3dJkwC01Lf2zAuwLzKVbgf+yGCumW5mthvvtQ3n5h77deMIU5151Ln56EMxeJTTwMyKo5KXA0nxNKPN2IBb16Ycw+5vlgXz7CYwt1q328/9PNoP/HttnNpxruF4I/DafpNjzcfZAG+10yvI6WZQ1jX//OUKdV8tTtlkPgJdmxmDrWuNewSi1435G8ehObsOkkqzvKihs99fKp3KuQamTOYnRxLPTbl63Dr347bKYiu007bL1vWNwaSVI4X/wkg6pu2MVQ5N4c+gftky7X6tOOXOEzkqrzsO+/+6Ow7Jj21QHSRTclJFI0GEgza0b6gILFqmMxnqttA1mmiPw1Awgq5UD+Ici2g/PfGykqSSCXT1sI/vpvxF4xJ99gVapSFq9hc0M+MUnyFi9lGMMy/xiCgqoqjNGYe6XhwTjlBWzZ58VHbiNSEs2gh/BdM+xInKMBaNmXpoVqP2BE/FYwZv39nItEwfkX6UYzSq9vKLU0Ha58+OR5DMxIin/0AtoHKk19KpJGnC2xyghRwL3T36yCNKfZ1ARntBsh7dOqaTLDfK8bcNiw0ufjFOUC3hTxz0gZLqKQcWfxCNxZDRntOkVw/L6E6l2K+Qfl0pdCXjCBNJzQiVMzSdipo9JzPdaeqwNHFIGadeD3GIiOeps2LUm7FUmHnXoCVbWQTB7+Pk2E1Ew9S5rKvpzqh7WR+iRZQs9pccC4eD6Emn0C/HJdu9V05Kjit7Mkl08X57z1DRpq0PbwSV1w63hHcU6a8C4le12ffacfj28E4dh4G773tSOX/H0D84xsHAldZVBzrQgQ50oAMd6MB3Bp0xRQc60IEOfOewfe6XWmdvA+blsvWy+TYgm4b2ddKLopxXMhg0rAbqTgNd/b0IN9OobASQqy4h0ltDLG2hshJAabnJF/KQiRtOBBFNAa6Vx+pKEY1aArVqE3Yoi4FhG9untuLqmUVUiw148SAacRu1YgD1dRv1XAORYBnxUA01p4aR3VOIZBJYOb+C1fPLiCRSSA30Ym5p2ayZatcdrOYXEe93MDoziGDDQXZxA6XCOsYm+82+NhvMd2NNe07lML2pCxNTvchmy7h8cR7Veg1DI4PYyOWxsl41syObsVkMbtnAP/65H0CE9f/0n+Tx2d97FqORTYh5XaRRnTTyl/uzWOdaXUv3kbp8q9+obKDKl/2ekW709adg2S7WF1exQZwcL0oaZdgKKdQDJXQNhhBgHasbntkfsOFWEAq5SGfi8IIxFGtAtdwwe8Doi+npmR509QAXL17F8vIa0qkeWIghn6ujmGd9R3oRaFZRKVaYrmaMXXIUaKmsck1LMVYQSyWwZddWs4xU9moelfW62WevdyoNJ8E61AIorBQwf2WZbR8lMwRZSRLBJkMEPGgPSxkRzSwHHm0+D3qOObbBcJl+zIkfT7TSElUN5rFezyHL4IQDmJoYxUB/D8r5EuZn57G+XELE7kIikmHZVXi1omybsB0boVgEkZ4E6iHSeWEdQfKMXZWhLgAtQVtiHV3+TUyPId0TQ61RwOriGrJLRcRCCbZPg+2hZbnSPHewkS2y7WSMDcFzyoh2eQhGtdxjCMU1DxvlNThdTey9awe6InEsXlrEuZNnMDYwjHgkhdUNYGm1gZJzHpXEYfzcv/kJM4voxWdd/NLPfw4DwU0I1VPkhxxqdh5WGBhlfZNsgyb5cn1xCXOX11CrhJGI9yHokFQUuogTQ4B8XC5XUaxnYUUa6B/pQfdgBsVKCWtXs8gvFxFifWYm+hEl6dezJWxsVNjWbDMEUa3WoVXgtY9ljW22USqh6jWQ6kqaZXtz81WEahk0q2y/rgoiAx5sm7K0UIRXt1AsrKJcWkeKNL9t1140Gy5m1xawXi0g1T2EXFF7xJG3AmWzTGlXqhsri3nWBagVqqiWqpQNF7ffuwshyveV84uYu7AEzbRNJbtR1Mdizgb6hh2MT00jm6/jzPlLqLLNunqj6EmNYnXORa1sI+cuI5CsYWZqClErhrWVdaxVVpFvkK7k48nhEWRSaWMoXVnJ4tyZq8RnFM1mkHUtIpGuIeqQ5pUI6podSHrIsVYmbZc3LmN8epDtMoUQCbY8t4ZTh84hk+wjv8XgykAnJ5yWLJXF34vwGDFcrT0pfTkQiNl9XveDgLqE6QN2EHXSzzYy1OT5CobHIrCDVWRXLaOftH9UOBLEwsIs41PvjXZjfGIM2fUcVlfXqT89Uz/L1r6RWhpPhlBfyKR3Ikxbq2s/U98hVCrVEYtS18hxGKhShqlMFNesNUzUqXdCERdOiHIVYn2Y1wZ5aGFhDetreYyPT/nOBurzUNhCNOLAoR7R/o5VN8J2ilGvr1FvncdgbwQ9g5OIJHvZrhWcP3Mevd3diMXDaDSqxKVKXaQl6IhnVEvbUa8R/6V8g4hEEKcuTDAEqEtz0nlN1U0GfzlyHSSoNzRFvU594DZrZi6KDOYua1Ote6i7TYTYPnGrDvZAbN8wmnYcWgq3UZ7HwuxZ9ktJ3uuirjiHn/vnT+Oue/rwF5+v43f+cMmUFXGqsAMVY541H85YbK+g9vgqIZMJU2cEsL7uYo39SCRKWbWoC+vUN6THytIaNm/aRB5KmuVUj586jytzG+juG2ceYbaXDap0uLkrGOmLoJf9V5B0X2TfeOI0ZSLSbWRSS6NS4WGgJ40q5bxUa7IuAfJeFRPDGXQlQrznYoH8sLKiZRe1JDTzJz3MPmjk61BUa/SJ79rsEWC8kNkXUE5CzWpzSFPxiByNbWeUnFyGb5nGOIrkbJDjQn4CHj3yleji26OVRlnfMDNPadts/3ag6JIjnqhc46DUn+7fBG1HmnAUvn5ZNxQivOV4I7Qda3qq5UL1zKRr+o5RLV/ZcMU5vlPJ5Mu4ooufpx+ft41jwSwBKhppOWrRU3H8aCatcfjdBLqjvRhVptLbji9rcsS20+lUwa8P6cf2kFSaslt5th21cnbpo6Q2Dcz+lMpHf7ynoH5Z+xbLyahOUPux6i8YJj8JXzkOXeWnPtRhFMbhc+3N55LoTUtyVkdf4zwm7DnszJzGo9tWkQ7ynTygJbulA1mGpI7MQLY3zuQ26FT5XQPe8J9ejyPsvmdg8mfePIpcvpOUbdXiZdVZuky0saXXajXybg02xxqBMPuAQoN9U8PIdjDCDJjeqzWMjtby21qSWHPGo9KbJJr2+NNy+tKTlXLBzGZssCxXU4oJoQjlzeDj19EjLg0Kj1xfGjaRzGwial3JSuvaJxrz1nhK7SYPmG4RZ7fm70PpyOFJnLw6dRor2uQ4tRbieJljiCD7NUd7Bggx1V3OPputYJYkZl7MTK3sSxf5u9kw+kGgJe21V6PQ8NvNuOaMnhIjNRtEhEHLkLsqz27A4bXDstT/ieW0ZHdVskG8wuQpzb5WvbRXtNBiEgRr/tLnmozZDFpwHeapI+mtpVRFizBRc/heQKVF+jdQdsuosf4hS05U4mIwZLnMR/s1GknRPtBGrNgO1I82+02bY+wg06sN3Yac9YrJzFkHo8g0c1JHpZLc8Ggco/xrg+6pDjreCq73+d8LEM9q7MUas56F7AY+d6kHfz67H4vBB4hvgXzOMTDHIOIj0ULOaTWEwcIgLUrpAQPPSBUeFd4eas/+69bZ20PHcdiBDnSgAx3oQAf+WkBnTNGBDnSgA985/JUch7d4M9arp/+FOV/qeeLwRPcafDn1ZKxxowh5cT1ExS6g4dQR5Mu6zZfzAF/OZbSp1quoW2U07Cq8RhDBgGYXhZi+wPILiPIFPxJwTMZFT/lYcJyw+Tq+Wa0j4gaQ5HMv1EQxVEGpWUO0lkS0nkStWUeB+WiPt1AgRvyiWmkOFc3W45t3s95EsOkgkWB5XskYruHFYCHBF+4qau4qtFWN15ChJGJmwOTyOVQaFdQSLoZ3juCp9yexZbuNoSELz/1lHZ/+o6PIztYR97oQasSYj0fUibze4nmUocdGiCEMl8i4pEO+UkYgWIUTaRgDSoR/QTioWDVU+OeRtgHPYSBNAxU4tgsnaBlDkYwadTkG7Cg020wOR1cr6llrzHPN0Dga7kGpWCetK2xSz3xNrwmAMo8EghVYoSq0T021WjFGk5CVJn4JVJiRG6jD4rOgG2YIoRl0UbQ24LEtbS/MNg4Ze4RMNzJINRi/zjaQU06eZNXfGF3IJ8Zx2GDdNQurZV0Qi7UNND4niX8axqnsKT/SySM95OQoFNcR0v5+XojtFjIzULUnTUgbLDbVfuQZAxYCdggllldm+4ZJ1Ajb3Ga72caAHmFd2Q7BuOykRIB0sRmEH9j+bJdms8gHRca14Db0NTz52GqiSh6pujXyRo31ZSuS7mErYvCt2XXi7iLE+imovl6tiYD2RrQbSI324e4ng+gaC+CeRx2sX/Xw6T918ZefeAH9iQGEyZ9uXQZoUow4u9obk/kG2e4ysMkxGw2zbYLasa6KMnlWszfD4hhbzs8A26wJV7LklNkOVUSaGdY9A6uRQ6M2j0SsxjYM8JkM4+TEYBR14hiy4qbuRZfxouR90iRImdEsSNYE9XLNzLgg45EnKGvlPJIpCgf5OUj5sMgfMlhWS1nec2FFYrApLx7lVXuaqmVl4lMgMryQK4enpSSscor1pB6w1ymzBUpHijTNsK34nHxWqWf5XDN3ayiUKmSkCJywNnxk45Ewmqkh818hT3poybZ4yuCVXV5GLBKCk6R8a1KGW0c4oLpIDshDrLsM7zKki7/kLDbGU2arpdpIdcPPHttBOq1adxGORlGsFlGpVZCO9cIraPYKeSNKng8VSaMqq9cwhj3fcejvvdeWhRbHM4givJYgGENlgM8p30EHNdLR7PHkyIhLvUCeV7wa9V2j0USEPNCg3HkNC/UGdSeDSU++lYPBYdpgSDPK9KGClgKWl1lRWmVSqmzygGyKuta+q1aT9JQeCTAv6mPpjUrJI41Ia7a5MVQ3yNthxrWCaNQply7vs16up30gKV9qL16LbjIqy8DcoG6uM69Ag1qKesGmTq5SZ1W036dL/iN/RSlbtkN5C+RJFdZZDnrKDDURaRNElW1foZ5SNxCq2XAqFuUNINoUCelE8h/jBlyLtGc6VtGzyAt2yeBnh23KhkuZpU4hLpIXu0INS3oV3WX0DEfxfe8dxq4tFs6c8HDqnIcCdejUdADvebeDbK6J3/+TBXzpawX09Q1TjrKsY5W4+m3WJF+6Xp5laW8zyhH5qsE6uDV9piCnkG+sdykjlTJLj8bMErcW5bRMeS9VJBPkFep7zRgJy8FBPtfyqeoX1B4NymahEiGrJEw/EbDLxhEesUlj5tHUzFi2FcgvEcpWxGH7sfxSjfpDDiXKoMOjy6McAxZx8nEniVtBWjhoO+QnyoEM/MSjPeNQ/ZZkiggaXhDfiJuUTmMA4yggbwYtMgHLIaUNv5iofKa47aOZpafrNrTzfNNNHx85zYSHnutced8Yz0fLd6wpjvC87ji8GVQ682rlJzBON9FH13yspR7b+xYabFXAtbg+HXRpiy7mmY+OclaQc08zOqVXjENQjhzFuwkkeipLcX1nofqjoOlT2g7M9lKk6uNN3QltR6ePL++bGYLEmXUyjkXe92mge/61+dN9JvV9IqwDi9RsMdVR+1oKQ6knOWnaeshfnlWuFcm40kvP1tDnXXccPrJtDV2O3sn1kUKM7c56UYcaxyGZo73/teC6E4X5imrmsv28TUVB+/jdgV+G+WXw62LoKQcpQdJpMCFhbOobjSk9yWCQ+pFj0IY+NKozNcdbmp3PpMxINGUbU07qbB+Lesxmv2BLJ7JPrbLtQhGeUw6b2oBZ7SD+NMpRlBRcwwjaY1rLhcupZZzAlFeHca/RTgmItz5g8fUI25b9a6MuHNk/sXy1V4B8oT2J5dhrsm/SkJXDT3gc5wRZjyDHDlS3xrErvgmRV5gVs2e5DOqzG26Juh7mwxXpiXAojDp1i2go5tBozMeJNKBetkgj9aNe0EPNqZImchyyLI7x5fBraryg6KxPo0V3i+MT1dzV+IbxtUpJjIpd405DXzJggzq9RCUux6JxHBIFdmfU/cqODMy2qLBPli5nrYmLdJnQVFzGYBCrNViGx6DntbLW/NA+kOyHOE6j0LO9OD5T3alztWQrSzP1UT/qgxASvUUov+UEunuNlW8Fwot/twLl+U7AOA4l18SnaByH3fizuX1YajsOGTRjlC1gcJT0irAGA91gED/qiUo1bf8OSq89+/9tnb09fNdLlcYTaRQLudZVBzrQgQ50oAMd6MB3Bp0xRQc60IEOfOfQl383f82r79uHt3ozNm/218G/kiGgfe6/juri2su2HEe2DEn6yrthXs3NMnx8ZfeM80Iv7DJKANoXRoZH2+LrrjFU8JVbBkwZVXglQ4FAZkeL96/lxX8Z9pWbDCmWx9dmi/EDDTPrREZbY2iTWUtOCzkIPDkIiI/K4bXn1XnPN6D5da8boz1TEu+W8U5f6HsB1Op1OEkbW/b044mngujrDeD4oQZe+Woe86e0JGOSOPCFXQZA5q36MbUJ5hWedGlhy7JEF+IYYOC1DHdaClC4es26yUO2Pi0BpflyQeIm26nq7RsU+ZCgFMpbwdO+ZSjxWDNNIGOXq/o1XZ6SbkyvWQGGDrLKMLHqqK/fjaEBvrGY1OM93wjoL73looYq6g3mr4xJCxWgdjWIM1cZPXnT4GMZ84W+nldguzLoWjQ1EZTcZCHatP5Yv/aV/v09c3hk26BR55F0YJlsUtaDZbFsGbRM2ypL8opxXPDX8A7zdkQz3SHNDC+1eEbLrjW8KlPJcCSeY1lqNmJg2oX3fIrykg98vHyCqw6KbxtDovISXdkmmnUiYx7xNCRifZtssLJdQ2asC0+8N4jtu21oH7qXvuzi2ItrQNkhxeVM9UsQbr7dm/zC4nw+134+MixLDnzeMPKk6CxINJCDC2whzdHSUoqqs2ZEiMflHJWDQ4TzDA3Yxu3AEsSZLsuXw9c3LhMB8bBIrDZm/RiNR9FHFGkSH9/AxhLEYnzWoBySp7R3Uoj5sqyG5MzImOjjU1OlCHHlpdQBm/V2asRcDn22Z5B84jBtsAbteek7kX0ZVw2tIKmlGTqaocB74sWGZIF5y7Bu+LuhWbR1aAat2sXIhtrDZf3EF4YXVAu1J1uJ+Ih3fccBH/Bfjg/eaTUG48tgxzPNRqJgwAmGfCeI8LfkYGRakdrEIhIkiuE100iMIwSugU9DP1wH0dHgIHyVDxvDOJI1w8OT21U0V5Csimf9uojX5NBzzAwoH18RSB8d+BgpP/+uqbvazDQmz8UPBg0hL4cuL3hf90RP7RMlGW1Ih4gihk9JM9ZJMzjEc2aPRoKykZ4WbirRbxVfRqXXTVsx6K7wlFNUfOMxD7O0sUlDIjAoR8XVXd5mecRaRl0WYjS16qn7KlQ4kW6SC83w9md5KyXx4HPpSlNX5mv0EetsyCiHQJC42ElMbbIwMGKZ/XUnN1tmv1M19XMvuDhybBXFsmRJNCeWpk1Jw5b8a2aHnJ3at7LRYB1kvFYBalBTJ5/WAlFGS5f6/Yv0OeMQby0VraX3bGKtPkD8opmBdSl55U2cfT2lNiIOQsHUTc/5T3mz5VhgGjmkFAwW6jBUvIoRsqSbmbGmo64Vi0cfOwGxbV/wqPNr1yKjaC2iCpSOQW3Tlqt2ZP3qWn2Lnhta8U9LUbee+kH/Jh0vbwCT1uDil6G2lINQZbfvCY3rM+1MKiOTbfTeDH48xdGv3xyMaC78cx3aTjrh6cuSeJplGropLe/xX4461Vl/1+IKj1Z6pTT9RhuZFs4GV16au8JHEfnTnpl4zXGpdPyX/lIZ0kXtupsj4zJmq1zh18qOQc99uvBaz5UH262dv/JV+f5ei7yn+2IiJSAeZrYh05s94ggSH3XBNnk/gXVk7HX0Rlcw2ltEPKjtQ/Sxlz4kEU6khzJVfq2cDbbK24B/781BcOPxexEIBn+Wf+2W+j9d86IdDJqksALlWpgb9BVf6eVhE8mUTs94FC8qknHCMEgnaEl6X8ertjoqe/GF2kHKRhmaTK+dqy2NbKhAk4Q/fCR8DSbMz5/B67dvK4bfZrph2pZH5aHAp2rlpmlvPjN6yH/e5neemtJNPgziT6ORTTlsPeEsfNUvKK0+BjD588g+xr+neH6eqrdRwvw3416Dhf/Mj6PyeVtPVLhwNvlpNOiXxV8/LuMYVc3E6p+C+gCFR98ZqLpI9yueUvjjSWbIc78A/+jnr/LNubnry5eK148Zl5lgIvn4tvJqJSQImxYoYTsoTetw68CfdxAMXQzo+O2CcLPMxx1qU7daxalsBCeLgygFx8gfFZK2zGcab/lxTf6t1O2fazTSmWlrP47RN6bOfr3924pDml963ty7FXRmHHagAx3oQAc60IG/FtAZU3SgAx3owHcO2+f+U+vs7cA3VNwM119ur0PbgPXmd+x2vOvxjfFKR/PrgwybxgIiMOXd8FJ7Q/k3pvFLI35K107a+pFhwP9aX5cWrwPmy+nrOflxzUu1yUPF66mMtzLs+Pf0o/v6C2nPGt5yzfJtQTh2ApV6HYHuKob39OC2u1Im06MHC1g8nkNjOQTN7jBOGuPEuQ7Kz2R2DQzmLeADXb7pOS957zrOPsjEoWj+bKkbgdQz9fCNqcpMzo+2cdDUya+gcXhdBz+X6/i18GI7ygjrO1RkkGZ5DGpLf3YD85XhlPdk/HoTCO+bbl3L1y/uGvg43QQmqu77xqQb4S1YswU3PhACNxfl59c+04/KFt8YI7CujdXKRPlWuIa+IlyP1LrNPGTY9/PQLI6GluzSmqNOCIVgEcmJJB58vAeZngBOn/Bw6fU1lK4EjLPcbRbY1nJiCvwcxb9vBtLiTbTyz41TxIAfX7Kr2QnC07S5sReLx/n8hizfqhYmf3MqSdOJn0bGz2v2tBYYOrQz0JGVN4Z9/TGftsFc+uBNuoOnxkjpJ2oFga7b91pAnM3dG/WBOeV9k4cPxtiv8k1ZMpjxpuruP26BX6ahK+MZ2jAY4xmfqs0EWn5QN9pLthn8+af6SK6MjiHNA3JQKB8Ti78G7RtKvJlgN13eDEqpsvyjuWVAdTPOTyPHoqsHO+gY/Pz6+MY/xfOdJqqXL6fGKHwD7QSKfzOoHtfBjy++MrMb1AbMx5Xs2z7dfYe+n0a4iXZGG/FccqD4twI/RrtcXd2Y5jo+KkZ5X5tRZboNv73fDMKtnUsrL16/ifcIxJBoOn5yszRrFaFwA3v2TmF8wkJXhrSmGs1vNDE/18TxY2WsrW2wD/AYGq0ZmH5OArWB8Gs3t0o2Wd9UriSqzad6psc6amaZ2e+ONBP/qp5t/E0fyXPxpKm3rhhPPKDcjRNObUy6wzjJpZNbfMvIxp7PR6Z1bpCXt4QWujfHubkeBnjLOB+VP/+ERxunaxnpwLTmPo8KRm5uzs8g+uZy/aTiKz+t6KKlINsz8tr5iUd92eBzM5PMp1X7/EZQnDcBLw1FbpIPXRmZUgT9qxzR+Mb8eE+y0dYRbZkyvEqcFVfpjey06mz6zZZu8me9Xc+vfXYjjobH+UBZm2909Kj12OTNZwZ180wR+W94R+OVRosuGgdJbvx7OhG/+TrCbzdWzqQxsqPAcyNvjEdxF7Lsy0hfhpDlot86h/HQRWzJnMX927LoCy+QwRIMSSYWD9QYNENczn/pSJN763gD+MVeh2vtcPOD7xRUf7/Q60W38/bv6Opb0fLvvtV9kuwtQXG/9dG3ifwmuLmUW8HNeb45PbnNHL+15HdSzjvBl/BW0d5xNd6aUu3k7SffIquCFvFvjeXNuQne6t63g7co+zsEvxpvn5+eGlm+FW5N6nbN6GTfrxmixbUVfPJiAn+xvB+rofso/huU55zfL3tmOn4r4bcBRhOdVWpbH4jGb6K9OaVEP/tvzOWtoOM47EAHOtCBDnSgA38toDOm6EAHOtCB7xy+145D8zJ/Y1S9jPpvm9fB3GudtMA3wryDtN8GlP5NaVtg8mQWMojJyNh2BtwIJq0iKW4L5Ei7jpOOrfvMQ1GNMbAh7BxYQRu1cAVlu4Bao2qeu5UG0lYGyUCXWULO0v4qkHHwOnw7nG8JzP+t6OLX42YIGAOdb/iEMUj7Bl6/bm0cRJ+bc/wW/Fr5GKMpgwy2ei4+uJEX9Mzcuyntd9uW3zMgGjdnb65b9VId284O4zi8Jd6K860I+zMLVBhpRX6RbdjTV9/BIGqOi4pTg2dVea+EWrmCRLMX6cAAU5K3rBrbTfPprkPbGH0jCMeb4VtusSE0W0R09R/xl/8yXN9cN7Wt35T68ePf3G7G4MtI32L4fQswhnKd+AUTfPqa9KSJcXKqWgaXa5HeElRee1aDQYHR2zi0U7ZzuUYXxjdRVKmbCGPy0UPzyKQibr6j3W97NhgjGOdbK46Rex5VByUxjkPWwTjm2vGU5/cA2vXQkoXmWvjoyD/VysgxQTItHWTcE22c5XxuuAZ3xTVOB9JYMvvOHIetkxtA9TVyrXMTWGem1YzXtg7waUNcWnTSPTkvhNut4NYxfBBu4lOzTCNB5y3kzPU14KXB8+bbN8UztAz4Tn5qbt6QW62KfH4FqXQE6bSWTgVyG1WsrdYQDXcjFA6Z+KqjKegG0B3V10zubIFOby7X4Gbw9p9dC2wnObrUlqKvHFI1V7Og1U5+28sZ5n/c0DQfsRgnEJ+pvdv8Ihxu/oBDVypXe6T50v020Ep6cyzTrjq5AWedq2zxovZx09Kdpt3FB5IP/vl1E79cd/T9VRyHKkP5Kb7vnPbpo3gmC/0QN8URLjoqyLBu+P8m+NZyVSZzu6njUj0Ut72kpWY3i+ckXwI9U1Aqf3awX0/Ttt9SD19GTBrWwXykwHLNrGUedb/tTBQtJcdm6VDVie2qepgyiJP2/VV67Y1oQCsgCEclF84Uj7Zsi0dUtvo1X/8SV/GYqss8TL2FKO+3flq/vM0TzfoWLeU0JDIkkUWcqf/QQMaax0BoGVtSh/H4jgWMR+cYN87ncdaFSGilBDMnWOVcy5WZ3kiZbwfvJM47B9H3ewmmjTvwfzm8Vbv9TaT995L/lJNmpkrGtJDD8nIWnzyfwOfX92IjcjfsZpFvJ0XTB2ivXFxbcvXbw7W+sk1bXpt+h9eitwm87T7/7/znt4D/W5cqDYXDSGc4qGYIhSMol7TfQAc60IEOdKADHfgfETpLlXagAx3owHcO/lKl7wDe4n33Hb0E68XzLRLr9fPaiyjDW9qH3ibtW8a/CfyXXD+iMchZvtHuRtCV7xySSUuGvOvhrUFx289lJG/AllNQRrWGhUgghqSTQiKYhO1qCbqK2XNPRvb/S6FFqxv/dKddf4FfV9/YejOYOrfOvy0wgsmjTcN2mS0jabskGSa/Ja9W3L8WcAs0DC3aNDKV+s7wViqTssVLysoOyinpX2ll1SBDVzSJuB1BsBEkD2k2GWNqua+bDKvfniffDO0ZN+2g8o2Tl+Dfazk036JeKtE8amGvv28B84g/b/HoZjCsouooOn8MbzAYBwAfCRcZxn08TZJvCzJqmZlUBP22udisAtxK3g4q0K8jQUjcJPcCv66+jBi8jBFeSwX71zLU63m9ZZg3TndeG6cNG9E4C5XeZE39IZ65hsD3DoyhX8CCVJT01TWnmWhHmhh68ijchJOcCU4oZOLIkSMni3E0KYeb8FP8b4FvueXrTx8H3/xv8CIN/n/snQfgXUWV/8+vphdSSEghhRZqQBELICoqYgVW146rYlvLrrjrX3TXsruK6yqua9mVxXUtq2JDsVAEkaYSEAi9mRAgEEgICen5lfzP58zMu/fdd1/5tZDA+b7f/M7UM2fOzG1z7sw1w6r+0naG9CcGVbauZShj1EI2rSiwGioQQ0nQgeqfc2+jNhSSiu0lxNwoIyGEGAtdMm7sHnr+7patWzpk2+Yu6evpljGjJ1o/M04wGHd18Q0sylWDmMokrMLqqJFRtaZlu/iQmII+7Opm5SNGqj7jz6Qv45A09ByOHx3bsc8ZkyD0gVItb8YqdGLlNb/GW836z2SCWu4msEK1QIa8S+d//HYd0DHBWKNuZMSlcvSTjR+lpg8Vo0YvUcY8LEhZxlgsm/w2LhUarPhBSEOmcJwWUROXgrlotNSHYRY9wx+DnPK0F5C0vJ0jNMx4oBjnS+OrDvmghNPP4siX4i1NjxGscJoW9Bccx3JvD+MsXLPpY8Y8HChHX1bOQWbUDPzIH+QM+QDnDIzdVG/nA81vY0bDZrwlE2XhzmEV9cjxa5RvKO/o0/ycA+nrUE+H+gn39Gn+bffKnAkPy56jH9e69XjZwcsMyt9YqTAcVxogCHtoYxfkyujQHVKUxQ/aqQJL490Nqyvtt91Q962Mv/QvnavrOT6p0NHOiy69snV7m6x+rFdufLhT/rx1T9nWMVNvIXuli/tJXlYLBZQ2A2dny63ZOZ9QNofIov++q4OnCZ4QwyEGwzl77yvzFhwgk/eYJhMmTDY6ddpMO2Fv3LA+5nQ4HA6Hw/FUgRsOHQ6HY/B4wgyHzFgVUJNviGVtolKzWn51aaVc3hFvlCL2oBydxVSD5oYVWWFFD9/xsm/L9fcIb/12SbfwHN/Z3yl9W3ukvzek8V237Js2wwOVOvoy1BqMgrwG4pTYpCJ6KaBem6ugGfK1UoIJTcomXeK3FRNF+UycpjXsHDQRw3SRdGTNGLjcFEMnxivqFuNx+L7mDptA6tjRLp07dCz1qc6wftliDrYo7NN8mqFQLXyaI0ykV+qljP4lw6FGaP8QX8M+QCORPaSV5gjRdRkUwLiw+tQhl/7MAEcacfoLBgXL3RBhIi1kNNuq+WK8AmLx6qH/aAeAmiGlBEyI00/JuGGGN6Wp74D5lV+YaA950bFNuEOtopDHCodiQwZsbCtGrY/jPaxECszRW/DHY09hhjT1BmNiNM6aMjQ3DlnJEFhUkNpZhZqoMK7SORSelfMIcXn+gDBe0ggm3QwHlA8aYVUb/NP2lTVIUYWkYl5CRIVY/tMu1Xuf9nkb32nrVl126jm/29piTYk8SutVWNNzSXhr84YwRh5AOjrFUI2f8QY4XrKxxssofWbIMqNg5JnGqEbCyFbMwxXDU7hWRXkSTf3UCJavGsYi9jt14jByWnv1x7g0o5VWSNhk1x9twUBqZfRHusmuBVMbKrBKgjfBgvCknbEsfoumzYaQRnyn1pVWW9bwjyitN08jqGXUqFHWN/AO5ys9vrRtwPSBXCoHfcJxGPKGc0qSF+TlzxxjCkMfxtaYD4fhV+PQHfkw+NlqzXic2XmBcaGZyWfjQa8vfMfVOCgrygFb2a1IYaitrlZ5bCVlzGv3N3EMwdeOYerSaxJHHfJxHrD6lMKtjeOwc5yMantExvctl1njt0v3qHEmAvdADO9wzeu3FYrt6rQ10Wl76jm9v2qaZ6BO5SiNd7druydLv7XQDvtmrlJeHiumVTuu8/oMor7128fL/evHydLVo+X+7VOlt2OK3l/26TNJOIfY1uO4BuBQt3OqZQ3gYjf4AAD/9ElEQVTncDsn2P2HRVs854Bd9huHGA33O+Bwoxs3rJNH1zxsdPyEybLXrPkWv1bjViy/M5YYLA6Vo199hEyPIcPDN8jPrrw5BnYB7HGsvPj4BSL3XCwX37gqRg4e8449VY6YIbL6T9+Wq5fHyIaYKYed+GJZKMvlsguuFDfXOoYbaUwGrJYbfnyBrIghENJr4x0Ox1MTvlWpw+FwDB5lW5UyKWVPignMHjV+5jSQhYdUgz6A8gwKwvNqngETUSWPk8UoLRIm0rKyNu1ok2CFzDzkRm+AhvTPHoSRJcaCYjUhayidJtZCppiz4g8TduS1yTXjjbUnPJxT1Cb7OphUxKgYyluJMktQYFyFWKQF1GYsvh1MDiYvoaldNnFpslswpKlDz0kHAan/YkYFviyUgbbb5EIU3iYc8JRl1gSrCXn0L/RPTIuw3iorO1yg3ujNA5nybYhehbWmgiwNHSGt6jQ0pwqmB/Kqn35gPLR35nJF/jZJo5RJYXPwSpM9mmKkQpsjtQMZAwu+7dlrk8pMLps80dhCPqhNLvHTRGhAeYUVA0QINoStQNNjAZ7UgRGDsUJp6kU2q9eqyjgmGcNxFeSwaXjqDcHGML4K9GCEo7AAjTCjTUqICjPdaL0pjm+pkRQMPGTWtpgerQYD6Vhq0laqwwXkyK8WBZxj+DHxz+Q9hjPGVkcXhjSMBKFvAzQnsmmQ4z6cDTK5Q9s5IjOk/q1GGMvpOMePETxra8bTjBkYFdCF5g3GiJye68DE1DwlPVUNvR6hEYyqNM74a0Frs/pt7Gu6/UeGAjvLlwOhYlxA4Bv4hTYRl8QjHv1XIiKou19lhFagWaq1HOSzc4LqxnKbuEHH0CSTxZEjVa3/Uh9Ymahry6NRth2lKshWoWk+jOHIQnof1/KYzwo3guWpzZVk4xf6V+vRMMcHxwUlzFAVy4NUxo59pakNXCfD93ezzLaVLkGTNQcNEgMf9I7fcsBPfaaf6EenIDOYGWkMzUM/UL9lp5DxxMVrnP4wSrJCkDD1pLqoiXJBBq2b84YV1jSEU2fHgVLC5LfrbiwP7NiO+iRDtrJY44ig3fF8EIXUc2pWv8HGXuwTTUMeq0+d6U0zBh3quZh46yv6x0Qzfsnga/FKK9qmOZY36090TOq0/utlUcfV8rz5a2X+tHbZo3uz5tHrDtc8ZIV5FN3CuIaAa54OB6IswwETazhlc9QFg7MIxtNuhxbGX8vNapctW3rl8d5RcsvqGXLdfVPlprWjZVX/FOkbM0O6Ovqlu61PVcc9BNeYcC5phHAkK+z4No+dN0wo+wu0p8WtSne64XC/RYeZkfDuO24yg2EeGA0xHk6ZNsMMhxgQB4VokBu7KTOITTr8NfL8fcfsWsbDwRoOF5woJz1dCsaWaAQcJ7K5ZX5uOHSMFLLx2MiQ7YZDh8ORhxsOHQ6HY/AoNRzWPJBrOJvbaghWOjRHfDwtVJMeSivQB9ei4ZAMTHYV8zG91QwUqTwY58AEWA2KdZQgSKY/zdvOA7rE7cqUX5hqY2KuwyYPqbcJO0ONDoYCFaZVVqWGw0AqwFuqv6rJUE3XvyI3QFp+0pGfTToXWCYeI4Y6erEJ/Eo7FPyr0QtRIVzJq22wyXuLzVCZUI75+vVnxhb9kdJhlfANOr5J1i79bT3S365OQ/1tbEmnPKOuBgLy2yS38qcosmH8qjLmaHryp8lvxDFZA5u6wOhgeVsQi4lvtqo0Hem5wYwYCFapJR4bpqrqmok3rebbH+vGuIpjhSF6xMaQ4loF8sPaVs4wod4fVq+B/FhAT2xNWPk+mCK0gfJBhwjFNqqmmwHI0AjUAP8iklxmqFF5OB9i0rDtU/nRtxpPWTM4IJ/6rY38igaZMlBvVdWMHWVlRoLYL4xlDn39tWujw3iO8inFeNavdQJkqWJXDzX11sKqiXzzsL7gZ/oJcsGv2B9lOs3ki41gq+BwJKrfWqNOG9sWjtU8ivzI3co4QD67lhVg7dB4qB2bGEg1L6sM8/H46V/8xJkRSOvEWK8DVpugVyCMyxomXy/5tS2Mg9DY2rqrEOUv5rL6uc6TrolmIFMv9STZ7fyivySbxaV8Fke5kC8YvmJlAH1b/1bXnA9RnlFoxXJF6wEZmgKe6CfmpX/w82MVr4obzqEqb9qqlHS7dqqjjdUSK7RpxIXjMKxoRg8hDMOgS+JCXSF/kEDTVKccz+jK9Kv80rcVKUc+zqtprOuf+ZPx09oS43mBIxm6rS5tB3URTmDYc0Xq6+mVPoZdJ3UwlrSs9V/oKzuHqJejoqe/U+98umRi3zJZ0H+THDp2uRw47UE5YPIjMnacymGHjObEQEmBIFhwTREkdDzFUTZWOH6erOA4aTL2d/R3y0OPbZf7N4yRqx5ZJNc++jRZv2Oc9Hb2SvsovR53ch/Ai416nPd1K+VAbIyya1ZSvak76nz7lf9qtBl2uuHwiGc81wyGGA7LkFYkgltvusbowLAbGcOG1XA4GLjh0DFCsDE6venqVzccOhyOPNxw6HA4HIPHcBsObbWJPmjapBaTbEw7MUlW8xBc+4Rqk1/5bJqF8kW0mq8IiljZAmxyrQh0UJu1CpRKzvaZxNmEXYpl5o3J/FR3c9S0bShQEVpllbUjj+qY0IZajq0aDomw2EQVZe0tixtWaNWl7KtmSEAMV2g1Qjb+qdMsxVz5cRVy6djQYwK/GZnbmNRha0y+RYeBuVddD7mkn7IcQ2VjM4faYzXUWxWtLHYwI5yXJ/aV9ZPGmyGCeH61LKtgRpFIm4Ft9sxgoAWonnpsEpzJbosPOgkGv1zFGk6rE3GkBIMHk9ZZ/TZ/DW/CMQ7aCoL8GNyCDpAlbXtp/KLQTPb39PVGg4cVMplMd/Sn5rN2YKChXMgyZNCOVF+CtZG6lFK36VEDqd3JIMGnfEx+IgMn/VM5La9FNgb16l8GdKRli4ZDJfRvhyaaiUHrtz5War2Gbjk/tIqaemth0jMWCshapT7+NAtx0DyKOgUpLvy3UhqgN9O1izCpek5XnedR2kcaVay3iMCV/9VI+oPadqXKn75Ez7YSTP2MyWRwggV8knHJ+MbxyWo+aFiVqnmVV1opWlZ3FaL8xVzUm9JASOe/RhKvXuOt8pgBW38mn8pgWbR85ZhLRfPgGqpy28FdAVxCVvigA35mVM3JUg9lfV4Dsmi1pkP4I7+WM7m14mR0Sy8RpHqNt/6FY6MawRAZ+gl+nNMsl2XkX2BihkiFbSur9bASk/4Hdp4krVPPh/w0jGrQbAK829kilTyWn2PUKgnQrPktSZFJ/4WEPLQIBmf4qTDS1qn5lF9/33YqURfuacjYr9cwjkO+ZdgnnTJG1sj09lUyetMdMmv0fbLP1LWy54Q2GdXJK1ShfSaS1hukK9Rdg5Qj1w7HUxJlx6+N0ScpOL6bHR2b9Ii777EeWba2XZZtnC8P9x4ofZ2jRbp7paOL+xj0o9cL+wh0lzqO28YovWahZztnZG7LZZ+OiY2xUw2HrCTku4bNVhOmVYkYDrdv2xZjW0XconRX25a0DIM0HIbVkxvdcOjYZdHqGHXDocPhyMMNhw6HwzF4DK/hcIdNnvHsycQUE2D8bFIsz1Iz2ORjAdmE2gCh/KinGWBtdRRQNikRJsmivw6yqS/lqg/pTOqZLPDTsu1M7YWlVJazCTvDoHVQhiBGayi2V8sW+4jkUv0xwanlGTdJ/tDzOUR++fbhL+u3fJ4RQQt6SWMiHAqZjCFsElpsmEghXvu+AYyftV/HAfnbtsmOdnXSqWNktLouTWFbqV7jvQOdRhkawSa1CwgyZWWZRrbJ6MqEsv4I67FqK3rJr/lsBYo20KaprZ3lCEaHQJuBbf1Apa/1j2+D2SoZ5NH6TBbjlatUw2WGw7T1Xx55UUlqIHoVrB0qg52nlK+1PerTJu1Ntnb7NhuGw6RTznHkSwYGxjU8eilrMlq2IcPaHOtMIC6sKLReJEPUS0gz+VUmMxziz5W3UUs+m1BsAsplRRXoiLrhko2hPr7HqTqy1W6qS3TCuMLgxdgif68ZWlobz7X11sKk17rzsDhkUBJYBJ2YXAV+RZ2CFJelwEmd6cq4R96ao1C+tI80qtk4MH6FdgA7JpRnop1dnbJlyxal3XpMhHMoaRgPlYPpPY1bDIv0B+OWo4ZrbyffoFN/mwpkx7vW2bujNxznjRBFy+dK/Q6SfDgMaWaYtEbpn8bxfcU0TpEZGYknnX/IaWMnyp7A+IxnoQoowpgG5KdufsNtOOSbp0lOZMfPNyXt+4xIFY1vdnzxMznqg5XeZvylLPqKwppetA4rr448vT09VXnsHATl2FHYty87g940ozlyIkuPlmWr4vauDtm+fbvGaprWwXhBR5SBf09vr9XF2GEFYpAt1AdoS/hmZTyGtVxfP3L1ajZN7dPrVL/2gxZph2hx0xE627FVujtUjh3rRbbeJ53bH5DxbVtlYlu/dO/okT5tbz+y6zhkLGa1NgISNdKw48mPcKwUwXHzZBwbWYsaHyGbOsbK6t5uWaeub8cEvYeaZNfjURM69LjUZy7bgkEz2rYAnEPCeaQRaq9Zeg3R8x/gmpLuF7df8VmLa4adajicOXue7DVrXuk2pXlgXMTIODjDYWtbJAZkeRNqyqRtT2Ow5jttldV/N8ikCq8tsuzSH8lNj+FvUEfOcHiNHBu2UjXky+dQI0tA2po0GGukpmz1d+byW5mWGw4r27pWtnptoieTa6as0nrXH5LV1Vz/jWSLiCvXMhT036Tuav75sqFNMx/S+lbsV6XX2q1ei9/LLPRPbgWolNYXy+e2zs1Q3gcV1PR5cWzk2rH+iExXZYbzpnIGmM5Ey98yOas7L3tDmUq+LVpAXr/lhsMm483hcDxp4YZDh8PhGDwOXPnv0ZchPJAX0PyZ02DPnVo8TarZU3DJ8y9GgSJsCq5QtcUVUDPlxLNsWSUFwKmUX8mkhApfI0sRTIeGkuHbUTynU8SerfUXtlEkBzlJK6mngDIdDBpRnlZgRoYCin0U2lDLscxw2F5sqwbTagszPsS8w2pAbhUleiFsBhntPCZLw5gIE8dV0IxM7gLboo62K3bsYLK1APIpG1tho3l3mLEsGMn627fKDpx0SNsOfYbe0aU66zdnlSjf2kmcWjD5a/lzyLcBPTOhz0oUjAjmRx5NT0aGBCaYLT/8ahqTAblIbkU+FSJ6IjSYDMiWEmUM9vXqSs2wGSfYKWjGefWSy2IQM4ahhIkH1ZzKQZ5+7bf8JD79jcNQkHTDBLptYRqZp4lyWx2UKlSk7xu2UncFJfmNJZF4Is8KNJ5tE8OEfwD9xjaW9LHpUh2AFscBbR1Ow6Ft4ciPOuJQSsd0m9ZJPv7KDL5FWJNbzKeVmD+BOPrFileOt2C4Qb4MoR3VIK6s0oKeVG9ky/eHeTUyXzqNgap+qwM7f+TyWTsw3NCHypf+w9l5SPMlOcPKQ8ZmMF4D62vSyIt+zIgbVil2dXZKJ+NVs/K907CtbihXF1GufC5aGozDWgcJmofxh1jUiyzImGSuGn8axsiFPDYW+akc1dpTIBfy5+VTbzCqKZRffpy0pGfyNwNZ1AV+WmFsXwB1KkEO/cfxZyMrtpmsxW81ktnOE3x7lBB5ldJeyie9VPQRZUw6xCU9BqO8Huc7elWHWhb1c+5HTCureu7SsaJpiMAYIjHx0X+V830Kc4ywjbQJFUHbbbWnwl6I0OO9t3+7tHeRoJH9XdLWx8sgKveOHunsZsyhh149N7fLtl6VVfutb/uj0rtljXRs3yQTNDyqv0f6tO4+u6dQmRjOuXpLYRmaZXI8FWBjtgCOkycrWjmnbe0cIxulW4+pbj1UtumdZI+eG/qkcxTHKoZDPY77OJbD8cxx1wxl9ZrqVdWV66iSVrcq7Zgzd59PRv+gMG78JNm08fEYaoY2mTpthhkNt2zeFONqMXmPaTJm7HhZ/fBKOykODBvl4b5ZsmjWOBk3a7EsOkjd1H65475HYnoExo+XHyl79iyXy87/hSy9bancsWWWPP3pz5G9ux+WP6/aGAwtR8+WLowwF/5G7ritX6YetI/sc9As2XLbPdGIsp/WNV320vhR910sv/rt1ZrvNnl4K4kYUY6ROd0YRn4i1+TqmLplqdy/dZ7ss3APGTtlH1nQc0uujrkyZ2GujoSt98mflceWqYtlr/EZT5NVMXrmwbJgishjy1P9GGBOkYP2wLDzfbn8eq3/oYmyz5FHyj7WRpEZ++0je8g6ufee+8RMtNrmEw+ZZMadX111m2xrRU9jaMd02XOhyrUp6UrbV982rGgm20YzYFZkMb0+LN3zDpODDt9fuh+KbczV3Xnnt+U3v18qD3XvLwcfcrDsPe9I2Xt7lEd5771wtsZNlIesreOt7XvO3EcWLeyVW6Iu0e3ee++Ttc3af6BMxnBm7UeGRbLwgJwMlTGwWCatirJW1Xet3K06WzRvtoyn3/N6WXCsPHveOFl98y/k7qK+asYf8h0pBx26OIwfy59rx6zN2TgrjnfQSM7cmJ48T/txxl6ql9Fyf+qb3PhoLNMjcr/G0QcLpvRmfYtMNrb3ku61f66MWatr/GZZVTmeWhhvDofjSYuB3VM4HA6HI4/pG14SfRnsQbHMtQAzpugvPWRCbfKKn1KbjLJJX32YpaKio6wSSjMxYPxqXKGY1TN4wBMYjzgZQUy+DouoCzIFyq9df4mmgnHKszFgo/rBk+lAXeJtwiT9tdBizYb+zKNIEy2hj0JsctYvlpdwTDdZmiOUUiS+Sm3eN+8iT+Q2GuP4K7ak3oSQ8aCIMk/GpxqQnnOEa1CJSxmCCxLmnaJMFk2yLlAPI90mOK2yIHsYo8ERZlIYYCQIk/U44jTPDlZmdRgneOGsRspGEUDOWwUmjYuwifxYAvHTMUiU1RNlszB9HLISSLU3Ri5/CNRx1KOKSv0Z6iQtaCCAOi13TMs5TTBZ8RNlCP406WzRMdlchVktSMIQaYYtzWMGYCuk/6ILhhxW6gTDXKzG+gJZUpgJeMpW2qR/IcKSG4IsydlxnotIrBINaVEHhPUX9KH/LRMrupmsD/mqEPOYzIzLMGg1PpCGSOUiKJKOOTNSKC8zHiV0aA6N42cvTMRKbJRHXeX51UWSMYfUBsYRNK/zFMfKKuLzBikbdylrlUMv1XH6n39VQO6QN3OWreA0pSpssuJvgpSPHsUYxzcqQ6xyVPkZY8SZvi2fpvFHuxTW5py+rG/iNqTp0oPMYcyblFY2rYw3l0OxrfbLnR8sLsoVRAlykJxepqAMoB7yWxYl5gcxykCUxQe++GFjZTWc8iE7dVKftVHDOAulemCjfsozTtMxjjypbsYGrTeRon7yTjlFfWZl7LuA0chHfJAp5VNQoaal8Wd9g1OkMoFVyK+hEG+yxryJl11H9E/DZoS0bNpbmocyHV1hVSfphClFX5uhL8ptf5qGgT9cv5FJ8+GjTKorIl0/Ujr1mq45tqN8qT/0n3KDJ/kxZvbBPhSOoFy7prUxC7hjq/T3bIexxrRLj3RKzw6lyprZ+l5tb6+Wr+uUMbRH8/UYLXe9yp+vPvKF6cYu8G3Gr0f5ZXQ4nMh2VVtr7VCnejZ/dD2qf9aQ9kRn7dA+yucpyzciztpRcDo28u2lDYk2cj24XLlGjjZb/uR0zJk8iY6Eo0+0rp3taJ/1aSG+xmkeXqRq0wsu31hv1/FlL1rpz45Je5MHP+cL9eJvBC1fzEE4nTPCf866ei6972oLNUM4W+wkbN++xehes+YbLQNblLLakK1MB77aMGL5BfKzS5fL5hiUGUfISa8+VU469tAYITLvkAUytrgCTMtdds8WGbvXfjIphn/242/nVm7dLFf/abXS6TJnQYhJqF2lxmqqIzRnYTVV5JlfPUXZVuoYKCYdfqwsHFdYofbYlXKx1l+U1YDRhhVrD9+QrQhrRU8JZavc6qCpbCrLM/cdU9DrKrnpgotl2aYxsvBZx1bVTb6k0/U3Xml5xrKKL8mjvK9RmWXcTJm3R4gy0LZc/6y4Ev4iY/c9QuYREWX6WaX9KsMfGVtjZOa8mRaTwKq4iqzF+pY/oCNBe3VRtdzz5qi+VYZbalbTHSpHx77I63TFld+WGx5WPk8/MchXQXHVXn0U5bw4jrcDDs+3p9A3hoHKNHAMaLw5HA6Hw+FwOHKwJ8yCiw+MyYUnxgEhPL7ywJoofJTqQ2ia1IvcKy5MUga/zVmpj3Dxl/JXO0W+CWWuHqxOBZNk/Ki8wN/qjdkyMJEYHA/plV/0V6W3DOohf3Amuv4LTahOaxWWWxngYJb0WPmhYyYcoNGFegYGqyfxqPlRdWwI+fhpPlN1wVV45HiFcvzL4mugUZY35yyMNw/jVZsvTNDHftM8aXVVCESnYZvINhdKA+QhlYhANd0mf0OOEMd/Ju2ZNtW62J6UbxxqNFOruAwamas3jMkSRP4JyIFsQTDK5MppfDKMERvaCshPm6lHg3WqyiOM66yGyti0Yzg6jUvHtBlILEvUkyKUSyHNywRXznGegFoWVGPxmjMViUhxKd78wVsNa5wJEagh+ZU39al+MBSE9oU8OgysaFj5kyrB5XWQ+OU5ljuQl5HytpJSB1RYmadt19T0C3lSvRomX/KrS6uVyGM/eOH0Z3kU0Vxi8a0gtDNz/IIBHD0pUdg4U1A3joTQZ8FwyK8ij+VsjEayhbEZuBSNH8BSkEN//JE1rMQif8GpgHlHfoSu6M3C5AvtqrQv1z95l9qXd60ClZqsQQgba/Bsw2BoTvVp4Uijo0w6ZwcDI4a1MI5U+WHGlrZpbFBX6D8MPpSx6soQxMhclMz61YKhH/gB46UwA5R6E+/UV9TJcWNO4/rsnKqwfLFsPO9VohJNdVl9xIV2pjq19ea3UGhqSIt1E6aspVtfQ8lTyV7lKgclGeJggZW1Bb8m4sI5lALk1T/NbysIiY91m1yaZt9FJCrKgeO4gWc6n1j5LspTIJZRZyusTa+aB8M85WEaqrDzBflYZWhlSVJ+XLe4/wjnTtNS+Fm9oQ24ZJA0Y4NmtXrgY4NSZVP51BPahhFCBxf9vEN6td4+PU+GsPUxetL8HcqjS123Xvu6u7uko7tbeju6ZHvnKKXqRF1bl/R0dEqPyt3ctZfElTnlB89GjjylZctcyj90t71LqfZvT3cTRx7N26tlkrPykVb4Rdos37A72tGpfdlV7Sw+56y9ZeWH5OKYqfQlYXXQkXI2blP9O89Zn+bbWsexoLCzo08627ZLB8djO0e1gotAn14E7KaCCGApLSE7Q9iJK56nwrmA8wSnuVYxgKxDB4ZAvm/YPWqUfccQmgdhtikFjzb4BmJLSAYfnBlGFBgQzXh4qMxhm8ZxC+T5GBRzzrboHDdeJluBEqzbmBkkc9i0Phm3EmbKpPFKHn6gJWNOFerUMVBMnsB2o6tkRZXxpx4OlaPZfrLKKDQwPW3eEPXcAprJNmneTBkrW2TViqJetcxDJQbAYUPkL+NlUj3+j62T+utlM6xfn18dd7PcUjRc7nGsHKD6XX1HzkiWsGCObfe5+oFaQ+yKB0oMy5s2SsMFno0QjZpjJ1BjwkZZX+ybgco0YAzhuHQ4HA6Hw+FwDCts4soeOMMkl010PVVQeUhXhGfugUHzm/5iuTCpl02UDgqt9Af12sxfDGuWJ6zftFomqdNkeHLEPxEoq5aJX5u0T07DYQKYVMKxH8mr6aENkVOOaM5IcUn5A0PoU8ZIcrGCnYJM+oDaupl0ov201MbYEwwmt20iTF0jkAfYKjBtFv3Jyr5gfNkRvnU2yD4DydiUYJrLReAlj40t/THJz8/6O2SpQo0kxkBd5MHPjBA1GVsHW8eaPCqLfcewk4+cRWmUb1GuIVRVBdoe2q+gLVEGq5OxpWG2ZmTXMYwcnD/CRCegVDNXjtKUMuUPAdarpk+2vw1tsHNH3mk+2gh4GYHv0xHkeAqTukzytkknbSevFkgOMG5t7ConMyymc1ELQO+mc8qgZw0nGW1cRaeJoUAeFNEfeTlewjEVhaqANoR2AvoTw31YaQlPTeeYs7LheEzxnFfCdx4DrKy6dHynY93aoEi6sxc6TI6i0//mTfJoHSpL0jGgZltdiI84/UOckKrQQDjfB6NjllAfiWdod5hqZwtgdIbew7amIY68oCKPJphfqfWFyYWeAh/Kmb5wldIZ7PhRfZBs46m3N3zTLMoNCYZJ2qN6QRf6s7pUttAXQZ4gEry6VOYxOh4nSGfXOI1qk742tjJVvu1a3vYptWINEbZ+1ozkbeCCfTTkbe7KeRRdednBOVOu8Wzmysu20f/0UcVxTWol3/A6HVTmbMzknP6rcSaX9nsjx7goi691yk+prWpPLoWhI+lyOt7ZLoybRi6MVbxBVI5H1X9KqLiBIB74EYTs/BIObkV2zLcCpNmpYJvShx5cYSsL9zvgcDMU8u1DDIkHH/ZMMx5iYBw/cRjXFtkqvxvMOCLjJ2erljCSJeNilSt+by1nxKj6tlsjTJcJuW+07XxEw2UrMENNXB1ZtmKwJT0NBAOQbRcB3+LLDFnoauBYf+MdquExsvCQsPI1GEdXywP+7b5qDPt4czgcDofD4XAMFFUPmfp8ySTugJ9dn6JAazZJGie9wwP6EJSnDG3StNgfJWAy0PpO0RZ/jtYRdJcmVdoszAQsk+xsdxdob0XHwwVb+dieuTBxtOvAjFWKvIH1iQL1czxgZIKWTYAx7tPqIY4JjAb0IzQZA+hPmzAd4jFSpQkN5LkxkZynA4aWw0CC3L1x3GFYKmlyi2iTUaO6lWaGnt7ewDfJmAxVkNS2QVeXoAyQG8MKwHjCd9lol/WTxYX+sLGlEVa/yrg7gDGVxqHpUsUOtNpZP8bzCflHjRolXd1d5rdzixmV9Kfl2Sq2YjyMdWD8ae/CdRptbSAEYyS6tL5Wis5trGp5c/pDvloEmZPhq1PrZfyktg4U1BCMw73RZbqgHmDGslJZWkde37AKRrs4toDWh4+6rF4Ns62x9U9PjxnW8PdhgFP5guSNoTWafs1YqDo2A3Ic4/RBOHem8Z2NlQTKG6JqTX4979I3GB+Rpe513wZJ4E9+Fn/iS4ZaDEbw4xwCD14WgCKfyWxtVD2pDjo6u1QSzd/WpQXHqNwTNW6cnod4wUB1wwaQbb3q0FtzvTwloV3A+TTvrP85T1Sc9k9L+YbXcT0JdTR3IW8Tp3ns/EfeBs7ua9TZ2E8uhaFPUVc5B5tfdYU+hhmw5BwYXrYI11p7saBFlJ91RhAYBVetXGErD9m6lG1J95o1zwyJpN19x03y6KOrLC6tPhwerJYNlWVieX998I29k179Ylk4jm0go/EivwXqkwW2XSeG1elyxIn5rTRb09OTGnzT79WnyhEz2LozGbCiEXrAuFkeYCHtjDkyTw6VQ2wr1hvcGFaBjzeHw+FwOByOXQVMMqU5rfBgG/yO1hD0l02qDVV/tf2hDEt4VlYS8GsPRqiyfCMOlTWstsg5DRO/q4BJWSZQ8i71WZq8MV2qlxUyNvGidMidWYPQn9UuxO8qUIlMN8hmk+3RkPhEIU3sp4nxIui3YJCIsuvPDB+sutE4vgEW/EPTMaOFyV4AyTtg6TiVEzlsglV/YavA1oARwib7beyFSb9Wy5bBjBp9YawjD3qBb0IyVIHUtkpDBgstG1Z6cm7ieKLeMOFMP9GmNPaTkYs4Oos8VQLualAZMYim8wN9ZcNK28zpJJy7gyOecQe2bdsmW7duVbfN0lhFh8Nfpu80VtELBqCeHr4eV8hUCoxYQb/ICDV9c31QP2HqbGQgszGrfdLb22uGT0SsRhzbORmT0S2sFAzp1ueMNzgypjFGKbZv3x77Wcxwh7yEk7OVfJE3PHvIY/KWw3QYPEbCsa91xTByWj3Kw+TR+GBUC3V0dbHaLvRTkCvEN4PpVX+pvjAmKJ8fA5nOqTfFmeqVmJ9gTOvp2R6Me+qv1+aQHvq48vKJus7OrpjeY+nIwpjBEAnFkEAcBiBAnr4+BGGbZxxG4tGab4x0do9GGaJHsf4wHOo40J+jDhgyFUd/qJ5V3xWHzmNfN8w33E75p35v6GLeUh55l/JAG7l8XneZQyf0uw2AkYGeOuzcZC/iaDV2jtC6W0XrOYcZfMMQI+GtN11j7oZrrzDKisS1a1YZxag4GOPhvAXZtwwzxBWAG9fJelkltovkjEVyWN3tLmfKvL3GxNVPg1nplDcSPREY6JaeN8vVGEVZfVgxHraip8GguWzrV6wq/Y5gpV9a3oJ1oKjmn75BeNmPi9/7GxxW3ILheboccOIiW+F5Z+X7jQWkbyLOqR3LJpOmDttKxQZbkFZhxGUaqfHmcDgcDofD4Rgo0uSVwSawUlD/q98mdmN8muDKuwSbgGgLb7vXuJIfdVjVDVxdKE+DZrKfZc5zDz9jYf9iDOUi74ojeQiwiQCrP+nHvIp8HJGZrupCi2A0CG9rh7JM8BmPwg/hqcFClT4KaenXUp11AG+bbA5BhKltB4kxQ0pJqaENWWIoO3yAXX7LPGB1IlAkyVslXJZdy2KMwqjSVplIrkLMa3qtuBSGRmd5Ci7FQZPTCCZ1bGKHRAPjJ8q5KyAJksRTmtoOGOsc6zYu9Zcf/yMBJtuoD2phrYt6TU51NjGusjFSiTe/ycQkXd5Z8UGBlmNYSyqprA6LLiGfJ+9LSHo0HSKQZsnrNURl4VoOjRG2hcym/sy4oTztpQLClbrCuZpYM8iqh96EhvKt12ztsf6J8hpT2qhejbN+iezSxKnxJxKvujSBbbpQF0nFtYxiueSGC8o0GUWDQTgZqTEchbbZjzaaDKEtoWg4z4R+puEYWPvC561U5TZ2QrShTc9t7do17X3qtKx9RzSWzfOotLFBOy0vDplixsSDMNcPY4G8+DRrdj7UGI1P5y2iw9glzkpVHZvhmhH6PLQ/jgXi1YU6rIqAGEavFh95JVAmUXSdwoE3YyeE0xjC4JZeMkj1Jz85Q/kwVslv0CjqNV6BXQ2qeGm7jY/+MQ7QC35WadoxGBLCSp9YRgsYSTyCluIPVvrPXGWMWLYa2DjQ6kweDdvWkOSlKfDRSI5sfoZElKHdW+QY0/62dgyOHcqDgv3SjiG1c6Lqeg9p6xhNklJyh/He6Fdp67CCRjV3Ff214tBxI2f5wjmykSOvelBk5viOZOyL5Cxs23Q2zjcUZ+cP/dFLycVeKUGhME7bHNoyQq4VvQ+Ds3YMoyurYygu6KK8C6rcAMD1KLlw7lNqfmjI0yoYkk8oWGWIy4MwKxIHYzxkleARTz9CTnr1a3LGh0Pl6MJWnCuuZNXYGFl4fC7fHsfKi9mK0gxnJUYMVp+1vFVpZiQ64tUnZsbDuILt6CF8C27dBr7BF78np/zq8apsjVnSxhcfXjTIKfguZDIe2rcgW9FTfYQVm+VtbSqbynLnwyJj931xTla2jWUFqJR/F3AwyLW1jL/pWvMcktpgMg5uq1JDatc4jNKNvn8Zv4lY+S5nAFumHjFDhrRScfrTczpnPD49GEd1uDbByMmUMJTx5nA4HA6Hw+EYPtgkSXxS5SEzTGxpOD7A8vwcUPIEGqPykzKA6Yr8j78qZ4gVNHX1YTly9ZbXEYM8SOsvtLXoBo+q+g1hUjEfVdFBC7AJhlx7rD8oW3CVdqg/TRIU8wwfrAVxbJQBabIfja/4FSZf3bKDRWhk4mo655erm5/pqA6CXPg0ZxsrNDJZzfEzmmoDIZzFqDMmBZfioMlpOBkNE98y1Jd4JyEKgIToE1kryI3NoN+AqjzDCAwRZhSI9YZjI8iUr9O0SRCi8UHPma4tbajImmve5EDF6IO+lGRVZoWSLJXjG0K+GGf6pJCSin+ACKzRWdCR8bXIbOwZf5x6MbwS6EM2zWXGE/K0CAzImaC0L/hCa0wYqzNvZLJjrRIXc1E/znhkLuPdHJQN+YML4eEFOmRFtZ1vFRgQEkzPUdex6RZMRq2i4asPo1O76kFZmNMkG0eaZnYcdZ1GtT8pRFrBpf5NfPlvLUd/+rNe0LSKPvVPIyyvwaJ2WDsqPIyf1kj+WD7B4gv8smOTf4EfE9hmUFMYGwXXNjPWxbLGVx3FMn6qDyj5SYsuhROy+HC8GbQc26JS3tJjXDBGRv4Kq09lI94m2zU68SpDki3Vn+RjDNjLK3EsRM4hfyZVBZRPvIDlsryUVN3YqsWwcjHVVQXNqCkVKft1kJiBSCOgIKSHPKaD6EDeb6DPtb4dbaw4VPbt6KRT2jrGSUfnFHVjgtGQ7xySwzLVd6ElwwvEtbY0dPxvDXmdNHP6r6kzYxBGweQ47yrhWE7OjukW8g3FwcvqyTkLt4Jc/lZcvo4yV1YGI2n1dxBHxnGiDHUN3QVe5fUMxtHnrf5ahR1x8XxiYzb47FgM5xreMojRLaBjztx9Phn9g8K48ZNk08bHY2j4wBshGA7Hjh0vk/aYJtu3b5Utm5vvY7ht1W1yx239MvWguTJn4WJZdBBuLxnHqrHzLxUWAQY8Ivff9rB0z1skCw+I+RbuIV2sMLz+fhm9daM8fF+BT8dd8rMLV2ncXiIPLZX71ymbPfaTRbPGyeYUzmPrffJnk2Uf2cfkUKd5V//p23I1Rpox82QfrVPW/ln+vAorZUSM7ynjqdi2qsNkmD4r8Bs3aaI8dM99IjMPlgVTRB5bfps8vJWc5W3suediudhWuo2XGfvtI3vIOrlXy5v5Fpm3zJJFGr/ooFmy5bar5eYmetpWpx0z9ztS9hqvw3Pzw9XtMzSTTWT9fUvlDpXl0EMOC+mqxz262Tb2J3Jz0ktp3SXtUoyu0k/M07Nclm0/UJ59VOLPlqTfl+seCmW2rVqrMu4jc+ZFGWesk6vOv1Z2aNz4jbHOemPA4rtz/RGwvkP1O6tdll1zWVV8ETaWH5ooex96oBxq7V+s+gzy/f7exm0tRZRz9T0PyJQjnxd4athW1V56baXsZG3rXuM3y6rb7qkxzrYmU1HXMVJmyN46brtzfVVbV/PjsmEbHQ7Hbo2RuqdwOByOpwKmb3hJ9DVA68+dpVnDnEiasA+TnmGyrDq3PeAWGMT5FCtfmYApwoqVxLeIUp5F1KkjP9E7fGguT0utJVP+IZ82tNLWeqhTtIxnWdaCKBQ0/TERBMJkYjahWoEGW+rfVvMBqyOfl7EVYkL9OCTOS10HoVBlIieASZboTUhsUxaFebVsLirAZKhGmZ6ZzCG+4mJcBuIh+q+2+OCgfLTWwDOHMvlCNuSKaSpaktXSQqyFzQigCMaUsD1eFcicXDO0mifKEibFWPHFtoQkaaL9kYmVYX1hUj+nW2tDESVRNdA8cGHckx2jjtFUmPTobQmpGJOJEXZcMTbSmISn/pK/GfI6wbiDkSrf9gRMAOS1NqAf/fE9PYxYZqTNydEKrA6ymoKUv9Vf0UwFoSbaqWk6TigXxozmpJz6yVE8PWt241cNwskFmK9Yb222+mglj4FJ2dAOxjvt6O1lO0f9i3IyWZuMhCkuUMogY+grdFVZ5aZMQ85AY7EwrtTZxHOMS4CPXaPVGX8EK4D4JGf6WVYNB20RjkZNrSNdH20rS+2TDrb51fIJ5DNoeQAH6jDO1KHR5iw1pCVnmRWWRiaNS3rEb9JofBpDKX+CraDRH2nWZpW3YsRTio+2pDGW1U3ZYFpLDuTb1Qimq1Sn8jfDsf7QETzQEUyJZ37b4jW/HYOxfOqjJIch6UPbhcwGKF5zKS4QQB327VPlZ7riGKLP0IP+pTZXeBSQzguUs2OcPBgM29SFgPEJZdmqlu8ikqbyE9UIsEsyNwR5kmsA4xf9DdEiP0VFN83QEjvNgA5bYjjCQBRWlKYtMeNYDZIlGZMrQKPSeWbYHCiLH0mnqBxbw4SqY2moDhLp8CG0mJcO7Fxt52/Ow1ETWh9t6FtxdQg3Qdszn/OiIelwz5lz5ZFV98fQ8KN71Cj7/iFbmzp2P8w79jUy6Zbh2eZzeBFXF8pyueyCYVq92BJivRtvkJ/F1a87DXF1YcVw7XA4HLsYRvqewuFwOJ7MOHDlF6OvAfRhsdWHP3uOzWfWiM6OTh497eEzTNalLNVPvTbRVBW1Q9rSA2sOxqFQR5ikaoxQby2/0smpOHFWQayD8vYQTVs02r4fNkyAX6iyWVvK9dIQOR3V6K9VaPGyYmX6Y3VLEWnyIWSPZTRgOtVxYdtVah6+S1VJB+ot69+adrSaT7HDhCjmJRwyBllVz/q/lmM1wiSZ/qMtjIs6fWPbt2m2vFHIvFouFxUkaEcv1SjTs03YUh7H5J7FRdktvzqbu9VfbfEalEteDfgw9Rt0mKFWPupUObQt/EwGJrWtf4NM9qf6Ig6HnzbhKkaFiDQZaXpsAvI2y2Xt0PrCxGgo0NvXF8efQqOQW6UJ3znTDOQPKw+ZWI35cmhJx9QbqrPjBEcx9EdcWvXRMkJhM+IlgwIGB/SHHtEpcaTRllBzA2he2osubIVBiCS6CrSDyUWMhBgNO8ijetyOJJrGFoi2LSbGERuDjZF0193dbecCvokXxkT1KgfjHdtD2zDqMq5solN/6RtMPb09plwbZxG0oThOVWv6H91n8ebTfPmc6fg1K2kDWGp1FaUgHyszO2xsBZghRtti41GBkYX2dXdpHo1Kxwegj+hnHKD9yJhvbxmS/pK+AS2lfGWrXvSregxjIONHPDKaQSvKQT8gI4aG0Kpk5EKj4bgnL4ZDtt9Er2lc0gZoMoAhEm0PrahuR5LLZNM6yUycGftwxMd0YMcqfDVoYyLXb9az/MW8JoMmd+rY6+W7f1qOOjq7uir6zUB7VC+hqAFv+AZjNYptANQFrA1asrePcRry2oS9ykoWKN+zTHn5vigrILtURr6liOzh+4rhOEDn6K5n23ZrX0VHWt7Oc6xMI6Iit7ZD25p4pT6lT6x/kAd9Kh+TuFIuIOTtMsq3iNs6td9Ck5Q1xk89F3Gu7N+mfDAYbpJtW9fJti2P21cQOWM1Qrp2hBY0guaxZV0FAYswfvBqxo/2wqsJP4WNn6bZtD6Oy9z4K4Xxos9Q4hOPMD5zQHzuLZqpT5thXdFML+SLtCE0k2VpVu8IIB2rw4V0vhk2oJthE5EjPpyXbbUy5yHtb66/HOOmfxWf8822Kz4XijTBrjGSG4BtS91ouHvCto2VO3ZBo+ETiD32k5lshdrse4IOh8PhcDgcDscwY0jPpVqYCVy+z5Mmo2xWLCVWHEg0Byauco7wYDHMj+zDjky+vF7KXOswY5z+mEhkEo5JwJ2BMiltctZSQl8yMYVDNkpY+nBM1MAuuRJk84tJn6HOMLxI1PAAZbHxGSf7y8qRElLD/4SUE5qcoZZFXRSzBh0HVI6bEUGSuJ4rh41DRNIswQiXVvRlhoiaScsqJG1mLoyh5JojSWe6UWcGmj6MbcGIaH1IJtgptclxjSM7slWMi8MF6lLXmvS14Di3Y0kFTOPPtk9UapP/MU9LoD9UF/CxtppBJPCsgkZt7+kxj/WX5u/p6bWkiq4wGlJvSfEyUCfGkDQWKhOWBdiYwaCjldgqUaW2IlR/lEnyB43mHAd/ZVY7ueHFQDjSN6m/Ut8hf6/qtUcdxwXxZhy1NmdtIx9pNoYjmEROLo/U7GCw1nqQMkWqI7tdo5Uv4kAx3FpCAam+vNxpS0wNWX/Th30Y4OKYC+OI1XVMQnOsaxvUXzFMG0vlB1UXeIbzQHChziKQwYpoHqjprtL3JAQjZk5FBsZJuCchX6iL475X71VoOxPn8Ny+fVuUudqRRt8ll++DZqCu1H+0P7UxGZDRe9CNmFEP45yt9tIqRo0aZQZe5DSjouZhPKRzVi/Hn2ZM1wCTy0SL+jCanCYhi/6QhQrtu4X6w2BgWbTexKsKmpd6MWRSB8ZGW/3axjHJOYDyrEakrei3U+Ueo3odp+FuTWWswLfIu6SuYQX6QCE5ZzrKx7WIAWZvHUkv9dxAUcYj78oR+rfacTyHa3bODfbHAFeqnsYu5n0ifgFBhqG7XRw2nsOAttXOev7mPGNdMEgM812Sw5Fh/Y0/2vmr6nZpHCpH843Mlr4n6HA4HA6Hw+FwtI7c3GFdByA1Th8y+QF7sLcHfQtWIz55ptyEqviYSxPNwdnUl02e7eAd2IpLj/NF+VoBJdMkX96ZfEVXBNFWc5AXYSlLTOuu+a9MlqQHkrVWa4N6Y4nsh2A0J7kQDpO55Le5QPgRhkdymtYSrNI4UavloFXyEa+/JB9Twnkn7Ux+dmimdquXOFah2GSU+uFJWYSPxJz+L5G5LI56dJyoLBVnscai4kxy5K1yKk2Fah7NwjgkUPyVwfTK5KumW7EcCFsv6GANWiNU5kgLDl0wiYsLW8exupXJaibINY/WZxPP5EZY2q9x6DONyyCN/kIm49vIxZ412siF/PmS5a6iC3SDNEoRI0w4IpQ6DRNnE/fqSY5wM8ABhLryUB6q68pKvhBpFVkZ7dhkGLCwyRe42aS+HigVWfSXDA/IHLYr1YxEFBGjSG7kQNG4Y+ex0M1BZksL+oKa/kiNBRkSyZFq5zXS0bE6O4cSB4UFaYxPE7450vEM8FqfxLHHOaXSX3BX4cnTr2GOQ8J8R8/iNd1cEKIKQevZz2QnnlVv4WQVXAGmgui3404phhMbMxoIxh3lhXJy8pkQMY7zUHJWdawPvqZL5UdT0kR5yEQXaby1LZSxsaJ+O7ajA8GISdvhkWSkw4I+oLa6rLPT6kmOCVsY2i/WSzzHtR3byoJy8Mt4I4BmsnbFcwTOpI3tNZmV2q8EysKMaDCN4fwYyMN0nk/TuhkLJq8yt3M40YyR3C/IpT5NNmo6Ji/tNDYGeKN3yxfD1j8qFPkxUBGHIYNM1jTykJ86SSeORhCneUI9GVL9louy6gBjqKMj1JGKBEqe0B/WPs1Pv6cWpvFDeRuH5CFbjr855RD6neuglrOfQnVDOoZhaHtc9WdMFBqlfMM5i/qSoZa8lq71m0HWZKQOlUGr0CPB4hGnQ/8hu3HQcqw2NNkRnUL0DzzxmvzIp2DcqJ8fEaGudM4hPbTNurFfeZjT4ju0Xo1s12MMA6K0j5LO0ROka/Q4a5ZtZ2oMYGEFLD5QjpKQiA9VBHWgW2QkLfj1n/2lcslxzmzXvrR+tjDxlA3lTWT4Kq3EqaN/bLWVNUhjtHi/tiXp0arUeLveW72hbqtR2xHuZ6iLvPzTdBsX6Zyj+uG8g/z0RjwPhTgyV6Nq/JqutV6EV1Ry58J5p0KGtLyrAXGFeIuK+SvlgrNVzTmX4vPONKllGjryqvJhYfJaUf1X47L0po586ihn96X0kfqJy4/XsrJR9JwL5Wpcvj9AzGd1Rn0X84bzAjGkD9KpUKHaIKB5lRZ/WeV5R3wTl7IiMz6iLSbGRTcQ7PJblTocDofD4XhqwO8pHA6HY/BY9GALW5Uq7KEx/wSoz488VNqjqj0wayIPzGFWpQo2EcZKHuWBnwkxM4bkEfnZRIuyIk9vf9iqrhUo9+grhz1QK6wdubxJ/pg8YNhEeZO6Yc5EyWBhk6j8bDIzOLYGK3Ks0amC6YbhlA990SeVvmSik/IatolhmxxhhQw1V9cbdF8NmyjX8nmUjY0wTZIrrUVSn2aIfZmPN7mKtWoOk68atdK1hjBJHVyeA/EAA1aHOtuCUo+DvkI1VXrJpbFCB/mRlePBtv/T9qVjyIwGmr/62NohXZ1hm0mQJrFtks9iGsPyFOQrIvAJdeeBDNXQnDoemtas5cKWv9Xlw8R5BqvP2hJkgHJOstGiNMVbtpCjkg+KLGZQ4jhSvdgkO+XQo/7oBSaNObZs4t1AHOXiKibq1PFpxgvlZXwTYj0mZwsgr2WNnsooiCRMzHIMZ7WkPOE4U2iSyV6j+9D3abyENoZyLckHv6p8TH5G/WkazibIy3hpnNUVxbY8hUPakqJMeVg7cjzxFttmZWgHVJOg5OjQfuF8ZPrSiGAECW1PSLyCMVh5aJqtdlVqVStfO/+QzdLCGLExk5OjyDNLCcc527fqoLZ8jBOOZfoD/fGjRDJq2PndeISVhVQexn7QtZWDn5XhShe2qOSYsT4w2aPc6k/HPOWT0VKLGJI/k74x7FRM/thek9LGgdYbjyUbZ5pGTfipCgOY6SvWWwEi0kPw03RrQ+E4B7TLtjHFj07wKC/yUyd123c0OV7zOqDtiiQvMN1avfqL+QyaJWonQOPZShWdJYRzQXbeNV7qbGtOzcYYQ65ejHDaN2xtSjhc/8L5uAqaRruo1uTWfOTku6C0k3Jcr/j0FqtObQzHuoPhIfBL7cR4au0hKYKgbVurflYEoivqpO+UkeUlDpk7urtDoQpgVJBZYeNAkWQBZoihMoXFBK8d76abdHJQwrmMrVL1SJPtm1fLtg0rpVM2axJb1XJcoGcKhiJ4tISS4NA3sFWZWn/+PBQMuvgtqQLGlek6+o0d40X9ST5byattC3w1TvnS37S3Z/v2UIfqndVXMGB8UEfiF461VG+oPI2TSh/Rp1zfTED+rGVBDuKowxxldUxYqYCQDJ+g9+AsJZ6nrJDF21isgsYjZxVHBWVqQFwhPlSUg4aRJ4YaorSOcuSzWpXFomkcNa0ZvcMj6ANm/FSzdt5MugpjB11V87MyVQj8irA+g7PVgzeMGRsTRGg6fW99olkrfaw/Ox6L1bQAEyPHN/BWv9ZJCxPwMV5jiYigC6PDhCfNVqUOh8PhcDgcDofD4RgmFJ857VmUfyFoEx81ExcDBxNalYnAGNcKGj0SM3lQyYA3Pnjn5d8loA1mYoBJjorTcJhUitpAZCYoYlzeFTEiTSsyjTJTP3qu6LUERGv3Vhz5im3ADQVMrpoOk6vDr6V6Y9uK/VEcmATLXIf+x8G7X+XClWnG6kYG5c3EOI4JRCaFw8RfkCNt4YieCXd2wr0WZXVUSzZUNxCUS1NEGjd51whIkVYUkjM3R12RMNE80B06DFsphu8A5sHEHn0RmBIT8/f2Wln0bgbdUu4DQ4VD9Nh5L1RqY4KJwYpBy8IhTyW/ykUYmYLOOG8mF+ROeqQI5QePwK/aBd6Re+a0M4LRILnWkHKGSf3gDIkWEQukchiS0usU1k+ml+jXfs70pCyNZo7zRtJPVXyMNCOZ+s0wqW0nNtRhR7iGql3F4IOOLErLqp/+Mt0hq1Lb/k+pZrUJX+QkTKNDn2th/bNxqn67Plr+wIvENAlOPFvFQikW4oI+qlASVQ/5rNSJLEYVJpsihNnmMuk5GNpoG8dYxZnxJ8Tb5L2GwosjtYC3cYU31ZpuOo1aetRVmSwpjv7BYRxC1+ShDNR0aDVUA9k41lO/JCMixzxGKCg1FV9usbGlbcLAFMqm9hag7JIubGwoNzPAqZex1KmOPL3be0K7C87UwdiJ8tGWNA6TQzYbr5oZaY2/1hQM5LRbean+Oru7rKzdt2mexDvoL449pYSR2V5WUn9ov/63MuTFq2G86pATin7DCysasDrUcW4QtjUdrbJ06zGLgVPjabfVFwsLxxjHQNBtGFfhPqMcWiammYyRF/1AmwmG4yScN2lF4EccibQpyGjtRLeMNf0LTdT8HINERLmQyfoxpwOTM8pKvNXFOMLFc0c4hlUrRkOYvBU+OUezQhoB4rL+bA2xYAH5Ourxoj01Lqa1gmIdNU7/wdPaF3WQ6siP+XptKIPpED4EjFfgb3qu6D/cU7WCoPvM6b+YkqDh2A76PDnC5M2XM6qw9g3Q1QJeRVlirFWX1W2uJO/OQDjiHA6Hw+FwOBwOh8PxlIRNQqkD4RFdH3HLn3JbRphgCZM9PPgPFfbAnJ6Z0wN1/qdhJbs0mNCyiQgF+jZjQsnviUK1fOi03sQMis4cP5BvA7+dgTBBVf3jb1DQZjDBhSErAVbJcMiq1F5WW7S32WqkPJCDyUYcYII7fKMrHAs2QZz0qXE2XhUmv0107hx9jShiW4uuDNij0ACtNsMhOtEAqzhTfOqPwUH7o716uitMasbACKKzgwn1UHf45mKvVl6oWBtInqQf/BxvYcIyGG2Cg088vwEbL6adJwVoFc6OOy4VSgnbN/zUEaa1Nskez0+Bqr6iXjJH3kw/ZjzRPh88lKeWt2O7MxzbGF40NqY3BsYpylCefuabd8HAEeXVn/Hm244attVYSjFsdXWFMUSbzGDGGBoKlFGmlyB/ahuGlSQj5ynOW9DkaAMvNySHLjCqIHfSS/g+pbHNQP8p39A32hcaZdeYkFpAlCU6yiCPrfBSsPLRjFwtIZTFWb2xvba6WL0hPhxzwYjIccb5IrQFAcM9USgXjLbBn0doV7XTf8HIh2MAo+M4rs1xuBu7HdrH3bYi0eosAfx6tm2Xvu090m8GPx1DPax00rbRRmTU4cQqx97e3jB+FGncAdOnthMKwrcWtc3E2blFofWkdDO0KTWXmqwBa4pG8EN/lOnsGi1jx09ROlHHA9895LuN3Vnh1OC4lSnyUQ+rApOsNdB0+JOfdqCDru7uIJ/6uWfCiEi4U/UH+IYoZVglypjmZRJ0BBPGL/1sxmrNawZIjWMVorVDY9OKxBAO4yIZmtOLA+E4CMdkPh9pdiygU46FeN6Gbw3gGflaA3E7A6muvNvFYddqO1CiyBh/h4Kk++jsWG0RHGf0ucmUyrZefNBIdWV17oRK6yCeKQYPFMgB43A4HA6HwzFY5G/EHQ6Hw7FzER5MY8DmFYY+sWCTWzxsK+OhclPpoi8DcfmHan67DFQU2m5vpienYVNrVAb6Ru6k77wbssIGCasaGfSHbDZhWlBrkrva1bYBN9h2UCV1mw6TY5I0JBdQUm8RWrCsP+owrAE8g+EiGA/DtrbVQA9M3toELrwV5GcCl+yh/j4zAuTlTDo0Je72CGMhGxexbY2gyWmC2khSbZNiqkG7d8RIx0Q4E7t5EMfKUtNz5Mk5CYMMcfRHKKMyhuRhA7xTu5nwTAZAooIhQ+97VYYwqR3aUdRZ3gXDRUBYUdee6WnAyOQJK8swVMJs0AwHj0K1KWj9FieK7bhRh5wkqjqMkoeOy+uJiLC6KJQlyoz19Lelq1fTyRvaHeYxOR+ksZCHjTHNZ/0Z+4DywTiQrUoxgxPjTf1UncYWjroYb5am5VN7VGLrR8ZvMHIE3lDSK0YdBfwx+AwFSY4E/MiQ/AlmYCGsSVCMISGZf8kFGQF6sXZGXjWwwql/QhjDZBrT0HDOrJaF7Jw7zdCDPjQafYXVp7FOpXZ+jTLlEdobyqR+yp+boRic4NOj8fhTepAhnKNTn5Yh9Rd1Uc6MyjqWcDrg7BjvbA8Gq4odDT+F1R/KhJWNwMLqT45xGVZVBTlMFq2TNiFb0ANjKR4znBeiLLhMB5QhKbTZ2qlpIPHB+EUM5Yw/gZDFjIa4ZLRDNvq9q3O0jBo1STq6Jmhap/T0JXkYW7QyMcn6y3SleUw+mBeh6fQnadQX5A58Q1hTVQ+BTzCmI7vphYCmm570x/WWcx2ypr7t7OwyAyN5qAT+FuZ8oHwqsmpe0tlmlro4vq2/FRyLdv5RMP7sXje1SfPiigjtCempXpNhhIHE1BXGQOZCyvDAmqRtC30T+Kfr3GCR9ASUo/IMY9+Og3juzp8jmyHIGPrGXGKeh+WhH8N9GjS0wxJCOfxlZUcCsd7kQt1PDIY8Unt7tktX96gYcjgcDofD4Rg4uJfgnsLhcDgcg0N+UiC5VmF5yc5zaXxANR5MAiSn4TDBTJYGD7H2jKv/rDyTWQOQA1cv+yCfmU3WWDi1aRjnTIxXma5q6rCw/ku6U2+avEr6TI6sxqLiiBkCjGHmYGcTjQRinSCp2NJtwpXMMTKhGFYQVWxDxeV/1tZCXouvdhplMqS6Up5yVJcN5ZW28CvCJkejIxXHtC2bW/YQUr7dfTukS11+VWJCmhy18aAurZAJk9dxXFg48wNkSWHEB4StLdEfnAVHFFRhddkvACkQpSIjMXWFyWS2Sb46k3tpEh2d93EYKGVEdqiHsjvi2GN6GaOC9W2kls6POOojHxO91MkEo1KbxCU/6YhENuuHYPSxiUjNZ7LY/+GD1Yqc/JAV5ak/UOTAb15FvvZyScgfRY3lKoUHBeSw8Wh9kzHmRz2cw0xvIw2q0D5iLKRxwLFn3ydTZzJpGEO9GSRoPOmxLOcw4vJGpzR5D2hj6GuYwI5/obwZTkI2JcojTnQHLWQ/0z2/xEt/xONPBkTYJ8NB3nhQkU3/wvkUI2RmQGFSumIg0rDJqSAOX6gbD20J9dRAeaf2UXfiUQTxpAN4WX2Bu5U1pLLwsgn0wC+0Q2W1yfSoX6s3Zsevv/ByRYiDUjas+iU+9EOSAQYcn1nlilRYkfMaf4PFxeMoxpk/lzfIG9qIA+TJykS/AblCvxKVzt8WqOQLL39UVQI0SJtD+eRCGyv1kU3zBeNSNKrFeJAMScYD4xeZc7Axh+G2U/lCo7FKC1HYHMfKjt4+a1sqXqnDsmi66two0eTBESCOoBYM31CMxh+Noy30VervyhiNeiWXfdNwR7d0dE5UOUfrcap9qzK3tXUr727N0aXBYLhLuqI+arV6CMdxRmxNfynMSIhc8A2JVi6lMeZw6Jj+g0eej1FqxR/bTp2Wh/qRTSm/MH41Q3KUi7BQ5GeBiNCO0O9kDzqLx7hlsEyWXtnRgayabu3WcEW+BPXHYqEqTQr1NHb6Ly+aAa6wNnnyzpimPJm/iMQXWCkrWw9RDupjfBaAdCZrDCszc3bsEJ9LM8OshqktHCc6Bki1IvyDXx1EvnmHWMa/Uk8oTTKwsP6l83XIEfJwz2DXSpiQXNK2gcLaALNYR+CY63f+JcRwuF5XI3DR/5WCIZz0ZrrTH2kpPv9rFbU1DxBbt26WMWPGx5DD4XA4HA7HwMG9BPcUDofD4RgkwtNm5gaA4oM0D5SEQmz8kactPD6GB/f6D52hfJgoqUyWlCDwzJz+iynNAf/irwz2cIyooUGhnmGGiZ7/xfYUHchPVDBZYo/vGllxFg75kgv/BomibPpTYarlSeytQjwhPfV3HpTKt8n4EKllq9qReFW55MlgUZEmZ3ngbYxDsFCsgmKdVq+VbP4rgpIYLtguMxkPoRgNcXxrCqNhV/+OUsNhDawKzaiUSR9z6CuiSoZKfGBMkLbYJK0GQtssaecgigMJ3lzloUmVPBm0RRzvUebK+Cgg8UwGo14dZugZnXYy90y8ppvRyBpNhLY/ypD0FibFg9OK7Hiq6CtOeFec/sJkMVnj5HfJ+B4OpDZTZ4bkD2nA5IzyUaRMVyDER54xfxXrAUHL20R99NukbI5Zkh29Dr6SlhFWNoWa0ja1rNhq1+PM0kwxoa/JByBMuiejFEh9mozMKc62ZLQA/2KblGelfepHvzamAqsqWIoZLWI9OX8iyJa+W4oL/am5zMV86sKKpqw8+ez7iPRHENlAPMFA9Qc1F9LzIN74BZYNEMZa8MXMSojLG7CA1an6IT6NPas/p1vLZV6T1H5ZYwFtzxx9E/onHZeWhVzhPkH1SmTGP9SZyiek8Rrisjbly9l/KxeO73Qu0AgLIy9Ixj7GCOcO4o03Y0bD+JNxpx6sHspr39oWrurPI8iVlyk6a69FB1BvjK+k41eeOzpUFljki2hfsBUq2/v29/SFVY4KqqvUqXwoYEF1qb1V92Sx3spxo9HB2KBJMY6clCUfBjoc8mE47OvHcDhBukaNlc5utqulXqXSpTygwShr8akBVBP7JsjBWNO6KmGiNESEgjSTWWW3aPKqU4ksPWbTuHReIy70I0Y8MsA38WZlKEhVgVB7yGdGLIsjHK4TqV6AXmJ2i0OniTd8LF2DOfZWl40r+lVhbWBsGVSXyacZkz/jAD8YVLuU2gxJX3mn/5RF4GDhMm5WDf9imGI56aqQjy5hBShr9VsgKxDqqG5P0CnZNH8ch5TIh+si8ss76ii6bLyEPFYnIdLpJ6XAjpkkT2xDzJhzlrV1wCOygR9Ua7WkIjPiK3IX0gxRFYhhSKqhCvSVC9e4FjHkO6WtWzbZATBmrBsPHQ6Hw+FwDBzcQ3AvwT2Fw+FwOAaH8ICYczF+sOBhs8hzd0R64DbQJiZ1hhmluipWE/Pw3G/y6B/BGmhcmoCuOCY4yvIOFshSmYzJZDKxicu53Q7aFpvoYTur5DRcNt9SBFnSSjgzWkCjY+KEKAxcTDfZRG4BbGGGHq3PWEmktEyFSa9pXJbrOU7yIrvWbCuTbBK0LO/wwdqI3OoAMgYZmNCMdavYJnNRFI2v2gJSeSB3EZViNF8DlW8cKk+mrJORiDD1JxcmdBmngYPpD1n0ZwYiwjGefk/hqvyRb+YoP7yo1BuPsaQPdBNESJO20TChSBPpOwO0lxVENqZsJVHUWZTbxm9uEn4kUdE9OoneZESIyjIZg+6071WnaUUPQLcYMlJ/m4HDUiia9bMhtg+e6byQjM0Wxq/9kHdIAkdW2/GNQqsPY47Jge40B1Qd9fPDCBNkCbLhB9C0ha6ltYdvBiJPygPIA79w/HAuCf56SAa+tOqqHFkdacI801QAoaQTAlW6Ub1mLluNhnwmI/JVOjMD8sAuGJ6yOAAfMwbpj1U9iadJFvMGww2BEIG+CQcDWwinuIDkT+E8srQ0JqDUSXww7MatKJGLNJW1vk5rYS874HL+nt4eWznYPbpbOrhGKO80Lqib7TC3b9sW5NCf6QUZOX9oHEZBu54oVaGsrBYOTVSa2lIFTSv2mxmuYnIRJo/mYewix/ae7dLWEcYU8nR3dUsnK6/4aZ3Wb8gAXx2v3aPHqWPLUh0bpi9kx0hHO0epHzk5XjJHPfZtQK2DtrJtK3yRmzrIY9u/ahqweolHJxrXG7cfDf3EOSIcN+iTeI4t2hP0ZBysLYB0EHSt0GzwSW5IQC3wVd0Aayt9VwatizYFb5S1AKTJy5Ycbcg700soMjyIOtF/gW/UfxlS/YBjtqLXAkLfpXxxHIUGWl1WU/KTQJoy0pyl/MpA3UVnTHKALTIDUmiW5WXstdBvaSzm3WBBy+zYjDzQj+nTQoODnTcTT9Ujx+RQ+A3L3cmGxx+TceMnufHQ4XA4HA7HgMC9A/cQ3Es4HA6HY/BID+RVLqYNGFowPMJX/3Y7MBlQmXjk+VkfoHf0W/uGDcoLnkVXBnSIJDZREMP8PRHI9yn6SZPk+d8TJtwTCCZIzJCl1Jz6O6IDvRrJCrmiZkyHuckfM37ECc8qaBS6JR9ZLT8TZCUgLU1uYTipk22nAFlsIk/BWBkq4IRDW0nfnLGY3rKxR136lww4NglmLshh5UyHIcwxx0Qyk/RpQhlK2c6uTqOksbqLtLwbVqjMGBoYCxiYQKojrOrJ+pzJPb65CJCVicqdAateKXqDEjadIZwCvWK8MjlHGlEW/rHtIjVaP6vukgHBdKW/vMxkRGZ0jSGRiVHClhTlDsYJdB7KE298lAFttHET0y1sZULY0rQ834RDQfQn/Hp7emUbRh71m2FH86Er8hRBfZmM/bJ9+3ajwWAYvpNG+a7urspYSTxbglaJ0SU/jsMkeQGaD53m81g9QZMVUG+QN/CDmk5blacE6AAdY3SFYpQbPXo0IqluwzdhAfVhPAz+cPxQluODcx/oUp2ZkUnlQafQ0N7Qt6C57sgXdYxskQ/l0xigzzEYWJz2S6fW2Sp2KHtzXCOiv72rQ3p1vPSpk7R6sEXYuZa+woAR5TRDpvJg69I25d2h48eaNQgwBqy9qn+ODXsBQ519izf2Qd/2Xtm6abPV3xf7rG+HHm/9ej7doefYTi3Z3il9vZ16fMARgyB9o2NcxupYH6f91q3jnWM6c8YvjjcMm92jRiGQNSUZjOkbji/kCwZJxi9GzmAQyqj2JfrVMkluxnj4NmhSjo5DlZ80nMUof857lEevGB2hKX2kgazcq2f+OuNXZaxxOwHhWYK6GHuxX0LSsIE+MMcv+ak3tjEZwYYTtCW86BXCVMVxEKtsCs4PjMfMDeF5ayRQ0V1oYNLlYNExZ+4+n4z+QYMT+/bt22Tc+Il6ERgbOjzX0Q6Hw+FwOBwJ3OB3jxotEybsYd82fHz9o3qj7t83dDgcjqFg6uMvjr4MNkES/QnEtPLgzzNdETaJVUBLEyx1spSVbUW2lqHMTObI1CYk9Fes11raSjuAZivmLHvurdSbnIJ8aUKsEi5y0yBlmciqOA23/GSt5as4WjhGJqdIddsY0TpoPxO7URsRsUAs0wgtZImo5he8yBL8FtZ/TOIWYROC0d8I1s8F1wpSlZC8o1YoE75pG9NK5gJMn9GlsBXOAXHSZCfqNr3n8iEtXuS2qPiPydWUp4h8dKW1dfLWIJcPr20BGeUHpj8NmzxKkTvIVqwgxKcW0EZcHiabFuMbhiGXOotUPWiMTaHGcJBF/1u7M2cGLqWmQ8L9rDZhcp8SyEe9cbKfKAXHPSAY2QcYy+qW2IQ/nnxkq0j81KELHAYiJrWRFzlMd1F2UxfFrEzUFfUWHKQSBok2g/KtzhtWEVEt0bYaKYaDDrUfolA1/UuwEFUGy0J7LBShAYsplDcjSowLJBhrzEUeoS/QFXOMQWZbXUR0lD/p29oQ+ZEXfVsQXupSGjBjBMYGoGk2GazhzCkD+OoATRP6xiPS6JXe/rgizfKHYxuPjf/c+Z7/yEq9ljcCQ2Iy3DBWgvEmyBtWigW/lVAmlZLmz+SyPMo31VeBBomx840i8TEUsiYdYsiEj8mqeczQmGTWcDr2qAoZMa7hr2QhTX8YoKwNlje0Bz7wpT9DWfpSC2r5dH0M6bGP4nWJPjGfJiR+SSYzLKifMDw10eJBZqiLY1+LMF9N32AkQufkD5xCncSlcYVhC1qExRWjNY5xY7zUH3SuIfUTa0buNLYUNka0nmSoR/7UJuSzc7ECXVo4ysRKPdqFrBgQg06g5A5+0oKA8OS4rm5H8MFXfeoSNcMt9SA7BfUPOTG0mGwanxlyqFDr0zDHpNaix9EWjepRL+FudegEA7EeJyG7wfrCZAz9SXTYRjTojTiT0dJCm4izcaCOfHZO0P4ho8lEAcaLyhkM84G/MVeQh7aEcRAMl1DGmNWpaVYHelUaGOZIPi4ixAWka1kFmoTcNiYL5QAtzMprYfPGuBhP28OYyDHXJK5xdmwll5OjOUJ7YZl0W4TVRr3KF95ZHTk5IkJ60B06t7FHXEwHhKx8ri4bt1B+6rd2WlstkkLWRvqMPDUwefK1BJ5FB7PqXCFfQEgxHRAX623Yb9be0J6Ki2lNYTJnXE26iiwab3yjLJoJzkFvMUMJLL+lh3NIGr/Wx5WytTL23ff76GuMtmc+50WZhMOA0WPGmfGws6vbOtfhcDgcDocjD25mMBTyTUPfntThcDiGB4se/KI9aOYfQtOkU4bsAbICzRomV6phD6rGjwduHlwttsIbkMZkVi14WFdi1eUm0orgwTZ6EwgX40JNgwFyZzLzH3+QOcoYeZcZqspQJkleJwll/Mhl7YtpYUIU5PKq17SSi6Kg1ZuvppAloVRTJl/sQ/3HL00qZnFiq7GKdZiu8hVZekkdxBWiTS9a1mo0HoFRWenEN6RRLuVVfywQJo8Uxte4Bn8RGpePhVMaB/yCPBomVy6jGYxwFgjlGCnktTFMmQ7jRg7NQxxl+EeBMMHFtxBt8jIysHoqCHJYPvipP03yVOqOYAUWx7DV26b5NM4mTTUf+c2Rj0JUqQEzahLHv+pqQ1wOoVhoQwJemwBUasWRD59GkLcyEUUb9c++R0gwykNA/4eyEfl2GdUwWRNS/tA/IZwQ6gt+y6MOHRBpaQrGra1KQaZQg/ECQZoA467Kon3IZBPp+uvQMU4uK52rK1e0LkIt1UjzYDapzTgww0TgbS/YaxoT1zGThakqjO/0C/npW9KgFT1Gav4GsHLwRBeqcFsFFbyaBhMNEFY9witRk5k8lFE/P8tPeRts1QjSViOvd0MhCEzX1AENVZrBAjDpT/0Y8/h+oJ6ITFyAnJyXOG5M11oQvTIOOjpTewM/vGZA0HYEg0NikjLg1zzoKba1AtJNPm0/+RXGWv0xaLBVrCHB+tWO2ciHCV3Gga0SUyBLZfxGHtZOrduq07Yl3Vmd+gen1KbAVVHxV2LqAzbIRN+lepArDFMLwwZOZujTNnD9ok7ahW7seoEMQAuY4UW9GJkAhiz4pHaGiexw7kh9RAHaF3hZNmujxSlvKBmpFz5ppWFAYGBtsP4I4wOZgp4oF483wuSHAAurbD29YQWaBtO5grqSwSyFU5tNZ/qz1YcmWw6aH+MqbQl9HcojT+ork5Fy+kccuQwxj22/i24sKrQjraoL7YNqu/jFdOoMK+LCuIInujedUsB4h3L0TTrPML7ojXBcaTbCWoaxRkpYxRf81heaSbMZL/1v+ay98CdBHXWGPFre+mqH9G5bJ9s3PSL9PY9rPEZOjMJc37RdbYz7DLTddKtMaA/yIlcYLxppJMRTf6gWGfHElZfmD8TOHei7T3OgDxL4o10qIzpIhiD0wnGIvk23Fq+I1NqkdWCUJM36CZm0bEUGzRPiIjRs8fpfxSar/QtZUj7NQz7Kktn6WdNiEJDT4vAQb3xpT8oB4r0GRUlP4x6+VG5lQj+SN9QX8lg21Y/1mUXrP2MZyls5KreylK5ub8imuUJQHRGWtQLGBv1h17vIP4zpwLPCT5Hi7LwIT+sD9VgFIR1nY5wITQt1E6/HQWw7bGxcwyyVNdnRg0Xyry7SWLNsmj/ol+OMiFCnJeof8ZGphhlb1WO7FIkverFrQIir6IdxZo0IceiD61zQR6wLaJqVSFSRdGiAnwVJRQOBX55FwvYr/i36GmPYDYcOh8PhcDgcDofD4di5OHjVl+zhkAfnMDHJfHW2+iKBKYGqSC1jk2i4BE02o6PysedNDdtDtYZtskgjcNRXbjiEncoQ84VJK+puDKRisiYn3dCgjGivTcrmZIaCNNHIj/Y2qze0oVkr6iPoolp/odUtALmj16CBoqbK5LPWaRtBmAjJ+qQKGrSy+Whlb3rJV1OWT1EWx3ihKGPHJkUIWZurgTzE20+TbTzaZEk1bCI3N0FjE4yws5nMDEGv1fUwYYjuU/9TNk1UJZjhLbJkfprtSZO+eplgpA1xJQ5GPRs7GocLbY2TeRpvrkPjaZr9lBeV1DbLEKKVFzLgUznblQfHMPy1dlvZpEeg5Ul9qdKEurQMqyHZRpXKILShAk1DPssYQXJlIjiHitEbSrr+TFcqR3Jau1bWZ9QMm1oh/cwPxnau0LIqbeg3ZUc9UCWxe4OAeIOvGil/UT76sJjfJuP0h05I7OntjYaHfOHQls6uDtNx7w6VX5l3Mj61TN7wWlWsDspkppz1GT/tF/RAPib32aowP/4S0pi2b3JZfi2nfGg3clW+ARnj4IdrLqOOD63L+jj2m8mg9bHKy3iywgd5MLihuxyQszKxrn5WNoXWWO1DhvUrcinvVEeX6qlX+44xk4xXPRhKNJ/lL4CVbpzLMCKgt3Yz7CtbzY+OtbiVJT1sJxfqwceYUa81J0zmVreLvOkgQh6ymtFG+VWOJU2m92y8qezpmgsv+j8ZKJJ8NiYp1wSUT8c4sprRw8azAv7Bp8CXhUqhPOhfO6/CRxnQnmyMqU7Ip8m9jEXitExyyGFGnZiH8yhjlXAaH7SdewGMvPCyMprD+i0NdQpQp5ZPbSPKxn/sLwB/9GVbwOZg9bFqTXnYfQLHbZTR9I0jl/6ZvswYpjxhq+HebT1hZaTqkXbTLyYfNPIxHZUg9L6yhkTH9wp7e8P2hvDRSoOhiWTCtBGqfxhk8VhYgd5YoRd0S3t77ZgM+lNdpL4GtE9/xLPtso0l6tIkdE5e/Nb2HNABOiSesW9jGXFoMzo3o12oH770gfHQ+qxRIMcSL2X5hbpC/9p1Va9EenHUa9FG6d3yiPRsXqO6VDn15EW69bdxyZD0ht5hZ8eWxht/O/FhrAznA+tv8hPNykbNaFtLIgPtt74MK/DsgNS2YdBv1/JBRs1Jm+Gvstg1LraTcWPXal5QoB50j3CafYfKRBwroNs4RzCuVGdpvKE/aBVUSI2uBg2zf6GclaE9ZESOBFjlwwYilWcIZNAIG7ParmCAtQjTdagjGJ6II49GVNIZf4wbypCX8pwDq/MFo7PVoemk4accfspZmHzwiOmJJ/HUYzxVNJOF/imA/CDVHbZtDm1OQCT6z8auBox/G2Mu9G2qN8lgeWNceBaxvwwWiGlUQzp9qeXsvMCPcWK6jHkqCHy1MepUFi1jY9fiCkhRqTmap0PvP8JLeiq3nlDMMK757Ji38avXs5hOnyCDsUgyKDUdBI/xzAM5OD9z3GTpFKZV1dh2xeeirzGCBA6Hw+FwOBwOh8PheFKg6uGQ58XkSpCmI6DJjRiYdWvkdhZUFzx4m6b0obr0gX+ngvobufR/eJANhayO0O/ZGBjRcZBDbS2x5jrjtQZ184X2lNXQCAwLJLAxoS5M0FSjLsdiAgVt4sZYGU2TXmXOsli9IR+IxczVg6XnhSzLnNJNpuhKYEXj8VCRQcO1U04RdfjUIBWHFlg1Y5HEzbsigg7xhDAyY7TBUJAc4di0Co8yXvWaOrKoVUyuORWUytsiytr8hDS1EVQgM/ZoZzIJjCEnrBIaLMJ2hGY4UTAJG1ZhBZ6m45bY57SGFznDPw0HA2EyGDOJzPaW+PMgq+VrwSFnOuagQ9NBlfSRK5PTyBm+wcgWkcG4VS0zSOcnYOcCO4jy8qg/FTOaSydvLGtRyZ9DbUw5YIUuEpskF+PE/HCyOCXRwIMukZc22kpQ8tM3Sk3HUcxGqJsl1ZVaUGEWwlxFk78MKXcLIlRA6zEwJqMObbexlmTJuSKIwtBJn5Of4wz9lKFSHOHUhbDWoXqF5q8JlbpV3+3tGM/5LqXK2IFRU3OZ1aHC0WBckmFLgfGk8sJKU2h92uaUPxiAw7nd2o08SpAR/unYp72p301vnBeUmgHNclQDg1Bez63LNwCY0EnuGG4Bll37gvaEcqG9oXRiphiSyPS3ji3qiTHZsZ93JUgFEorhJw0a6ADkuiJDyl8op0GLsX8tKMyykLngNN7GReQRYtPYGBx8xaHD4XA4HA6Hw+FwOBwOh8PhcDgcDofD4fAVhw6Hw+FwOBwOh8PhcDgcDofD4XA4HA6Hww2HDofD4XA4HA6Hw+FwOBwOh8PhcDgcDodD4YZDh8PhcDgcDofD4XA4HA6Hw+FwOBwOh8PhhkOHw+FwOBwOh8PhcDgcDofD4XA4HA6Hw+GGQ4fD4XA4HA6Hw+FwOBwOh8PhcDgcDofDoXDDocPhcDgcDofD4XA4HA6Hw+FwOBwOh8PhkLZXnPJXO6Lf4XA4HA6Hw+FwOFrCI6tWRt/ujz1nzo4+h8PhcDgcDofDsbti69bNMnr02Bh66sL14BgqfMWhw+FwOBwOh8PhcDgcDofD4XA4HA6Hw+Fww6HD4XA4HA6Hw+FwOBwOh8PhcDgcDofD4XDDocPhcDgcDofD4XA4HA6Hw+FwOBwOh8PhULjh0OFwOBwOh8PhcDgcDofD4XA4HA6Hw+FwSNsrTvmrHdHvcDgcDofD4XA4HC3hkVUro2/3x54zZ0efw+FwOBwOh+Opgq1bN8vo0WNjqHX09/XJpk0bZbO67du3SX9/n+zYsXOm2Nva2qS9vUO6u0fJ2HHjZZy69o6OmOoYbJ8+2eB6cAwVbjh0OBwOh8PhcDgcA4YbDh0Oh8PhcDgcuzMGalzp6+2Vx9Y+Khs3rpcd/f3S07td+pX29zO9PjJT7BgJwY4d/WacxHDY1t4u+l/aO9qlq7Nbxo+fJHtMmSodnZ2W96kMN5gFuB4cQ4UbDh0Oh8PhcDgcDseA4YZDh8PhcDgcDsfujIEYVzY8vl7WPvqI9PT0qNs24isM29raZcyYsTJp8hQZM3acrTBsb283QyWrHLds3iTr162VLdqGDo0fNWqMTJm6p0yYOClyeGrCDWYBrgfHUOHfOHQ4HA6Hw+FwOBwOh8PhcDgcDoejBI+uecSMhlu2bJLt27eOqNGQbUfHT5goC/Y5QOYv3F/2mDJNRo8eY0ZDS1dKmHjSFyw8QEaPGWuGojWrV5msDofDMVS44dDhcDgcDofD4XA4HA6Hw+FwOByOAjDEbXh8nX3TkNV+Iwm2IZ0xY7bsPW9fMw62AvKRf08th/Fw/bpH3XjocDiGDDccOhwOh8PhcDgcDofD4XA4HA6Hw5ED25Nu3LBeNm/epKGR3pq0TebMXWArCevh0IMXVdyee1bnoxzlt23bKo+vf8xkdzgcjsHCv3HocDgcDofD4XA4Bgz/xqHD4XA4HA6HY3dGo+/A9fX2ygP3L7ftSUd6pSHbk7LSsMxoiJHwdX/5Kjn0kEUxJsPNt9whv/3d1XLpZVfFGJHH1q6RRx5eae3CkNjR2RlTnhrwb/sFuB4cQ0XHAQce/snodzgcDofD4XA4HI6WsGnjhujb/TFu/MToczgcDofD4XA8VdDb2yOdnV0xVI21a1bL5s0bLc9IY9z4CTJzrzkxlOH1rz1J/uZ9b5cZe04z4+A1194gv73sarlmyQ3yrKOeZvHjxo4142HCmDFjTe5tW7dIm7TL2HHjY8pTA436tB46Otpl/Phxss/CeXLE4kOMdnV1ytq162KO3Q+D0YPDkYevOHQ4HA6Hw+FwOBwDhq84dDgcDofD4XDszqi3Kqu/r0/uW/FnW224Y8dIb1HaLgv2OUDlqP6mIUbD1//lq+SRR9bIl77yDbn51jtiSpbGisOPfeJfY2yGrVu3yPJld8oYbdve8/axFY15PP+458i73/FmGTNmdIypxZYtW+W//vs7csjBB1j+n5z3a/m/H5wXU3ddDHSl3d5zZ8vTjjhUnq5uwoTxqpNRFr9lyzZZt/5xueLKP5qeV6951OITDjv0QPngB94hmzdtkff+7cdibIav/vunZey4MfLF//hvuenm22NsORKvBx54SP7xU/8WY4cGX3HoGCp2iuEwnYyw1JedZN7/12+VFx3/XHl07WMtHUy7A9IBzwnn5+dfJN/53k9iSkDSCeAkfNnlvzf/7oq3nvpaed5xz5bJk8Lb2lxc7rpnufzox7+ourA56iONmalT9pB7/nyvXfjRYxFz58ySj33kAzJrrxly//0Pll6cdgdwzL/sxBfI7Fl7yahR3RbX09NrN0S/u+L3cv6vflPa/icr8v2fx7Zt2+XeFffL98/9mVx/4y0xdmhgDL35jX8h6/UG6Kv/9a0YG3DaW18vz3/e0TJ+3Fg9J6+TL3zxv+TW2++KqeVIsk+aOKFyjue8Dh/G6OeVx/0PPBhz7xxwgzZ37ixZetNtw3LTRRs/8Ndvk8mTJ8p5ek7/v+//NKZU458/8fey+LCDhq3e4UC6xpYhPQi0eg066RUnyDOf+TTr5+v+tDTG7v6od/wl7Er9OVyYNnUPed1fniTPePphMkmv3e3t7bb9DueFK65aIt8797yddg7mHmLevDl2XN2t9w47G+m4zSPp4pprb5RvfvvcYdNFOjf95tIr5Mtf+2aMrUajc/RQMdy6bs1w+Gr5ykXvlCPrvOi84fqz5UXv/7HIR8+RP75sb5EVF8qz3nCWyDNOlx987iUyX+6T8//hNPlMfIn6Oe/9F3n3IWvl/95zllwUooYFbjh0OBwOh6M+ivdLrc5FvPF1J8uCBXvLv5z5pRhTjXp86xk1ent77VmEeaay+/d69+3F+/3i/GMxPdVTZiShTX9x8kulM27/WKyz+PxVvO8baHozXSd5eKbL82nW5iLqydXoWanseTLd7+aRb0Oqp9H9MOPi4IP2r+mDRuPiT9ffbLLWM4TR/re+4/QYylDPuML3Adc88pBs0fSRxtix42X+wv1jKIDtST/9T//P5shOe8/fx9gAvm14zn/+W2laHvcuu0t6erfLzJlzZcLESTG2HPXGEaDPnqyGw0UH7CvPfubT5elPO1T2mDzJnpEeWf2orUBk3nW/fRfIfTp+/3DNn2yV5333Z88/6djY3Q2Hzew2w4VP/sPpcvjig+2c+dnPf3WnzvkWz2+gr6/P5j3/8Mc/Dfv8x0DbyvH+2te8Um697U75/g9/HmOfeLRH6hghdHd1yUtOeL4ce8wzY8yTD297y2vlFS97oYwbN1buunuZ3KI3cFijD1q0rxyw/z4hk2NAmD9vjpzyqhNjqBovfckLZOaM6TG0e+Jv33+a/PW7TpUF8/eWjZs2ybXXLTXHjdxee+0pr3rFCXbhfqrizrv+bDdrN+oFZntPjx1H7/vrt9nbT8MBbkgOP+xgHUd7xpgAxtaLX/hcGTN6lN0s/f6P19nbVYMBWzx0tLfLBKV77NH4BnV3AFt/8ADCw+HUPSbH2N0LGzdukqt+v8TGVnJXXPVHefChh2OO5njOs4+UhXrc0q9PVqTjL+9uWHprTH1ygHPJZz/9MTvex2lfLlt+n1z9h+tk5cpV9sLTiSc8T1758hfH3COL2bNmyrOeeYTM23t23Yf8nQW2oaG/r7x6iax8cJVMnDjBdPSOt74h5tg5qHeOHip2BV0/eutv5aILC+4P98TUAqaOlwm8V9Q9RWZVdm06XF75/KNk/4UzZWqMcTgcDofDMbJgwnX//Rba5Pcr/+Kt8g+f/Jx0dXeZoaEZmJQf1R1eFC6iFb4Yl0hL7pTXvqNqUptJ2ZQGH/hhdMojPyGf8jLRTxxpKZ24lH7rbXfZ/TAT6nkgG/FMrpfVSfoxzzlKzv3R+ZV0wrQVQAmnNpOPOvLphPPlp02bUtOmBPIz2ZyMmHm86+1vqmoT7U9tLqKR3Bg8MLglPslhDFyzZq3dPxdBWspHv2I8wYiSByu8ymSh/ei0EcrGxaf/9T/ktW96TyUOGfJylBkNG2Hzpo1mdBtptLd3yKTJU2IoA9uTAlYaFnH8848xemlue9IywLe/r9/a4qgFhsJnHXWEPPtZT5fx48bZc+CFF/9OLr7kcnVX6Di7Um6/4x7Za+aecvSznyFPO/wQm+d3DA7MNfDC8mTV+5QnaF4tzYthCMZAPF3Pr9g0hvuZf6BtfcaRi+1lCc73uxLccLgTwATra055mb1B/mQEez9zk3KVnmD//ox/kY994nPy/r/9mHzuC/8pv7rw0pjL0SrYAqGjo8OMzcUxw03Vs575NGlraxvxrRJGCmyncMzRR5lxmYswN2//fOa/m3vnX3/YxhBvY+T3Z3+qgTeYuFH/+Kf+Tb7ytW/aqpOpUybbjcpwYM7sbJVnHgvmz9X4UfLQQ4/I333kn+Wc//meTZ4PBmd+7ivyiX/+gnz4o//ypFhFzk3FR/7hTPnYx/9V/uNr/xNjdy9s277dboIZW8mxmglDWSvgTbsn6uZuZyIdf3n305/9Oqbu/sB4dOqbXiN7Tp8qax59TP7trP+U0z/8KflXPe/yluQXvnS2veHGpMHOwHw974wfv2t8c2PTps3W3+jkvX/zMbnl1jvtZn/Ron13qqGt3jl6qNgVdL3h3s/qtaHaff57N8bUAi78J3nZ2/9BTn/7KfK+c2OcHCWzhtee6nA4HA6HowkW7b9vlYGI5zue3VtZldLo+WEofMsAH15mnzNnryqDFCs5ujq7quYYeEmWOFbRpfQfn/ermCpyx53hxSZWHOWBIRSZk4ypztTO5zzrSAsX05ORjDYTTm0mH8/fe06fZmHSMVrmy1NfmR4xJmJkY7cmXsLOA0Mgu4rk20T7x44ZI8cd+6wYk6GZ3EXAnwlu9NgM9Ov1N9xs+ZMh9vHHN5rOX3PKyy2cxwued7Rs3rJFNm/eeauRyrB9+zbbhWRnYMzY6hdzWVGI47msbBe3Qw46wFYbsjNVI8B3h/5oy3CA1cM/Pfe/5fyffNNcMngnMC7y6XljMePom/99lo1b4kknL2Xgk8qkuDzy6bh6hvSBgjmOgw7c3xZn8CzI89/ax9bZblo8B/IC8SW/vdLi9p47Sw495ECZOXNoDyPI3qitCRwr3/3ml+W0t73B9JbKFHW+O4GXCD7+T5+Xj/zDZwY91zhUpHkx5izf9d7/J3+6/ibr6+Fe+DTQtnKtwRawq6H2lZRdBFy4T33Tq+2khDWf5aPL771fvvu9n1S26+NEw4mUi9CBi/a1FW8PPviwXRhfduLxslDLYmB5aNUj8gM92f7uij9Yuec999nyFye91G4mGBycHK7+w7XyP98avq2oErZu3aoD5GGT5R1vf6MOzC/XrYNJqXed9iY56sjDrS1coFgOzXLZdesel78//T0yZcpk2/r0W9/9keX/9Kf+n32w9cqrr5HPf/HrxoeTEFs9sI3cN7/9Q9t68OCDDzA9su3hzbfcbvHDsXUgW511doVhxI0OYSYik0sotg2jF/3y059dYFsKsCSaGwO7MTn8UOno7Ki0M78NKuV4I+C8n18gF1x0WSnvvN5YRs7JFv4bNm6SP//5XrvxYUKOtwx+oTdYaQlwMz6czFm2j9zcuB16yCKVvc+2MEuyDAe2bt1mK4AYM9T3718+J6aIvdnGDePye++zPbjz4CTHm2aHHLS/jB492vSKQeBrX/+29XWSn0lxVpUc9YwjpLu7y1aUnaf98LNfXGSGypEcL+j46GcfabyR7Rv/+/2YkqG4dRrHORfmP1xznV2kGQe33XG3nPEPZ1Ydy5xgWZ132+132xZs8E9tXv/4BpsM5lyRxgNIW2pQx4wZ4UPTiw872N4m4pzDHubnfPP71nbqQr+kcV55XHn+9ne/t/4fSWCwetPrT7Gb/unTw/qKVs+PZXrjbc90buQ8wY0Hb+FxI5S2iGFbEeLTViaMuUZ6LgM3M2wDAO+0ZUMrco8U0lhg7D+mY57jhLY89th6+a62g5tBxud73nmqvXGWjqE/L1sh3/7uj6Wtvc3ezsxvx1rMzzlli57zi2h2zeGczU00HznnuGaMcQ74R73RyJ9HRwrUXWwbYAylLRVXPbxaTtE2jBsbvrlAfvqY/FyXin1dPPZ4IG90nm+mI7ZIPemVL6msXl2t5+Bf6vmb89bORHFb7o0q5+V6b8F25MjZ7DpR73rGQ9973/NWe0GAdvPiDeOL7S2YnFiq565G9w8DAW9Tzp49047jX194qV3f8rj699dGX9aPxfZw3HOd2Lhhk3zpK+fIn2642fK/5U2vkVe98gRrD+PmL//iFbJhw0Z74OLcz0pkjhMmLTi3cs198QuPsy1RRMbJv3zyw9bGdG5upu+RxrZt4QE7P2HAWH/ly15UOR9u2rzFZELmhKLcnGd+8evf2PFSBKs/3/Out9j90xVXXWMPpPPnza05R6djq9E9UaNzGKuF6+kaPk/E9a05TpcffCNuVXr0afKZv/uaXPHKfaWb56nxh8sHrr5YPpDSNIotTD/wssNl/qRgdN3wyG1y0dc+K5//zRPzUOpwOBwOx5MFPCuyEoJ7w/SskEeagwLcf3DPk99KND1fFrf0bMZ3uADvIn+eYcJ9UXl60UCYULaFYDLqMdeAceyOu6p3U8AIyQo6noeL2xnyLMZqPHQBiunwZC7ggot+G2MyMOGNPPDgXjsP5O/p7akyKHJ//eqTX2bGyTQvwrMZ9+bN5GYuJQ8MjWX6aRXIdtttd8mRT19ssiAbYCxQJyuCnvmMp1ncE4X+/j51I//C/o4d/dLdHb6pl5BWFN5yS/mnn3guY76qGeC7Q59laMtQwYIR5p8/+S9n2XjguKfv2LWFcZCeHenLtNUpcwq4/LjmXMGzInHw4DmE5xLmDdL83AuPP9bOIdTDvAP18GIr9aT5C8oOdUvPw1SWSZMmmH/yHpNU70fbnA47v/DMe975F8qK+1ba3KjtPqXPbJyz8tuVDgTIzPhObaVt6AyUGYg5R730hOdX5mmKOt+ZaDb/CnhWfcHznmM79/BcmZCuC5yX6P90LUhjptE83UgjPevnn/l5rm5kH0jpzzzqaZU5soT0jM0LEPm21ptvZ5VrehYHzDfgUrniPCp2JnanO/uc79p8YdLhSNkqdvqKw4kTx9sgzzveeMkjbMv3V3YwMeF03Z+W2sQIJ6jidn0YgBYvPkhW6EGL0XDWrBnynne+2d6ov0lPouxVi9X2pFeeYB3LKi4MeAx0jAHXXnejXQjolFPf+OrIdfiwQ68xLHGmAw/TzmNg1cOH/vZdpg8uS9f96Sa5d8UDNoHEwAL33nufdOoBtO8+8y3MAJ45Y7odjLwlQZuhDLbt27fLLXoRftMbTrE9dbdu2WZ6ZBDN0cHKSoPhAIMUyzmTTnws97+++q9y1uc+YZO86DshtY0TLVuZYhyaNnWKnXATuNl6+tMOs7RL9eTwxyXXm75e9YoXy+hRo6wcJyVu8N70hr+obP/aSG/5NwZoM7qAPyclDv4TT3hBZTy1yoeVAIQ5iC/Wi13xBmo4wImICVJkS1t2vvhFx8nBB+5vN5T0bREnv+olsvjQg2T16rVmbFq3foO9OfOWN78m5ghge1D0gD45Zph85CRDPSM9XjDa7qH9zHjhO475id90w4jjDbj8asvOzg7bJoMJZyZWL7n0Suv/t2vf7L33bHn4kTUmL5PYh+uJ+b3vfsuAV/h26QmY8wDHzo1Lb7UTLbp4/WtfZccVKyU5lzDeeVuOY5stZfPjfCTAWBs1OtxEPq7nw4GcH8v0RtvS1pQPrHzIblYwWPGm4LLlKyw+bdfH1oWMl+HQ80DkHknwbS/q5Cab6wPnE25+OH++8fWnyHN1XNG3N9x4i14jHrKxz/WiDGxlQH4+Mn6n3igxNnioy6PVaw7ncc7p3Ahc9ftrbTXucBsNMcjN23tO3eOsEbgxXnrTrXZziOP8zMs49yy7N+ZoDWXn+WY64tz0mr94ud3Qs6Um5y6uCayeGglwT5J0hOPcBLgevfLlL7JrBw/YyNGl1zS2+C1e28uuE42uZ2OV52X6wN6jN9RHHH6oXpueb+ec/fR4eWT1GrsZHy5D2SKVi3HGW763qwytoNiei35zuZ0n6BNeQgGcC484/GDboph8pANeeDj26KPshReMWGP1xhoD1ite9iK7Dtx2+132EgHnKSYI0va5A9H3cAFjdup33uw8WG/SGe9ck9E/5w6ul9O0TYxhJmto7wtfcIxNwoDUz+w2QR4br3oO56WU4vWC449rNNujcM/6n2d/W68vt5Seo0GjMcRx1OgcVk/XPJjtzOtb95gXyAnah8k9Z1FMaAW3L5HLrr1PbMOoLffJ722r06uE105mfeBr8tk3HCXzx2yUe6+/Sn53/X0iUw+SV3/04/KByjanDofD4XA4BgMMSz09vTa5iQGQif0EJi1nzJhuqyvYDpJ7Fyb9AbsL8QIU94akFSf5G/EdDJCFOSa25Gw0T4PhgbkJ5juQNw8m5pGF+6evf+O7MbY+qJPPrSSjG+1J98GtgGcyXuBMKxwTuB8997v/aQaSa669vtRI0OwlSrYpracH7v0wSiSj50Dkps2trjYEtIV5iaK+L7rkcotL99EgGSRZ+fVEg3kr/R8CIwjq4Vm9DA/rs2ARLKABPCc2A3zhH9oyNGD8YU4pjal0/PI8Aug7Vs/mv4/IGGGsMGYSOCekPIx7+KZPqlicHkscExhM0rGaX4VL/TyzMLfE2BoKeHE72SR4fqMuXnK+8aZb5df6rLFt6zabF+QFWMCzE8+zRaSXI4ou/61PZEXmfFvRAzrDoFYP5E1tTzpvlH8k0Mr8K8fxy058gYxR/dBfPPvz7MnY47m2eI7Lo9E83XAjPy/GZ7RYaIFh8JbbsnNOM/sA81QYUtvb2uJz94PWTtq77N777Nm7iHrz7ZyHr7v+JjOWAuYW6XNevqauD7zvbTZuyM9c/8aNm+WZzzhC3v3OUy1/wkjZKnaq4RCjEYYaLnx5d/RzqrffQ/lY91lR8Nl/+6r802f+3T6kjPGNt/Gf/7zqEwNbZLL6CGsqb0lzIF/0m9/ZNn+//PUlZghgMpfJ/+N0sHMyYI/i835+oU2M//qiSzVPj31PZiQGJSvIfq4XdCadsEYzIVgEOjhw0X6W5xe//I2dSM7/5cU22KZOnSLP0nJ36OBhAgvDIG3hRMFkFG+7sy8zlmwGE5Z9VihiuU5W/ltuu8P0+J4PnGFbP6TVAcOBb33nRzawOdCYjMSw+da3vFbO+tdPmDEgtY0DCD2wlSnbUb7mDe+qWk1H+vm/uFg++vHP2vZ58HvG0xdrfL+dHC/57VX2VgoTdePHjdUD5fCW9JaAVZ7VK/DnBnDduvV68h9rehwIn82ahxUyn/r0F4e0lWMjPPzIah2jd1v/Hf+CY2zy7vjnHW0XKE4CW7TPi+BY+YvXvcPe2vnu934qS669wXQ6X0+IjJcEjE/oF/n//Svn2HFGPVyQR3q8MD4wfiMXE5d5vPXNf1k5J7CXO5OfCSaT3jiyfeYX/v3rtjKQY5mbCSajP/j3nzR5v37Od21bT06+vN0xEFDHkutulA+c/nHbYjNdyPffd6GNkTGjR9t5gglzdHfq2//G8jFmhhvJcMG54h1ve4NNKrMCa+nNtw3o/Fimt2//34/l0WiQgvKmE3G8icKFHVAX8YzvQw8+YFj0PNDz+kjhMT3uv6TnHfrue3rzxXmBmxLOnbSTmwiMZGyX+zcf+ri85bQPlr6lwzHFMYOOL9VzE+c0XNEQM5BrDjdTyMU2iSOxNSbXCcZTveOsETCc4Pp6+8zx8ej/+Or/WNxAUDzPc+1opiMMGBj2eZniRz/5pV1D3vTW91ddP4YTXA+SjnCcm+hvrkeMj9TfyHGh3mv06w0iDxd543fxOsG5u9n1jFV0t+rxOlbP97zs9ILjjra30FiZj56GC2xHDLiO3Hp77UsoZSi2h2vkHXeGsX6Y3mgzjjlnMQGxfv0Gu/4k0I/fO/dnpi/6/d4V9wdDmh4/nJN4gOAmO20Zkr/+t6rv4QLyp35nVSHXrCuu+GPlDW/Oke9+30fk9W/+a/nwRz9tb6Bybuzu7tbrxD6VccJ5gZc1OPci9+s0P/ek+esF39CgHh5aVtz3gPz3N/7P0uudoxPvRmOo0Tmsnq4fe2zdTr2+zXrBR+RT/5i5D5wSE1rBr/5XPrFkrdg60L61cp1tdfq/cr68QP7uhftKt2yUm889W775q6vksl99T758ld6fde8rzzvtcCvucDgcDodjcODZmG/HcV/C/QGT4Ri1uP9jQps5gzRJifEpbQHaDI34JvAyYX4ivrhNH/NgKQ0DJDybrULi23+gzDBIWYycGB8/9v8+UCVLEaSxKxST5HljSavAmAIPZC4aBvO6weiGQXM4QX18F7C4wrEVtLLaMG9I4Z6XFwHL6soblnDF7VXrodm4GA5wT6//Q2AEQT08/4wE4Av/0JaRA3MjrJwtGtA4JtPK3jLwwiSGsHrgPML8WP44x9H/wwGeiXv7stWYPCsxF8s8GguVWKBxsj6bM0YbAWNo+pZm3hGfkIz1xbGbNy42AyuI2cUpGfx3FlqZf+UFCp6LmRPjuR/HfF9PT4/8Tp+pG80rN5qnG27k58WQmzkqjMQ8c4NW7AMY6XjuJg2Z//t/vmc2BuZNsENhSCyi3nw739JkjoV5WMCzPOd95gSZR2V3R+YKf/jjX8gfr7lefv7Li8z2xVx1ozmo4bJV7FTDIZ2B0YMLYN4VJ8ToAJT58MOPVNJQ+urVj1r87FnVqz/gC7Zu22YHvE2KbAsfsGVChEmWhL1mhv3JWR2XJode95pX2STW6DGjbNnxSIBJGwYiJ4nX/MUrbKDmgXFnjMrA5OIbXndSRTasxRhaWKmJ5R2DIIONgwdjxpat2+T662+yg3PfhfNlnwXz7OTGQONNd5b+Y2xkxcb3vvUV+dQ/fkj4mOtwgr5hAo2JPdqZ3pRnKzQMH6ltrDJqNEnJxSJ/cDEO+JgoOmPr2aQT2sI4mDRxYkt6S9BhIRiRARdPJh8TBsInbD878tteMVnKyYBVhm97y2vt7QveKCozYgBk/fjHPig//L//lK9+6dO2KgNjPSso8qsGeJtn46ZgtOP44g0a9IlxaqTHC7w5RjHuT55cvTKLCWHOB/XecsOYmp/ETMcyb36keN6+YBUNfTa3ziqxRkgnaoDuObfwtgz6uve+B/Q467K++MbXPy/ve89bbWu5kUAyXLDlHMc6cnGhuvg3lw/4/FjU20AxXHoeqNwjBY59rhWA/s2dBmw1DrrmWPrWOV+Uz33mY3UfFNP5iWsN59t6GMg1hzeM8ufA4UZaZZSuvYNZMThUFM/zoJmOVq95VFbpuOFG9e9Pf7f853+caW94jcRqKMD4TDrCsdor6+9tdm1NWL78PunZ3qPXjtEyb162ArJ4nWjlegYwsHGeRycTJoyz1Zf1zvmDRdp+k3Mb15dWUHbdu/a6pXa8TN9zqm1/etCB+5lR8p4/L696KOCY4/oPOIds2BCuP9x018NA9T1c4PqT+p0tQzZv3mxvzP/jRz9YMfLzoPfls/5ZzvvhObbdJw8VgLbn5W72ljQ640Urjssf/viXTY/9VsbQQM5hCWxhvTOvb4/eyirBzP1uaUwYEg6XWbYxwng59M2ZUfKjx4U+mzB1576R63A4HA7HkxXcIyVjFuD+HWDwSd81a2YoKEM9voAXpfIT8UUDXVrNWC+9CFY1YgRgK/dGKzJ4UQvkZcmDeyy2+sSAljdU0va0AqsR0Bk7WTQzOqIbjG6sgMQ4MxBgyGm1zEDkbmW1YdGQUs+Yi/ERHR733GfbfTeGCdrcDM3GxXCgvb1D3c4wHLZL8RuEfPoBsOquiJSWvovZCPBta2+3tuwMFI9HHAbqRkbmVlDsbxznjFbGSiPwYigrc/Ngfn3B/Ln20iYrxCZPnmRzX4DnQz63MxgwV853O9lytdgWXgbdldHKvCB+5ntn63Pry1/6Qvt+KTvObdPnd+YlG6HRPN1wI82LPbQq2C42b95iO2GldrViH1j/+ONme9p/v33khS841l7uGDd+nBmi0/FZxGDm25kD4FmfFZ2sjkSOt//V6+0FC2w/2IcSRspWsVMNhyiVt525Gci7RpOuww0GIyhODOL4Rk1+gmq4wWoCVkdO2WOSvPTE4806nYBxkwOjOLGL4y1xvv+FzPfd94ANDt7wZ1KHAckqKQb6woV72563bHXGRBCgzi988et2EPT377CT3t998N02sIcb6I5ttnj7gBsbMGPP6UYB7eXt/VaRjHscWMif1wmOG5VW9NYKhovPcIKTMJOvnKy4KcUIyBLpZHTJgwnNv37XW+xtA1agUpYLdjKqt4qRHi9sJ7B69Ro78bF6Ij/xz/cmOR/kjXe7CliJwffFvvmtc22cT5wwQV78wudWTSYPJ9L5iY+cszrv7e/+u8q3OB0jBww0n/nXL5tBjeX/3Bi89z1/Zdv41Uf2okoZnshrThFplVG69g5mxeBIoJmOWIH4T5/+ovz4p7/S+4UH7XukPGR/5O/ea+WGG+kNr+TSm2dDQSvXM8C2M2PHhu8AA24Uh9tAyvaV3NBzw3vggcHoNRhcfuUf7Z6O6zpv3S06YD8zmLHNxu4Krj+p31n5e975F9kLR3vNnG4GQq6Fbz31L23iBkMfOuDtv1q02b1aIzDeeVjBGHjKSSc27edWxtBgzmE8IO3M69uGe1klmLn/av5C+QCwVm7OGSWT+8Vvr4rpDofD4XA4hgNp1QtgpRer7jDcMAHOpHijFUSNkOc7EkhGw/Q97QRW833zv89q2ciWNxrmV9HBk7iiQYeX/mlX+oZZ3miYN6jBlxWXw7F6jvv04spP+NP+4rcMW5UbDPXbhmVghSEvibKyLBlsdwXwfcD8vO1IYsvm6h250DnzvWlb0iJI41tm9dIT4Numv+I3FIcbGOExwA3GwN0I6ZywaP+ReRHw2j/daM//zKMCnsMxCvFCKfUyD5vAwiR2z+Fl1sGAtvBtT46rIpptO5yQVmCmb6LuSvjhT34hS5feajuKvfPtb5RXn/IyGdXdZbtVXf37a2OuJx5pXux/v/0jWzHJp1XYFjWhFfvAuT/6hRmd5+09Wz7w3rfZ8zM7c5Feb45vMPPtaa4sfcIk7zhXlm2JOtzYqYbDVoFCOFhnzNjTJj0A1lU6k/iVD5ZN0rSGFfc/YDx4m4abhTRBxIQky0mThXmkwMdAOSnxzZn8pNLd9yyzCatujeMbTkkuZPz5Ly6uHGRpj+CDDtq/8t0fDIesUGDFDtuYhm1Ksws7RqQzP/cVecdf/70NKvZmPnDR8J10+fYU3ypKQIdp0pO3CniTnZWRWN8P0QtbAn3a6I12ZF332Hr7phErcZJOcPQVE2St6q0ZhovPcIMTARcE3nhZ9fBqW7VaBlal8b1LlkZ/6SvfsP6+8+4/V/qhHnjTgcljJpGZTAYjOV4YG9dce6NNfM6fN9dW1A12Ujy9HZL/DlOxPev0IsC3CnkrhG9CAVY7trXw0hgrZsn7+PoNcu+995vsXMxZWYuOWUGDzkdi6XwyXLC8nMng/HlpJM+PZWhFz61gZ8s9WHCDftaXzpa3vetDttIMo8hBcUVRHukGli00eRstofhG4hN9zWkFbIeIcQSDfrou0ddtLb5dybmT61JnV0fF0NBqWdCKjvjeIwY8tl5kK2a2u2B//eF8KGkExi/HPKvKeOkhgZd1uvRmmDcHV+hDRD20cj1D5ye/8iW27STfryPfQuU/3N9f5rrCgyZj+/jnHVPzFisTCkxktAKMhLzZhpxcz3mLkpvYemj1mB+qvocLvGnIZEGf3tgz5rgWck1kZR/bWrMFNA+QCZnc3VXfcOZagcuD8/yPfvIreyBppZ9bGUOg1XNYHjvz+jYy+K3c+QB0ioza+L9Vhsn/+9GP5T/OG/ldIhwOh8PheLKC+22ManljFt/lY/KaHRYwNmFISveATIpzX98MzfgON+oZDQH3x9TLCpkEtrDjeY8XxfKoZzRM4PmdeyiMg4D8hHmJGuNKPaMhQC7m+Fi9QjlQLN8qMOwxKZ7/fmC+TfDFSJm2QG0mN2h1teFAQbuZoE+T9LsKxo4br/fejV8GHA709/fJ+nVrYyiA5zXu61//l68qNQ5eGg2sZSsS84Bve0e7tWWkwbjAAJw/jhgzZ3/tc4N+bmfsMQbZzjN/rsA/1G+iAlYPYghatuxeeyGcOZHRo0fbAg7OCczFAlbT0R/2Lbp14Vt0AwVtYQtknhPTcVZ2HiwibzRNx/PONrC3Mi945NMXy7767M43CplD53MfLIT4yn8O/2rg4QBz31epnMxN0CdJt63YB55x5OH2kjcrqwn/7PwL7WX3Zgs+BjrfTv3ol3GIPSDJ8v1zf2afghvJHcsSBrZ/wE4CymD/YiYgP/L37zVrPktdmcRgAF72u8FfSCh70IEHyIL5e8vX/uMzxpsPOe+11wy5WQ9ivgkzkhO5dCrfBHxvYRsoVpZdf+PNtn/t6/TCwIcuMbaxPSXTr3yb75LfXmknKpbv85YBk01MXiHvsmX3WZva2rrNus2b7BzMn/yH02WffeaH7b16eu2Do0zypW+ZDRUnvOh5dnCxpRwTnsuWr7CLGpODyPfHJTfYQcRNB8u82T6TLVW5kWQC8L77Vsrv6twYsMSWC8+rXnmCWe85mJjgZoINoynfwuJmqJneWll114r+nwhwYbnwosvkWXpCZtu0eicFttXkIsdy5be86TV2EUK/GL6KYC/sv33fafamDMuqOdEz2fv7P1wn//rpj47oeAGc4Bi/L3jec+zBgO9crYj7frO8Hfla6bNLL7vaJpQZ91/8t0/KgzpeFi6YZzqgbXbzrxd7vunINqxvPfW1tr0bDzLcCJQd52yPwRJ8jh0uiH39/XLt9Uvtg8mf/Zcz9IarQ+7SY4sxzgn+wQcfrqyu3VkYjvMjOgEY8L7+1c/KHXf+2S4+ZWhFz3vsUb31chlG8rw+XPjwh95jx9oDepwxMc9Y4SLNBb0Ijk2OC85rvCHETQMPUdA8WrnmPNHgXLty5Sob+8fHtmDYL27dzc0TBka2Q3jj60+RU056qe0/jx44nlhhzhtT+Pfff2HV23mN0ExHfNvzda95pb0FSBqyYbDlZYr0EDvS4LrK9YgtN/juLNchdLHfvgvtg9hcP7iOlL09CFq5nnFeJMyLQN/+v5/YlsXU91w9T7KLwJVXXRO5DQ1cRzDKvuVNr7YXJNjimmOZl1T2njNbZs6c3vJb4jzY0x7OCRwrN9x4a825lfMp22kce/RRlXHFNevq34cJh/SCB1u4s0UmRiu+X9mKvocb9AXbfwBexEJerqN333OXvaRFmHYixz994u+Fl8A4h/GwARgn1/5pqW3TzoMU50y2s9l3nwV63t0gZ32p+jzLfR33GeTnesixRFy9c3SzMUR/NjqHlemaPnztq1+x065vE+azjWgMRGz484Xy+e/dGENNsGyjbFAyYfxB8sbvnSNv7LtHPv3mz8rXf36jPOe9h8v+rz5HfvW02+TmR7pl/n77yvypG+W6//hbed+5bjx0OBwOh2Mw4CVJtlhjTid9V4z7vbwBDkMa25QC7mcwTiWwui1904tJ1mRsa8aXeEBaSgd8eoUX8pkbaxUYx9J3xNK2cwlsgZi2ucy3gxdFuf/KP28wyX+q3kNzf5u+5ZaQZGeOii0/2bIVB1IdtInVmTwnpW+2JaT6MCYib17OvIx5wA+Z00R+0lXKzzcc4VHWJuaMmJdL30prJDdIsg/3asOEsvY1Qr1xMZyyjRs3Xh5tbzdjUrrfHyls2bJZtm7dIqNHj4kxYkYIDIOf+dT/k49+4l/NmJjAyqbjn3e0GRY5FvJpCfDbsnWzjBk91toy0kD3zC3mjyP6hRVnHO+D3eKTscEKQAzuqc853jA0My6HamzGMGkvi/b1y6xZM22rSgygHR3t9iIp8w7MsV9x5R/lptwincGA4xsjYf4447yY/xZiGZI+i+fe4QbPvie98iV2rCekz3k0mxecH1+ox9Yx7TnPMP+JJ7zA5pT5Pv/Z3/g/i9uVwAu4Bx24v43PE158nB1LA7EPcB1I1xb0xvP1T352gX2fMI9W7DObNofd95hHOGjR/nLNdTfYJ8ye/rRDbR6CeRue19E5L9Ezh/e5L3zNyowkOg448PBPRv+IgQ7A8sxBx0dG86vhAJ1AB3AA8KFHJl4wKLHEmclDjFBjVclYWlmBk7aNfNlLjleFTTBj1ZJrb7S8KJiVRameVDfbd8L7xqW36gG50ngyKZS2AVumHcVE2nBZa5MsTG7yRgIHUgIfB2UCjDfAuQCldCZHeaOBD4siG5NR3HD97vI/yK8vvNROuA/rxeDIpx1mabzZzgoM4pnk4SYGfkwu0nbi0c9cbSPtZTKIQXzJpVfJj37yyyjN0PDnZffaBXT6tKk2GYiBhW23eIviu9//aeUtCAycTIrO2mtPOxEzafWgDnKs8qw+o49AUVfc0GBEmqcn7pmqEyaSOZmzao0DkY9/NtMbfVzkXzZWmvFhmzK+4YSBjrFEXwwn6o0Z3kS76De/MzkT2KoWWTDOYpBhTLGKg2XSvPFHu9D9uLFjpVNvBpF3hvY/ZdBZmIBdIHzTiJPU2ef8n9x+5z0jPl4SwirZR83QMk3HzpzZM03fbKWx5tG1dlG5QNuFrMXjPIHxz+ra2XvNtI8M0898z/HmW++Ub/zvD+x8waQqk8wYUdHPVK2PCViWkHPcJz2nOh7QMYkOycv2vxdfcrnx4mRO/8zWehiLHG9c2H/001/WnM8Gi9T/jMFiW/Ngwn0w58c8+K4l39bC4IceaCs3QoxxzsXUwbgCrei57HhK5/XEq1W5hwup/Q/rTR43OemYyR+/6foAGAuPPPKozNJj364P2lbyMlHPeZbzV7GN3PjSRo4txi+GNV6WYAzx7Ubq5dhsds15gd7wUz7JOtwoXmPLzl3cDDK2aQttx8Bwh44J+pw+Ygxh/CI8d85smajneT205AGNu/Diy2ws0TbawcsIN+i1lrEMqBN/vfN8Mx2tfPBhOx/N0WvH3ioj57Q///leW3mIkW040MrxZ23ScyrGbxwysQ//JZdeaTePXHPLxllCo+sZRrsXv/A40+nPz79Yrrz6GtteiO2n0cnsWTPszWuOo+EAfXrb7Xfb5AA39vQb+kfvPOz9/JcXy3k/v6BhewBtZkxwPWEM8cFuzrsgHV9sr/HYunX2xjIvc9Df3/m/n9iDHuAcw/hEBu4fuF/jQQRDWDN9DxfSMUj7kRvHPQ318Vbg2ed8V3W/0drIg2S6R+AajKEP4x3t5vjlfodxxIsRHE9cT9gN4Fe/vtTaXDw3k/+IxYcYPxz9zIN/2TmaNyIb3ROxRWq9cxj6KtM1xkHuwwZ7fdu0sZUxeZC89M1Pl1ndImP3XGBvoubd3M7l8p0LbhM59pVy2v6TRNbfI+f85A9a7tny6rfvK5Nlvdz5P+fLlbB68E59eHm2HDF7kkxQ/XT2bJF1yy6USy76jVzz+Gw54qC9dUzOlvlzpsvk/vVy12+/J//2tT/Jo5RtgnHjq7+97HA4HA6HI2yvzv3EuXqfhyEDxz16up+HEk5pzF2wEiKlc7+T0tIzJhgo3+TIzz0K96XU08rzE3mKfJJL9/3F+uBdvPdNdebLJ5eXPd9mXL068i5fX1HeVL6IevxS/qK8+TrQIbrM90k9uUGqK5+/HsjTKB98y/SbB/X9VJ9Hivej9dqcxkUezeRI6O3tkc7OrhjKwLcBe3t6padnu95zD9+zRznY4WS7TJqcfQee+QV2buOzEDjmH9Lzbz6NF2yJJy6PB1eukH6Ve9KkqTJuQvYttHpIY6JsvBFX1HHqi7Jxku8XjnOO9zQe831SxqOsriRb4pvKUL4M9fq0DMyTMB9xpz4XMffH7knYidEnz80ssvilPsvx/FZc5FDWpjyIL4515E7twJGHuZfEK53T0vM0Riw+CZbaXa/NZWhVD6ku5qM7OzvspYLk2F4VAxt92Ghe8JUve7Hsp8+w2F1uve1O22GHT5nwHD916hS5557lcsjBi+xZdCDzdANpbyOUzYsx580cDPYZvmXJixTMV/PNSZ7py+wDzLW/4qXHW7swivOS7or7HjCbF7aRKcqH3YDy83wXX3KFzQE0mm9nzDGvwov67LzE/ANjA92SHzkoCx/sKb/QPrnxplubztkMFW2vOOWvRva1CYfDsUuAN8p4Q2f94xtq3px7qoMtDnhLpN6bfA6Hw+EoB29E8+ISxs7Pf/HrMTZ7AxqM5FuRjicWj6zaed8pH2nsOXN29DkcDofD4XA4nirYunWzjB49Noaq0cfLd/cvly1bNlW+NzZSYAeQGTNmyx5TqrcmPf75x1S2LMWAdstt4UVD8Dfve7tRM0Kd+zPzg8fWrpFHHl5p7Zozd4F0tLgb0JMFjfp0d0F6nubl08HOU+4sPfAy8j9/8sPC9w3P/sb37OVawO5c73z7G2Tjpi3yhS/+l9x6+10WvzuDl7v/5n2nyY4d/fLFL59jhlLwpjecIqe86kRbCfj+0wtb7OzG2CW/cehwOBwOh8Ph2LXB9pq8tcfbmNdetzTGOhwOh8PhcDgcDsfuDwxuU6buKWPGjNMQGxWOHPr7+mTVQ/fLhsezb6gDtiVlq1IoO5pgRMRgmIyGxN+SW51Hefh0d4822Z9qRkPHzseaRx+zXav4LNRb3/Ja+ccz/tY+7YGf7/PddPNtTwqjIWDrWuY/WKHIMXjGh98nn/vMx+QVL32R9O/YYSsWn0zYKVuVOhyOJx4jvXx5d0ajbT0dDofDUY43v/EvbL99ttv83+/8KMYGjNQWI45dC61tVbp7wLcqdTgcDofD4Xjqodl2jqNGjbYtKnf090tPT0+MHTlg+EOeMWOylWIYKq5ZcoOc/6vf2KcNWGGIH/fby66ubGHKSkO2KEVmtj2dvMdUi3+qYSBble6q4Pm5uI3rQLEz9XDXXcvCp29mTq98BoftPX9zyZXyv9/5ocoy0tv97hywxWj+M0x8yoRPwPB5kvPOv1B+8KPzY84nB3yrUofD4XA4HA6HwzFg+FalDofD4XA4HI7dGa1u5/jomkdk44b1O23b0rFjx8meM2arbGNibH1s3brFtibdsnmTrTScOGkPmTptz5j61MOTYavS4YDrwTFU+IpDh8PhcDgcDofDMWD4ikOHw+FwOBwOx+6MVldlYcjr6OiU3p4eaWtrl/7+vpgy/NixY4ds375N1j22Vu+3H7dwW1ubtLd3GMVwuW3bVtnw+Hp5+KEHZPXqVdLf12tGoqnTZjxlVxomPBlWHA4HXA+OocJXHDocDofD4XA4HI4Bw1ccOhwOh8PhcDh2Zwx0VVZfb688tvZR2bhxfdi+tHe7GfL6+5leH5kpdgyGYMeO/ooRsa29XfS/tHe0S1dnt4wfP0n2mDLVv2mo8JV2Aa4Hx1DhhkOHw+FwOBwOh8MxYLjh0OFwOBwOh8OxO2OwxpX+vj7ZtGmjbFbH6kBWIGLU2xlIqw+7u0fJ2HHjZZw6tjd1BLjBLMD14Bgq3HDocDgcDofD4XA4Bgw3HDocDofD4XA4HI5dCW4wC3A9OIaK9kgdDofD4XA4HA6Hw+FwOBwOh8PhcDgcDsdTGG44dDgcDofD4XA4HA6Hw+FwOBwOh8PhcDgcbjh0OBwOh8PhcDgcDofD4XA4HA6Hw+FwOBxuOHQ4HA6Hw+FwOBwOh8PhcDgcDofD4XA4HAo3HDocDofD4XA4HA6Hw+FwOBwOh8Ph2K0xevTY6HM4HENB215zFu6QHfjUVah62tRTE5+op3u6p3t6MT5RT/d0T/f0Ynyinu7pnu7pxfhEPd3TPd3Ti/GJerqne7qnF+MT9XRP93RPL8Yn6ume7ulDSW+bPXcfgg6Hw+FwOBwOh8PhcDgcDofD4XA4HA6H4ymMdrMsGiL1cKAejsTD0ROJh6MnEg9HTyQejp5IPBw9kXg4eiLxcPRE4uHoicTD0ROJh6MnEg9HTyQejp5IPBw9kXg4eiLxcPRE4uHoicTD0ROJh6MnEg9HTyQejp5IPBw9kXg4eiLxcPRE4uHoiWTXDLfN2Xs/FiamaIOHPezhDB72sIczeNjDHs7gYQ97OIOHPezhDB72sIczeNjDHs7gYQ97OIOHPezhDLtkePbe+5V849CpU6dOnTp16tSpU6dOnTp16tSpU6dOnTp16tSpU6dPJWorDtXrcDgcDofD4XA4HA6Hw+FwOBwOh8PhcDiewogrDpMpMRIPR08kHo6eSDwcPZF4OHoi8XD0ROLh6InEw9ETiYejJxIPR08kHo6eSDwcPZF4OHoi8XD0ROLh6InEw9ETiYejJxIPR08kHo6eSDwcPZF4OHoi8XD0ROLh6InEw9ETiYejJxIPR08kHo6eSHaBsH/jUOFhD3s4g4c97OEMHvawhzN42MMezuBhD3s4g4c97OEMHvawhzN42MMezuBhD+92Yf/GoVOnTp06derUqVOnTp06derUqVOnTp06derUqVOnTv0bhw6Hw+FwOBwOh8PhcDgcDofD4XA4HA6Hw1ccOnXq1KlTp06dOnXq1KlTp06dOnXq1KlTp06dOnXqVImvOHQ4HA6Hw+FwOBwOh8PhcDgcDofD4XA4HGY43JEsiZF4OHoi8XD0ROLh6InEw9ETiYejJxIPR08kHo6eSDwcPZF4OHoi8XD0ROLh6InEw9ETyZM93DVxnkyfEMIiG2T1A2tle4P8Ho6eSDwcPZF4OHoi8XD0ROLh6InEw9ETiYejJxIPR08kHo6eSDwcPZF4OHoi8XD0ROLh6IlkVwi3zdl7fyWkJFhS8Bo87GEPZ/Cwhz2cwcMe9nAGD3vYwxk8PNzh7kl7y7TxMSgbZM3KtbI9hoaDv4c9nMHDHvZwBg972MMZPOxhD2fwsIef/OGOCZOmfNLiU7pTp06dOnXq1KlTp06dOt1laMeoyTJulPoN22XT41ukr4VyTp06derUqVOnTp06derU6UCpf+PQ4XA4HA6Hw+FwOHZhdE+a12DFocPhcDgcDofD4XA4HMOHdv5hOUwOsIdpVTjngKcXwjkHPL0Qzjng6YVwzgFPL4RzDnh6IZxzwNML4ZwDnl4I5xzw9EI454CnF8I5Bzy9EM454OmFcM4BTy+Ecw6QnkdZelU454CnF8I5Bzy9EM454OmFcM4BTy+Ecw54eiGcc8DTC+GcA55eCOcc8PRCOOeApxfCOQc8vRDOOeDphXDOAU8vhHMOPBnS/RuHHlbn4Qwe9rCHM3jYwx7O4GEPezjDCIbHHCNdUyZmYbDlXulZe3sMgBb5TTlRusbkwor+tRdI35YG5TuPkq4Z07KwoTp//9oLlUe99EXSMXuhtFfCG6Rn5dVK6/NrJTys3zic8lLVS3V6/9pfa5ticKD8dkZ4wguka2J3JTyy8h6ofTg/vGFr2Kh9eGX0g+Guz8Me9nAGD3vYwxk87GEPZ/Cwhz2cYeeE22azVSnxKd2pU6dOnTp16tSpU6dOnwA64dRr5EWHVz7mF7Blqfzmo2+RDS2Uz+hpst+/vE8OHaf+HDbdfI5c9M2v1C+3/9nyvHcfJVPU2wh92zbI/TecJzf/5Czp6dOICp9PyOFfPFkWksmwXK48/WRZXa++Fmn3xHkyfYL6DRtk9QNrZXsL5WrpIPXyBNNxb7hSTjiyogBZ9qvD5cZL1dNi+YFR7cOzCn34Qe3Dlss7derUqVOnTp06derU6e5N26Ft+s+pU6dOnTp16tSpU6dOnzh6muy1X8FoCMYsktlPL8vfgB5+rMwvGMfAuH2fIaxnrFtOXSvoGDVB5j/rVHnpGWfLuM5qPkWk+KHSPFrJX0oHq5cnmJahLN9w0SJaLefUqVOnTp06derUqVOnTwZa+cahU6dOnTp16tSpU6dOnT5hdPGxMq/EqCUySvY76nTztcRHMf7wRZKtT8thzGKZ95zm5VtFx5Sj5Lj3fKKyrWW98s3qa5UmtJq/SIeqlyeK1kOr5QdKi2i1nFOnTp06derUqVOnTp0+Gag+47aZFdGpU6dOnTp16tSpU6dOnyg64Wl1jFqKroVsH9oaH5H3yez9S1YuRsw/7EN1yiWaw4YlctHpR8h5px+uTunHPiWXL10j7E6aMHrBC2X+/vhKyhvq1TNQmqG1/EU6VL08cbQcrZcfKC2iWX6nTp06derUqVOnTp06fTLR6m8cJqRwkSZ4uqd7uqd7uqd7uqd7uqd7egZPH2L6+2TRZ06Tg8bEcO8dcuPtC+TwQzND190/Plxuvlo9zfg//VtywpsWS1q82HPXErl77lFVvH/396+TtWXli984xHD4iXfKpjz/tqNk+t+cLcfOI0PAqivPkN+fd4GmD/AbhwlN0ut+4zChSXkLD0QvxfKzPiH7nXR4peym28+Wuy+7SbqedYYset5imTWhW2TLGrn/zqtk2S/PlK2bNVOufNfzvyUHH8hmqOBxWfmzt8jqR06Uyae8Uw46eJZM6BTZvHa53P+Hc+Xe359XU3/dbxwmWP7Z0rHoNJl37FEye/40GUs8Mi27Se7/7Vdkw6qVGd9i+6riG33j8DSZ+96XydSQIPLQr+TG884R2edMWXTSMTJviupBtsvaO5fIHRefFeoExXqhe79P5r7geJk5d5ZMsT7QcvfeLvcvOU9W3ahjqa58OZrg6Z7u6Z7u6Z7u6Z7u6Z7u6Rk8fcjp1d84NKe/FC5STyfV04vxiXo6qZ5ejE/U00n19GJ8op5OqqcX4xP1dFI9vRifqKeTuvunH32M7JcMWIqeZUtk+dI7BPtTwvzDz2iJ/9SjMuMYuPemd8mD92yLIUXnIpn93Nnl5UmvQTX/Nlkia26PBqGIqTMOrKQXUZSvig4gPY/BlK/Vyzvr66VYfvxsmb3vAlkY3ey9psu4N/xAXvqX2m97TpBxY0bJuCmzZdGzXysv/fglsvch1frt3mthpezCfRfKxD1OlX0+eqa84FkLZOYELavlp89eJE979SfkpR/5iozrqq6/DPn0tq7XyuwP/lRe/s6T5fADZ8t05EkyHXmivOjDP5Vn/eVpDfWTjy8iS58tU3N6WLj3PjLu5Evkpe89UQ6aHfUwZoLMPfx4rfMHss/B6KHI/xjZ468ukVd98DR5xuIFMndKlJVyBx4lz3nLmfLSM74iE/V4sDI15XPU00n19GJ8op5OqqcX4xP1dFI9vRifqKeT6unF+EQ9nVRPL8Yn6umkPinSS75xGBYgBl8Z9XRPD/D0Murpnh7g6WXU0z09wNPLqKd7esBTNX2PwxZJl/kD7r31XJHrl8rK3hih6Jq/WPboDP5i+Sx8uszKlorZKroHl+yQx+9cLj0xCsw/9FSjteXLUJveXtjxc/u27UZ3yHLZsMG8OQxdPymcUC+9nJJephdpopd8+WqMmvNaecaRE6Qjhqswapoc+aYvyBTtq1S+Gt0y5WXvkMWTY7CA0XseI8edlv+mZbF8hpBytEx77+nyzLmjyuUxjJJZz3qfHPeGxu0LdLk8XujD6vQcJjxDFh87TUbHYDUmyGLTQ57/bBn7hjPluYunNZA16OD5f392WDWppYr1V1NP9/QATy+jnu7pAZ5eRj3d0wM8vYx6uqcHPJXT/RuHTp06derUqVOnTp06feJo5xkyu2jU+gMr+r4oDy4LUQZWxD17tnoa8Dv2KJkfjYug596lsrZX43+/RO4tGCGndNbjU0Qx/ViZeSByZNiw7s/6v9Xyg6UZWsufo8Osl3EzZ8uUbWvkll98RX75hc/KZZcvl3UxzTBqkRx0ysmV8tUYJXNnTpCtj9wkV33zDPnl186R65ZvqP5u5P4vlXlzs/rLEdI7XnaGPGdeZsnd+sgSufyLr5PzTn+5nP+lc+W2nGBTjnytzJpWr32J1tZYTK9gyjSZ2b9B7v79BfKHiy+Q629fI1tjkkH1MPe4OVn5xZ+R51QZXDfIssvPkYu+oHr45gWybFOMVnRMPkoOetlR6qsnp1OnTp06derUqVOnTp2ODG3PLIzVlP9l8Z7u6Z7u6Z7u6Z6ehT3d0z09o57u6YNKf/biGqPWo2bM2iGP3nRH1Yq4hU87Tf+X89khs2SPQwsrF2/+tv4n/SxZWTBCzj1ulpXLyid+ReTSJ5wq09/xGTlyZkgJWCMPXndBSI8x1ciVz4WLtFl6HmXp/C+LlyZ6KRpni3rJaB4b5JbvvkXuuuwc6Vn5A3ns5yfLlReurOqr6QefWFkxV4MNS+Tyz58qj9x8gfTc8xW578tnyDX3xzTDNJl/7Jsr9ZcDuU6UWYtnZ4a4TUvlqs+/Ux69/w4NPCC9K86UO792qWSsZ8u8Y19S4Zun/E81FWsspmdQPXzzdXLzj8+Qhy48Q+7977fI5ddXL1ecPOMFsbz2w9GLJftSo8j9l50hS3/+Fdm08gLZfvMZcuOXLpUHYxqYtfBE/V+Ur5x6uqd7ehb2dE/39Ix6uqd7ehb2dE/39Iw2S6+74pD/ZfGe7ume7ume7umenoU93dM9PaOe7ukDT58tUwpGrfvv/E6WXlgR1zHvcJleZ0VcW+epMnu+RUQsl4dt5WJIf6xghJx3yDuqy0dahQlHyQln3SinJPep0+WYA6u36Nx61wWy4v465Q1F/uW0WXoeZen8L4uXJnpZ20QvGc1hzVK599YHq9J7L75A7t5iEQETpsdvKtaUllU3niebWfFoIehV8vDlN1V903LK9IWV9HJouckvlBnTYlCxdeUy2TrjpdI9+0Tpmh3pqOWyfm3MoJg5/7kVvnnK/1RTscZiegUbbpeVUQ8hfaVsvm15VTtASD9Z9qxaqLpcVlxwldLA18qvOVdu/nlYvYhb8qflOtZy6RSrQz3d0z09C3u6p3t6Rj3d0z09C3u6p3t6Rpul111x6NSpU6dOnTp16tSpU6cjSjtPlVlVRq2VsvaeQ6XTDD8vUbpc1j4UkwwLZFa9FXGFlYssMXx8RuKjdOVyWdkf0xQd8xbLNMtflKt1bH3kKrn8nC80KV/kP1iaobX8kY6AXjY9hLGxmL5EHl9vnohpMn5/aLH0Nlm74gKlhfLLVsujFo6YMqv+ikWDlttzQjROBoze/2R5+Yc+o+7MHD1NDpkSM4DJUwvfDizS2hqL6dUolN+4tXq7UkVInyqjx5gnYMNq2RRX1mbll8jmy8PqxVXqHvr9t6WvKt2pU6dOnTp16tSpU6dOR57WrjhsK7cwerqnezrE0z09Fy5STy+PT9TTy+MT9fTy+EQ9vTw+UU8vj0/U08vjE30i0487ShbmjVoyW478mzPlFWbwgX5Cnjk3JkXMO/x9Eork+c+W6U+rXrkos4+Xl1b4KP2bE2W+Pv1kWCDzTzgqlgeJNsfWtctl6S8+Kxd89n2yua9J+WHTX4by9DI6BL0kPiX19/Q8rv+L6ddK7zbzVJDSq7Fd+i1fofy6DVUrHyuoKZ9QK9fAUJQ/41fkW0yvQkn5KmhkSi9FTfkC9fTy+EQ9vTw+UU8vj0/U08vjE/X08vhEPb08PlFPL49P1NPL4xP19PL4RD29PD5RTy+PT7TF9NoVhzsC5X9VfKKebtTTPd3TLaKaerpRT/d0T7eIaurpRj3d0z3dIiKdJdMOWVC17Wcr6Jh9mOw5GV+Of+dpMmsegYFh1qKTpaNGvhw2LJXLvnCG/CK6n3/scDnv9MPl1/9ysiy77AdZ/ZCy8mDQ+qlOz6Msnf9V8dCh6CXxKal/8vQD9X91+g55s0zKr+yTx2XLI0o0vRoTZPxs9uwslD94llQV37QhrNyrKZ+g5XIrJcGGW8+VX8a+KtLkfvnVc2ST5S7KH8Pmr0YxvQol5augkSm9Cp2jeBgvKV+gnm7U0z3d0y2imnq6UU/3dE+3iGrq6UY93dM93SKqaYvptSsOI+V/Wbyne7qne7qne7qnZ2FP93RPz6ine/qA0ie/T+YXjFqbt2wrd7nvHLIqcfbRuRVx+r/zhKMkz6qvt4RHdPlVbRghZ0wuypfHNtm+8kLpXXmBugul377hl9Wbp+XlQTG9nDZLz6Msnf/F+OHQS8Yvh70WyJTCtybb5h4lMydYREDvBtm2Dk9NaZm976n6v7r8mIMXitmDI3oef1CCXbC2fICWu+cOeTQ3NiZMnSb9sb96KvRm2bHlUes/Cz9ybVW9ifI/1VSssZhejdryRYT0a2XtmhA2jFkkey3Gky9/uhzyufA9zZP5puYHzyykg3Lq6Z7u6VnY0z3d0zPq6Z7u6VnY0z3d0zPaLL12xaFTp06dOnXq1KlTp06djjDtOPowmWXhgL6VF8hvPvZMuUjdhUV60XLpi/nA3INfm62Ik2fInotmV61cfPDy95fz+dgpcs2KmMkwW2Yd+4wquWpRLn99mke3jE7fEiyjUxZpnoHzbS3/COqlc5E8872fkc70LcQxp8l+bz1GpltiQM+9S+M3C2tKS9e+J8niF78k43/o2fLMZ02zUMK9t8YVnSXlA5DrXHnw3hgEM4+RQ/J8IQd/XI75h7Pl5LNuMGPcy9/9wer0GoqvGsX0atSWLyLE/1oeunVNbhyPkgNfdbZMGJPKHSDj33Ry1da9ax++Xf/H9M43y5wPXyOv1Ha8/OM/kCnTivU6derUqVOnTp06derU6fDQwopD9TXc49TTPd3TPT2Fi9TTPd3TPT2Fi9TTPd3TPT2FEz1KZhSNWnf8rLLCrKb85TdKlV1r5qK4Ik7TJ58stvNlBSvlwauXKM2Vt3joSll9S8EIeeBrq7+ZWMSA25fHbDkyfUuwjL75dSXl81R9lfQM5ekF2lAvAJrK19NLSq9F17wT5RWfvUZO+PQ18opPv08OyS8XlA1y2yWfrfAvok9GycKXnCmvOlPLn3mjvOqtR1VvU7phiSy78sG65QNIfVDW/vIqWRVjMMbB9xUf/5Us/uvz5PAPXSkvf3ue9za5e8kP4aqgfOCfhQOKNRbTq1BSvgoamdJ7f/UzuTPsk2romHyUvPCfr5GXqA5POPMH8qKnTcgdEyvl7ou/U+E/+tXvkGfMHGXpXZMXyXNe/SGNh3mx/jz1dE/3dE9P4SL1dE/3dE9P4SL1dE/3dE+vWXGovriHadHC6Ome7ume7ume7ukpXKSe7ume7ukpXKSeXpo++bUyq8aodU1tPnyU7z1HHixdEbdDOo49TObGWNC38iZZZVtk5spbSqQlRsiqbyYWMeD2DQRl5fM0n56hPL2aNtZLornypXrJpedx/xK5BV7to2TsmFHSFWIrWHvdf8uyuzL+Rdx//RJZq7RjlJYfpTRER2yQG3/4KdlspcvLB8T0+94n1553h1jTIromz5aF+y6QhbMnVMm2eslX5c7rH6CUIuOfhQMSTSimV6GkfBU0spLe+xW585xL5f5tFhEQdYgeMmyTZb86U1auoXDg224fRMzQ3jUejpV0419DPd3TPd3TU7hIPd3TPd3TU7hIPd3TPd3TzXBYZll06tSpU6dOnTp16tSp05GhnccuqjJqyao75OF1jcqtlLX3rKxeEbf4VBnDysUDqyyQ8uBdZSsXc7T3Qlm90iIiZss+Lz5ZacpXRB0+delAMXC+zfOPsF76V8qyr31Hlq7aVtUnfVvWyJ0XflYu/963NZTxL6L/oXfK73+wRB60b0Zm2LzmDvnDl14vy29FkPrlA7L03itfJ5d9TuVZWS1PQs+65XL9Dz8qV/2gWq5yiq8axfRq1JYvoip9xd/Jdf90pvzhng1V35VMQNY/fO0tsvTSq6vKbb74UlmWDI79a+SW336jKt2pU6dOnTp16tSpU6dOh4u2zdl7vx1YEENkgIc97OEMHvawhzN42MMezuBhD3s4g4dHNtw1aZ5MHx8DskFWr1xbZXQa7vpqwvufLc97d27LzxXnyXlf+lTwTzheOid2S1vPo9LzCFuh1pYf+4Yr5YQjJ8SQyLJfHS5LL8U3Wzr2PEzaujT/4zdJz4ZguRySvJ1HSeeMqZVw/9oLpHfLEPgpRi68SDpmLzA/Dln7VNa6+bVtXdq2Ps3XnzO6tl5fgIc97OEMHvawhzN42MMezuBhDz/lw3Pm7R/WHpLi1KlTp06dOnXq1KlTp053Kdo9cW+ZljMcrln5mGxvodyw0f2+LsdVGQ5/Juf9x6daLj/29VcUDIdHyNLfqqfF8k6dOnXq1KlTp06dOnXqdOfRjomTpnyyhXxOnTp16tSpU6dOnTp16vQJoO2jJ8u4bvUYtsumDVts29FWyw+ZTn2FzD9ytoxRv2H97XLHH3/XcvmuQ98m+87KPuL32N3/JQ8va17OqVOnTp06derUqVOnTp3ufOrfOHTq1KlTp06dOnXq1KnTXZ5maC3/cNMiWi0X/tei9fJOnTp16tSpU6dOnTp16nTn0Xbsh1gQgx0xUA8HGuBhDwca4GEPBxrgYQ8HGuBhDwca4GEPBxrgYQ8HGjDYcIbW8g93uIhm+bNwOern93CgAR72cKABHvZwoAEe9nCgAR72cKABHvZwoAEe9nCgAa2F/RuHTp06derUqVOnTp06dboL0+5xs2TS2BTeLOsfWbdzv3HYcZR0zZyahTcvl57H7mheLtHxx0vXpO5KuP/RC6Rvay7dqVOnTp06derUqVOnTp3uMrRtzt777Wghn1OnTp06derUqVOnTp06derUqVOnTp06derUqVOnTp/MNKw4TFGReDh6IvFw9ETi4eiJxMPRE4mHoycSD0dPJB6Onkg8HD2ReDh6IvFw9ETi4eiJxMPRE4mHoycSD0dPJB6Onkg8HD2ReDh6IvFw9ETi4eiJxMPRE4mHoycSD0dPJB6Onkg8HD2ReDh6IvFw9ESyC4RtxWGIcTgcDofD4XA4HA6Hw+FwOBwOh8PhcDgcT1X4Nw6dOnXq1KlTp06dOnXq1KlTp06dOnXq1KlTp06dOnVa/Y3DhHr5Ezzd0z3d0z3d0z3d0z3d0z09g6d7uqd7uqd7uqd7uqd7uqdn8HRP93RP9/TdOL3uisOEMg6ensHTPd3TPd3TPd3TPd3TPd3TM3i6p3u6p3u6p3u6p3u6p3t6Bk/3dE/39N0s3b9x6HA4HA6Hw+FwOBwOh8PhcDgcDofD4XA4/BuHTp06derUqVOnTp06derUqVOnTp06derUqVOnTp06VVK24jCl14One7qn14ene7qn14ene7qn14ene7qn14ene7qn14ene7qn14ene7qn14ene7qn14ene/pTPt1XHDp16tSpU6dOnTp16nT3oKNl4uw9RVbfJ4/3lKU7ddoCHX2MdI1dIz2P3tFa/kHT3X28dsrYabNk9OYHZe2W3hbyO3Xq1KlTp06dOnXq9MlA2+bsvb8SYhJSjgQPe9jDGTzsYQ9n8LCHPZzBwx7eIWPfcKWccOSEEFWGFefJeV/6lHqGVp/VM/2SyAsMjV/98Cdk8VkvlA3/9VxZdtdw8EsYShhDzAyR1Svk8e0xqmH+2dL1LG3Hy46SWeNEOjSmb8sauefK/5bbLjw3ZBlQ/eDJG57+NzfKMfPMW40NS+SiT7xTNsupsvBTp8uEKw6XpZfGtOGof8ILpGvMBul5ZEkID5Vfw/ALZe5HPi9H7rlcrjr9ZFk97Pzz4QGM1+PPk5NfJirTKSpTIX3/r8tx7z5Q7v+vY/VYjPmnnS4L33KyHDR7gnSRrX+brLrzt3LDNz8qW3uL/F8icz96phw5bqlc8rG/kg1l9VeQD3fK2KmzZfSWlbJ2c2+Mq5N//7NVxqNkw4Xvl+svvjIkGUh/s42buXeeJZd/7zsazpf/kBzyuTfLfmsulfM/9yHpq+E/R0a/+Mty5PMXyPRRIaZn3XK5+cIvyIolV2lI85t+jpIpIdl0sXnbdll96yVyx3n/JJu3lMhbgYc97OEMHvawhzN42MMezuDhp2K43Sj/2pLzsIc97GEPe9jDHvawhz080PDmX35KfnnWR4P7wqVyv8bef3kKq/vuD6vyN+O3S4SjtxJuln9nhA25sEWVhefI2Nd9S078y8XScc8FcsV/0hdflT/ctU3mvvgMOe6NpxbyJ/cUDoP7Lw3jNY1l3Fe/IZsreUHMXyw/yPDYV3xSXv7e02Rsi/mHFtZj88fnyh/OPVdWt5R/iGFDLmxRZWFo8IZwchYbkMKdH5JDPnSqHNB1u/yeca39ddF5S6V/4Yny/Pd8QjqK5ee+TOZNE+kbs1jmHW2MqtOHJQwVmfeSj8isaSktizfgt3BKU3fsM2R+p8o2c7HMmkNcdfroU/5XXvySabLhiq/G8fhVue6xabL4dWfKwgNSfrBBbjs3jtf/+o5cv2S5dB18spzw8Z/K9Bp5POxhD3vYwx72sIc97GEPNwp3TJw05ZN4HQ6Hw+FwOBwOxxCwbZn0P353cBueLdNPOFD6b/2QPLiUsLota2JGxZhjpGvPg6VjwgzNf1+MLGDKidI1ZV/p6OyoKtt16Ntk33HL5I4/3i0dex4tnZP3lbbeu2UHWyEmTDheusZ1a7lp0jH7GdI5UfP0FPIk1KlH5DiZecJC2X7d/8hjj8Yo0HmUdO11mMq+t7RtXiY7+mN8HtQ/7YDIc5TJ2d5P/YtMnvaivBLj68lYQaeMmjheZPM62dYXo+ph7mfkyFcvkscu/Fu57qfflK1r6ZvrZfPS78l9vSfIAccdJT23fVvWr4/5QeqXicV+mZ21oVPzzGjQd/Cw9KJ+aONiaa+Ky/Gl3ZTdY6b0b5LYtzkeFb1rvRtK6s33y5ZCv6Tx0LNQug4+VSaOWSZb1z0eEzOMe9a7Ze8dS+XW35wTxnFym1bGHItlj+c/W0at+C95eFmMAq2MifyYz8uv42/cwcfKgskb5P67tkrfjs3Sv31CppfRx8uEI0+S9of+IL2Jb6P6aOv43NifUHJ89IySbesKx2TsC46nDlEZthX0U6mzhF9dDGC8LnidHLi/yH0X/UBrL2DqK2T+kdPl8XQsHvthedbBm+VPn3q9rF6j7dDzS8/9v5CVW54tc582U9b99seyJZQ0jH35GXLY6KVy/crZsmjmHnLXtfkVgY3QLl1jJkpn7+OypaesU3MwGafJlg17yMLDD5EVV/5a0hrFNG4mrfmDrLh5aYwDs2X6yX8jc9ZcKrfKITJ37MNy3623xzTwWtn7NSfImNu+Kn/UYziMx+tl45J1svkQPT+NelxW3nZLRT+PXfVReXS55lm7RDbfeZ6svGKzbH/2S+Xph+4ny66+SJq0wOFwOBwOh8PhcET4Nw6dOnXq1KlTp06dOh12yjafJ4n86ghZ+tt8/GwZe8rX5dhjZkvXtm3S1zVK6Uq57ux3yYP3rQz5ut4scz/4Xjli5ijp2bJNusaMkm33XyqXf+XvZGuPyNg3XiEnTLtdrhuzWI6YJLKtY5SM7dwmy379d7L0kqusnrGv1zwzbpel446SQ8Ztkx6tZ7SskaXf/CtZdlttPdu0nlHUs+oqufKL75fNGEXatA1fOF42fP25suzOIH/XMd+XY161SCb0bAv1tm+QO3/+UbntylCv7DhGprzzM3LMognSH9u34boL5OEDT5SxV6ouLjlKZn346/K0jefKL//zs5lenv19efmrp8nNX3yRrHgAPjG+hrb+zTjT0/63y0WffJdsrkl/s8x658nSdeMnZcW1N2m4vF9u+N675H7TV9hqcfLdS2Ts4UfJBM1Dv8jaJXLJvyp/05fyOEl5HBt49MgoGdWvffv1l2vfkl6rz8R3whVxnLzgp3Lyc7fJ0jUL5KBZGh41Stq3LJclv1gp816luu1P9V4ll3xa+ym2p7Zf1sgtP/qU3H1NYTxMOEoWT9bi150ll3//Ozl9BDr9AzfIMfKzsA1uLj6vtyp5Nb7r2JK6f6h1X6t1W7lML6PQSxrz/61j/t6VOl7+KM/YlzEsslnH4bobvijX/Li7ou8JT2MLyg2yNOqttr44Bq8K9Vm/71ky9v9Xx/4t2pfaDtPH9Euzdk79iBz0/tfKARNUhm2mdlm79DtyzbfOkh5Nr9Iv/dq1Rm7/3sfk7uuXFPRTpAP4xuELte9fKnLVh06R1cX0/dJWpaqDuzX83J/KK181QW74zIvkfgyJZfwq9DTZ75/eK9Nu+Kj8YfWp8vKTR8k1H9Y6MGQ2LAftbP0bhweojO9SGc+9VCacdJJMXqpj7Ac6xiw9t1VpftxN+owc+fETZeuPj5B75vxGTjx4WeF4fa0s/PhHZL+V35GL/ues6vrytKiffPrTviUnvGmW3HaW6opzS1l5p06dOnXq1KlTp06dVtF2C/DPqVOnTp06derUqVOnw0cNhfjnfF6OO2aiLPvm6+SXZzxLLvjIGbLkkWnyzLd9XMZavlky5e3vlSNG3yFXfOYIueBjz5TzP3eBrNrzeDny5JMyPvMWy5TrPyXnn/FMuejD75erVogsPO4dMiGlg7mLZcKSMzRPqOcPK6fJ4ld9RLos/Rky/d3Us1Qu+9gRchH1fOY7cv+4Y+S4t5+u6Tk+RvXffl+X55y8QNZe/NFY78vlgisfl4Unf0Lmzg35O172ETlmkcjtufbdM+MFciCffjQ+18jDt66U9vkqPx8cJFL/phy2SLpWLZUH7g/hFF9KDSXxVXSWTNxzgmy+96ZghKhJ/7Y8ePYpsmLJUgt3HPfl6n75u/fJFcsmypFv+nyUM2DewdPlns9ru2O/PDDxKFn88hM1RZlMeq8cdOxsWX3h+5WH6ueM98sfVk2UQ1/K1pGp3pDV/qWwIReesEgm3/1Jk+OXH/u23NO/QJ59ygJZ8aVY7zeWyPopx8jCZ5NZC835so6NfL+8Xi65cZQc+Beny/TJOb6Mhz+eIeedfoRc/r1vx/iUnstnKMYnmhDDc1PdYZxd9OHXhbpfrXVPivmerWP+2Ily7w/eb/Jd8JGPhjH/po/IaE1fe/az5MobN9h3FK/U9l3z4/TtyaDvOz/3cpX52GBs3T+NwVTfy7IxOIcSSS7GftAH9dnYf6WO/ZReAeGTZO47XyvzHr9ULvjw4dpvR8j531wiHYvfLAccO0vTT5P5L14k/TeeFfR7xsvlkuv1eHvxm2VshV8DaiiJL6XBWxpviOGrz5Nb1k2TIz74Gznole+VsVMOKOTP0cOOlXnjVsqK314gcuUSubd3gcw74Rm1+YaFKh77lNx2yXIZe9Q75P+z9y/gtmZXXSc891r7cs6pOlWn7kVdUqnKpRKSEIihAhIChgAGRQjahNamFUW7P6G1G/36Edpu0EdBW6P2I3a3YPdny9Ot2C0BmzaikjQQCARECmIuJFalklSlQl1SqVN1ztmXtfb3//3HHO/77nXWuVRASarGOHvuMceYY44x5pjzfddec5z5vne9jPh1fsJEfv4ln9duOfur7YGfO2znfvb97eGTr2y3ft7Y3to/ah/92fvb7GXf3H7Xn/q77YZXvL7NJ/eNESes8vXrl+9rD7frGyFa2164cOHChQsXLly4cOHzcLzjMJ9deuSZpmv41R642o/S1X4UV/tRutqP4mo/Slf7UVztR+lqP4qr/Sj92dAOHGm/p93y2pe0/Xv/Qfvgez4Q/MU/bw//b+9sHz350nbzi0Sf+o5214t32n3v+G/aE5wkov8nvqvd+9e+q/3CT74/aPo9cW/7wL98W6ff2R75mQ+0M1ecbMeyfZD551E/kJ1fu7+1629tp6BPvbndcSd2/mI7fU40Qo/9jfbef/X+Nn/xa9sNW6KR6038Ovklr2zXPv6LE7sPtnP/9O+1X3v8+nbXl/K+wHvaTS+7te3+2g8fHd9bf7E9nnrUb/EvfrE9sPmSdssX32q6bf25dstdrX303/7jthj8X8H8StrkhDZrhd74inbiVGvn9p4M+rz2KZbfr7mzzT/0z0a/N362PfEPRM9f0m7/cvnZ4fF7f7g9/AlOrUlI8/JRVW+47R61iL7yZNtqu+3c6UejnXn5/te1n/i7f6EtaEcvAB7smyOY0Afvbx/+iT5v5/5me4SnaT74i6Pd92q9nG5tfgJ5zcsbvrDd8ODb23uGeXl/O/2//3D7wP6d7ZZXQksOePQX23tzPQz2sz2x4I6vb2/6G7+i8m8G/GV/kPlVW8r0foPtf5F6PzCxDf0ar3li+wFOINJv8bb28A/+2fbjf/+H27nBfofBryAf/sUfjHHD0M+4BtPeQ+MafN03iw65I9cH9n41135vpwDQr3pT+9zrH23v/T//bDu36O3v+YvtnX/1u9oH7oW+yicQz53JeX2wnfmHX9l+4q/+F5P3PnY86J9gwxr+FGd7r57f3iHpxQ+1+77vu9pP33u6XftF39q++s//o/b7vu+n26u+8c+0ra2JnPC1X/x57cSDv9o+wSN5N/5me+B9u+32l725zXt76B/l1+LLbe/V/bf/lfZL92+3l//+724n8CcBGRfk36g1cms78+s/007DfOiH2gMP77S7XvVtvT3k9t/+De1t/+Pb2ieOv7S95lve0n7ff/9v2hv+3D/S/fIlo1zCpN+I72undb2cz59gfk3paj+Kq/0oXe1HcbUfpav9KK72o3S1H8XVfpSu9qO42o/Svw3ts3ZIFnFaaFjlTUu1+9faNkq1+9faNkq1+9faNkq1+9faNkq1+9faNkq1+9faNkq1+9faNkq1+9faNkq1+9faNkq1+9cq32zqrujn7nbsitZOvORb21f/pZ8fy//3te2WdrKdfJ5kbjzZrmgPtkff9bHet/d//J+1/cfeN9KferCdm7Y/da45/zflDTJu6JiqKkfsmBn8jz/ZTrfr28k7O92b+HXsqp32xIffPbFLeWs786nWrr3hTtVjfI88+NZJu8pHHpVOVHR6/wfbRz/U2l2v+mNBf9Er2/M3728P/MQvjDJHStgfaJMT2qwpTflJXivXjm1f5Sb/OtI+LeH3Qx/iFN6Ev39fO/NUa6dufD0KDE888o+OygjmM36r/rHva/e++3R74X/0D9vv/d6fbq/+1r/bbnjJ9GRXyB/p31muJH32yaMxNkzogRU089Juen17w3RN/aVvbi86Lt9v/eZR/ulH2v6gY1po7HXgoz/Zfvwt3zkp39V+7v/+yYmsoPcdbP/lC9m+QGzP/Ezb/9jPdLrrBAaZIM986p/1evDXr8EfjTV4PWsQWuKr10fCEV6vX3OynTh9X3vkI9lG+VhbfELX3JNcH3+jfeAn7m+nXvu97fdpXr/4v/z77fbf8fUT2YmudcWwhj+UbLfghJ+l84Epf/+ftSf+8ZvaO7/zC9pb/9L3tZ/++Ufb1fd8c3vDn/zv2lbKzCMp/8hH39dmt/zutqVy7sP3t3M3v7LddlvqsuJeX1cutx1MlfovtEf+px9u9x2/p33hm7UOEpDJfrd9Tbvj+t328EcebFu34tu1mttH24mXvrZdO+8yqf9D39ne+1e+tP34f/0n2o///97aHlje2e75//xAu4vn+dKeMPSZlrvaSZ94XtdGcccV3rRUu3+tbaNUu3+tbaNUu3+tbaNUu3+tbaNUu3+tbaNUu3+tbaNUu3+tbaNUu3+tbaNUu3+tbaM8N9pnziKSRhwwDVN6FVf7UXoVV/tRehVX+1F6FVf7UXoVV/tRehVX+1F6FVf7UXoVV/tRehVX+1F6FVf7UbpjA/QUt/b4/W9v9/6MyjtH/O5/8bb2wAezT2uzK5GHzn6XohOS3+tDe2KqWUk71MAj/wid7YLtras6P9uDH3TUZjs8M3LS3vkj/VB7/Ffe35Z3fH67YfO2du0rXtLah97dHuG015F+iYWmtGFCmzWlwQ+1px/fbSdufUk7trb9S9vJ139fu/bFrzQLON/v3tBRwJp2A/RD7cw/+sr2T//y32k/9/Pva2eueml7zR//gfZlf4jEyUT+gv3X0cmb0AOr04L9j997ZD2Bf+lfvq2999/0E5SGLj/oSdzbTAuWp9v+g/+87T+kYvy2tn/6obHdMMrb9sp6/iWtZ9vu4NieZzcxEgnJT8j2ke81ONBgswVTGjylE5Lf69m+eazNB/lVrDH+5De0n/iev9B++l/c2x5vt7a7v+m72xv/9Pe0rd5+VH4FG9bwB5ztYKrJTyy0pRjSdoSfWOjxf9ye+Kff0N7xA+9uZ+54Q7v9hb39y+5pd222dvMXfUf7vX/m+6J8ra6Jdn27/YvfNPY/om8VX247mGrnL/5me8//+att61Xf1u5+VTQZevuJ172y3dB22ou+9nsH3776i67XXHAaebpe3Cnog19s++/5i+2D//3vb+964GR7+ev/eG9P6HJT/Pl3yc7pdvojK/x1+qt9Da72o/Qqrvaj9Cqu9qP0Kq72o/Qqrvaj9Cqu9qP0Kq72o/Qqrvaj9Cqudn7VOw4LFy5cuHDhwoULF/73gQ1T/gfauSdbu2LxaHv4n39ne/ht3xX4X/5oe+Rnv7898RGJ3fdge6Ld2q59RZ6kif7HXv297WZOOXX6fJxwIXrCB1/AzvzuW9vVB2r79aANvf3pR05HIq7Twf9j7dSNrT38EU4Lvr2dfry1W176jZN3yenXF7BxH1X/Av/cO9sHz97Z7njjf9Vuf2FrH/6V7zvafjFsWMNfwaffdW97/NovbHe//rXnt7/qW9trfu/r23XHecdh+H3z7ZwsnMhd/cp27anWHrv/h2B0mLQbJ0Df2uay1x77e+3xH/sT7b1veV37iZ96tF37yq9p1w7yJ9vJ23j0aac374zTUEN7QtLJnNATFr/OPbHbjm2dbo/lejL+39ojv/AP2iPvY14s3SH7XwgnrPITJwQ92J6u57fJ7rtl/33vltxPjrGd6rn929rNX/1tfsdh8BMuRAce1uAR/rf2NYi9KX+KE9bQH3mkPX78lnbt9B2J7Qvbidd9b7vhpf3E6LVf0tqTP9qeeMe3tw/8za9s/+ofk/h+bbv51pS/CDas4a9i/Gh3tpteO1kfHR972V3t1OS6PPWHf7p99X/5149eZ8YdZtD3tFs+/862/NAPt7d+x+f73ZaJ/9W9u+2GV7xp8k7U3yoc1YH+5e9sP/fLe+1z/6M/3m7fhC9w+x9rt77kZHvk5//CEb/e+h1/ov3Cg63ddc+3NQ4dthu/t73qL/10u/ueri/1xq829zhd7TBpB2/+7nb7V31eO/Hove2hD65pL1y4cOHChQsXLly48Fo8i0TiRk8ojtiZxTX8xNVe7ev4iau92tfxE1d7ta/jJ672al/HT1zt1b6On/gzrd0wpTfe3R76+fe32cu+vr389W8K/tbXtFPf/Nfb7/lvv7/dcEr04n9pH/v13fair/n+dvPz4h1eGy/66+3l3/jGdttNcerL/WTMOGnzwBei9avzTMvO/b921E6TnS947a3tU7/8z9rj2S/l9evMv3x3++i1r22v+eZva/MttW+9sZ36lj/cXrp5f/vQO3jn3IPtkX/+7vapm7+ivfa/eEs79aI3tpOv/wftNV93Nwem1B56Qt/faR/XOG/5sq9odzz9q+2Bd4l5pP18PLQLTfmJz+v/wb/YfvFf77U7fs9fb6/6A9/eTtx0T5tf9zXtqjf+SPtdf/CVbev+t7X7fhV5+f0zv9rOvfDr2yvf2OflxDe12//Y69stT7y73f8u9KkAU/3JAyBe89fbV/35t7TP/eI3RvuJr2833HV9Wzz+YDtNu+b/8Udbu+NLvrdd+6Kvadsv+nPtru94Q7vloPe3XmuL/qaFg9HbJ3Y7/dQ7frE9fPNr26u+sc/Lxkvaia97i3z5gXbX3anHPcb+a/AgMzvZtm6Tf7e9cYK/NNpTrPc7LdufsO1vl234L21XfB1x+MH2gruhH2qP/tL728Kx/frod+LN7fb/+FvbPS+7te13Pbunn2zt+K1aM7J3Fe++9E/IU+GXfliDH/Ma/Pa2iT2un2/5T/sajHcaWl7C2S8wPPAa+oNaB49e3175LX+3nbzqNrFubVtf/B3tC7/u9e3Uzi+2jdv+envNn//+9upveHPIb93TTr701nZi99F2+qHRjnXSvoqFTFyoveP2wR9q732Aa/Lvt7u+5E0xvqve0K76uh9vX/ZF17fHJ9flEx96sM1uV9z/0He2437X5W1t/tLvbp/7Tfe0q594X3v4g5I79fXtFoXygV/7odA/sXf65+9tj19xd7v58yf2J+3r8GW19+rIf6id/eEfbPeePdmuPQ7d2z//de2OKx5tH/35Hx3kQ/8vto/fe39rt35eu5n74SPvbo88fbLd/bVvbTe/9B7LcV2d+gM/0F59x26771f+ee+vIti6Zly3V33J324v/2+/r736mvvbu37wv2jnup20t4ova3xr+ImrvdrX8RNXe7Wv4yeu9mpfx09c7dW+jp+42qt9HT/xb7Z947bnvTjTiB1oKXqEoosueoSiiy56hKKLLnqEos+n/7v2yr/xptb+n89v9/7ktP3Wduyrvr998Vfd2U7Fswfb4uyD7T0/9n3tvne/Mxib39Ru/hPf1u554ck2D0574n0/3N75g9/X9lU/8Qd/pn31Df+qvfV/+AvRiL0X/932Zf/5De293/Gm9ojoE3/wpycy3f5XvLW96fe09s7v+AbJiN58Y7vhW76rffFLRzuPy87P/eBfkR38/W6N4Q3t9P/8unYfJ52AV3x/e803vbbdQhJAgO//5v/4z9pH/+3HggG88Pva5/6B17bbT263dvahdu8Pvb/d9Kff2GOBQPfnxT8gn+9p7Zf+Rvup/+Mf0NBhGi9gSh9rV916U2uPPNCe3Ousi8q/pJ343d/XvvD1d7Zr88TTcrd99Jd/uN37f/wNxzPkb2lbX/aW9tqvfckwL/tPvL/93P/4Te3xR2n/5nbXX/iOdvKnj87nDX/6V9pr248qzt8j6tZ24k0/0L70S4Xdqvicfn971//0Z9sjD/f4vEzx+4MZv932wDt+tJ1+9ZvbCesVizl63SPtJ777T7QziAjCxlsn8/2fTnyB3mhb9/zd9qqvu2eYFx43+sF/8f3tPf/ih0VcYD0MsDKeO1xdgfu1blhbq7abbP/ARWwDt2nN/+2ja15xeeffJrZQsr+p+P7X39Fefr26//oPtR//nx9ZG2/D2jX4J7QGHzS99vr4ih/pa/8C18f1/1W764++ub385p1+Ley2h37m77RfeCvrUvH90n/YXvt149rA5r3/6M+0B37t/W6/UDyf8XrdfLOu/W9vr9a172Q7wHp99w+2X/rHf68zkL/F95HXvGGyrgVnHn53+4X/9T9rTzx62I59479qb3z1o+2nvus/bo8frNr7+nbHn//u9pKP/4P2E//L3xR9If8324nrdM/SeB8/Q4YbuID/vp5f2j46vV8Y1P4y3Z/+WF7rb2/X/skfb1927Tvb2/7St7dzq/o2v7O9/Hvf3K742W9vv/Bjuide/2faXX/4G9vLb825Eays77j/3dOujVbDYvd0e+S+d7f3vPXPttOKxwgX8H+AoosueoSiiy56hKKLLnqEop8L9MZtd7z40HzohKRXcUK1V3u1V3u1V3u1V3u1V3u1j/CM229t85s+r80O7m/7j79/TbvKide2rWtPtuXjb2sLskir7eCEdf0vt/247Fyz05a/8ZNtQSbtkv3l+w3yfdF9B6btW7e2tv/gpP93t1e+5etb+2df0O79VyJT7nl/u732v3xJ++jf+sr2AI9pHfRPcMLAJxFzY2uPfKQ9GVm/gNV+6/pf98a2NX+s7T/y7vXt7veSNr/tzjb71K+2/aciEWVY1XvB/ipb97StG69r7dwF4gO+8p7WnuLRmh1W2xMnXG77NRrjlsb4Cen+dPr/ZtovGV/F9hbFlrg8pris059xWdt/ii/j+rlo/44Tkr7yK9rW1a0tH9a1sHBLgNu7/wfPJL5ar7dM1ut57R1W+XOtoZu1hvZl6zcm8Tivv+Jwo+KwKZ8/ueY+kXDB/h0u2E7i8JZ27MxD7fGzB59G/w6/Fe3cD6852dozin+Haq/2aq/2aq/2aq/2aq/2ah/hMtonJw7XSRYuXLhw4cKFCxcuXLjw5eGtr/iR9vrXt3bv3/729vDDD4l3dzvxpre013/pTrv3LV/ZPvqg5DZf07Zuen677g98R7tn8+3t/3nLd7XFZepvbWdyguty5AsX/u3En+3rdT45cUgm9XL7FS5cuHDhwoULFy5c+LMZb9x+x4sPL1+8cOHChQsXLly4cOHChS+AN7+53f6nvq19wa07re3utuXOTttanm4f+LHvau975ztD7it+pH3t19zZ2tn727v+1je0Rx+9DL0DPtauvuXGdvjoR9rpvcuRL1z4txN/tq/XzXbFdbe0nbMPtU+eObgM+cKFCxcuXLhw4cKFCz8rcJ04LFy4cOHChQsXLly48G8pPvn6tnXVjupPtv0Hf/b89sKFCxcuXLhw4cKFCxcuXLjwZyQeThwmZHNC0UUXPULRRRc9QtFFFz1C0UUXPULRRRc9QtFFFz1C0UUXPULRRRc9QtFFFz3CZwq9cuIwoeiiix6h6KKLHqHoooseoeiiix6h6KKLHqHoooseoeiiix6h6KKLHqHooose4TOPrnccFi5cuHDhwoULFy5cuHDhwoULFy5cuHDhwoULFy5cuN5xWLhw4cKFCxcuXLhw4cKFCxcuXLhw4cKFCxcuXLhw4XrHYdEqRY9QdNFFj1B00UWPUHTRRY9QdNFFj1B00UWPUHTRRY9QdNFFj1B00UWP8NlCn/+OQ7dMaEO1V3u1G6q92qu9VxKqvdqr3VDt1V7tvZJQ7dVe7YZqr/Zq75WEaq/2ajdUe7VXe68kVHu1V7vhM6S93nFYuHDhwoULFy5cuHDhwoULFy5cuHDhwoULFy5cuHDhesdh4cKFCxcuXLhw4cKFCxcuXLhw4cKFCxcuXLhw4cKF68Rh4cKFCxcuXLhw4cKFCxcuXLhw4cKFCxcuXLhw4cKFVWb8ola4cOHChQsXLly4cOHChQsXLly4cOHChQsXLly4cOHnLj5y4jAh6VWcUO3VXu3VXu3VXu3VXu3VXu0jVHu1V3u1V3u1V3u1V3u1V/sI1V7t1V7t1f5Z3H70HYcJq12qvdqrfYRqr/Zqr/Zqr/Zqr/Zqr/ZqH6Haq73aq73aq73aq73aq73aR6j2av/sbq93HBYuXLhw4cKFCxcuXLhw4cKFCxcuXLhw4cKFCxcuXLjecVi4cOHChQsXLly4cOHChQsXLly4cOHChQsXLly4cOF28XccJhRddNEjFF100SMUXXTRIxRddNEjFF100SMUXXTRIxRddNEjFF100SMUXXTRI3xG0Lfd8eJD1xKQKHqEoosueoSiiy56hKKLLnqEoosueoSiiy56hKKLLnqEoosueoSiiy56hKKL/gyk6x2HhQsXLly4cOHChQsXLly4cOHChQsXLly4cOHChQsXrnccFi5cuHDhwoULFy5cuHDhwoULFy5cuHDhwoULFy5cuHHi8O4kO2ROMaHoooseoeiiix6h6KKLHqHoooseoeiiix6h6KKLHqHoooseoeiiix6h6KKLHuEzg653HBZddNEjFF100SMUXXTRIxRddNEjFF100SMUXXTRIxRddNEjFF100SMUXfRnIV3vOCxcuHDhwoULFy5cuHDhwoULFy5cuHDhwoULFy5cuHC947Bw4cKFCxcuXLhw4cKFCxcuXLhw4cKFCxcuXLhw4cKt3nFYdNFFFz1C0UUXPULRRRc9QtFFFz1C0UUXPULRRRc9QtFFFz1C0UUXPULRn430+I7DbC9cuHDhwoULFy5cuHDhwoULFy5cuHDhwoULFy5cuPBzDh95x2FC0UUXPULRRRc9QtFFFz1C0UUXPULRRRc9QtFFFz1C0UUXPULRRRc9QtFFFz3CZyR95MRhQtFFFz1C0UUXPULRRRc9QtFFFz1C0UUXPULRRRc9QtFFFz1C0UUXPULRRRc9wmcgPXnHIS2FCxcuXLhw4cKFCxcuXLhw4cKFCxcuXLhw4cKFCxd+LuJ6x2HhwoULFy5cuHDhwoULFy5cuHDhwoULFy5cuHDhwoXrHYdA0UUXPULRRRc9QtFFFz1C0UUXPULRRRc9QtFFFz1C0UUXPULRRRc9QtFFf9bR9Y5DQdFFFz1C0UUXPULRRRc9QtFFFz1C0UUXPULRRRc9QtFFFz1C0UUXPULRRX+W0fWOw8KFCxcuXLhw4cKFCxcuXLhw4cKFCxcuXLhw4cKFC9c7DgsXLly4cOHChQsXLly4cOHChQsXLly4cOHChQsXLix04ROHCRfoOUC1V3u1V3u1V3u1V3u1V3u1j1Dt1V7t1V7t1V7t1V7t1V7tI1R7tVd7tVf7Z1P7xu13vPhwnVhC0UUXPULRRRc9QtFFFz1C0UUXPULRRRc9QtFFFz1C0UUXPULRRRc9QtFFFz3CZwpd7zgsXLhw4cKFhb9q463CAcvDw3Yw+W81SGxs8DtgrvpINcseUlRPWXSswqzrSFkgeVPYnPDSF+Sm/RKwNe/19HmVR9/0GYmFeOhNOTA8IG1kn4PlEoGhL+1TgJ/jBa+OBh30WagOno6XGnTakEDwJzLAql1aU4ZYZfzRkTZS/jxdE/40zgnowmfGkzHJWCSPXpuzmWkkXFRPu9DpIzLzLcVlpjYN8/AgdAKLmX5pAvBjX3JgWBIzncAcoTt5W2vk5tuhf4l+Gd/cloQw4yH2U0AftuhJf3DaQB79B5vyHSMT2JLupXQu5oxuhKU6H4o1Pwh6sSnTuKFC/WKwlB0GM9uXnzvhM7CxUDxXeFM42J63jaVie7C07YNtjEqPaPgLtT8TODymzixD5oj6FDTujV3F6cR6XxIOZXKpuZ5LFgx9OXBIjCSfsLEnW5AT3iUB0WMd7/eSsKOSvtC+I2Kfwaq+pTGxAHa1SsAA88v6+XRB3TeIIfrXwKHm1bHeWRHABY39Yn0HUPvsmOK0R0X6GIbqyTvMRb8it7HV+ZeAjTmymsfdHp+LAap3ejwF2D7cn53P2xtjurEZ+tGNjY0tyeriOjxQh4m+w31+qdp9QW4j53LSd+B9uqCFvzFfyP5mYBYgF7aMbGweyH/VdUFvqFCHZweAw9n5vN806Pqf2KVQh5c2DrvdKe/Tgdl8P8YrfbPZQVsstsQ70Fh1bxFvqZvYXDL246IgH3Xh6ZNF9aPXD3wvevE3WizCkXcUZqw9ubNgLQjmWivc5peLoAF4XDCHy1zocm+uudtIu1ovB9ObQMBsc0sxW3iOZ5N78+FCMZTRjdnlLaRDfdi4jyDtTnmGmWzMlypzjaXL6nPTn4vyAaDNn5n8DSCYb266LT+nE5DTh4IMT/QfAXzfli971nXoWLF2NbeaPz5/Z45ZwOESPTlexUp+u44vfJB2gDeMbRLrdYDcTPfOjdmexhuyq+MF1vI0to0ZduFrTRNT+TyFw8M9/ep91DTfnEsWv/q4JjwplI5xDS7xh/nFbvdtJlnHWWW2yTo/J5uKoW4m6MQ/9B0udyWCf/i0LXnF2DGCZi2zXkMn1wu0blymAc8v8mLPNk/0NvpLlhsy46JxBfBj6X66NzleMUcu+odPCZ5z+6TP3035KPmwCU+kfF8epN8KFPHxPLCuxjjHuhBoLtMGfcFcN/gZPoS+EI04499svt3t0m+9HMBamq5x5nsA+WO/OqDP8irIxTqUjK4J/hJc+JoLv2YqU8Cn9MX1DsQTHjC9/sTUvY6/pSJ+g5+qezzmIx+xT17CUnpSt+9Fkj3Pv87zNe17JZHmvouv+MF60rXEPHbA97xmmd/lQmuIOVJZLvaGuOBb9kV+iNUk9gk57lwvS2QZJ/UhVjGWI/Mzgbf/4b+q38wjMShcuHDhwoWfnXh+1anrvmegEy4kn1Dt1V7t1V7t1f4sa7+zvdlbGf3rs/j6wqhCwogNBpIq/tKsJteFqZNIcsLI1HpAlkQNSSRk0T2VTn0U7IEzaZVfyldtQKesS5dLHpLYA7ItvpJ3gKd22nJcCUijP/0CvHkgSF0JUOZNZMH0zcRaAnLwAfj+4u5/XUfnA/ap25zysgDZDiRvgE7DxyaSYW8E6jnnWQdSNgEdUGj0epjonAJyjr9K2oeOztCyv4iYD0k5tZGMmy0iZimevrC1Yh2CI/7NZZ99mQlzKTn2v9nfZgMTh3P86MhCf7ZTctwGyeMTwz7cnEmvKhIikcZ+65LEJ31VhomegPf2hZ00RLEIJ87WyE7Be/H0pWBTdsBO4JE4W9k8TUDeviAvp5dzXaNsmALiUT9ks+gS9gcggdn9cB3Yw4gwsWQsF/BlGXtf9tl+qb/HQJDpf4F+CTF2FeKt4r1XgOFg+3IAMfxgv4uCDvZ0raPTCfA80UHaP61LA/Y8fhWSi/ApyF9iHAZCThKb5CDj7zHYmIyDNcnUkQPw5ng2UYWe+roC3uf1gpQOxkuCgP6UA9nVBeCkH+uQgjz6utxkP/YSIGH8xoZwZHLXQCYjSfJgwwmL7lvy7JzA9Q5OzAnDS589T/iu0mMAdt2l81MNeJX3TIEbD4A/HmNX5kWp4ptMbxO9gb3edrhk47rz1/CeCWz4fx2oJ7pIoKTdvJnQBh/9tqWfKX6GQFJwprF7vfSEDSWShbJhH7hX6r4iOWwwNvtEkmKPRKt8pNsAjDz0RJGcLkbdjVxXZxWA+pSm12abb2JTJHaxIyDZ5ctOhdtZFpIBcQlvihajb7gHEz2KozfmmRs20lXmJALgw+tjOdzXWBl3JLP0S31GyOQL7QmZUMCn+bbsSZfjpZsX5oOnPh6jxsL/kPG8EsvQz+criQNs+7OWEg2miTfDiqRNb/NYoh5JQC4y/JasaH9mWRZf8DvGSK7CfuCObkgeK/8ysAKP0xUV7k89wRE85rHXBe7PdcDcMs7ZlnDc6PRJJNSvKUHc6/oYO/gzWWuHUHusGqiTQMTRsYy4jEBM9u3HFJZej6E3dEKTzIMjvnVrFg4Ys9pVp23mtaw+fT4s73WP/rARfnNNak7FizWCT9gL3WJEfyRI0vT+zEesl/At5IXQKZtO+NmB7E+VeDDhxCp8iEQQ+sRWTCK5FbozEWRZ+cK/TPDQPiS2HFPRnhecCL/DXmB05HrOhN3Ac126haMP8swHFvGNGGIzxgEX8JxKV8Suj00Soz/ohI5eERfilD6GvRyfeV0+1wg0MYl5l5x9iPg5dpSVcVsGf4mn+NZnXWjT2sgEnAptJPrSt7CNVIdOT3noEqdTsql+Tr5qLI6DuRGTbPca6wnbIVbS6bEL7E+vSyBsWi60RVuML+2YBmzfFdcB+sUchk7GmElox6K3xzWZcxCyjA0anxjM/T/6s+YbUB8uHcUJ1V7t1V7t1V7tn6Xt/nONz11j8Y7Qq7jaj9LVfhRX+1G62o/iaj9KV/tR/BnQzmdkfJlUUR0OfEN+4aSqQlIvi79gisdX4kzQgKcw/XLNbxf9MivYAyRpf6IagA+dgf78aow8OJOSlKSBTDpB4Wsm87zt0GXho88wkTcg0/skL8dISR2x9RD+mB+k+wJJMw440PRlr899KL1f2kn9077u3wu+WU+0Rl281DPoQ3YF4DgWvY3feJa6pz0c6xVextH9VWRqkEk+GH86AwqGsJCUUlxfEFO23OJ0aSaNAWq51hJc06+ZSsbd+xpsCtOoslxorjkhKF766nGoAI63CluveES/oa/6xL61CPpSlz43h/tHwP0E7GO6njKdfyFw8hNZzDjZRl2EeM4b6K/UCwGJuRmLZxIXJx4F9COpOF8s5c/YflmADpJedCNAzBdurCbw8JHgUUVcNAlEJ/16/FzP+eYkKDrXAXzGjij7Uaq7XEh+FejnRFUv9MsSe+vW6zaAMRJbnNxV/UDGkGWM9qHz6Jelj4PTl9OYnwc0W7/qFICxTSFV4AL6aMc/Si7oC4D7kWlfAU8TyQTrEYHOLPSZ61f6c7mAvPuvsWd9Kp54MSR7yIlB2fZpJ/Hi1JPAfmh9O9kRfbNOnyFRKHH2rfO+ADDeTCKlzBTW8S4bMmkIoGNYcIkFyLCQ1UaSxE3pj3hxUk/FF2/wjvS/GKiPdUreyQZhfrvJST3shpzBdo7qjv6XB+ic+rbal7EsZZNEoeUwN/gowLb90c/q/aBD3CV7v56Q1N3bLQFg+NHmzysnjYkl7QEkpuB7DxxTvY35puArn9qR+GGzfExI2AcuCCn0Rrp8xZ/Y/w47IdPlPCDpY/y6Hr0pLhg2yCeOJc/W8dk6xXNyIOQiucz4u3p/ONFmqwMMn50eA4LBcx1/YOjDMeKITxjDT4KiG5sTKKrKHqpizaBD/S0jkE/wXA0T9j/GEWMBO1lhORSAeifh9BPwXOGvB0dhrB6kim6wikOMQXPTT/w58SBwQgNZtfukoLqQfM7kmbj+nX4SNxKGh/wPCyc2uk8JXa9vPiSppDDnDvBnP3Y852McWFT4FjzpYK66bq3GGA9r3mNhXok1p7K4OVlMmHHgAoMIP3JtuHgcaQMZafYatWT8U9yXy31dc8LYog8GPKkhpc6qEW/WiPhmwaOgNmKayTTbtH0aux7HCb1RfM1NrhfAeiQT8cBJ6mp1X2ToR2ywh2z0A9Bhn3rSKWR0LfW1FaKWGv4ZkPVcEN/o4zY3q95jCYOx+bQeLfihf1Ef7cmgfkjg0qeP1xBjIWGYdnIcOWfIOGlmkAPdF+Ym+pIc3xI/4kyyNBOmEaeY7wTrJSZqj1jLF/NYa92+5RhjJp0DYkzj+COGoy78Y53iZtp1yPovI0kE4t5InfGY4d/Wpx/avP6wIbCfAuzMvN67PHrxpf+D9jj8D636p8paXO1H6Wo/iqv9KF3tR3G1H6Wr/Sj+D9g+v/rUdd8TH6QBNBY9QtFFFz1C0UU/m+kXtDc3kg35xdGN0L0aZG8T+Mtyr+fXZVpd9Iv9FACaBBbAV9NRB199/XE86MkWK+iQtgH6Zn9+k0ya+uSa6Kn8+FX+KLBZlYB8+shv2zEVPgPmR/WI7DB28ZbSRE/aiU7GIBN449bAUX34nLRtq5jdi9snfNRSpVeeoEtAIpOlCSTOsv9qybGEjtAFJwvtqzaynmsg5abjY++SBnILBmgB+xWAzRI8Ye+3zjdie3kin7GFlewE+rB+HGvNJe1Wh14R9iUW3LCHimwmIKlnDCwmNsWt/BI/i/sjlGvG7b0KzrrkPN5OdzSprIA336ORJKLrKWvb+iGJ1etTcFJRTTPmQPX4J+CXfZ61+cHC2P0vBX1sjgMJNj8mVCW7sphz/ALGyoGWvmcacrTLlnmqekzEjq5MrtuF18EafY77xOYFATn20/AbcWiw7LpOwT66SSRSxzfasw+QPG8Gq45tNr89jt7GfPRxHoGpTbqrTyYDAM8ObbD6GDc42Shf3I02eNhKoIre3mbo+t2WosLsQ7LPl8k67JGUc5KRH2Irvvcn1X+yx7keSH6gj1ODU/sdjuwpkvwj/vat24OvejyONHTko0nHE4VqRxY+HYRcECcu5vW+l/L3GQP3xL5QHWRsxMQMCSCKF678NBZoUfouT1/JqRY+9j5xAUX1QhB2wfySvBd69rNGxZMNbTZ9sRF8t+EHVWxSicbLgEMtW3ym3m2IztOFMZehbDaPMQMZC8DJTRf1Z52GiACZlIsThvg9ji31jZPo9aq2WLdL+7bsa9UJQ9bXKG71XCPwYpM9k4bRDDixYpCPrhMr5Bi39Gstp/ysr+/pZr+vS2xknHxREn/6TZIM4tPN1wf/oYR1zlh7rPA9kr4xHhQTsyOAbvRI0bCxbxrd6Av5ONUHH55Z6ofP6ic61pJ8UOz8+Fa7nIOUXcXW12f3Fz0xBuQQiko8ClUKJ7yjkL5R1y/mzoOD32+qjlv0y2SJ/0bQ/ZQx2Ybq8HL8c+6vyDnpSAIlfISH7pgUgQ3D6+0C51CQIYZuD/uOX/fNAKKon5MsdMGu1xGJwVifzC/JIOScVCVpaBpD9I1Cv7BH3eIC6JiTQVYfSh6rhJDPxz0qAki41pgLM8dx+gRtKIJhXQGpS3TnZbLLpH4RyVhHyIinOv8y4RTMiBdU6BPtNYh4JLasyyokRV0+mS+Y6g7AZqxxS9AOeEwWHGTdlzql62XMbrOcq+ZH7BALf9MuVhgTwh6/5HxtWm/EcT4n0SdJdHd35iT6oopS3XP0t99CcwzJ+CTrawMLPV5eu6an68C/rd9EjoexdPv0BUi+hQ/ymTYVHm0c0PsJQpU9MUGN9mhOGdYQj7bt6w8hNQ33D8vZM9mNdsfAazNgWAdS7LYev7DPHAfkurKswKdHsSt+6Iy+9/3oO6NdJSQDii666BGKLrroET5baX+qQvSPwF5LGpjS1V7tUxqY0tVe7VMamNLVXu1TGpjSv/3tfInm66ULXwxVvAFhGX1oqk4CikeO5ok7gN8kY/hQ5SszdfbdAWTm3nDgoE4wkaEGDz2Z5OJ3yk0Tgtbd+yILFz+Qc90tR/uanvRPX7tbBnyEdun97G8vqc+2oSfF/Oyrko9hNSHAJ/SjA3nYbEesjgPK7eJ7nKLTBwCd6ILCBgV5ZOLf6AM6EgNQ9IeiD4DenL9p3XqQHfpGoR/trquwNuC5DlYBRp8C3F/Ecs62Z4yBPZPYrww7nOxgn5HNX57kljFlv5m9TnTlmLE7BdrQ6bkW4XcoYl/2/IhSdeAEH5i+qQf9AH15tyEl7VofjQAGSBABKOBUmB9fKYCfC1zgx5uqif1S9tvzlWQAfOcbRvEjQFLQhfFy0qWfOuTdhtAD35vTvVMHYpsnC/MxpU4mCmbp+8UA0T4kYINThgI/HhW+SPMYOz5yMi9EDPazv5qJk4d0me3pGlKfHMdwylCNfuchsbwQIB+vQnJ/+8FcmhHogqC+fl0acuzJ8Wog3mvoR2iq0J6ADLI8hhUCmW4mx6rFHO8+5FGlk7m2HO8+7HGegpOAOT514V2Fh8RMwLqkbhpfiFePMziTZOZNYDiZd5Q9gN//1/f3lv1dgACJuI0dFRJyAuSw4cL7D5GdxmQdLCXHexG7zlVwQlGQjzIN2c5j8x7bjkfwDKomP08lpo+ATyv2RCXYl3fG4LcE0JNF+ofHfsoRIb+nUBesT2wBPVm4MdMiQk4LWN4EnePyhRByFwbsdSA2kscuySU//lPtxrT5wgnRxE5CyaewG+C+ZNovChO7guWSjXNshL+0su4A7PJeQwoQjyXNBb0KR/Vyh4+7/Aj05xGdTggRMy1U3YUDy6b3pRUHn3ZhLehn7oShdONTmuiYfXD34X694F1vbGLTqNJ54IFeHuhzAZr5BDNG6dBa4lGizgGsALyZrkEe0ecEgjp4g94gHTxOsOsC+ZrTGPyZg9Mai21C6sZC4jdO86FT9+jNMOoTRKvQVUQikPeXkcTqTH7jnJMBrB/J8IhV3TB9Yqn/Z4HwTMBaVf9YZ4q3P1CZc/ERkj9eO9P5pYvHG7oCBo0CBDRfshWnBZlz9GQS5CgsuOf07v77wI+TRAeMKLbV7bFCfH256IOAPxhIZGzESa+NDd6dx42T8RAHqj2ZxI1N64xThH4EKvoUO+I9yBi45lhvkpcvzgVpDXHayu93M2hcuudbJfZ5hyEx5j2HSx6XGvJSSrMK6wuax19uqxwLrEZZkD+cTIt5py+AP46J/UrfiBfrNvxwkohElxNo+LwfbVIRcj15RB2fNKZDZCSbj9t0H7U5GSqwn6IxG+uG8diY5eiDX8jhVdjnWiAmjHMs/qsMRek+Pub14cL1ShwwxnrBEF16LAy0sZ4OomBH3BiP5lO2nShDbNUuEMLmYyMYanPsqTJ/WgPEv/Piemas/GVKLLg2+zitixLjRXcmvOO/tVGkxeNJf5hLdKOTdrqFHvqPckD6be+sCrvMl/3EX8cLXX1+HeNJyb72nTXCeGgKPwIjxlyikyIGQF98DdcM1oF9bHkUwUPA6wU7PamqFvNzzENd/2jL32FtSld7tU9pYEpXe7VPaWBKV3u1T2lgSv+Ha493HBYUFBQUFDzH4fntzcZ8caSQdGJjo3+/1BfF+DiFF0muw0hA6UslvExASdBy9IPnzZEJzwBL/2LjhK0a2mgVdyILD2qqP/hW0TbZVBE+kmDrPNdX+iWkXMLUJnX0McapPnzR12frA9Kn6RimeoCpf7Rkn0zoJaRduNM2ePTLvgA4S/rqjQq3BqzqwCY0fWjLhKh1iE9byqdex63L05Y6sg4fQAaAcj+N2TrF8B6oYEkiiI1y+CSVVIHH3sPsUGM5EJYs+5jmzcZtGlR0NQMwr9hwm3SxL8p42M+TE21ziw0VfJGf0ocexkWiEB8S0LElvv0yR2CmOsGgnobYHCaxBE2SqIOTfLTLFm3YYz/bh1zEXkwTUyuw3KYPjfITn/eWjg91+pC4W27P2tNPy50l44p+AI8p5TGkfY+4LSTndxxKn/sjwwavN1nXOMB7+NgkZ19fcHhMMuhSsA53NIfn1JdEVvKOhU/rgPaca4A646DvjL5svpGow49wbT3QRX45mSq/GBtx3bhUX/YiSRYy0RM/nCCETzt89LGHCp26mDeSgZkgxO8ePycRmXdkLgXon9pOYM8S3/FNcF6CcVdjJc7YWTXDSSH9m21r3fbkAMDe64zEoDe+xcAuiTZkCFXnu1BnzCTk9DPrT9xbkujjJ335dED+Td9buEFCRqQTgGqbbcsx2vnpCcLlHk6F7zQcirbfnWd/IInbb8a3NbAxX0SRfifi5gfyE0PYkq89meJEC0y15SlEAz56oRNrNluDdykIm+qrOo8BdQJPegfeZiTC4lnH+uGioV+XiQSP/J344r7Ti24NzJzw9E8jIZjJRvqha7nckgwJKK0vEn0+4Rg6B9sroE9G/WYjXL520Ey7BKif6vGJzM2FFbzV+8U4yWMsD7bl07InC9UkUwutURJTrB0iw2UHjzh7XbFhT4IQrfqc8WMzpXPJY4UFM96R6LEgwJjhEmtiJ1nRJPt8XRCUCwIyEiKRIWVcv7a3rTFIN3qdYPTNhIQVc6G6Yrs83JffxBk/mXfJ6R5Mss33AY0T0yS14iSeYodML/4M8+gZC3ZJXMEkfswHc6SLmFjAziS3gOsokmEhe6gPH5K3cYqZuJDEIJGkAXgNoF/j5HMRfaEQVcZjgjzLzInRGKtIONI1m5OAwuYIscZG37DjGBDHOY96ZBy5ZgSKWcSAmzb9mTx8Ct1Bs57RqToJGcUvT0o62TcpaRmbvN/Sf2T0mDEukueyJoLuxCETR/jIuKSTuq8xxoxvaEU/PKoRM3VTH9YC7eqjuUo9AyC3xC7jcAfVY8yZ2HNs7IdiaXnGGGuIcTIqEmlOZKkvciTe7QD9PZbQG/2I86gPyNkNu1oftKFZck4GUbci6fF4NF46yIbnS3ySrIjEOkIOhO9bwswNMUGPZLtdknN54pL2iCVy2FddvEygBcQ6jced4n/og2+/RB9dr0DMEWuLJCR1F7fw9yH2tA6Yv94/kpvEi8+ChfuOcWGtstbVd7FnGXxO8JrxBzx9FAfR1qW+Ttjhh+5X4SfQfVahfTovgH2WjlwPTsQyHuZcPMZC/zHJzdjH8XusPX7IDI8apQiw5+ufMdlP5pZ44lfEN/oTK/xmHKyn8NUJ5CmWLx/+p++y7oKCgoKCgmczbNx+x936xOVDlw/VwoULFy5c+LmJv3LjrcL6wsmXZH+J1BdWf1GNLUBVzMte8MUYtgsTaAOsQ3jaZ5VHAioTdNiIL69QY529J6SRc/JKOBKX6bm+3nd9qWuaEEtI/UDad70X9530QxZ7jkFvty2VadIs9bhNBE3ZTt+MJXLUzXNr6KLtQF/EsQXQM+OS+kJbQNoDUvaAjQj/Cz+nAA+bGRN8wL7HoTIFeNkfv4CcByiXXkcqddnJDrPN8IRTcugiyUd+wTHhR3X2o9mY46QGbSQyAdrYt6adk3uc4HMijj5qZ9sGINkHjU54+G0N0rchgr2YOQka/fCuQ/I/7O9ErGIeAXSgC94QCzOlxKflVDDuwKiA05kExLCp4iQZzRMe+46LzbENXoLbuzPuJ1knEwXUI48h/2L/qLFHOgWfOlTD/GBpOWj8QcNicyYdWkMa/NA2hfQjB46/PWY+KYi/JBMZb2+/GOQBllns+8Y4bD/4PLYUf/AF2fOg2ydpmHEDSCTaR9zorpwH2ZZjoY4NCgskk7fEGszJRngpvyMm8ck5J9jIwZPPjsFq/C4E+K5xHHJaM+1RJnHO5CEyQyLxQurFZ023PHVHkg0XSSbuKV79hJNfA8YJKAAbq/o4ydVV8KqmQ82L9a7IsU9vm32PN8HvNMSO7GPTeREu3ilg11lzDKlNNszrtn1CS302SCjSDrIs/STim0E05bh+06ALzKeCfBQYBnq5p2kM3Fz6TcfJFi08nzrkxjMEKzCJNSfShoWJk13mEkCCEnkn5ujDTQ5b4onrdhKRoTsGHT6zkY4vHS7DnhM2nAwjOSlVLOfgRxyAOFEp25ZlIzouyKAvZWNsJ+EZcRVPxWPQpDp+ssH+fC4CkoT4wr05/CIWEMgE8PjQPH0YybiQp1ivPxyYowPZiI10tQ5jVINlvK7Fsy5iLF3YZzN9uU8CQ3Lcj9TfSYkLQG74o49EIXPmJKU/FxizxiQbc5Lx1iX/nRxSfXCqt4k2hkFd95RIMqjOhcB1oovO/bgIJctfV2zQx4XSQX18Am9+TsRoQw2+vmZO0PdkBTF2MoPmMU7hKzIQKtkgwKcMYLxbECa/VKSP2FlaaxnPcw0xHnwnBgmR4OoqsNnb4U2Thk4OMsZQzC/JEFTJeMHoR3N4qA9CXI2EJ47TDEM/HqTi35PIGAmO/o7bnGstkOggEYI+9Tlk/QhrHkMT65V2xhSJlfBF4+SkITYsww0qADqSaVw/rH0GwNqnH3PMfGqNSG+sJXRHCf2IRnJGvyRDf6rMT1+X9GeIPTEVNkDEUjLqm/0t2O1y2hAIXVyTcQox1kXwSUgRn1hz8GlwL+uzXgG67LfXUqxZ2xZOngEfBJlcCmXd3wFkV33y2so+ADxZCRvuh1/hn+1nAst+Bu0LR+s04+U4TeUobgj/DY5pxJVHmg7JTWTwWTiuj+gba1V8y2F3HO9gw9cILNn2GuG+GL6RPETWvqmFtTjf5AQtPtOPdRU++AShZK2TQqx6rAH/xg/0SX+WhBgXcZQIc65+HlNvi/tTzKF+YdrrINo7j+gLR2I4Yqy/Qu1H2resuD/1rX/L8lZUuHDhwoULP0sxn+gmCxcuXLhw4ecy5otgfBnU10R9KeWrKDQfl/7qyJdZAb+jJqCPkL5GOolDCQ3ss0sHX25VT/2omPKQh0cdXtrANnX26uOrdsCgP+WEs0/aTeBrOCV1ZzGkryoJWQMnn99OGCYtnD6wyQBAM36gi7mNqknVbRv5zmd8xNQq1Gkqb1kVxoU+6xAknwJMZef6TayyjdhTZ28NPbEhMsYDyP45NvfpxX1o6wVIDB8YZlr9U47C/kduHua42GPFR2hOAaaN6HQontpV0A2bvRO24XJM1quSwJxQkoeMAV+wv1DbAfOmuhpd1IzcICuA5/kNMiCYwioSxh8fQOoblOY7E9mhK+z7RuytjjZ7MR/c6wnsYWLPXftGqCH5nbepYKwmDQFsIrHsSUIKwO9ZTya6SIjTifAG8JhUUJDJSo2L04PmZ8KO8QKc+qPqpGLndXDSEBtdvZ8o131Zqk5MnDTEDEVNTk5OAR59ZB89yNLP9uiD7q7/PEBVtrFw6AcPDD/bU4ZYkrCjWLcEiDV1JhzMGOGbpwKgJxMHFwI1+ZpKPyjYy+Ql3Vmb6Febr5WLqLM+9fHeIHJ9s9uJOzB7in0ve3jsJzbAsue9SS7A3jTEhlgkbwrp8wp4yF3ep7cyJlNAp8C+Uu+2/NhRTjySNCQBSoKwt7Mv6b1JsbyRT51+U/1dx1p/p+DYMOCjkIkyFGRiLN9LlyfsYpFODFCf0NFvpf1ygQSlAB1pF1W+O8LzScPRt7hQBJ1Wi8vlAPr99dbyS91LI1liu9jrujPh44So6Yn9NRAnBmm3tIsfxUk9dfoxp7JtMWynPmyxEa1CQtB8xV3d0qbv256K8Bdf2aiOPXH8RwD5sAVwnfnakJBLhFl88byu0E3M2TCXDk7feX2grydRfL1Pivt3ewOIzxgdI3QollwDjIf/JCCDPhlFH8/lqAvIz1gwXCfZdN0zliGR5XbiJ/88ECKAD1M/grsx47GVktd1NBZFXtdWzKN85ELyvOCXiodNnCTr8aFNv7pv9Ant0AjLF9aMAhl/DQrkq99DyTh03eRcxviICYlF4hPytuMWmeb0u8cMg18A9klIMI/U0dX72m+1MX70ZNLCv7GLDpJWoctrQU3YR7/XFetMP0t0S0/EGmE+oLxAxCYxI+x4gS2gn1gDcboq9AD+28WnvxgnOrixEyPGhlAW7BJH+nAiTTIkgVJn10ub140BO2MfEpgkAWOsjEnYsSI2kp2MHYg5hGacyBOLcT4A65VO/88Qvn1R7QAA//RJREFUZBivx0pMsRkxMF8QPoZ9EUdsWS9tFg1+ALbHAtAv+1re9Wkf9wp91PEdGdGOnecr2sz3H5rR3zHtsvSTJWPrcHvYzpi7m7ty3bLOY425pE9C41wxJxP/BcOcuY2++sGn3n+4drvLNjr0V2ufZ7N7v4yz46CS0tnP15diMZ7chI9f8jExfsHvuohTnh6EtA3HifZOY8mOdDuKW8Sc+Emv+jux2fuEFEANy1EvXLhw4cKFn62Yv3j88Vy4cOHChQs/l3H/mus6SSTgvKTKBPjCSRslNQFZo301qaev8uYDfAnH3tgjatP+SWV/5MNeQErYD+nDHiXlBznzZV845Yd+vRwB25a9Pv5pe9aRcEFWzNQHZBuQ9SnPfqjwPZ3tA/hYmtqh0UlJhARD/+4bgB63d11Iphz6+ecErmhrmeiiX/oRcGh+QuoBRom+TtTX+3yqR2wjri7wexsw+I8cez9supqBnNqkkG039u/x0ycRVfCbU2rsfaauBHzo2zXWxclFhuE9EzbWpIiThn43oNr7XuQIYrKH2KvnA0kdFKMUxC8WUKdXgTGnPo9rYs/7yPgFf3336EObylQPiTxX4a1xNJOF8Z5DxYBJEZAs9GNLRaZej5nmNXoGvwgqNom7xjDIY4cTdMA6X/BVPI9T43XCs4+DU4TMYwJdLUtlqod6T4DZD0B6PHYVj20qPwXUs98JgIk/suiBTvNd15DUgw+2v+owpfHZSUuYgh5b6+3VtUCbxjFdKl7zSaMfkG/mMeaL6evAvl8m30xT148fC+qTVWLCyj1xkgguwXe7bHtfGJjaVL3vY0bf9HEKWiT9Ug6b0/6CPJEYuqiMPMvLb9OpG19IOuRc9/WSfg8g/jC+ywBZ0m/ssmiETXZ/fGItTmOYRzsn1CwHN+jotAKp71KAjOU0DmypOHHZ7WHLNDK2jT3FJhOeNgFPYF1RzTFcFnTZYby2ix+R6EsaCF/Sj1XAGfgxnhHUX7qdcNFCYC14fvFXC5vkkteH/xdCgBNCWvDOYWBSOBJPsEO3k0fdZmza0z98dbJxelEBNiIZj63LwPZ6Qz928F8y3pyHJgElPSK9yY5OFSdN6GAHYaWj4ZMfoarFyhp2kS2Nxvr9mcNnDaLqF5+9I4yfsYIwJzFWKuMLH9BFEs3FIGXDRYkdMEQfMzXizP0AUeLP9UTdRmKukc6EQiQ+JNPjegTslLBknMhgrIzRMaWB+aUfdZDaXILMpEokbIQZH3GRLrelXuuxIf2ozeuLPty4iEEqlC3Hg/nSP3+edZ/dFX0Qkkc3iUlkuu0jc0A/1jdzKf2sxXi0ZHwQhFqkM8gwZNcJl/4i364sxod+ZLmZRuIvTmeGj4w3xtx9joCEClTn+FWOJPUsEYbiJB8LuGPk0Rut8Vs6w1a3E1yZJXZJC+xrp1WPR4L2U2ZxIYRlbGGXzz/7qCbp8lix43Whgt+MpydQwzX44NEOcUp6jFnQjMRrQ/rDX+5BxIg1i0LWRoiDLQ8PAr3wnPTrYw13j9jPMtjGR+uwNneJMUUf+P4PAJTeTl8rtww+dD9cB48+ITdd73GTEQJsTH18DQgSC6J7+Jn0qC984b4USWTmp8ddgA9OUKM7eva+YtEXHz2m9IUIq10ymSimLXQwB/BZc9w/8Fd8329Uj4EOxffL0Fa4cOHChQs/qzF/RcTnaOHChQsXLvycxh30xRE6v9aChxNeKjzWkQ/Q+DAViHZySiWTVJFYmpwKE6adEl/aBaqnXH5hRhaZtOUv8vAndP/wNqYNXdDY5rGYmcSCR4kvu9TDPwrgL8jC07EmwHe7Sr4nMf2P3hETIPZYQib1UXJMw3gn4HGpoCP9o3fqhuM24dRJ3CnT2FBPXvKxC2/al0KbGmMMavD4JjI9R2WwfuGMM32A1GP96BNk7K1PJfvQiozjQJsbNP8HzKla2SRW4ENO9sWf5hXgYweAlz7E7xHYZ4xHdo60E1XwNSgK+4W9OcYju7wjEL35vkQgsYGJFRxK9mBTMnk6DX5vWwVsD6+FEjgXwJiEvf+8DiRLG+9KNEmySsA+u3n6iZOAwR+g2yChNj9YKAazSNjBQ5RxKX4kEOPxn7qu+rsTjwD6d8OO24jljvqK5wMYw7hVAE4iwpuA30fIvpPYJAr93sd0t+Ml7wTDFhu+0gV9ni9A5xmhj37S57HhQ+oFqFPg54m+5HFR87S2TBJmgUc7cSa+JKUYz7469DXmtZnjRpbYU6CJ4er8IzMF0d5vxgfiQiyhBbzP0Mm8lElAR+qZ1gHLyqb0sR6dNITNoz/Vlgk5aE4d+l2DjFXNfqwocrEHPQBPAnQ80I2Pfoyom0YIM4ZImKiCvO2iPNpsh2SfJtiJDEJpWj/TRAu+cH3IrpMcjGUfx/WjMblvgnhGqY/TlJPmtSCfDjniKkEnwnqyIJJyodDJM8nxOM1IfOGk5HrizrLD4gUuZfQo+N1p0uekypxHakJrrCx62+WEFZOh9iP+4dtcpK5ZJgRacvYVfV3mfEhfwehUf9+ERBOPPl4/YlL18E12+7h492Em7s6H2BhHNt7nB4SNOF2ocZFg0UXlDewDxhWP6uR0mx8V2sGPNOWEIm6JP30UacjhVywO/I0N6xHi8yXWCh2tGb8dP2JKkifGQVKJp0siS9wiztTRj1FsoEv+8w4yv4eMvtKFAvT3x2zGGkI/jzmlUXUVTrQvdB1wki5OlLKxr9hvsVHfkwcC+80pPJRZOePitB72o25HXTr0hFl0YNyb/vzxNSMxmiJ+jD0K/f2vXy/4zdrjfYseCONg/BMzU4gkTDYq/ppvbMQNk7gFRAyxoxgTk54A8Zi5t0tHvsuQMQeP8XrwSEbRIHhEKY9d9SNNnawgMRL6BpD/yOBTgm3oM+9wuSdbzE36DZ91FFZYQvgQj0wd+/fVE+D4Eet9ydFXPS3bZUwyBxTmmWsK7VF8mtN+7Jnv0uc/xs9a2befcQIRfrx70D6lfv6Jx2MjMynEhyozAWQCKE8uRt9oc93FRLffi/pQ9BeqZekT/ncYqjGWXg3d+rHuDpJwX/7K87i5eNHnDgG21/WH/ZjP9Dn8itgA6d95enpfTsvxqFTHz9cpcxRzgSfx6M1Oo8NjlW7XY606rj1unBZ10ph/rC3Vseq6k2isaemEN+kDxLxIr3T7/YGM35LSAE+yw/jxyR90Mc7oi1j3f/gbImIRjwtl7tRf4xz0OSRd1kTYsj6xM9bYwSefhlU/IE4a9utJsvSJmEaMhrXW9fo3dRXH34+75VruMZjEfvQ5+hUuXLhw4cLPZtzfcVhQUFBQUPDchi8//L+cRCFBwwcjiSggv5jyRTGBRBEJpExUJViy81IGHhLozT6hMfib+uKOrZTJBBi+ALmNBA9ALwUKWSet3BKQ/dFF2xT0VVhtvS4ZfwlWHVZsBoQ8X/FpQ1f6kZB2kadOK7LIkeia2k456OnYViHlkc2tiJR3/Hsb4HjDNxVyQPoDDDz/Ot/+1Gd4aQ8YkoIi2V45L4Zqow/zlrqATPIlwMdGxiP3SZBbbMr2QvrZs1ADvBmJQ2+OhiDa9sXHR9sUTct57yScQJ52yySck1Oa8DnjoH4BwA6t+En9CEgfm7Zb8u9gHr7Y+Io+9qHJB/T99IHn134J4B/iTt+/S/CJPMnh82JnZowcizB5Q5AnsNjSqOTL9PGj8Jhv+Dy+dL63ND7v/YZrgPcZOp+g4sThGV0tvPtP/oWAyqXVDDB9xyGwQNel+qvdtnksKr4wHBJtJN6IN2PDv3y0quSInX2EtTJ1BvgkyfrYXI/u6wFdrEHFbgB4JAzXATZ3NUjaLxZnNW0Qg1TDetD8Js/vRJTJDY2NRCMJxtzrnYITg5nD6eA8A8k8VB1TTPakA13SSxJxeU4xJJlIPNmjVTtyyMfrxdQuvcvdUc4JCfru4lzYmQJtXis9iZnghKHHIxs7WkPdLyf+ACHziMOGfN3XmpfckTlBtexubC3ty6cNThrJRr8InbTj4lKJxJeqvEeQZMG6xJwWF8m7TJI9E3CCbr5oy3xP4Rq7mfjCBgm8T8vGjA11ki+MjcAr7uItxJOE23lc6RQiIcnJI2fCLhtmmyQItbYcT3xV3Ykl2dGEUp+zPjVUkoHLiVmerhcJLvUUWmrdkJiizmk9j2O51eWQYeNavm9uCfckBcBnCZvjGm+c9mOONp2ccTNz7uQW+uO9bnZIBT3w8nTNFHgfGIkjz4fGN9vcc2KQ64XEN+8OJFlFws+ftU6IyAaPidY/fiKZtmxzyfjRnAzOyvX5Q6JQ2IlGRYpkFuATbSu+GEii6V/GFL+IGWGP9xjSjSQD/rCucvwKoO0SU/xgErofF4SIvxPXJIiJVZ+8SEIQz9Af7wskTsTXE9UWiguQycKwGRBrFBo+iRiSD+EfvI3ZjlTsq0Z8WFfMaT/lB+gGQOLwcLk78iYQCXH5qybs+Hru9nTj1vz0OKu/T4yib6YPAeLuhKTs+n93aIz8bwr5Egk01hnXiXT2NeREUr8hZaIwkijQrA3eW4f/IU+CynPk+WCNeJFYzgkr1UmKOanlmy4+jxCJMpI8apIMaysfU2m9pvE/+mHF6zLXEz5Lr68DzS1x5WQkPud77TIZZ5D8XOvHCSfpd8JonZyDnb6q3um5xsW1hRzrwGshfRYvdGpN2ke8nQAXvSH5GSvNvWQjCch8E6u+RtWOX4Oc2iMBTnf64xdV5khFts2wXCQI8dmy5sV88P5B65/EYV3skWGM3aB9SMgY2h7xkI4cM3IL/FY/x5i2DqGbftE2xqqvNcePOuaJAbFBfoRxrAF5H4prk/smMbQC/aTtGAO2PH/Y4Z4qXeO4Yw68DiQ+U5ze/of/qnkFBQUFBQXPZphffeq674mP04D8+E8ouuiiRyi66KJHeLbRd218k3lsDSSfpJG+7rueyScSJ04YqT7Xl0t/Ge00/fkyypdPZP3lVJB9rKnz3aYCN5N5aZe27J92AdrhgfETsFyvw3eyLUjjLNNxxYZP9DOv0+BMlA2yvUhgsJNjgca+4wRPJemUW/U/9a72pcR4RzkKMshSJ4mW9YSsZ6ygmZe06/4U8S2ruovsBRntALFLGGQFxI514KIG2mhxTOmTOuELMab0hUIdOBTinVAy5IZ8pBj7diS3eESpD0xIJzqmfoMz0ekxdf4U4OEUKp0oVN2y89j6pE5/tlliTFEG/1ScqDQlIBGU+4qqO0mFLJMUXQZwDkCYxGDW+UUfcgJgH0xZ08+xoCi4+VhP6EOfbjPZds+1tr972LY0Lp/os7dggX45kaj+Mza4aNIg6L+Urz5diW78vgA4IUe77G3sq76tuGnc1PNEoePRE1yurwOxSRr60aICkrnWrXknOWyBPqZ1gOx0Yh0HJ/NE2D8V/Rimc0HZUaHvpL8B2v1VWAjslSFP3eNSSUCWNmKPXQo8fGdMaS9PIXqN9AJ/CrkvzZgAMDFFEFnqrFN+1B+W96/h0Q/GKjhxc7RsSNb7f9AkAXncp2Lj/T3x8N97rehUHTlobAHer+86LGO70d8XLRQnnJDjAu202zoNTJODls1ThMjB63Fn2uwzXbEnOdcpgNtlb/Dl4hCJAtc6PsrzKSb5YJ1aUEg5IdiTGOboAo2ExgSQhbfKXwXk5rKHDtlNL7BHYmuwa10Sc9IwbI98ZCNApi8BcbJRfbjAHEQC2sfTeXHyUPZICKmNBCP2wx6ybr4EcNfnBE4kqHwjEyfvonlKa9icPtxqudeN/rnWImuA9xumPTBzCz82qVVICPhGK3uTZAnKIhGRm+GyiU5de358KGtU16WTa+rl9SZZf854c58++IOgyJ7s0i/TI4jOMZBAXJKsgica241kJXZJBllMbSRW9HmBj/YzdETCqevSYEnu5GeskX6B4/GWIXceeLz0XcgmtEpeixoCSURwJGMlgD7PL85FrPE7xz2FSBwQbyD9JMb07/pkKxKWxAsdocfJMPnMP+Ke4wxQvZNO8DBu/43IHMR6jbWHfW4QMd/RSZiBdtoJMcagepy2DLGIifrjhz9jLGEbJH9xJ5KydAh5bnSMLxPr2GUcg037hT7mAxq/8ZG+yKBI888NTO3DXNtuL7YdSTODeLFuWfv4i0+w+0B6UU+1RTLbiSr6M278kT68HeYLAsCe/jEH9MUX+wBPvk1txWMt1eK+4Ru0bQ++dJ5sx9rtY+aXfhzr9CUUKcYkaOkfuiTgwl+JgG1aF3PKOpFf/Et//XkHHUlM60q76utTgdggDtY4/kbW+jsHGct7vOA+BoFpxwM5kt7EuK8zfA6h0JXz1/3NtT3MddpFXthjMh3zSx0YbdAvdPg/O6gf4ETf0KaiH49fYB3WP9LW7fbwawTowDFGfImiX2pDt+S7PichMdYjx38ws58G+CEfyUvh5JvuPqc+5lYy9//Yz1kKjSEfUHTRRY9QdNFFj/DZSutTWB+wZsS/ozQwpau92qc0MKWrvdqnNDClq73apzQwpX/72zNRA/CFk6+pJHDy0xMEDU4508iKRj64IyC7WvzlU2BZ1b33Q9VkJwToTv1AtkBTT1vIkAwCA/HFuePebj36B42fmXhKGllvtQijha/X+fWcr8+pY7CDAQGylocPI9iD7JF2aBW6EutIro06RjnVu7wq4oZ/FCj6p/8AegB+D3Lqlzps0xJhw+PvdZcul/4aun63iZsWRA4yqTt1pP2ZavZPJSH7wDLfnfSjoPlRZnKIfUJsoWtI5Kl+Xhw7hkaKRF8mVM0EsZmrupNXKkbi83i5oT4tXV/WDdLB/HhdyDc2WQaj4V6Tc4NNgD1b79sKco+S/IX321W8Z9rbB5jwjvTHBs7SLjvH1Pn49swnCJ0XEKCP9xsuFLxZPyHHI0uXbHARK7WRSGTikAM4oeixrEJPBDpBKHtg+73ZS9rEzJruA+Cv/HbSkfGI7k+PjH6M6WKQ+lmkFOuRPhJ32TXrtIfbQeN7ytBG4o7SfXdb1oG0AZ8DNdgmTkw8GF8H/aqb32kwNDDlS5/337ELoDN52JYaHtfLuh9kAPrbpjA+eR5UVgFfkVFx8g4WyUGBTyM6oQdBXRg5+NLpPUJoEi+ZNEQGewA4x2E7SYhMuxcDJhsQiqSZrsueNHOSkxNcnDYEQCr2d2o3YR1vHegCC6soQ1cEzUmuDlHvNDLEBp+cqBOpheqExjpY5dO324jEYw+KE2rg7of1s8HKhnnQg65uT5osM/LNifoq0NbtBiDZbRnCD3j4RNIwx2UfJXa4r0nnfmDeOjv4NNqw7ypMhvkam/V5TLq3kGCjrScTgfhcUF+5lo8jxU2/9xA31OY9aLpaF/1U1OAkj/3qnboib5zr/sRaiQ16xsBmOG2qz/YhVaSY/vLHG+8UxpSGqbMJ7voIsemuVsTwjaSkT55hH1v0IZ5Iic4LIWMoudRJwsuJRNUjVsRAY/cFB02ylcTCJElFUspjHP2KxDCnliTm65DYM55IiqTeuEnDZz7oCcQcsLEP0G/6eey4ufQ4qW8k1VSlnzpj33PEuLHV73WcduJfyllWnzdOjloPSgDGyxgVC18TJMuRDzvW4eShjfRCPXy2Hlh0dZwZHGONtkgawiJpRGKFdUEiN8YUCSPJLjmRizy9GRf9lppfMTxAgBigF19D7xAvfOSEoiBPoDmJhl9mIk9N/lE1rdL1dCmDY9797FIsGMU09Bnsl9YfF0kHj5d/qdO0uvZkFGO1PtrRAw6GfjRW6eIEHEaQj/hNeMRK/fBv6bExn7EmURT+WSB0y0j86zDI99irWNZOEPXwB8yajPmSfE8MImnsOaN/aLYedyQmZuhHfdHpcbHGYIcN2zGD2GDjqC7fBzT3Top5HKhGN3Ma1yw26B/tNmpdlFiDfa1QMw/ostYPsM4YS7THOEbA1hhPaK61GIuIwIKYJ+m0LNcP14tQ9ycSlmEn1hXq9K/385i6PnzImACW6cW9NMdRMg7dZ+uAN5VnHiK2+c+8/ht8lK72ap/SwJSu9mqf0sCUrvZqn9LAlP4P165PRT4KAX8kdpz0Kq72aq/2ak96FVd7tX92t8dH4wT0pTDaA/jCmEkV5KhNEzjI9w9WQ8rHF82QyX5Zzy/1ANXYAAgZCv3zq3hwAug1JJcmxXzj/KgfdfIr+8UX3t7eeeaHWPiM766PPPwhkZX9joD5oSNIeo0xGqHblr3UkjXkpvKJQ4otD5sJ8DhG3w32IeQs20vGcToXU7Cc2nLu3I5+sBpX5RPgu3RZx777gs5szzFtHHI6I3zMeAPeoxCdcw2fbTO2UuxbL/AQpY4sptgHsR5h9icBy5NcgkYIBtAxbPRkAaYi8LqqAUiEDUIJq7TAJqMaIBn82lN/P+FtTZ8EEp55Ug8lcUJPIMRJw51+oi7f4WjoeEgGaryxl6x1sVx639uxpY9EbL+LroJlMylHQTf9OL1DnUQpOIN2AfCryqY2ZN/xc19+BayNaQJiKZr+9GL962DVLn5m4pCxpQ8UaIA26Ez+ZQGIRcpN+QDyFGKyCvD7idehf/L0Y6AbaxMav5Cjjj/2k4Gu0Q3QjT3E1AVYX5RMJPqloZ03BfelCVuXmMsRtK5W3aGvEz/o0nXd7fjRgekDSHJOECG6qgNY8e+S4NgQMO4l6O2DEM+024Qk50SBjwGH/HCTmCbhBn0XAcuoGDqmDzxImkUPCUvxM3EYMuIPbb0Yhor7jzaOQnRhPHnRRL/kRUKk0xobheggC4+EjfteQP8I0T/kVKRCd5Josn+0Eav0O3FA2MansMPtbFwXKurq9aHi+cFGtKofm9/EjAWjlmXMkU8nySayNDkhjV/spXfXIimA3fDRm/N9kzyAPnROMmhvvLM8sME1Kp98mi9j6qIbix/lKd2MDXmX2FQf9cVA2XynFvqCDsPosgS/UIBXxhJGRWDc1ji8Yd+vozCjuuw7caXrLf4F35/BOQ4USHTwzRB6aOOz3m3EfwgRcxLr1/+NSvo8X054RizR7bF09xNi2PqFDxlHbmLq66QItvifJziIbvdnrsabmP33vCOjVhKUkxuOVdgf8XkMLDHG1lx9bE98/rawDvH73EWiL/rZRcaBjSE2BCBiwjiGOXQn2iK5Zf0eC3KhI23F+NxtAI8HGccbfZLpumPIau//Yp0TX8aOvvB7gFAQdeyB8cPyqQnAt37aDgb23Jd4xTx4XIbelvUs8FwddTqp5Rj0sToW0mV7/P1JLDg1yPsDGbNHNeiPeIXuIUEmsN/iW8p6ke08y6a/4VPoUTz5x3h8XaG22+oF3yKZJp/NIx74D8SoxAx9kkkbYTvG6boxMjE2+ParxyDWTvpKInb0CXteZ64jI34fI338Y5mwEzqIqUByjm/3SxX3ifswPrlz5+kf4zQEzU/0gyWOaVUtBx12aQ5hSrTZ7x67MJHyyYu+yccI/wID63C1V3u1V3vSq7jaq/2zo33j9uff3WvmjThhlV/t1V7tI1R7tVf7s6b99e2fwO1fVvU1Ul8MOc3m98l1HoB4fumkbhk2cYT99VXYiao1fQD0p24k6Euf/hXb9gBOkVGj5CMqrbPLoi/7YjeTZ/xGR9phT+mATSjxsUk/9KATOeQziZX90AmdY7DvtJkK+ZRL2/jnNhXkfVJOhfo0LskzS2Xal9/W2wG51bgk0NftXZd1uxb11b72Wf/0td88bMKjf/ad1qcAD0i/8ZG+ULSA0w+Pe8KDzv5SMPR1fwWG/URa8ZFtFXymLd81yDsN6c82Gjqn7zhk45D3Ii72l5EYg0cip5ubbWFD/cWg/5Y0HKg+9Reg5rkXZl0AtkEiT2QmIXlk2vC4T4R7dQo8Lc777nKQfUdyFjwx8Ml9jXmTU4NdcBWky4/45FGgskFfTtnxuNExLyLf1b7cpjF4BtUPtuZt3k8T8nhSTh5CxwlECazx9TyYyBye0ErZjXF7z5f3DsLn/YI91o5B920Amnps+pMXORAUtObDY1Hd+/saC+8uzPEZsn+C2vx+Q/gA/YgLfiRkdU1fv9OQvcrch0WGBCw+0Z5718TUj2FVIV7Y5BTnJg6I19dA22FQHeDTZ8188O5Cv7cw7SKSPNpVeL+gedLtPTgStGrmHYezK0RD8l6zVUDXtmKwG/LT9wrm+Afennj8+DRitBlQ22VdT1jHE1ifeHliME83+iShfMz3FPpUIT5P+jup2PsPkHYES/mYpyIvC0hOOSmgAWUybsLzO+5IHABaXE7g8ShRSE74CZwcewaQ782L/owPf6XD9rnPqJ2EmJOUjDV88eNCez3leGSoE2xcBJeEDBR2tC44rdZPKcqaliDjZcM6eDNfWNFnudy0zOALz0yeBv4IIBfI7zJc8EjBHtsOvBOR+zenB1N+zhqQSfP0s8k8C8h7wGNO2HNnvcPjkplzzanizX/9k5TGQNy6Xn47cRRzxH3T8vKHU4z5fkSvb2zr+uE9jn5EK3Hpczu+m4s4w+807xeTrUi86J65Kdrzg+1F6Nd69DsFRUdSXPdR9fOJtr5RTyycxBKOTXXdd/s7BeNdbIq+x8kpQ+YHfRPwvPAYWPGRVTycpCDO6hNJQ3wKzPVLIppPM06bZTKIvuPpp4CwG3EYADkpIRmo5oihVEdeCB5jIFEWsWAdLHmHrmTsv4D3PKJ7gMmYGC+PG3frIe8kDLD4Yb5vkJhw8yWmPA423mfox5rim9bM9B2HmRxc7k/GIjtY3fD7JeUTseKzkX+dx7xFMkd0/wDyKTcnKwW84xBgrFy3oodEiB2mHx8eqjt5yrhV1S8/WtPjpp9s9PcURuKn+8EakT7qnOJDDTLxbjvqalM78ofqv4FO8ZlP/71EwYZwxDUehYpO+0ez/PPJUOsPeUm2xYHGgv5cE8Sh60SXHwvsWHviLRJriesoadY114290twpFvjW/ceW46B/jNjx8ocz9wfmQ2tUMuhgbEf6StJ21E7dcdAYpuvKa5f4WSYgPFGZjkV6oF13PKOvr3XZtB5Bvn/QyT18kjInw9QnTneGjpSZERfT4Ojr/xiimDFnzCXjcRz513WElzHX9M/3BOKL9auE/6IlEzbD90WuI+sL+WynH2MO34g5JDKcJNz0uvK1gi2Asfe4BKSNPcsD9EdmTmwGOYF40cb80xRrFZmYF3Nt4x1/9C3CQRonJL2KE6q92qu92qu92j+L2udXX13vOCx6hKKLLnqEop9b9PMPv9E0fL6YZmKFr45T/qa+qNMWrcGjfSo/JIomAGfg9s7ZF9Kl67Cc6nwFTr3IGvc6lOX4kisiddMWX3fFUz2Tckd0C9K2vh4b026/hWN7K8Ziu9joPOsXjXxoHHUCKUM7/CNxVL+MH23oSbwupuhgvOl7YoBa2oiif6pQB7IvgG3oTX35p30aE2ylv/iRttGXHkHTntbBjGOU7XES5PxPdYc1QZehzTz2ItjsUDVjQt2+0C5IfrZBO5YqHGLaFDFXCxuHbFryzqm+39EWvc6j55zwI1FFf1XZ5smSPtItedCsg7kWl/fJt2ZtSwIbaqDNiSR00jaBPGDEPjQJMfaweaXZMcltoTAnZQ3kgaDIJ8juttYKySts2Jb8zNN/KzDTGG2XR5myxg6WbaH+fjSp2i/2fsMBtqWfZCsBSExSS/8Oj8lxeLHna3BiceIP+/YkPxkzSULker6lLXbEJ2aQJAA0F0vxjsSDLuIxjpwAv2txTz6wx0mhiX78kIQDch6OqUz6OkHI/jX7fuwBg9kzQ3Z1LiYJZ+M8SUgi0fMhoB+JxH0Y4rOZfoH5OHL6UbY2WAD8kHSlO3EEGBOxQg+AjBOIyHXeKqDXSY0OJGj0b7aj9Z0n/bzIVfQzO6YOyHd/SDiyf+6konjsnSes4xnQN/VHdScI4fGTiUHRWqb2BZ75yMiXI3bwDZ78cKHv5ULPNEfijro6a9H4EZrChyTM0OeLKfhAvFtQPz2x9IzASZWui/VLEo6LfNCn6xW7+ND9oMALGXjhR7ZfDtgOY+njJDnGe+/MpJ6JyPk5xNWuOj4KfEqv+5G8CwGJ1ZlkSDBmklPeC7NQsReJE2zGJ+TS78CLR5DioEBIt5620Lz6VKBkIlHKBjn+oAeeWtjonuN/xOdwwWa/Ysx4SYTIdLz7TP5wb9PN3rq15ubbsivsxB6fWT0G/CcS3m3oDXk27hkDiTwZz6ShgQ+FvuBsl/9Sojn0Zrma5s6RbMv+UvoQ4j+noENry59t7iqbigH3AOKCDRXa6efPHcWMx43GvMsPJ3h6ET0nYUlQWQ8+vSjbWwdqZg0TMPjIZFzUTfUZ9yDBmCTAL/qPBd46YE7nfJCpOZJ0MZhYK8wNsSYW+7qtklSJpEGackKs62a8803mkORFJHCISSR96dPXPnPudUgwsUc86B+JvOBrvhiHk4YTsJ/jWEgiYtNrSJ9tJG5ZVyRBSRQnL+IveX8AgXckx1jSFwYU/sSYWS98QNAL/6TP49+TrlgbMe5YA9GXPowj/CMejNlJI8mxxuOEXdijoMfvYPRawU+uO64P+dNlnFRUL64NPwLU/Vgz0pT6kImpE8g+ffWBFgk4xhg60kYKh4+0KX7WJZ5/A9Igm6MO7nMkslCPf11SjPkmScuwR+I05NVAbFSn0G+ui8ljGyB0xvXIfOObIp6Jsh4Lx9h6iB12I15OcsGHI9l8pKpt0N+FeYs4ARkDSoyJOSKuodPqO2T/0b/x+iVmEXfGQyfWgnRbh9Yl9yuxrZt4ub0n5pDTP9vX2oUfegD8jFigC1nL9RhbjjlRuxOWK0lF2unndSe96M64WC86kbRc0GmHYUSyUjothQrVPd99lOrDo325HtxX9tGL/ft/tN5xCBRddNEjFF30s5HeuP2Ou4Vdhd+h6KKLHqHooose4dlLv2Hjn3iPHIovhHxZBPgdX3Jbm+uLI0mhVT69QNGiL6Khsi1yw0d07+bEjxM1YvD1E5pEFl0ySZSJrYSuzn6lIuqcOISiHzL0I6GV+gDzul5/3e1tmSyinn1Nd13IQaev1AHa0k/04Y/9EjBukYNe+lqXCnGb+pVt6MiE3RQy+QaXMm2nLf0B8C/bbYO6cAI12vF76seczQHkujx85NKfqU4ACl7OHdh9gS4TvwWonkvHQciR0EMBp0PcrH4kEpxI6cApw6G/gHnLVmbauTrV3VcYWXwFPBdisinDPstCwrGJHONhj5n9H/IxdkWluzLYMAlB4obNapSyycP+C/tb0ot99scOmGyICwB2AO+lqW4d3Z735VdBMiTb/C4/OUeewP4SI7ANR7uTcl2/QfUFG7gLBBVDzSunJePEIcZDnHchzg8W4s0kM1XQARaFccuuk5TI6Tq2XwLz+lym3ADiMdaMs8cszIEPj0cqnFBlXlT3mFYBHqYo2BDtR7g6LtF3iDv2kaEAq30pyPRHvLqwN3wxYGzoyaTkKhAPZDIGl4JNieGzfg45tZl+UGBzchJ76CJusmseP9671Hyf6XLIrAHkMnG3PKdfVOlL4g4B9KObveds6zwLTPWu410AOImFnjxxOJyOFLItASe3fCqRJCEb9KKtWyhjwClF+49Pl4BIatBJRYuIhJgTXVp0bPCSNBzaSFRNE2bwARbf5YD1y96CTdg+IBxmgfuEXwTLSRIGQwLIPjAQxqs+3ZcjvMsC7pkkHtisZfM4fFnKF/Mdg5nqbNrLuv3xj+XhPyNwvNgwlo2DLVnHT8Z3NFbeD2cDWTGfb+438nLsPxtknBOHkTgUKZ0+Lci49dvJD61n3m0GhumkEMIoZkOc6yqkZUb3L+4dkkWP7+t7EiXhZn3YkG71OdS9jm6xsT9JiuhDJj+fnTggESKn0cnnD0m+5T6xQ5n8IwbWw5xHH96RxzzyeeJNcwlwAs8JMnzmM0IiALZ8KknyEc8IDvFyAgI7HbDjMXiDP/olD1+IXyTgVO/3a9tnDgRxelDrbZiAACca7EesNeuXUv65zXM7Xkfoj/9wE2Nz/EioUmdecIreanciCV2qM/6MLQm9SBhKF+OccZqQgaAn/Bgctx/qs7npa8snEGPB6IekEvMgVk9CTgE7cfoRHzgZG7Hn3uLrjCR1xgsdfR1gO1yVnDswNm6ExB4b+EiCh+upx82xoq3HmcUonuPiGEcdffRJXtJgEi6Stj1oMHKes04n5FoNW/g9tgFOjPZTe5GYinb3oYI+1zQO1tnhga4DxtL19PaYM/khfbFWY114zavNiUDWgmXF53q1XvWTLDpJhoFznG7rZkIXcQWYJ3zRmKyDccSHsMcoFjQtQasmH7oqg9ebJbjujokR6yW0CfC/31NyzVsHcfE4RNJuf20JhhNmjNXxyHgyL0hY+WBBzYqV/oVfxJt5jXm0TenI+YnrjR/uJVwXYPWkSHHMCaR8tF2K+JxOxIb5kfgjvnFdYU9t/Vr2KUicwf5kvdofZBlfzlv8WK9jqTGLMI2/IYcAfqAy1nLKh78kQLdVjzkKv1t7x7e8xTjAVqJqKLrookcouuiiR/jso+dXn4oTh7ALFy5cuHDh5yq+q71Zv4MG4CVEoiZakh9f5keaL5kAfH3ldN1fgM3Xl2qwCji+Jut7PLKip7ZCJ1/QwyLFySHr6f06psBN3YDrguSDKcj6C2+vp7/xO3QCSaPP/mcdpELyzXpVrBMeG4fCOZZMZqWdVRsAsimPfm8fCAOxuRH2jFNWfFqsVwWe/WBc1MXDhvv1zunDuI0TBUj9CZzGA6zXtZTX71BkfvqZNODmqI56o/PQx/000EM7Kb+pI7cInpsVS+RzHGEW3oZ5uc3nfgLiFtsmHbCzyYaIJLwxCi/0utCOPinjZIeI6DcFHEkDBtFsfs3Vj7lWO75fCLyH39Vm8qznDQISr0L3K6phw/t/yNtutDlp1YF9xN2zYvW9QgrgIaAvyOivYlU5tnRyCvQjgamgWhr/iZE7QiMgBQSdOgk29NAuSPs+kCFInw7Z1yMG3Xc/Ujb1TiH7J9AfhB85bpKI9J3GFFjtC7BHCT8XCXrYe6XftG8CNtCNfwnQnPKhL3wnL1c64xNdVvkC5tK+xr5g6KGo7tOG+Oa+uNRlJ2o4oXneWFeB/lxD0utEIpg+NDFe1rtPgelf7Ntq/QdOOWAdbx04adj9wZZPIC6C4d/Y8hg7j7qqxgBsqXAf2bK9ED0KTkIgiFw6px8tKq9xET7p0huCHyUWo/zS4gna5OUDdkDWI1tewETQKH8NtiKJ2QcCnTaDE+yuax2QYIlLkl/RMeSjTkImHk3KxjAjD584KUhH87r+i9mZwqEuhhgR8hT573HmoqTNE6lyFLDrS5+iLp4PiSXtnBPXA5vfXgf4KOTPNxVjgQR9v2ODWnJOMMt/b4Dn3PexkST0WmF9qY9p+vpDZaK368acBFwP/SLnITv4yqNI0UkXiuw4MSidkbhCMIQZjwv11GuRkItEYfgaQBKFhAzBCJlVGH0IPyJWNNDGpy86POhg93i5xAgF2ERGQD+Q/Qt+2O99fB1prbkNni9g8ZFn3ELdT9tivKZCJyWGSx/p8ocprZxKYgxcb3HBRxzC7xBSsT9qZ85Q5JuOFdBDsV+1wWkqEinw0cW6I1Dc2BAK7+L6QT/jQi/NXC9RgqE51W+fznI3C1GRKfRmvKLdCUGPJ3wCjJHRP/d2kg/ZWLN2HFH6CWU/251Hcg5wG35IPuYHu24yPeiipxo8P9iwJuoRV//9Bz10Zh2kLyEDeC71L/6+7Dr4bZT1WCfQHWHAetIGesOXmAf3UT3GJtrxirFEYjLlUBaxt64O+ONTb7o+829Zy6iPY9p9ZQ2glIScelnOtoHuo8eMm2KNFsa4u10Q1xD/EbLT6HH7ZL6toccRH4zF7dcDXunClWzIW9ZJt95qn+iPJL5SIg7hN/MWMNgA3N5l4KuYll/61WXGeIZM6DJn0D8B/MgEJvJqzxgPOvG/++D7jX0P3bSZP9gUrfLhf/out8AtXLhw4cKFn63Yf9Xwr3DhwoULF34u42myK2pq6hjgC2PywdBOwHQaoA6fr8BsBSXAT9mUTx2u+wtqbAcA8Z00tYZsYvMnbfhvqvP4nX6kXfQyvvSZkoB8jn3krgf6A+izDVOC6D74PNXjcal0kcEnYDpGIHUmF5zj8Bh6yXa+7rvPZDxA9Ale9gfoC+RcTPWlTvhuVxn8UIU643AfGGp3m39HP9vqRX9geT9x0IegCsk7M9ElOrcM46RkjCkB/mAvAaEpdJq9DycGqXuzF1DcbeTQj/Jk65CSNlY0DZCP/TSAJ0mkiNlIr4WJYvaA+7536LoI+FTdBWQG9hqnHR4LaLzEg58Fpw010h4L+IzLpw1FD+NbB9ggOUYcSHahAx5FdXh5iORiemjznnJPInJyEPC7Gl27CDBJOVHYmiwO22ROLmQbOSYawDbG4IFzwcVEBq/7ZXBbVwyfkr4QT0RppyA2WRtrgfEzr9jFJ/qjJm2q/3CqBhb+4hcs+yhmjmEdoAvfukCcPlTFvA5Wr2sQnoKXycHgBz6P12GaIEzIk4buh3/A0I/NV6M4Rdj5w2NLBexFemwd1tk4CvRbWTMsgiGRyIZoGup8JzQ679MB92VuciF1SDPo7wmeOOHEprUD7L74E3QH8yaDXgeo81hSro8Yuutz25BYQq774H5yDjsZlzXg/l1fyg28Cfg2ol9sLPuefQQYy2K4BDxkFfaa4/2HolWPdUkMOTXT9UswEnjwgycrk/aJL1LOXnmGwXacyArl+BZ98QchFfR6gYkKB8yjQOcGPU3EK95jiJ3gidn1m23sRIEKPnptA6jE7nSDXYs6NucpqEIJMZzHyUvmx4q7XwmWZ73qBz+YG8lEf/FwTHPuhGKwDPz9wL8BbFQ4+b1/0DHu4W+OXJu2PfGH9h5+J4fo43FHP9f7XGVcvH58g2MM2Ihrxv3tAnjkRdJQc2G9nNAS377Sl1O20tfteUj00f2S04ZmdDjkg8XrwZR1xtpBDzwaZEt9nNxxArcn7iiaszjlRh/k6EQbdSu1Wt8c+5o6D+CjRwYjNlwXYwKsD04/fd0iZ+fUhu/IAEahA5lMvhl6/yHuye/A2hvm1XHo/1NkAA9CBX+ihI7wMRNfg+301U6pdJ/5F9D97PpCh+SzxGCij28SYTtP0dHHJXX3+8FRQAZdAZbGjsYVdWxRm4J02BfZANJOyvU+2Ze4Of5pBx+6G1iyIQC251a+Zqzpw9xbDn3MD9cAakKJu6uOPcfC/cK+40Cz9XJ/7AlHCvZCRdc97RMnfpnjOGmY6yxLl1M99eqX5YxdB2IsUcUvEHMx8vjntm4j59x196cfkQrbhQsXLly48LMVD+84FIuPx8KFCxcuXPg5iV+w8U2uJ1DPR3JSAD/qUpgvjHx5ZF8IyZQhQXQkKUZ/fwF1tZEAojXleRRlPgYzZOJxmtknC+Avx1E5ImfFgpQDwxnkBZl4wjf60TaVz3omzIDkme79sTUksboc8fDXadHTPhTG53b1AQOOkTC9HUtKH0d6nLLQGVNkoFPGdfGnjxGl0NfzlHzVgWkMKAbxgiuAJ9qPL4VUsVywgyca/jBnvf8g2+umVdwmfta976lF4/FCq445TmxyUGemnktJsh2Cji31Tf34Rz3HR4GXvnDK0DkeCbD/h9yM01zYE0HJx6UCJNJ8OGgFaM5H24ZmAUwKCz4bqF8E8MHdhNMn70sKpvmE8wAT3U/eCch7Dr2/3/u2lfcKEr+tHY13ax4HsxjvXJHs9Q3i030dHlMq/WsfVQpInL1Xv1uQCSN5KPvwjPOQBz7myTtUUSZgeWHGyuNFeVypZdlsV3/ehWhY6TfAPPp6HxggZsx5x/ZjOoapnthf64tgUgD68b5DYgowBsbS15HH5n7isX44aWiefsEjUUi7qgbedwgfHVN/ptB1+nShgL1AjwUfiCl8/AUke6g5HjfdBen7GuDRn0dOGKYsNgHUUGjvNnikaNL08fXB40InPAP9eLQo4x2SVcHzY0mTJ5HZNo5HXycCORFGsoREEj/o7OLxvsXRXnQE8yv02OmoCKFUVf2KE13Bc4LFFxcs1fWPE38h00FtTqhdDlgOZaHXp92gsQUNH32ZNLRf8CQn2u9WJIkomiSPH0859eU8SL/C5jAm+xF2nHzEJhKq835DJxD5Z93h0+WC35no3vpNfbnVeXCltz8elUSaDFiSx54uGa9+fL/2GslHkkahMaZMvyhwmHOBP7s8LpgWkk5PvCFYXAi6h7OetSg8xk029tXGFOt6YEM8Y2p90s8nEJvjs01dBL6GM6bqw7vU7ESPkzfU2aiXbsJKf8TxHzG1WS8JKkAC3rCXE5RpEgTw4zx9zeMzhWbkqXNR6qf7uTHbc1+NUHUMM6jQRTvY+/hWJ14mMplzXUcRY+TxQYKugql0cLXLWC7bWLvEl7HnOGRDMjFecCbypNPrnrUSSYpImGRBhhNifHYzhzgZ8+S5kl7Pt/+OCBs0bGxs2QcnAOmDCcavNn8ui6uOwiD8gYZNO0eko52+MafY2ZYd9DE2CZOwHGLKtci7K8Ve7kUf33D4IdCMq48XnZL1VEoGjZZRW8w7cUtZicTEqARtpYm6b/jqU3T0EekTk/q35PGqJGCIu2MnIGkkFPHl3kI7jtMYc0N/HhPJe+ZYx/AIEcUGht90l9+eG2s1bwoen+bHMTaD2BBP+nW+6vLGGoYkIjZVizHJe8uF/pDpbQJsWEen/d7G7rcaLEHfMT6KFXzPsTCG9MsI6DR9Y+yqS9aPbpUOn0bs8jyWlHbfR9AFz3Y7xESrG9cvsY11kbo9rzkO6bEG7DFGj1dy9JEMbEuoHmPFbhQa7avnIvTZjscY8WbOrc9y6A+Z0EG8bcC0BKKRU5xOCNIPluaC8aOLfsjgi2jUmYcuZGkT2LZ0hA+MAx+BGAMJ9bi+rS3GYAX4DiP0PPBjdeKwcOHChQs/B/Dtz787/6YIyJaEoosueoSiiy56hGcZ/VUbP2JMggm2EzMCEjP6ainxSNbkewUBNg6mPLrwVfdI3/zyKkj5qQ360jF6BGSSC4DPl2Z4/jId7CNgbfrxl2to+qua0qkPe3AOOp0JIvyEz/sRkU3/AHz2hk6nj8iJK2TIsSHbtwisP2MA5DiAVV+Adf55c2YFwvZYB0Is7E8BNnbRjey0Fd4R/1RybNYnNr5kDMCwpzx65thzLumIZPLSJpt88548SfD+xkL6NqVPmCcXLmbhC4lDbDFWtkyIx/Q9iOt4tpFJqQ7We3DYNre74g70WX2v4nnAJtOKz5eCBXvGUkpZzOXjQeBDHL4EOKGmAZM0xNfFzqzN9uWj6nvLjfb0U4ftqmvYKOod1sBSPi+3Zm2+t2jLzXnjPYec8pvvL9rBdmxoXw4cHgtfSBgeHo9OG2flC/tJ+ImLZzS/O6qTgFuBeDypfOXdfoIYm9aGSN7TON/V3Ar3AyqXhEPvH2ssxAObmFScSC6S6LwkYIf3HU5BY2t7KsdUUgUb2Ypf21Uj2BvbAoYBD5xJ0z1Wp4C1lXIXgQ38zvFKz+E5+Y/va3hs2Gu4bXZS8ervLlwHTu7J/OGeYn1MdUR9UlSx2laM1RfsCwnezgUUPUPwKUJsd8C+YzjT/Oxr3fLew32ua9kkOYEPHeAzno0tObW3qzhrctmcZEN0X85v70g/G5vI0T+SW7wTzZvuKn6fmd93pzonAydyzxR8SmzG++w2pYM57nYnvDhZZem2PBh5JIvwJd69d/mxjSTj0vrnJOeWvO+NDV42wg/aYhFJvYiB4rny3kJks68vqmcE3Jd5TCnvF8PvHFsAfB7p6aSiVB8c6HrVHPqUl/zBF3i0+bSeqiQS56wJ1S8Out+rP4lW3m+3scGpsy2NBZsaL6el0a2fTdbMGn2HJAwwpMI7C0kcxrsLj44DGN6PqDU3Z03KjvMz2NYcznWPpM0fRpqTBL/bkrhOeEAmV0gcAiTYnED0SbPJHG1sah5Zk7vSzwUqVk8I+nV5PQZOGOuawU/kNmbyi36Tm7wTBQDjVZ1HLwavx2DCi3ntc+UuxIqkDf9jAv5Z4xHoz1i1HnUZrY7Nn/N8tqsPievs63XfT+TyaNdIfGB/3zGlDZkA+h5Yr+9rfC5IBlgeBG8drMrh25DYFRwude/Q2oUPLOXnxkz3DuS4XuX7wu9xQwfrjbHsal5CR/y9xHomdopbBMD9SOKhz23IOcESdiLOHWhzYoY5U3/RJLTmm7wTLtaDk2a6SeMLKpDNuDp2TjSnXeLEOEIn/OzrccgPz4/lkWP9oR+dihE+qE6i0ddJB79L0OMImRwb4PHQJoDnBJp9meqTTfGGPmqDP7WbfpHgdPwYL77lOEjmTeLM9er37E3XOnaxNYmp/emAXrdLjhgNsZAfAdyrNGfc4xiX1y5zHGvZEo4t65c1Jb5nU/oc50jye5ySSf+OyPVxAINOmU9fnKijT583CSPpsXgemBt8YwySnWmtAB4b14jlw+eMVcLQV3Xacj6W8jvsBg3geyQG8SliiV7ziWHqdSx7rPH5QLqGOemxcyzT55Ad3nGImghDQNFFFz1C0UUXPcJnKT2/+urrv4c/AqAD9EdM0UV3quiiiy76uUI/v73ZXwYBPi8p/aup/yXwdTYBeZJDRxJLKiSeqMdX5YBMLmXyCo0pmzqg0zaATPZDv/nICeWX1+SnPmhk+Mqeelf7Q4OhzetgvWC1UUii0Z+SAC9tGRJ1OvVhzwm53p+TfOkLwFdyaFPC9Etbg45egNSPTsdVOP10mwRTFsBO9gFP6ewLL+czfCROzDGaQtYyfRyAW3o9Ad4Q3wQ2IUikiDnwqYeBxl5ObhaSNMQcSUP7E+TgH1KUrJMspB1AxnEkuSdsP6SXZKHfYSjw5q2LySNge+tAPqHbQ1Dfrf64SWsU7UpP7mVsErzXTFNvdk5Dtjkg5L1M1Z3fcF96TACHpJ9TgZaVH2DkGOPWNvMU9CosOB1HPNiYle0FpxCpy9lDrT/GsXmg2e0ylAuePBRgl6QhY7UPBIMCH/+Zt0yg6WcVMpfhdybSR4WxQwPsx/t0JeNZB13Wtjs9+JB9iD20fo4A7ezFZd8E6Ng70/x1GrnUZ54aSeaxfhQjJxdZt4yzr6kYswrtJA2nMUCEk4jQq2uDeKnpkGRqxtYxjHb6+LoRzZr1WsCfbnYtkODiH0k8Tg6iC3n4rL2DwANv3Fe8bNhwMoLgoEh0Txiim8Sg31WIbvyWiE8d4gdJQ3jIS8R9SNIIkhe4T0rStkNH7lVc03KaDLNsmOdTZyI5gWY65NLG5UIk76SHJIgdRoF8ti7ZdfKFMTBpCOr+rwXpdvuDjk5TngmgT+BThE6iYTd08bhH+KYRMl9LZ7GFO5aJ0m0fAfX3fNEzdM42SVIxRhYd80gLG+GyMYw79JD8833U91LxD0lgsgmP4Yj90vON74oa05QFNUdAOryZThV9ss21hG1/CMRGNz7yXtq4ZzMmLkySpULn6cQO4+oNh/INndbbQU1zn4KN6wfJmUJ3uOSUGtcmyQviwnyqddjYVzQ2tab8OY8+lRX7ads2TRNTCjqmEDFcLmZtToKcl4uyzrhnhEf2wTHln8Yap1wpfAoLe9MfX5Dv9ggKCQbbj75xaqqPw2LMKSz+isux5KZ/+Omx8rkg3pzPDvyXjkgCSisx4P5DH7U6Lv1Gkgn9WU9+x809YhDrDBv0RyVtzANJjBiD3eHzR2V4bHNvcqJQdYbkvw2kx0lDrnHmTuvXJ/dYu/1m5iSWdJOU4e+BiI9i1+fRiS1hmqJo/eWcwzDmepDhzgci0aI2tyM36ctYxIv5iPaQiN6Wl1yMWW0Khh/NilzXhWS0EwtkM0Yq0c23FRI2kSCCGfzwExwoIf0bfGYSpNNjc7uuK645+e3kEUUQyTH1wuepUqr4BD/+cLOOcXy6jqSPOR/50d9+YB8lXvcjMAQiZhflc8pFog/g3hJ+HgXmAztaF913ALu2LT+4HmIstKDHC7HPFSzpYO3blmwSnz62wfcQ7DoB5IgBMYtx43e2zTjhylg8MvXVD/Y8LmRlzycD8QMZfDJgR7R9iHXrvzP2tWZ9zfW46F/ENnyEn/qsBb546M65sI9cy6oviX+Xob/rAvtlHaHHPpuXtiXaE5AB3Z7KA//0Xa7Ds3+dKrrooosuOqHoZwU9nDikpXDhwoULF36O4te3fzKwhs0df0lV3V90O79/STVfQHIFmH6lpJ6n7aKPGO4astGTD+VISvGlla+ntLuP6itfqQ1OYAmQc3vXiz3aINGV/ePLcMBqwi0xEFoF4mUftk74Cp7JK9oGOUFqhkd7bC9FPWVRFZEb5aeAffg+wQdtroCKFGQs0IMvCfCAmVjsBUxjZfsCeNDuPymOQa8zR9g+EgvVafT2gzAkfuQ80xfdbEcGhJB1dnlz0cGGxaHmlE0W8dhrxOk5TkiJZfWLR5WxebhYHDp5CPg9ePBNx3zlFhEnEWGjNe2RALMX0j34iqNsSuqHDWk2Ib05TaP4NF/wxCG+C1FI3pE45BAMDGLFqUhv7tCZOpMhIEnY94I9XvsAIBciAyxpW+EB7sN4sNX1ZH8SbX6EKeNK3R2GJKBkfcpQeEOxz8eT0s8+0Rd9iGafdUCCzwtG/XoCz0k/+hJ4bHD6b5r4moDzKuLnGHxyUbR9YR7g0cZYc/9tCmq3XiZ+U3LJw3+StjkOfPEGsyD3VvEbnekXOuDTThsYHvU8hYiOyKm0dkwd83QhdrLknOfCI37wE7ggkWENcroQwE4HThw6cSBeJvCsii74muNwUhrdQV4SJMoeJq+38olC5soJQ9XRiw1Ade8bIjeNT8IBDdilkXsqG/ThqDftzaev5o+kofwkoXjICTWJ2Z7AiUQAv0iG2AdhNiClj6vVC8qnOnAWQe5D0osKEq9eV6GnawvICwzgIqKe9MVAa9WKMsaCTNzQEI+wZONWWHyKEySGjiXrPgLLeRyXYVsQiT5OMbEZztpSbxUnHqXH74ZTO3J5ktAntqY2nSidjP+CwKJjPNEXO/4PFV7wjMUTMshFHR9nmhJOOyJvjni6Z28uzIsxMI26hvtcQ/f9ZfXBfxJHatNEsgHtl6IecqKLMRLX2JhmM9r+9evYp7Po4/GhdNPJowHU5gTRFGwmYgN4oxt1uu/FWpQCNTPumWwRY59KlQ3Lyi9oElPuz71I3Uie+SQchHzhs4xTYJaxb+hOOtcJ8Rl9MSDq2EjeHw7okzzXx4ybTcQ3EnXoxHf4gh7UYfPeSRJiysmuLiOI/qwpTqppjHaBOEoef1inhMVjY16zL+ucNsVC8zGNgedNQBxj3aBvFnHBNvPQ18KQvGMteY4Yk+w68UALvzZ1qe5pyccYp+B4ChxrgW1zj7R++av+nk/GgCeWo2BcTGgGbV9iweAv/IgdfQgKfgVNfVg39OOXCz1pvzjPfbEL2WWMswq4LsJNYTvW74rcWDlSNfTY0BBj674g5zh0QM4/yIfy9DlQ72N14QtwZBxpq3cL2QnA77JDnHsMp3EFDz4OPIC+o9Kprykz+NMh1uHYJ2Bsj8Rfh/Ni1fVN7OpKPuJz1gMkN6oOoBt9p/wV/4Z122Mwjj15dBltTmHVP+umL5i/I7YyeQcTQE4W3G+cxznrSjy7IhHHlv+ooGsyk+qjn4wndQRtPdZFP7Vx/aXNqSyJSuz7XrTRfuqP/60QC7cKFy5cuHDhZyXeuP2OF+dn7OXIFy5cuHDhws9K/BXtR4z5kphAEi2TdfpmqaYxsXbkS6hg6CU+dZJS/kqMHDJdfuivf94bcj341OnTv74aUgcn/TIRiU1k0r+UgSZphBz90xaADcuqJKz6bjvipSxK9LU9GgXw0Z2+Uiyrkj5DU9ZB+p5ADV08znOamLOMZDNxmDAdDzVIYkhfaGTpswrW2Qv1pNFHUs/QbWZ9Kg9QT7DPjEX15Kfei+lgb5VDKyQOSRYSDzY6LcueqmRot0caWCQOY67RQZIPYEsIPv3ZvpjCTP03eyKHvVn30C9jdTzcl02aN2Ot2IcQsX1sAclDISfCnDjsenlvoPMiGLP/vS44kjiUsnxUKWP33nIH5C4G9CXBZj306w5eLHEIcJoQGcTnnC6UXzy6FEiffPpw4ssFIZOEAh4NOjyWFH3MhfDGntYocut8Id7i5xgycUiibYMNbnj2Sf4ip7gNCcTU58Ug2FSbkLqM/Ux0ZiaDYl9LgVeBxd4ZAA+Ah84uHn2jah3IMTaOdYKhHWuVuNgCk9gDOG0IwIPlol+c4ME2+rHXF+rRxCGNiAcNmMdYeZclMYGmrfvY76r6N1lAyEkscyp+tyCqM0AMpScRvZcoFk9U9H6/3eda7o/kJCnAGHvisC0k6FMNCJJ8WWiO1IZBz81SfUm8bPtRpIMfrD3unpsLX9vqqAb0kbTofiHcH7Nm8OkljY2LhseuOX6cnpHvyFsG3OtT8FhVWEQXgjWJQ8BJvG6Xx43avmgSKpkE8SMZ4XX9kVy8gC9rwLLqyziGxCF9pQcb+ahSy2BPFwKPKx3sSpbf5yWmBoCf48KnmK84oSWO9Jx/t4SOxJFdcZx7Yg17ulFak2JOAo9k4ZA41A1wU+ssPj7gIZllEl9VPVafQlPd/b3oZI/OjBd55plFGTzmMx7f2Nu9sPCJjXAbXQv5mbHU+vN67wuek1wDSBVjQufhYqY5D50sT4BkxHxzU9dDJA7RRzLNicM+F/T1MPpFR+wiliMPl5kGJ+VIhMPDJ5U4oSs5dYhNexrloxPh2NFPjxPgewTjxq74sXE/AfvD2pV39hkfxR82/Cm0qWTikJuufOMSjKQuAcjxYoN4R3/rAuGS44R+2vCHaxjdJH6JGTzFk88H+bm1v9+u1HW/nDzm9HxIfjd0HmBrMC5IOeh1Ommf6rqQHDCVXZVLm+v6rtoAprL0nUKOAVjVOZW9mByQdvvcPGOY+p26L6ZvGoPVvqu+XWjMq3ZWx3spSLvr9AHrfLkQpC5gne11/gKX63P2X/Un7V7OeBPW+TL1Qxxdr2fm223J476R1TUf1zD/I0rXI/cK7m+ifC9dAdqHk5HB8X8OGO5L0dEtw31B1znt/+8ffUs0qxQuXLhw4cLPWlzvOFQpeoSiiy56hKKfUzQnDkmWwc4vl5mES7FhE416MAZ6mpADUgdc6+x19t9novgau9AXUOTQm72RyyRh9kN2ri+pmfhL2TzVKCXeRiehRVv6Mk20TftNwbwuD2QCb/rVPr+6Z1IOn51gFO2tsM6HN7WZsfPX8S6fljKWtJGEmyYOgRxDarOeie4E5OjrsXf9lGk/ZGhPGfxKXdkHajpnanAdOfRnopA6sZn6N9WbOgAk4Ns2dTVZRv9YBwA5lNjSUPw22ewI/cgN8ytALz6sA1RlC/39HkVskdTCPhuY4u3LWJx0kw324yXP6UVsYBMam4BPYlLB0bnmW/1I1pF0RKcnfpqAmFQNoi2rgXvfPPb/DVn3XvMqJA9ZdGzL94OQ9ck+2tNZSgfG5NTAXNeOfN7cW8Q46SNd2ONRppt7B36EKW2aNeMLQi58jXtIHPIIT/TJB9e9uC8MjJ/E4vCeQy5UElMCn1ZUGzLeKyepi06a2cymum/RAHjM5UH0M8Y++lCfvoT6kQdmb5t6vs8QvdDwVyFcbW1HAlNdJAtZWySgWAPY5R2ILGLa4LFe4CVIvzfsaWeM2yHmk41ggd97yHrrY904JnnZ8AkkmkjYEBfa5DhJgeXwHFa19Xe4LQ/4ZbHgsY8o8PsRBeYx3iAF0R+M3uWuAoO/nNTCNxJH8tuvRmNcPC7w4EDzLgbzgD6SIIjv6a7O4xiZtAP07qu6I717khOPZCNxIuhORsLDGTqrsA7z5N1Cuvy+QPH0g87h3YY+pUUfmtXovkIkXCRHovKC4IvOlagD9LlQ4lCLcqkFS3skxkbw++96vwsCbcSDKjoYW8+MO7misaDXpwjV7hOP2KVO+0R3JHx4fGlP+qwA75WTFf0jQYct4tVvHHw6TnyJTy3mSLbaVoz5kLESSItoavq8iud3BKrJ+SZUICY+7zyMOv7GwvOjAEk20UFleMeaSL8LEVfoE11b7GlL17bWdH9vpDrpR/ca4sLjWrV26INv8sr2rGAN4CuKeUciOg+XPD6QJCJjZBz4pAvDNxzmmseVxpyQGMxEGTyPK0j3C6zxUNUF5zuuE5JdSLEniRbvOWSslLAXcejJTMzJTXy0v5or29k4a9khT58gv5ds1PNPfxvZgRy/qz0mCT61yvrhXWoaE7L9JKv/ZwbrTmIZD94ZSBzAjk/X7ROIEvQjLG0XO7uS8U1CNFpGYNyxFmLetnTz3jn7ZLvm9OPt5rOfbNs8FnalzwAOAH7GXBwF/MYXrvFOpxz8If5TUPs0iBeUAyS3Vp98hW/fLsMGYFl09L7DeMWnLXmDXAfz0XUJOQN2hezrpwOr48XXrK8CbZK1H5QLxarDMA5g3bxR77xhvOvsroJkp30vex2sA/Wx/e5fKOswHe9KXIaxXcJn96eyKoNdoYv1PQLrfFHdfkDIgq7Vc7p/Pnji2vbUVde1ve0d/91J64Y+X/N+xrXPo0p9vfsYd/TH0UM+jx2PAN8DdB37dKHqweNeF+OO+0Pci97xR/6a28O3qBqKLrroEYouuugRPkvpjdvvuFsff/ogDbZAH5ZFF92poosuuujnCv3lh//EGJovjglOFOmTMhM4gL98CpsjPok+ZLJvyvIFMxNPcDhZxxdR9tvZQpry0AONjtSXdCauAHRGbQTaKcAgh5R+8CeTXFPIZFf6l4DvU+lpggw/c1MtE0zedpjoGTUFpD74OY7UMdWXgFz6DOYrPoCejMvQhj42BrsMPuAXNtIXZKFpA7A3lQfSB3QC9KUf3GkijRolY7wKGQP0TeOSwL71gQY0P9AYtAjy8BA5AYAk3rh9MQL2LrTVgnb6IcMWCf23ZlqDWypOvojXk2cHe0snFTnsgb7sC15ng9jjPw9rJBm0RfKQvizgBJJIGJ3yBCTIGC/74Acan/fDRcNHHXkR8hNOfE3AiTMNhFOFCclj33cp/+e7S2M/clSA3sX2ZrtqsfTjVM/I5/n+wryZsE8dcgIOuz1x6EfBqiy2cWg9HB7rdlUycYiOTBhu7GqNnKDSO1wCYhxaE+yhq7ogYXaZfQcgZhq7bQt7khRbJyFTHwkz4ppJQjD0lHcxuyyEVTliTUIwH1/KmoKmDo/6yhoYQD6S+Ds8R/BEk7fQnPhUocCJwz4O3n1I4hC7TrppApZ2RG15CpFxS9G8nVVbnCrwO+jYNCRJGGq9v8gpQHhg5pIF7EeZ0r5xTrKkm3uGsQMrnuTPYnenbR4/09o2CYhNJzATfLqQpKF9JrDwSD6Ihrc/a7MdFo+bpE/MvX1N//HeVzwSOpySOkP8SEaKidy+xn2CxA0bl5JVIZkXyUTVdR03kqScsNjb7ac4sUHswpd14JN0XCwqcaoOX8MG5fwTh/KFGegJrQuf9jsfkOXE4IIkVQ+CeXOSSgyTRRAnOPEHOZKCyHCaMR9Vat+ih0ZOwmfUN4UxcdhvpoLZ5p51cZOZzffaQX+3JIstEozhC0lC78VreJwqTJ5uifJDtH44XQhmekhi0n4ecA/mpIoTfdIvhZk4nG+FPicJVT/YC+y9aHhaO8uD1b79vW66n0USL+YDXiSoLj0fbJ5zbfA/EDhByElCxrEOpolDwPPPelG8Mrl4eBg3E8fvcF8y28bq6PYpcH04Maifha6HjRmPniWIzJFivkl/8XO8Hh92IwYBEdMEPqOnjyq1XI/PFPhPB3MtleUB165ipbUzm41JUmAYr1ya91PEqzGYMR8k+Q3M166xnJc4a3GEiIP8kvhie9ae/xsPtBc+8t5249Mf098uG+15150wLigo+K2Bp3cP2kNPnOVu0h449ZL2oZvubo+cuqFt8fmtewTXr6Hfn4Z7ia51X6iCfM8pEPcjPnv1Ocg9Rfca3t3oz6QD/S2gLnlvov2nvvVvuU6D7g5dI1B00UUXnVB00c8Cut5xWLhw4cKFC5M4/L/0hTASN5nsmSbRgkObxMVMPjBNNKXaKQ/gi2kmptIGbbYxkQPcVxyx/f02k4wphxZkSPaAAWwB/CbZBUb3FJDELjjHRn940/4JybPfqjs+qi7Fph96kJkm9eiRX8KBHDO/6UPLIEdRHZnsgxw0MuDc5suxIoVMzlEmXjOmcFOWOnqgaaNghy0EcOoAbF08+2JO9yWq1pMw1gKQYfxZB5D3VuYRnfqtOnvhzC8eet+TJIyA3/QhntaJrHDaAzOWpLHIOJHPrU70zTdnbcFJKYLXhXk0KolDTu05WUfYeMwoCbgQGXBCjsV7x9PEIXQm9kgWsSjgTUE0EozVe8Xsy/YuWbfeVeg82vB1ti+bJIrwV32miUXnBHrs8sQhJpZSwuNUj5w4FJ8ThyQL85QhI7+sE4cAYrLr5Bz6VJy4Q+YikD4yDsCJU7qxx0ybx6a5UrPHeQE4ZI+633w49GNfiAX6tGiOJA5TDSanY0CWQn/0SYcLdfIBtqGCfPZ1clAEawW9yAPUM5nIDYE48jNbtNnWQVvscbQQoS5LUd8jJw4FTihKt/fipGOaOBwd4frebZyeOnQ2kDZQXEWuK4A8gpZTgIf7mv8lSRgZ3N4aEofY8GEHLWAnEklSkSgimcipQvQ4EPi4qV/qwGMsvUZU1HnGEdCtbVWhZYP2mQK3r35b6sMjXhfi8a5E2XZfNiu5T5EE2lMduS08l6+cgCJ+yDM0rdE8cTgkDjnlMI2L48c4RZI3zWQEfOIIkm+2QEw4wZcnFqWLa2PpdzWJxfNzkfNiVD+Sk+jpdvyoUE5CKlbPFOhj2/1/C3iO+olD7GIGQ34kqdaKT9jhI31EUx8h632sBuZf4+nJwvyvD9wJZpuc/uKUCONSX79ncEtrgvFp/NzI0oNUKZzvLXTCkFjZHxJV8pPTcrARZSwL2fNG8yTxJd0k6xCKZNZowzX9Yh0Opxjp4sQhHaRTDP3ObpJjbMSGOMb4QlkXmMBMa4przL5LAcle3slHnU+I2BTXVaP1iQp+cdJuANHwaQ/AR5X+WFMSZdHGaRzRivPRE4cC9WdsedLRpxoPiA9toYvik4DMN8lJL1r5Jn8ZY5wIEhBL6n2sjjEJAJwUzzGUD8wlG/1eU8x3vwi8fuRDPBYce4ybOslU+dB5wHwTPdhhPPgXyVLkuc5DlmsJO5uOKJDJw0gayr7GRoLyeY880O567P3tJccP2u3XXtl2tue+9c77qcaCgoLfPPCqgbO7B21ff0N88DeeaL8+v7Hdf/2L2sPX3NzmvDOWa56/zblH9yPjvvq4CVPM4YoHdC/gvuT7DvK6N+nvDf/nDQksDnZdpz3uxYftp/74/xCdU0nhwoULFy78LMT1jsPChQsXLlxY5Xcd/hPXM8HkxBqbU6qnDFtMJHMy6QYfALMXxAcqfCD7mFYDm0V8TY1tqoDsl48spR15kk5OcvU6MnNJT+2mj5kgs6wKAA+bgzwCSIkG0QM+wGaWN9OCtD1/ce56rbPT+Ad2Io46bR2GmHU6+2Yf6JSfygEZl2lf6tM+tGcdmLZNgX7ZdwoZU/i0pz5sy0GPOXlHxq86MOgUH7DPE7mQOh9osx4K8tDdHpjHiE4OyTi2bEkgl6cBE7DBew6xnfZYj/AG++rg01wLrQ2SMjLsDVGSUiQfNjf8GinnetTGPj5rgP4UckHDYT98wwGSRmqAtBy/4AMpcxEgb8ChKg6f7KhODoP9Yu/xisf+LjJTwIdzi412BZvQPVloOeoCJz2JoycwYMmmLM5Z38b57zhU4VGmMzaH3PcCjoudjwJlfM51YC6Tc/TDjrB5JCcnfhwBRNXm/IyAXBDy9l+Q73FkQjw+dOlnFRwDgX3ihzXDZMF2f2iVdYAsMgCJJvbP+pi82MD4D2/VtmMkAfQn2MduGx8A/KIqW04AcLR2qkyD82m2zX5yT3Z54t+QB0gxiN5VdxRVNFdSSl0rWhhH4MWGvU8H2nmuFfSTrBNJQsAxmbPv71OGkUiHLwbHkRBkA1CxJ5ngJxB6oiiad3g8mtSnjuShFm0+dvQQ/zEgthNjTniwruQLoeBk1raCjf68YPqaaSRD5iQxZFcXg5MnknMSwwktrWOfiiSJKB6JHuKc861YO9k65SXgzz7JElX63PgxrG3b/tHugpskbjjlJ4ZPgvFzJEFIDBTXzsvkYr438EIQCSPpRL/i6XFGi20B8v7I70geMo+iuBAuCawBxcUa0cB/G2De4JHgwffURaIQrGu/852A6sD7/tCQ0wP4/qj1FP3ZLI4k3PT02fKAx+bKZzam4eQpuDmn0dRPC88JR+5hJPP4EZ9E16YT1xKRG+EnG9wk4mBYjcGb3oB9pkHYm9bYoZ981fXkpGH2G1yUv5zEZX1zf5E8Ywg9IUbdiUSSihrblGcZ+9VjxQXkOKog60eBap17Ax77vQ/Xim6a2ONDZkkiX/NLnFKUd/syc74mbRUZ7JKMF7OP15+vk0Qi/0YgDurrtYvvrAnxINXi60n2OXWErkwSEhefwrdQ6GP8PJpUHoiNbd59iF3xSAi6/6b6Ic340N1jwA3GMjQdtmMHT7Yv+ui72uce32/Pu/aKdvWVVyCqLn082P1NAFPA34y8y/g3qargNwEHnk9uszULv13ANce1yfXw2KdOt/s/tdt+dXZ9++VbXqW/dbb0tx6fb1yqujvovjnjXqKbkK+cPm++51CncJ3r2va9mPsssircA2zMwDUcfd/xLX/NdySowoULFy5c+FmL68Rh4cKFCxcuHCcOM7EE0MQXUvNUqLMtxda123pJ6Nt7kjkKqQ9gz5FNH3QloB8KOeoklzLJBT8TV3mKMAv7iWyG9q/ABmxTl6iFUhYwlq6k0Q9YfkKTuEr7w2m2TucY2V4LCB5y2Pbmmvmhk/p0U4Wax9frQ4tkpn0TpvSoZRwL/bBPG7zUS32Ks6/7CaZtjCvpdb4x/owNkDqwi7w3AlVHbhUcQzbvpTTjaN3oix//IsnFSTiAvEHfY3biEO5UM3Giexc/P3E4gThpgXnZ3lKsDvq6kvPecpVfmThMQDc5IIM3h4UWsSVP8pH9cPoNp+NwBKFOrgPyKmf3nVNq2/p1scShHz8qp9mD393faCe2NTaSdbJpuW35IH/8rj/RyI6PLB2dyMQhkMlD5LFpPVyMkifuyB4BkeclDmETrxw3gUXnpRKHK4Auj3sK+CJgXGsTh70P9mPiRBNM/J7K0obuKQ+5KT2tpx/0W5WbguXUyFxjE39tR1g+G3o83D4BJx0UcE7rrCYOvfA0z/H+QhaEdHDKR/V1SUJgTCZOEofYZYNPi2Ypvk/hMVdqsjwJAESwJ3+cYETO+tnw1xwfbPmk5BG7PXFoPzndxDxscGpN45Faho/Lfr+hkzj0h6m2TBzuk9gUcMOexoj4QTN+hkIym8SGWDi7sSVjnef7BeuCWNMXjFyuxSnQtK8+6JQt1jqnDJc8WtEXnfrAk69Ln8BbyJrGg00tMBImkfTiJ3gJF04cMnb6Eih04zM09x9ObPRHVKq/61oL/uSybtlGhsTSZYN0q8g71dG1rxoLGG2xPmJBk8xlFJJ2Qhbf8xMcHZKXKIlDVNlf0XlyzX37TcOJQw0/Tq+ELjaWh/npi4FN5xknm73m472JJAkXTp5Jn7pTz8RhKIp+wPAYPNbGKtiMfHHisPumGB5JHMqPUCHfSEpn4pBEoOYtH1Wa+onhgkekalweFv1VnDjUmM0jPvIvksjRzz25IJg3rSPr8+nDACcP+/hImvqknsTR7RlJXo7XzlOhHw5iL+QjoUovAU3dd8YY3TR+rg9BbPaHnyT0nKxjzgZgXrT6/J8B6IMcemKOQzX9Wavqhw6MqMFrA55p5os5IKnMuNWuPlv7u+2mT320veGT725333JDO3XVSV/ykbg+H0h4+G+QcN9wKR7jh/bpRbXxdwVAe0Lx/v3zmANq/s9fnaZt0uWznseQGfe8jxH4TOJNQW63Tzz6aPuVTy7bT13x8vap2+7QGDSWfm8N4JrVNazie6na+A8gvh/4BoWdkMl7CTAkF2njM4QEpODtf+SvotL9ChcuXLhw4Wcr1qeiKvwqXLhw4cKFn8tYMN1eIiHDl2da+LIK1ldpb0nCtyzfZGnr7S5J98LnbSbPRPp7qP9nfy9Lb/4FDy1OQHW7Cf0z219c+c6MDsT8yD13lo8ICuyz2mimzjjoT0lImoLc9Gs146IfgP+M3XLCTiqqjkbb0K/oH3IJ1BhHclIPJRNsto9vKhnfVbB+5HufhOxLmxNyoo9IdPkYRbTFmEY/gGGc/t1ptTnGzEfHbFTwbqIQRxqbwoj3Om0uas2624QX1KTXfPQg0/WH/2pfCpM4YvcjHVIb7cTdJxFV8BGR6ZwNYP1jQd9gVx18yk6dvQEqHbNui21od1f7kDQE1E5ijY0xfAZYH94ySTkcQc9FANtXqCOnDZHENonCnksYkoYANBNArufEcQlO2jw+sTblMPvS4V80ATNOWmkAnDr0aUMGDhAD29T1Q0ywSxvx9AZ5iA0gOk/2ERDeJ7ixp374gkp45INQsS7RdyFATjp9+IakFvtSBF/jcBxIBE11URc/Tiiqzli7juw3+G7ehEYOfylTHk/ipOA/+oh3P3xnuZRNsB4J5TgzcWVbHVPEdx5hRQFJJpJTBH25L0O+Zyl+yDEGkOZAq9uy7sMpAS1SzY5KLIC48ypOOByGDG4nMcD11LOfTsIz5+pDgsz2cQE/3YfnkjIYmCjabLMt1ZHVguJxqNalRXPIewRJ+DjZJx45AhJ8WgPkGwCSMxskbnh35tbMJxd90flCQwJ/VCeO/ZGKsDwHnGgkkUYyVX02dtR/W2NZwIMlfk8QHvK4W8bGXFCoAyxuKxTg6zY+MHZiqBZuBmCOGrP44eKa+vmRvnFBWMbHkdV8hNfBCcHzkoZdj/nhhxNwiqvnfnqBGmhjk1ZtksXC5SUN0Y0uxpQ6Y1wjsLbYEKbekzm6AS81puDha6wHEr1zkr1MSU8qkkCMxFj4TR/ufd4jdoJIGvkFsL58ox15fj8hLOKuueG0ITqyS0KsZUEodNXJLdXRxWZ2JLF60ZoZ3rll34it1ofiTNLQY9jHWXxSVDUeJ6E3uNBZ1+rjxLZk9KOOalfh3gfLfZZOFsajSzmlJxvqw3Wlu7F49FMghjWh/opxJEN73LJJgE8Ay97rU31juPivq5hEPIFVH49X9oeN+h6H8C3i4gSe49HjI9m07Q8B3ZCdiESnbUWMcmxixlweSSIK0KfY8v5HYuV7hv71vIBAc6rxR8y5bklSS4cHiC9cxPIB0HV9Ynm63fX0Q+3Wq4+3K49v+2+JCyUN4ZKk4V/C5fAY02ZPGgKEh/YpFO/fP4+/CzNpCJe2i80b8NnGAwc9wmcSbwqbm7N26spj7TZ9lt/28AfbJu//pYGJE8z0+c39gyQg9w/uI6ogQCsXluV8zxHPCUI09P5xT+rzbR5tpgoXLly4cOFnNT564jCh6KKLHqHooose4VlMf/ky3nHIflEmlAASNlAU6rSRCJyqgQ/PX0o7L5NT8OlD0ocknpMkK3tXCWzmLdgcFiCLEbEGGh04uDxobe+JaNg+Jf2b4rGnpXZsgWmlbj0dnDTr9eQvJWm1EzkAWcYFIEvN9icQXcJexoU6W3BgYLXvVG41VgAqmYd1PCD1Jo0cNjxu0ef5qII9xrLadx2gb85ps74hdNkg1ex/5xwRnEOSTzRhG5Z0zjflqwLEBojHCK8nBnxycKH1JnacmJOMsHMbawA2Y88Th5y6yJMXwIJHk/b9ENbVXGXj+KzxFEnkp30vCMQBnfuaLWHvJcv/fXrxfrvR3HpQ+4HWZ88duVCHd7G+nCLMx5LOSNrRV3FizCfVdkbx65fKAAsSNxrPzElD0dubGvNC8SOG6qs6PLBPIW5eILDYOjFzwlALpzMDDnnPnELBXjUnITfOyBYnIidxvxAwHvbeyRvxzsNFvpPwQsA8sRbxgx9iJr/zkanG9O/r5wiwBsmPneuYi4097gRO5SEzhV0VQkIiMWFbDJJmJN328ooVMF7mfwJbGwdSedjO+YWMF4bZ1n7b2Fpq/R9rh+cO29mze97Q3zm+GUkz8cAb8z2FR3Jydt7OGsuRNuMU1faO3104Ozwni/gx1+9dtR43hhcJQlKL0XdjayG9bBgeww2D9/1185wf25U/x9WucZJI0hra2Agek8S7E50c5JrdU6C4bg6lX2todvxA1/rKgk45Jx4VaBITBxrPCUWI59VqDfq9huoy8HThR3JCP2fk647GdaF1ReJyVz6qL+9DzIuLpNhSvmSylkTtTINczLaNSS4dyp/DBe9w0zygBxPM8W8B5OlCj4fYi2ZcPLaUZA7tCet4FwY+qUJuQws0Pj0Ur7ZpfmDFQ/EjIXhAIs3AaUbFQDYOSM4qtgD3xbnmFFiQfCOZxfUgFnKcZI3koe4DvONqAk5ccSS6w3gCBR2cqNzUkkK3fNGaOdgLu06WsXa1FvyurL55PbVhvbovh74AeN7kxh+Nj5OEcy0973tLr23sktgiKcocjNclj99E3yqPzyQ+B3mP31EeaxA726KJNwkqkpSKR/K82T4Cpx1J4DlJO8RdZklWah0yTr8nTJqcHFQwNvo7NvO9Y/gYbaoydl9fo508zeskntrZ/B/A86R7j08WywcSoE6cKjayyyMK+dvK41UcFhprnjiMBG/a7dcRdhwD3WN8ap2E5NQXxYH155OGE9jfbbc+8eH2+kfe1V72grvalcd0zclGQUHBfxg40LX/6BNPtnsffLT9y+d9ZTt75VX+jOYey2NKF9w3+n0l/2MB95IZN1Rfqtwn+DzWNS+89E2W+0vIqUJPt3F/eMe3/GU6BXDLn17uRRdd9AhFF130CJ+F9Pzqq6/7nuQXLly4cOHCz1X8go1vGurTkpC0N59U2GTj6yd1f6lkowuZviFHgaY9ZRb6Arr/9GE7UFmcPb8cnGuN9/nPrmYjUf0O2bKL/vSFt9hlw3OjXXv3Zpsf32j7T8nugs1D2eY7rmwmpK8A/uFv+jeMhVEL007SaxhHL8iQeAtZM9pcX7iniUbaAPRTi72ySQzMU50i/UD8DtjkC3yvT+0CoUq/u98DXzh9sG7h1A1/Om4gZYM62h+gBo2OgzPtgnN0wUJyh6yadciOgpHasYU/xAU+yYAcMfuUPFIUsM/6WXZMcovcFq3pdwLbvcg7Iar64WlhrYXl06rLdxJoTsKcVf9zh+2K6+btqpvn7fSjS6+h7WOxkYw764CkInYp7K87jBT5xKEk1/EbATbJUXSBTdJIhIZo1slrsDDywMhqcpScypNPtbYr/3flL4X93e2djbYjOyQNV32f7y3jEaiKL0lETh1y+szvPRQsN4OXjzb16cOsqyM1SZv26b00wD72McUDn0nk4POBJOlPAo/9Y0x0XRcCxhkV9WHMrAMSk/S9UOyQI4mGTdXtI8lEkobpC3rX2cZfdNNOARAj/0a8acd3FhPgRaUyVaX4eX7RQxIRGpC/5xTLxx/fa6dOxMbaWfl0TvevzZ6MmG3viY88yfg9rUUpZm1rUR8sJX96v20dn7dbr5m1rROL9vTsQJfQpn3yCT9OTu2R5BIm8UC2x5OhuOlGyck10oLwnOjfZsOPhGHIkaSZ7+y25UID9ik8/Ffs9uQk7z3j8ZGaPE4bkgTc2JOPXJmy7cQbp6B4pCnHS1lDnCBbSGa5E3w2JD0HKujEP8ZH0uJA9Na2gjBre3uLdlaB2VfsNjdlB/98CkqwHe8ejIQNNjSvnHDdmanP0mKb2OjgZCEh3ZKnO+hgrCryAamZLhJOTMJz7EnotE3dYzQeRFl7fTHtLc/JJj4rtpzQsuLLB58UVB9OVO0t9/S5QJIOn7ovThoxb/phbALorBMqn0gch3cRQKfm1PPNQCJ+xHLOEWSvBelVHA6duI52g3zknY9MDzmp8E51oYXm1AkgurJ27A6bxoqzYwOP023SS2KLdYDjvpHTrDFL92wuHRo7n99OMhFL/WAv33Pouvrv6bo50DyzkT33I/Kwg5zsqB6nCTERds3z8pf+g3nbk759FRKcnJYknPNtjS+vGdYpYRLscv0QJdbBIsYUn6HECSPEhTEKe8w9bh6f2rGNc4qnN8tTMW0dfDqVOAqcRHTCEN3isa7kV5wWlA7+EQjrFIjnv0mSj12r5hf+LDRPutZINKKPudR8k6R0IhYTuCnfwW2JLDZxPcaa4wUyWei1wr1MfkWyHkXIS+ewPmWzr4UAdJE0RB4e8pO1pvm66twT7c4zH2s3XntN29Z9MGwXFBT8hwDur2fO7baHP/VU+9XDm9vy+DH97cFnTtwLeKxw3lO57/jeozZd0P6J+4Vo35eicAlzWjH6YyXuO/xnp/vf+jN0892lcOHChQsXftbiesdh4cKFCxcu3Nrr2z8xCfA1ki+JmUTj26K/UKoKLxNVAAkWeLm1BNB/IQm+ZEbCSAXe7LDtnJzpiyyazofFwWHbfeqwPaWypb7HrthomzvSzwmc463tnT5s19y+1V765Sfa57/uZDtzetHu/X9Ptw/9wtn25EOLNjsmV/v+MP7xpdjJqAkNMBYgE2VwzVOd5KHpzmNztXcz5PgHvaK9hSZ6sVwObfCJAT/T2A22OtiOCnzagZS3bMfoc6xVBxijocsCngeV1D/l45P5qtuWSs5d2uHRU8R585jGwMCfAUhN2989bAdnl7kPbSY2Uz9FreGz0NJGyaPID829nxIovov4JLbkeOxpShTA5zxVGfoCrrhi1rb6uqKVHM2ZR5bt5MmNdvcXHm+vfuNV7cTJeXvvLz7d7n370+3Bf7fXtq+ZORmGPnpSRBpyDQGEze8BxB+A2CAAzqRS0hPoe7GRzGNs2dzlGb9Z0BrvzvasPa51fPapZds5NWvX3L3Vbjyh60WyJGafFv/xTy7bmU8s2/YN4uv6mEK8J1KxZP9ZvhC/JZ17vEgmbu4dGCeQzJ5zQqX38Sb4KmyKT4IwTxcq6D6pRQJPdcbmxB14HdCFjf8eB+KUJw5ZBwkXe8fhrmwvyZbSJpkdzXckrUSz6S98wcemsv+NXRaL1qZzL+x3M9nwOJi3r5Jy6wC9Od+CAxm88orWXqn70Re94oq2u7vRfu3DZ9u9Hz7XHtV9amd7sx0s99vC8hqnFgFJwK2dTd3/Zor7oh3bPmi/54uuai+8Yad9ane3/fJHzrZfev/cJw5naiM54GQdiYLNLWnBea4nEkgHKlxNsXHvRIVscgpxwyel1FdzzwnD5blNXc/qS3w0wMM9yR9jwjlVhqh4BIV3vXEijCBI3Wy21xZ7x9tsa7fLkERU0EhAkuQheOgk4cHpQpSR4GQjkiST5mVX47/tinm7/crNtqf6vY/thWvqgiXyjdzn/WhcfMnrTHq3WZeSOmBdZsKGNuRcx5fxdCFr1z6RJNKCjqSc6pwubHuhQ64RQRbisY0DmaFlo/H/Hpw4kn6ug8HGCjixohgsSQBKflO2OevX9jU+xU4arJsAEvPFYstJNfuCj2ofEzEXA+7LxJhxS79Lj0F8ugozXmn0dcuYUy/OR509YHzO65okH2BReG4Tb+gb02ndmk/scOJvpvXHSUExXfLEISe8w74I5hx7KnwOs35J6FEPf4jXRjuu9fO01uQhSTqSVPYdoYibbVCTvRnzK7mFdB9ojWwotjccv7Kd0nXEYbgn93fbk4un277c2SJ5SD8PMR43esxrdtn2D/faru4f3jTX+iR5hqA31PGfRDw8D0/rzo93Fa1g6G4lUdZtJEmdeENWQPLOiX26aiwkDv341B5nTxM3Go3p4EDrBpWy50d/S3fEXvOJL1xj3qiPOHg+WW9c77LtjXxWGH4RL8shihzxRbfuB7Qj53GyTlmvTIj825Qe+y9dtokc9hkvN2l+6E8Fmxp3TGCAeI4H+vWbx9Mu+V8u9LmME4cHsg3nQu9pKygouDRc6Dri7/nHPnW6/dL9H28/svU72sYtN7ftq69oG1v8caNPR90HfH3nPfbIfUfXNveMfg/yaWjfCpClQIACc0r8Hd/y17oM/MKFCxcuXPjZiedXX33991yWZOHChQsXLvwsxne2N7s2LWxFeWMLWl8eSdoAcJIPBDdw3/rzBpmBL7aqs7l29e2b7RVvuKJ97uuubC981Yl21xccP1Ke/3nH2+e8aKcdPzVnP9iJRJ9kk4rZzkbbP33YXviaE+3L/pNr2qu+9Kp2ywu328ax1j5x/377jfsP2rGr9GWXzUWZpZAUYW8NV9MdY/igTlOoD7/Y1JMMY3ESUNhFiqI/v4TQ09udhISnQh9sDEk55ISJp7vySw2hyxwDctBwKNgf6uJjY9AhoH8mKQHL9v7dMuyoiQ9kArHvbYeEflmD5ujUnZvt5b/ryva5r71i7RxNy/M+b6fdKfwClc+5e9uJgTOPLtsBJ4Z63K0bzDrIOnbxZy48jziz99n3sS3E5v1cDCcXBear3tUMFecxtDZe8for2yu+/Ir2olef0Do61k7ctNl+/d/tt2vv2Gqv/8ar2pd87an2vBcdb1deN2sPf2ivfeQ9u23j5Cz2rVFnlRFfwDYEdocK9pLAdxImJDGgo7N+rQAslfR9UCrsE4idn3Nx7onDdvU18/aClxxrr/ziK9o9X3FFe9XnH28vfdmx9iLxbn/+drvqmk0/IfP0E8u2d6AQbofSSLpp/Sue6KX4Ma/ylTECh3ON10lCDHZwe8Q7rpwAJzecaBL0/t6bhod+ZDkJOOHFrvioYwokJsc4RD+/u7DzjPTrSNIGTBJDc3ziytauON7acfU5tqMm0fCdEGE+ULDal70y/GO40MhAg9ELj0I7uTZ4k9CcB+6nDhQN4K7P2Wz/yRtOtdd87pXtzhtJ7C3bxx/bb/d9fL9deWyjndiSv4rR8S35rLk5TtJVFwYJkJ0t3cueN2tv/pJT7RXPO9Fuu27T8/T+B/bb008vdF2QeJL8THO22Z1mveGwdGBLNXGpi0VAPfEkQkgGaDY9HgXhQPrUNpx6OyAREYkf5N2HYJIkIcHIRccCJRY2zWzrH/19Qkz6SPqIJDnkOx9zQPEc0D9sLeXXF2p8b3zp1e32a7fbe3/j6XZ2NxJfxxSXa1Q2N3WfD3U2TbL1puPz9prnn2g3nJi302cW7clzh22OTWLvOZIGkqqs9zlOwlKdGwxDCvMC8Rg78VI7CY+drWW785rt9jufd6rdfvVO210etMfO7raZx0IXxuDORyBj7CbZPtBN68YrN9rLbzreXn7DqfYbp/d8CpX0jt8XiL/YR54afUfHLgH06uNyZOCAiVwmckJ33NuRTd2jjZwWy1FyfWusTBEJXMTxK04lSqczh4yTHlRjHFgOjjoozmwukzgzE30S8xM5MQ87lpbv+fTmqQE3HN9pr3veze3qrWPtU3t77ewBj1klUYd92XU//MCOQDFfHC7alfOd9vyTV7fPv+m69qrPuaG9/MZT7QXXnGy3n7qi3XzV8ba53Gpn9g/aPhvjzJNs8f8jXnPLTe2uU1eZfvTcU7p3ojjWAXNp0g5PYsocsZYyaACEk3U9ztx3YIc6eonbI0a86K+2mG/GM9ftcltlq3+Oc/KHZF3Xg5QDxXUdPPrFQsamJVTwk9jjP8aFfb2rHXFh62F+GJw/XPAHHbSHTScl6cA4ujlccZ/U635jXHxDGRKW+BDxC10Cxf5SJw49RFSt8KfAY8wjnvy7sGzKTZt/q3j4mf/hahV+MzaA6d+FwMXsrsqu0sBvJe+Z+AJ8urx1MsBvVp84rq+bN2C1329mLv9DxQpY5YlU/agMgMzZc3vtoU8+1d7XbmwH86024/H02/1GT3Ff7gNcvGLFRayRBETiUBRGAORoFC/6ZduyffjHfl6YOgKFCxcuXLjwsxPPr76GxKEIaH8CCxdddNFFF130c4y+q715+NLLx6RLfnEU8GWRgszQ7pbWeHRn1tHAl9zQpO+kJC+W4u21duvv2G5f/Ueua7/z95xqL7vnyvaSV19xpNyt8qJXH2/Pe/lOu/LGWTs4d9ieenTZ9vZC+96Z1u5+zYn2qq882U5eHY/O2d3Tl9df220fff9uO3H1zO+1izEFSvDXbr7/Mkb86+NI8GZvT5Sw+camPRvNKJmzWS1YTjtEk2X9iDSB99Qwz5j7d3Ja2JYHs73mjb0Qlw/6ZaE4V2JaBWy9/BORxUroTzf94n2A+MlJPTbco7nLIsMvOeSu+jXYVR9iMWx8yF82fZmjW1653b7qP73wHE3LCz7/eK9f2W598U77+EO77ePv29c8HbbN47In/R5zt9/NG/if0jyC0HsW7E2yaY9fCNFBAeFUhsegXyQEnNySPPH0/iY61Xb8ynn7qm+5tr3uTde2z/udJ9sLP/9EO3FVa+/4uXPtqps225e+4cr2Obcfc6xYSx/+1+faA792zo+6RT9F6mwXf8mrzbu3vgQmey5m4ycg4RmJO+je5jWUciDVqXr/FhBNEs2y9O/ixGyuifyyN13ZvvaPXNPe8PWn2u9QXO+8+3h7vspdn3uiveDlx9uLXnasPe/FW+2RBw7apz65bAvpQofzPX7nIjEJo4vNuW34sa3iEz/njtQHv6jno0pJMKbPwJxjkj7BiSL9Zo5Q3/uaj2HGi5jWovfU+zU0gEjPWb82LEsXZNXfj0SFzzWDL7Rbv4CYOenW2itftdM+90Xb7fmfs9Vuv2WzHejf6dPNJ438qFv8zxgD1EliANjCf/TCT8w8UABkqKcqBWd6+tI8ThspxtjbnC/bC+XL1/3OU217WzyN5ZOnD9p9ugY+8NH9dvOpjfaKO3faS27faXfdvNXuuHGr3XTlrD12+rA9eXbZThw7bHffttW+5MVXtyuOzTXMeXtS4/nV+8+2x5/UoLa22ky2ItnHij/QdcKA4JFcWMhl3kukgfQNwBkXMCcL5B+niPwIQg2Kx5rCd0KGUwQL+Ys+n6oKfT4m7E3BuF9wEZBEmM151GmcYuIRiRtcHAvZ2dzUmpEt5pVf26r7osQX6eMUkk8DtvYFzzvRvvhFVzj5e++DT7cndF8n3red3GxfctcJXeeL9qRc5NAh62hP8Xn59dvt9/+O69oNurY/8shu+8hjBz6hGY+L5L5HsgR7jJXJU1XIvnDaUDcVz55knGRBVPejxeFeu15+fNWLr2i/7xU3txfcuNMeP3eu3ffY0xqnepC8GqfdEMkfYWyqTjxYt/uH++2F1223r3zRde11L7y23fuRp9pjZ8+1hS6W/rRa2/bpR/51PRcDj032+51ZHOaaf3zGMp8xVk+4Co/7JNnr+9QEuCSA4Ku3poepAbjf8nhVbMV9een1i65RqNtBD/VugDs6fxf489FJ5PDZwdf14unHTeGef/RpctYNl/rzrzrZvvllL2pXb8/br3/yU+2TJGztKzpYc+iQvNf9XH7qc312rH3utde1r7jjlvblz/+cduvVx9up4zvthiuOtxdee7K98obr27XbO+30rtbR7l7bW+zbv+Ma83/0krvby6+9oT117qC994nfaCd9EphrO+bSC5ixORZ9LALPgx0TTbMf1bdQKMRDxD5TJw7R10Cb1jOPUOUfcVCr5mPWXnTVje22E9foFjlrT+w9Leyzql0VuvCJ+HZl9oF54K8TeLSTGI1eed/jH0lXn7hl+mhGgutD4/PpQjTEAKNN13+AJol+vvkpFtYnlk8tAyFvPqcZvS4oeBT68vTl5SQOp3+frAM08XdJxF4qxci/S6eAXDzuFhei/VK8GIs4artUX+KVfhyxLkJiqLhg3wvxAOroRU/+LX0xu4jm9Qa4r1qmMfmt4lF7Jr4Any5vnS9UJWLZKf9S+jKmdKEeY1iZN8GlYg98urxnGiu+I6mjx3sxuYRVHv6nL1NA7ulz+jv8iafa+2Y3t7P6TDuUk3Pd9/zZbbvx2Y6n6JjxIe37OvfwuLYlZQz4P4jM1b/L47dldF954P/+haDtSsdFF1100UUX/SyjvdPpj0c+G/3pXXTRRRdddNHPPTof2+ktJtonwOcmkI/xNAyfqdEI3+8IFOZ/9ccXUr5qHoWd7Xnb4lF3a4AE3cmTW+3ul1/Zft+33NR+/5+7sb3qTVe2g6cO/fjM/dlhe+ih3faRD55t+3vL9tTpg/ah955pjz2017YP1X5GX6yl45D31+0Iy5m9T8knfZv26asd+aU23inoL+Gymd/N+UK+ddW8zXlMJ4wFG8PLOBl2hXjw+5gAQsSY2Uvb5qSjMO9oPNhTVylYIL+l8UuvY+Neape+BRt+apspDsQJX2h3goXEi8qexsoeJRsMB/qC7jM66rtkXOrLPj/vImSzwu+A4zST9DIHOU9s3M5lg4Je3g3J4x2XG5Jhl14/njOVKWxvKUZzYtTHebTZAG+bR19KjtgdY2NCLvBoQpJZJA4Zn99jJ3088Qx/eUwj8j4ZJ59JvC00l3ufWrb9ffki+XY8fO6hdlz8qFD9oJP9ffoc8ug5ycLfUbw3eeTkBG5U2fvYXrvvPWe8VlgzrB3WEE+93JIBzomxRy23vaHMerhSPqKTDXDv28qmC40u4hE/+bp1QrHaDJpN2+0rItbMHXkeYkGsnMMRMBZeB0bsWVubzN3eRjv3WGvf9Kevbr//j97QXvmFJ9tVV6M0+mb8SVDddMtOu+fLTrU/+t9c3179FSfaOd7pqLal9My0TjhRGAzp3lu0pfxdcj1qbJsHi3bA2BgUp7yIsZTP9xfGA6i64BF3u4s2Ux+DxrPUtTNbxGMXfYLwbLcFaE3iw1QNwB74Qm30B0hAztiTltxsj+sy+Dy6NIG6E4q4qbg+78aN9uYvP9X+1B+6qf2pb72p/ed/6Ib25TcfU+OynXYWRHr5DwNT2+I1rTk/hpT5AsC83xBf8CH3zqHzvYcgLYidHentSQQgeGzcM9SDtre/bA8/tmgfvu+s//PC44/vt/t0H3rwiUW7+mrN07Wb7Wu/+Kr2J3/f9e1PfcON7U9+7fXtd999os01J3u7urfsz9sHPnjQPv7xvXbm7KI9+qjW6Ud228eemrXtnW1fV2zuz9o5ubGr4chBXW+zTcVf/OWhxq/aBo9n5NQXQMh25SAvWjynO4bWlR3eUV/ueYxXvs42dnUv3G6z47zf8KwmaNEW547J1q50xLrjMaXoJja8xgwb3E+XewoS5twkO4rF8nBHa1/x8s1PRtyuX3t77dxTB+19/+7p9i9/+bH2s/c/2n5DJubH5+1q3TNfettO+0++9Mb29V9wZbta62CmdXglF+MEduTjFVdlEgNQO7ujnKIkIWpjcsOJQq13OTvjEawsANa51urSCVcNxLDRTh3fbp9383X+jwnXXbHTXnj9sXbbtRr9Bu94PGof/TMt2Ewondfc9bI+rrl2X9coC+8o8MjSSOJeGjbl8zbvLLQnjI9FyUXCetBEDONQTT5tzPci5BO/kOA0J/vEAG2LfUWnFx4LGmPad18pkV19Lk91OyHZFUxAK0Wfbwd+BOlsU/7phubHXEp0vqV7Cu/NZC77dc015FOsJBbXAfemLszjT/ksPNRNgSS5l9D+Vrvnppvb1999R3vlrde2B0+faf/P+z7W/v6/vq/9779yX3v7hz7ePnH6bPuC269rf+SVL2pfePPn6N7F42EjqZnAIzsXuyftq2nhZU/QLbHX61PYUQDjhKJ81wfYhu43TmhqLmNMqm7BI4SKh8bvItu60zpWfv/lvtaF7H/dC1/Q3nz3i9vLr7m+7ev+tq1rbYO/MZYk8Zlz5mZcq/xtQHJ2Hfjdmcg5/pJB1jexPm6KXOW9kcQ0/oOAxszjUlXM0/p3IkI/PNZVq8/6AqRvxvtHdW0Pyfqj90R0oOu3EnCbxzxv6rNpa2vTf2OsA+S2JZN/jwGX4vG3Tj7i8VJ9wdCjhEA83snJ3zr8Z7mEy9GXwN+nHl+/OFflVu36P1jlhSygvvp4yt8qHr+fiS/Ap8ub2k1gfa6b80vpYx37e4X6zcWb+jyFS8Ue+HR5zyRWXEH7PPlB6/FSY0tYx1sHITf6uZSd3U+daWcfe1rXbx83PutvxaXut0v+U4H/p4d4vpGFDPcF/6eUTnMzife0StbJxQ4MRuMA+7Oz6KKLLrroop+FtE8c8qd2fNIHLrrooosuuujnGv2CjTf7CyVfgGGxyUKdz02SihRoklhsoPAVmc0TeCSe9D3T/6s+++dXS753+numvm9e+4LN9orfebJdexMboPF5fHY3NuH3ecSbGNMvx1detdmuvG7u5MB9/3q3zXZm7eyjqr/7bHvvLz/Vfub//FR7948+1R75yL7fb4hPJKDOPHnYDp5G10Y78TnztnXFrB2Id/aJw7a/d9i2j8tHtSHvU24qvL7piUeWbUG/nY22dTI22kk8PqV+5GP8Dj357DhtKjYid88etk89qkbhY9fO2s41DHijnfuNRXvqtHSR0JkrHrK7IMlzrpezGqD0bznZEonb5a7sPSU56VpKZsG7zuTj5rZ0ysccG8E9fsWG39G3+8SyPS07jJd9PSfs+iYoicx96TuQvmnB/+PXyink+IMIlQf6s2ixIf832k0v2NFkHrYnHt8fys6xmXyNuWEz9JOPH7RHf2OvffLRaH/sE/vt/e9+uj34vr127jH5r7EenIlxLGVz84Ric7VGs68xXzVrexrH048v267GeEzzQ+xICJyD/0nNk/peIR5PVGT/n40M5ogTqE1jxZ8NzcenPkHjYfsdv/uqdsudO14/POrwkYf32vvecaY9+m/32m+8f6+9511Pt3/zU0+2n/6HT7aH/91+21KcOJ36lOZ8QzGaSSe2ltJ5+uMLJ1m35C8Jzqc/fND2FWcnj0lsKl4kack2nn1o0Raat5nGh38PfehAoZPA6WXb+7jWk8Z4QF+tKSdu1cTscEr0mMbw1COae+n6mj9ysv3uP3B9u07XhjdzJ3F++ilOmbBWIv7ASa4NrYG9Jw7ae/7fs+2Y1gJPbNw9oxgp9nt7sbbOaW2cky+8V/SUroVPPrhou1rTbJ9y4nOu6453HvoRoQLW3LlPLtqmfGNt8b6uTS0HrZx232Mak+TmkuexxT6FKL0k7XZ1DT9+dtk+ob5XKRY5hqfF+9gnDtpVJHhJbguRQ9DQ2lN78oWEn2S5trkOeG+pE+ryjUd67p5ZtBu0Dr7wlVe0G66P+wYJ5l9/z5n2q1pzZ7SejpEMZT7C5FHAx77HfoB+XSR7WlBcIzya0utfa/3sUr743hbXw5MkAz+1aFcc1/1CZp/W9fqJJxbtuNaXH5GpG9uTivEv/Lsz7YMPnmtv+zdn289/4Fx7+JMHTuaTqH3tK65st93Axrvc6GvyZ3/9nMfNo0offXrZ/q3W33s+fLa9/defbD/z4afak1rfrGG/v1H314O9WTvDO1+3N9uO3yWma+cA3l47OL7bNpcHssV9WnPogWreZvsqB04ab29utmtP7mktaS1ofGfbfjvQ9bLF6UESUdLF/WRjh0QR+tGhAKiQcDu7v9/mWnfclp2cIxF3uN3O7R9ozkkaLts2F6gT1swlZxk32tm9g7Z1gnXS2ifPLtp7H9H1+LDu9bRpThWCdvO1O+133nlle+T02favH9gV1ueA+OSMn3f1Vvu8512hOdlvH/jE2fbAI033bV0bsr+nNfr0mQ3dy3W/2mKCdS/TWH3yS2MjDktOQ+KzfHPSz0WfB/PN9pJrr2xf9qJT7b5Hn/Ra3NM18PjT++2+T+61Lf9PETlNMXB/nrV9+bHvjVZZ0/yTZNw9s9VuuWKnveRzjrUbrjzWfunBT7aPPyk5yQBcE/wnlUHVBGjDLtdBbvTCO6e1vS/9fLZqheqz8VBymotBLpQjc+CTo62d0xrZ13XK54y66TN1Jj1q2+RzWR2liaQeCWcSZEvd6A56kvTE5pZWxK7ifE7Xh2ZO4pw8yeKwzedt/3D3/8/ef8BZll31wej/5lw5V3XOM92TQ0/QZGmkGQWEhCQkgUjGNvaHjcNn3sPm4Wee/TDGYIPBBCMLEAIhCaEcJ6fumenpnLu6q7pyrro5v/9/nXuqbt2pnhn0fc8/I93VfWrntddee+29z9nrrr1NEUYuc+yQLvKixD63I1k1EUg2RLPYRxqKUkYzXYoWjRW1VXcA98eiODjYY5aGJ+YWsVQosl01nutFgTIkJWuFOKWE3NbShsd2D6GX/D0yMY//cey8WSrOFGcwlU3h4tIyTi1dZSeGMNASRUuQspmv4MpyGpFABXcODHDMBjCSXMSZlXFkc1Jya14vsDU5clPjjXE1mXeExs/25lCoFk0W/WxUiDRmS3m+/5BH7AcfmS3rQ1khFzgudXeY+FWgAJfY9ihxSjFdJk+FQ+P54MAQYt4gRpaXcWZpmlWRx1an5kPiYUbNHcKt9yj5dQdomX3t1ZGDJiZO/0umTflH3jpKXsm5I+umcBQ/+QiPVSG/+kfjxGRLePRoTIvn6ieVUR9oHmAh9qkdX6sO5VxhylX10bXgLVgcXgu0Xmjszy3nMTmfw+xinnOuY0kb4vyuHxLVWPU9g5RKflnhs/9sfXqL+KRUzXDCWkoWkM5xPRZd/CcljfH3LYL6eIGLRorltR5orArHDzqoG/T+v8LFPMlHfvX5G4H6T6ckZNgfo9MZk5e5pbyFw7Lgb1A+/u/Ae9EsWZKrOU9z6f8/IJvPY1xHlXr7UPIHOV/54Qv5EYiHWDf5YnO7uM76yUPHr3GusSG6xC+Nc2ceMRGvjRVnvuFjrh9X/uZ5xdb+O24z3Aw3w81wM9wMf7+FPZu27OFSWFs8m27TbbpNt+k23R9Q92F8gS4/bmsfktpkl3LA3SZSvHKa4lDAsPtp72IRyO+CxfM7tVyEKYiufzSCj/6Lfuy8IWrpsgA7cyyF419LIZutoHNbAAN7Q7julhjiMb99YC8tlnD0+SQ+9X9MWd07bgtj98EoWnv9til79UIO557PYOJk3hR7XbsCGDoQQu9QCG2dfkTavLbRnJovY3GmaEeaXnpWWjuY8kjHbJXy9Ic82PtoFJt3hdHRFzBlSTZZRWapjNGRHEZfy2NxuAivLC18HpRzxgK0Dfmx/a4IunsC6BwK2J1z2WQFyzMlXBnO4eqhPJamSmjt9+Omd8TQvznk3N3IZ2G6iNMvpLF0pWR7ddvviGDPvVE7hlWQXC7h0uEsLr2SlQERhvY4bevfGkJ7V8Doz8xXMC9rp1ezpDGHohRgZHznbj+23RjG4I4w2+Y1BcyFo1kEwx5svj6M9v4ATh5O4dR3MmxjhXnYHrYp2ulFz1AQ4bjPNqtl2LDphgAe+ZFODG6XlROQy1TwzNcWcOqpDNIzZZONEiuN9XvQNxBm38lihDxfLpsycfM+0rE7hHy+giNPJHHilQK2bPdjx4Ew+reF0NLuY32kMV3B4lwJk1fydpSo7q30SzFFGZLiVXceXvf2tT6S5eTkcAEnn0/hh/9pD26+L4Eo6y5Qrk69lsQf/OIsPOTz7Q9HMbAzbPKTXqTMvZTBGOWml/K280bKEvmtfZLpsTzOHctgiPg37w2jjXVok2n6Qh5n2I6xC0UZbEFWpiXKRmzQj+tv1dGhbHOH3xRawyezWJosoKPLj4EtYfLbGSXDF7O4yD5amCojTFnQXWjauMpOlrF5SxA/82u92HdD3JR9gvnZIo6+lMTpQ1ksZqrYvCOIWw9GsPtA1H6RL9lbmCvg+W+t4JP/cQ4Zvwf3PhjBVrYzGPYZ3fNTeVyYKKK9zY99e8LoGvBjkfUNn8vi9KkCpmZJS8KLWJsHt90SxeAg5Zc0SdF47mTaZHRgWxhDO0KmeLg6WcKZYfbNeAnplSrCzCvN0OxCCZt6vLhhTxBd/SF0c9yFo14bW8uUgdGreVy8UMAk8eo4yBj7tCMB3HZbFC2tPpPPeY6z42cy2M0xNES+reTLGL9aQJXlb78rjjtui6Or01EclsjnS+fTOHY5jxc47mcovzdybGzpCdn9j+qH0ZkCniW+1GQVvT0+7L8+iO1bgxwbTn+cn8ziGGmStec72fZYG3nK9ui40atzRcymSrhpVwiDHeRJxYvZxTJOX83i+Ih28r0IBjke+3245waORcpuKevD5HwJl6dzWGZ/PbQ/hgduSaCvpuw0OZrO4/BwBkc5L4xxfpAC4u6bo2iPynaPfGLckZNFLBV9yHLABzwVbCJdtw4G0dkXRozDT2NSRzJOpzI4dZVjJV1EScpdD8eDn7JfLuD6Ho4tylhvRxAtIY7lAOU+zbbpCLNUljSWcWWxCE/Rb8pmmzAkp7JcolyWqmW0twK3c7x3RP14caSMiQVOkiXSzC6Ph/24dWsYrRFgbLGAVy/r1wBS1FXsWNkhjqcbOA/Mcs49Mp5Fd6sH+wYCphR7gmNpD2Vl/0AUB4ZacPNQFNPLWZyfKuDyPOVyivwZLeGezRF8/N5uzKbzeP7ionZdsbs3Yf2rTfxxznlniHu8lLIB6TXlBpugNmjVIp2mDFLbCHa0KErYSZ68Y2cH3rarA7/3wjju2dKCwZYAXptI4vdfnkC4wolQSgqVUXl/2ZRe2zt8LBvBQIJrkz9ox5GemUzB5yvj5k1x3LapC//98CW8ejXDPGFc1xNBmpPFMyMr1memqCA+zvzE68Ndm1rNsvnKYhYnZjJW3/Z2zkcdnKtaYkiEamtAvoSJlTQuLmRwmX0W8LIVlOFdHTHmDSPLPllmnl0dLeiKUb5ZTY5z5eXFFI7OJLFSKEB3SIo9zlF0HgwlQtjbGcPmthhlzG/9PZ3O4tzcMk7PL7OOkOWtmKLYg9ZQFLf2xdGfiCDiD1BEqlgq5FlHEpeWVpAul2qb8JRjbfp7g9hB3Ps6E+iOO2t9knScW1hElHPXJ67fg+GFFXz6zDCurCQRkKKc/VthW3Sfp/wlKcs4zt6zYzMe3jnAepL48vlRnJ1bRDwixaIUclKc6g5Rrq+eLvzIdTvQEwnj5Yk5fPbcRXQmSvgnt92GmDeCV8amcSm5gOs7exDWfV/sv4Usx9DsAi6l5u2dR2846iHpx7r87XaP4mA8hqiO3CUfFvJZjCylcDk5j4VCytqZreRwc8cAWgMxpIsljr8yy7VzTIdxbHYaF9jmnYlu7OxswW0D/QjBjzG2eXhlAaPEdWxxnLjSSPgj2B7rxbb2BNojmsekSCtjLpvDc5OjWCnynYV9ryOSNU/Jkkh8Es/1SB/ggnN0qPqcPGU+UwArn7JaXgmDlJZ86WAfK06WhfI71keaFFid9YveB2WRKWWBk1bVjwSsWqaRRt2XauOuWMTg0hU8PPsibty9g3x25PHNQPI0MZfFaxdX8NypZUxwLiBa+0FNH+f8O/YlcPveNgx1RxAKOutKI0gxJEWr/eiiFlcPqkNKo+UU13DKaFdrCImIrM/enED9iO7I+WV899V5nLnClyTCfTclcP+NHdg5qMt2rw2uhaP4sJIp4XNPTeL4pQz2b4vhnXd2Ymt/3PrIzbeRMmujttXHyX2rZeUX96TUfjN4M57Wg3DqhwSi4a0qU4VbiCWbF8aS+MsnZtk3Zdx9oAVvv7X7DeudWy7g9EgSL5xawqnhrK35graEDwd2RnHv/nbsGOBczT5WO75X3gvq20ZU1+RffT7xoJF/+mHIMtfrJcpgNOSjDHJttrsH14PbR8LzvfB0fnmFa/IUvuC7EelgTAOJS6QfwTjnb87JdmRpHTjrguaLgD3WEn6Q2Lxh9bLdFY5zHVdaW2ddeOITv8a/olb5mm7TbbpNt+k23e9P17njUIuiwk236Tbdptt0m+4PqLsVH7blUeBE2VaTPYp307Sp5qYJ9BlZv7xqA271I1cfo/Tru1RXa3XvDKyzONSRfUcPreDZT6/g4pEsJieKGLlcRO8mP1ra+aEb0i/EPXQ9OHc4jexCBfvujeHej7Rh+/VRbL0ugniXFzPDRUxdZLndAdzzo624/V0t2H9PHDtvjprSamBHCEN7nae9149SoYo51iODIxmmdAwGcPu7W3Dvh1txw/1x7LiJ5fZK2RXG0HVh9G0PIhLzIp+qYHFcm5tsv8+DLQciOPhDrTj4vhbsPcj6WG7T7ggGd7GufSGWC/GjH1iZK5vl2o2PRXHPe9ux7cYINh8Io7XPj4W5IibOFM0q8rb3JPDgj3Vg920xbCXuSLcXIxcLGLtSwtabQ7j/w2247dEWXHdXDDtuiGALadvE9g3tCaGl21H0LU4VTanTvz+I29img+8hr0iX2hGMe7Dt5ghueiiBrfsitol2+UgeuXQFIdaPUtUUdGrj9GgR0+TR9HABwRYP9t0WX+03KQBfeWYFL38phasn8pgfI/+vFLHvbRG2rw0H7o1j837yfXfQLEFveaQF17M/Yu0+XB3JIZOt4t4famHeVuunbWyr2jJEfg+yLQM7Q+joD2BluYzUUgW5VNUUOzc9FMODH2vHjQ+s9dHAjqBZiMrfKmVqYM3i8MVvZ9C3M4hHPsp67kqgd0vI8C+Mq20FbL89jLd/rBN773T43THgNwXywcdbKKesYz/r2E162J+tPT4ssp3pZMXkOez14uD7W/C297XiJrZ35362Qf2+PWCK0D23RXHr21uw65YotrOvUmnK9ukCpsfKCHdqs4/Dg7wW7ZLTRz/Ubr+U19CRRdaZ1zL43B/M4+zpHC6PFDF8pYBkpoJd5Gk84SjVpXBTW8fI07HzZbydcngf5eN68mY7aWlp9aJncwA33RrF7bqTclcY28jbvn4p3aWcLOHyRBmbdvjw2DtbceedcezaE8ZW8bTCsUae3EreHLgxih07w9hJ/nV0+OxozqWlst2JmafQDZA3998ZxTspV3ewnj2sZxfH3Dbm37YpgO2kIR73YoXtSlHWtN+9ZciHD72vHTeQb7s5TrrJs4CnigfuiuMmxrW3cOx7Kuhgv999Zwva23T8oDOvaDM7wfhN3QFMTpUwP1/E2+8M4+6bYti9lXUO6qhP4PRwFtOLFfSRvvtuj+KROxLYOxjG7qEQcuUShjlWZOz00YfiuGUP6d4UQle7F+2tHuzoD+Fhyvz1WyLY3hfCZt1R2OnDUrpsSk6Vu4my9aEH2khHEDt6Q4hyeOTZsaEo8L4729imOprZsTpOd4hjKMvxM7dSMr69h23bybq2dbO/2J9X5/OYosxHfFXs6wvggX1RPHRTHNexXbtI99beILb2+LGZad3RELKsL1kosT1l+7HDDVs8eGRPC+7eGccNm8lb0rW5gw9p2czxsakjiM5YEDOsP50ro0xh9pliiZOHnw0olFHkZN1BHjy4N4i7d7RhdKqMqcUCsjoelO3Y1ObFYze04rZtMQTYvpMTOVPiSDHfE/HizqEoHr6+BXOc2y4tFLCrP4i3XxfDQGsQz57PYnuHHzexH3b2hBAL+pGXsklHPPoLWMhyTpqprFocSqnE7sYe4uin3EvJOtQexLYuKTUDmEtzXGQ5dXE8KZ8G0KqVoUCTIv9Lcah7Mff1hnHbpgTHnxeffnkR7RSULe1h1uPDmYmsWZ4yt1mkauPU6yubsvGB7W24ZbAFQy1htLGNA4kgelp8aIvyiYTsyFPX4nBHRxj3bW3Dzq4Yzs2lkCZPWT2hajiljH33nh5sbwtjMVvA8EIeuzvDeGBHO+7c1Iat7VHEuC61hXzY2sE5iPmCAQ+uLmdXLRJv7E/gftaxuTWC7niA5WPoZb92RMibzigG20JYzpWwXHAs53SvniwKr+vmvLupG7f2daA/FqHM+jGY4LrVGkdbOIhcqYSFHNdGrt3qk6HWMO4d7MPBwU5sTsTQHuYaynybWmMYbIkiUyxhpVA0udemssrd2tuF+zb34sbednSG2MeUq75YFK3hADrJq8F4fNXiUMpsrZHOnaKUQ22yaxJk/0WDPrx/zxZE2EeHxmfx8uQMaSqxr6T0cvLZ8GJfzbOtupc1WcphMpPCWCqFSLBqFodtwQhxcy6MxLG7vZVhztOxFmxtbUNLUH2QRbqs46tLCPn82BJrx31D23B7bz/6o3FEvSEkAhEMxFoxEG8haR7yNo8My8jy8r6Bbbixsx9Dcc4FiVZsb21HTzSGmUzG+ndvoh/7OjrQRX5LtvTjiZAnxHnUg9H0Alviw772fjy0eRt2tHWgzR9Fi5/9GklgG3GF/X4s5XIc6zJtp6DrbcusHSXrCrnvWVpUyEcpHiTzEjnlNn46IaWZEtsUAMJVw6e/5LlwuaB5VkHxWq4UhFJGOhZKNTCvyvOpWRxuz4xxruywMVWr9vXAeOHX+nVuNIlvHp7DF5+dxXMnVjDDuUZKvnHOhRfHM7gymcXYTB5dbUG0J5w1vo5Ma5/7bKT8UXulgHnhxBI+9/QMTl5KYRPnxbZ40I6XfCOwH6/xPUn0ffapGZwaTWNkhu8wnHNlMb2tXz/kEU9qBerA+bGA0079k9Lo889M4VuHFxHiO+SNnKP7uxzFusDaUPO7cM22KY5hxSlWfqvvTfgiv97PrRzdDcg2aCzrvNPX1V8PjHZkSjQ4FnXyXxM5wWTLspF3DF+8msSnvjGF4ckMhrgu3LyzhfVqjDv5XRDusdksnjgyj8+xP558bRHjc3muASWuqQWMTOcoTxlMMS4a9qKN8hIN+9+c92qjaNqAZiPB+EB6NN7obyDLMrntVrr4JVcJFs0/04t5vHR6CV95fhZFrqX9nPNbYlxzla9Wr8sXla/HR986MKUrwaljPWTq7jgs2DnjjOTcUKbMBvnO4OV86uI0/jNN49qjjyGbF5Qi/Hrotyo0b+gHBE68RRHHZVkcigZFNN2m23SbbtNtut+nrvO2okWwzrVFsS7cTF/vNtPXh5vp691m+vpwM32920xfH/7fKV1perSNpCh9uMqvBVNrpv16lo8+N91PSz3OhoKtqU4cPU4MQX4G9P0b4p/VeBeIT8rDXKmKbLaKmeESXvt6BidfSiO5qA1c7WV70NYZwOY7Q/DHPHY/Ykd3ED19QbS2+dHRE4RPR+J1+rD/XTG87f3t2HdTHN1M9we8yKzoF/dAW0cAW3dFccejrXj8n3aZ5Z7u04v2+nHTu+N4/7/qxg13JdDTH7K75MSEaNSL7t4gDtyawIM/2oGDH2pFpNVnx5127Qww3IJHfqIDe2+Mo38oZLRpkyWR8GNgUxi33t2Cd/xMB256LA5fCLhyLA/9wr2jK4Be1jO0I4wdt0WQY1x8qw+DUoSxnO6301PMyWKrgnC3Hw/9VCse/nAnrrslji62WXcAFck7KVf7BkO4/R2teOjH27Hj3ggqAfI85EFLp9/yik/il5S2198eN6vAUMhHOsk3KUHZMbYBS9B+hJR9gQR5Hfds2G/Kr7v8TKlLN9jKPGRZvMOHFtYl2tvJ74HNYdz2cCu27o2QhoDxJxT14MEfjuOB97VZW8QL8VtWmtooEb2KV1vv//FWxMlvHSk6uDeEd/3jDhw46PRRLOZDJOKz/r//Ax0Y3BletdarB1m+tVJ+XB50kJdh8kab1bK2k5yIVtEhReHbfpjyw/q7+5w64nE/BreEcc+723HDQzHEekkP69l5Rxjv/lgHbiA/1Zc6OlSWopt3RnDTfS3Yc3PM2uL2ZYS81l1/6RLseE7JpI5cjXf50LM/aOVtz4awvFDCuaNZvPztHApkdohyPzpWxgvPZjFyKWtHeAokS7Kq3bYvaHKuPm1td+pr6/Bj6+4I7lWfk/8xtiOsPmc913F8PPx4C265M4LFhQrHFcdUj8MDlZV74M4Ebr6rBUNbw6bQjPDRWLjnTvbdXTFs6/MhOVe24xDfdX8U73us1caJ8mjcSP8iHreT9zv3xPCe97bj4fsoe31+FChkQebpYl7xXnVuHmI/ss4dHKMtrQGzxopSLgoRyljEi3qLGoGXUhnhuJdwlvMVdAYpe2ybS38P8bZ6WZ6yXI5zLLP9HYm1/miPsE9IoI5wjbZ7re8UP0B5uHlPFO9gW3pbQoiG/CYH/aT19n1xvOeOODpbtKlXRYLy1xUP2dPWErDjc9XmkMZPlKTV0awxozFrG9XsPqk+4i1g2eAajpjGgo5nLWFXvw/vomy982ALNm2NGH1SWEuhkoiTp70JPH5nGx49kMCWriAqngpaAhV84JYE7ttPPg5EkQgHoFlUCmddndbZwrE1yDnrQBse2RM3S1TNFe6EbspDHx/6C5TTZc7JUopt4Thh82yelnXGlnbyl3T3xiMYao1gkLKNUhG5bAld5Nfe7gjiwQBGUgXKe9mUfy3hEDrDEavq6lwFR0azODudMT4s5wo4MrbCJ4PJZVZcB/2cN7Z0hjGXAp4bXsaTF5ZwaiKLoM+Hh65vwx19LYiwEUUdwawNUJ03rMGlh7TqyFgpDXUkZdTvQx9pFl/GFtPIZMq4NFHAPMdOVyyEG7ooKL4S+Vy2zVSteWEK3qM7O3DX5k7WGcDJmRSeuTKPl64uoFDwYVOiBZtbYzVqHUhxXs6XPNjamcB1vRw/nCedo9+0f+vF7o4gBlu5IJAZK/kS8Xpwx2AcN/W3IuQP4PxsGk+zDj3yt4TDuGNTB/b3RlClULGVxtMutmVXVwv7KIzhxQyeH1nAC1fncW5hGVs74ji4ibKj+bNSgEq1Uz4f2NKF2wbaUaa8HBqfwbOj03h1ah7Zcgk39LXj8Z1DaOX8qNW/lzJ5z6YuvHvPAOn34Mz8Ml4Ym8HLk3OYSGWwt6cV923uw7aWhP0QQrPv5pYYHt3Rhxv72pAqlVbrOD23xPEWxJ72DlsjlVegcSFFrywA7ZhZ8kf6Lx/j2jgvbWqPYylbwEwyS0kpIxIib6UEZoW6n0vymKdcatwcm5vCt0eGcWx+gmNNF5w6IGXqIOW06qvgOPO8MD6OI7NTSJdzuH2oFwd7t6I1GEKpWkSc/L+pfRPuHuo2uk7Pz+M55n9xYhwXl+cx1BbBnf2D2NnSY4pDUoxQwI9+tnsH+zsRCuLE3Az5NGZHkqbLBVxOzePIzCSW8jlTzI6uJA3fldQC+V7EUKydNGzGAfJ/MrOCV6Yn8fzkGI7PTyPLcfW2/s3YEu9A0MtxTt6YgtAmlxofyUR7fyMv7OE/yb9ZCTHNjkfkY8oB8t6Yzv51QH7llzWxM/adP461oh6rlPnNr3FFcOty/JpESIurrCfomG2j4xpglJOOJc4R3zg8hz//zgwOnUpRpv149I42fPAByt09HdixKYozV7L4gy9P4qsvzmB02jktoh70Xqo7I3Wkb7ZQMcsuKVasmQRRkcmXcfjMiimnPv3tGVwlHjsWU216A5AibHYpj9NXMhifZV9xfejrDuDiJONGMlhKFy1PI6hO0aJ680VZnkmmnfcOV/rFSsmx0ay5lW2wd/QayC/ryBzbU2S62mh9U2uX2J+rlVW6q0xyweWLW1aolUdlVjhX62jcenwuiG+a+9bxVPjraFsFKyvrWKce0aqnkRYXJI/CrT4SX6zNb9wFa8C6RMvTRxfwp9+SEnDJTh155HZHXn74/i7cvjeBlXSF8iSZmsSJ4aTx3v1OqQc1x22byz/Rtwo1r+JFp9rl0qw21OfVEBEu8cvy87G+049GauUnF3J49tgC/uSbM3jx9BKmlwqrvBIuPfKLFtHk4jO2s6p60pzvtVqgDiRb9W3VXGFjlZll0V1Oc84iXSpqxWv1Oscdy6/Vxclv1oXCxYzOPbSaZ4TPOZZZYQcR/+h/zXXDjW4zfX24mb7ebaavDzfT17vN9PXhZvp6939FuvYdCPxT52rRrQ83us309eFGt5m+PtzoNtPXhxvdZvr6cKPbTF8fbnSb6evDje4bpuuvPiDpaq10Nwn4zWnh+o9RpelxcjillU+utlB0zKk+rPWpWVtoNwR9qLbqqMKAxyx4EkEPur1VzI7wgzqztpvg9QPtmwOohj2r90fVQ5Zxvk4/bnggbpv/OuKqyIxTEzkcenIRxw4t2118OuJQv1bfsjuCB36uDZ7eAHpviODuD7SYAkOKKzV7frqAy+ezmB4v2HGNAilErr87jr2PRZAvAje9M44bH4ybIkagjYOJ0Zwpdhbni6u80ab/7Y+3YNNNIRz5UgZTYwVTlgqk6NIRl6kq3X6/KZFcEB0jZ3LITxexb2sAdz/SZooJQWqljNHhLE6+msTk1bwdAxuN+rDjQBSP/FiHKak2YrsUNbJWK+Yr9ogfqkfHgmmDQqB+s9PKmKZjPt8IpF/Vj/8F6v/lpfLqkVEC9UP/prApTAo51leoGP/vZFukDFb9mVQFY5dzeOE7i7hyIYtM2lEYB8mbW+5mv3QF0CdL1Qci2HVd3BTJAvE7uVSyMlIg6WhbKSbrQZTIOjKfdXC+GYQjPvQNhJBKlpBjmUrZaYtEX4qzXbdFUeoOYC7sx30fbkHfUNBRMhNKpQoWFwu4dDZDPF60tGkz9fVQ3y35xQoSJaAvvr6zVtguyaBi40Tvp0fKqraIB1cv5ldlUiBLpESbHxPMU7+lKlmWslxWKdNTBYxRNm3/twZ9m0K46a4YDtwUZJ84vHLB7bcMx+AEx8CC5LmWIRT0YffmELZx7Fw4W8CubX7ccXcCQ9vClq4N45mZIk4fT2HkSha5vDavHf49eFcCN+yNoEr6dY9i/Yah+lCKZm3yFQrO5pmsGk+fyGOCYyZfGzMC1THHOi5zDEysFJF1ql4Hym1c1Z/6xjVAtUD5X2KmGi0t4QC6EmHOTV4sJYu2wem2XZYlt+2LYe9W8sxP+pKvlyvdLTk7W8XoXBZZXdpVA42rTKaE85MruDCZtiNRG0F39q0scg5mfXdzXrr1+ojNLyqbUtnzaZwZTmFqJbdK0127Erh5IIoeXwB74hHs6203xZggx/qvzKbx5JElnL6awkKGcyBlWsPkHfvbsLVHR1VyXi2y/cRXYf264lBGCovpCg5fUvur2LEV6O81lAhSGG/cFkAoUEEqWwQ5hRs6YrC7CclDHVPb3+u3DfVXx3NY1ORMKLO5ubQz35ybK+Bvjmfw9RNZmzeSuTyeOJ3Dl14p4uiVWsNq4Ct7cWW8jP/0jXn8+UtZ/OXhHP74+UV8+cQiZO14gLS0xqynrQ0ezVu1x6KYRyuV7iTcHotiT1sLwgEfriyl4I1lMJxNYTyTR0uU7SAutU9Q8pQ4DqrYHE7g4NZu2wj++vk5/P7hCXzhzAL+59FZ/O4LUzg2lkFMx7QS3D45z7F7iHOa7q3d3c41Isi5yVtByFfmQxnq5/wXCuDyUgYnZpMmo8I/PJfEZ46N4z89P4q/PrNoj/xPDC+gnX16W38rgtI81MAsUti+Jy/P4M+PT+MzJ+f4TOKPj53DLGVka1sC/YmYHUVa8uTxji2DuK67DeMraXzu1BV8+sxlfHl4FP/j+Dl8+dyIKed2MV1Wb7o3dHd7O+4eHESBg+MPX7uMPzp2EX91/jI+e24Yf3j0LM7OLGN/Xztu7OtGxBOClwx477YhbGWbLy6s4POq4+zwah1Pj0wgXaDMcP50XyeceykpH5RBb0AMLNkR5tWSD+1B4mTGZKGMLOdXTce5srNGCxzrJpcfzg+QMiWPWUGXvTpSspaRMJJcwR+fOYFPXzqKL4+dwCfPHcZnzp2wuvb3dKA1FLR8UkSoj85OL+JTp07jT84fxdcnTuArY8fxh6dfouzOoTMSxvbOhOV3QT+imcnl8OenhvGZi8fwGdbz2uI4ZorLeH7uPD57+SjG0ysck1yzVubxrcmTeHX5IlaKGTsCdktbHPOpLP707Kv4wshRfGv+GL4yc5T8O4NTs3McX5oXglxnnPb67EhXZy6slLRWlR0FoVkT8a1L1oO6K5LxtiFC0Pud7jATVKvO/OPRYK+BFIOmDFR5r/hR6yTKril3rwGqx6PLi+uUkVqLN1LW1IOOtT1zJYmvv7iIcyM57N0SwS9+bAj/r0/swr/8yA780kd34Bc+sAn33BBHnGvzk0cX8PK5JeQpDy7IYnFxhevuWAonLi7Zc2UywzmFeVi/Wq57786PJukvYftg0N5dL46ncHJ4BdMLztGj1wLNHZPzWbsfT3NDV5zvq3Tn5ksYGec7IsuvSZkDmq+zXPdOX17GoVPzRtPskjMfREJee9cVbeq7ZLpg+ZRnnGuGo8xzQH7FKe3U8DKmSIerPExyPbgykcbJS05ZtW96Puco4mooUpzvRybVzmWMz2TsbsbJuRyOnFvESyfmMUweSLHpvPWvASUHy+mSpQu3HvFXfBa/14Pusy1jZOqNaRFI/viqixT75mKtv1RHLq+7cmuZrgFWlnVdHEviz741g5dOpbCN72o/9/4+/PKP7zR5+cWP7qT8bMOPP9qFlpgPf/PcIr798iKWU+q7tXlTVeldSHJx5sqK0XHhatKOP3Ut/gSqU82VteKpWh/pEe1qg9qiPIIV5jl5yUmXonl+OY/zxHmY/Z/kOqn+H5nKmuW+8Iu/qlPtl0Wr7vCsEtfMIsuRf25deiR74qPeSVzQ8adSRDeCZHv1Ook6EJ2aF9Jc90oFWQ5rnvBx7ihyTnBeAF1loL7c7OhizumaH7x2RKkzb7jtFT12PLEF+cf+O64bbnSb6evDjW4zfX240W2mrw83us309eFGt5m+PtzoNtPXhxtdpftaW7t+xXmFsJQauOFG14VmejO9md5Mb6Y307+/0rd7Pswgw/ww1OepNjmUKlBYm0CKk6t4K1kLu67itGkijLqjxzaO+N++Y8tAxw7/+qNKCxWceDWFCy/lkEk6G2HIA62bfLjuzrWjMaXYmh7P4eJLefRuCeK6e2KOtRFhZbmE4y9ksLJQxv3vJe6uoClLbENproRTL6dx6FNJzMwXMDqWs7vbLpxKY2I4j5UrBey/PYpbH2kxay3B9EQe3/jjBfzVv5vFmSfS2H5nBLEWHz/snV8D5/NlDD+TxSMf7cSum2NOXSXnuMg/+Lez+O6fLSG/VMJulrO7TWpsnpks4/BzWdz0QBg9/QFTUondhWwVr/z1Cm57Rwz7746ZskcbSovzJXz1vy3AF/LgbR9txY7rorZRLEXM8eeS+OYfzePFP13B7GweQzvDaOsKmFJNysULx9KIdXrtKFdXoSMQr15+YgXf+JM5vPiVJVw5kcP8hSKqOdt/NlAfWj+zrmv1m5SD509mcPHlnCkDfH62g/227fYQdt8QM6s3gcuXr32SfPmLBZx8IYWl6RKyRHzlYhbn2Q9HnlrBt/5oEd/8qzQ27QpiaEfQ7inUBk6YbTn67RVE2z244aE4Nm3XUW8OjLL81z+zgE/++wWUvEX0DDhWewL1vY4q/fJ3Moh2+nDHwSg6e5yNYSn4zh3K4Oq5PPr2BNn/CbPaFOhOyddeXMHv/aMpXDqXseNRdVemC1JovXY0Z1agH/hIKzp7g6ZkE+jOxL/67Wl8+jeXEIoD3VIEJxx6BMPnsxh5LYfkRBn+dqe+pfmqHTG75+aw8c2FsZE8jh9O49LxIjr6fWyfrBQ5ptg5fa3kxV0tq3cnppOUx/M5fPdJyuQ74tizN0RZdo5Oy+ZL+Mq3lvB7v7uAF5/O4uabQ2YNq77VU0yVsXAlg2X24S2U5V53vNX67Y9+ex5/84VFzCwUsXtX2BSiGuv+oI7qq+D8RAEfeTyOfXs4RthngnS2gk//9Tz+++8sYWGmhF07A2jvdHgvJesccc3OFsyS9W1va7E+FqjP5haL+NRn5/HtbyzhNcrXsYtFPPtyHtlcCdu3hNBZkyspyp/79iL+mLLzzCs5JMig+2+NmCWq+qNQrGByuoCjp7NYICO6Gbd/s45aXRsLI1N5nLic17VcuH9/dFXJKrjEOeC/f2UOf/bkCuLkYzfHv+YbjWVZeZ69msPMYgldrX687Ya1O65mSP9RysF3j2SRIX929IfRWZNJWYlKpv7gK0k8f6Zgd6FuHfDj5q3x1U3NWc4bRy9l0Z7w4pGbWrC521GcSHn34vEk/urUMr57Po35+Qr2djv9oU3skqy2iyUs+4p42x7ytKbN1zGSl+eTePZKGlPEPcf58BLnwEPDScyyb06q77Vvbne4yeJIm8gV1qnNdb8pHg8OxOzItysLJQzPl9HVFsUPHWjDTDprloKab8JRD164nLV14uD2BK4fDOHCDNt5MWeWE3v7QtjXF0ap4MF3LybhoXx2xL3Y2xvCHdvimE1m8SplXsqzFrYpxz5xjypd4bpw+CLXiEXOcxw3wVAFWfIjHgjgrm0xK/PylTzmM0W7p7VKfng4b8kVyOKwWvVwfQngvl1R3LQlijnOuX96ZB7JQhG5ahntUWAoEUBHJIoXrmbtvskqedEd9+HBXQns6U3gmSuzeHls2e6xa4/pGM2qWVO2Rb3Y1BpEJBDEt09wfitwfiPOCGm5ridqSqGjkylMp4rkrw+JsB/v3duLNAf04bEVDC/kEA1VTZl6dDKD0WXKJGl2IRKu4PreKHa2xVk35eDqCnlawa6uKHZ0RDCXKuCLp+dJcQmxcJXywMaT9l1tCQyyrybSBZydS9vdkx/at80UY47V4ALC3ojd0+etesm/Ai4spHBxIY1zS4uolL24pb8LW4jj0AjbPj1lx/u6IAqXilwf21u0zYzZDNfgYgHv272FiR48zzpenZlGIlLivBXnfFO1e0ur8OOm/jbr8+Ozi1iiDOnoT5uwtNiw89R8v9eH7lgQBwf72cY8aVvBVCZNPFqU+D6itVUb6cwrxZiKS4noHLnn5RoWMEvOO/sH4Kv6cGp2BicXxuwuwYjfmY+i/gC2xjrQGQ3j1dlxzGVyKJQruJicxonFSUxnl80KsR6u7+xDWyiKmWwKR+cmLO6mbh2HGsWlpQU8M3XO8KoOr8exdA1wfMV8Ydw9uAlRX9AsEc8uzzIuSvwV9EUS2NHagbZYCCdnl5Aqal4q23qzUsrgcmUcV1NLKFYLCGgRYGPVVr0nCHw1XujuQcXZ+5iOCfVqrnfmbOfOMi4ilE1HCSA+aitE44R8V4g8k8JQcZbXepnxnKuFw7FcUrQTXw9mdcg5vCW/iO2Zq5wn2jitaM50xmEj6D1RCpMvPDuJw2dS2L0pjB9/Zy/efc8AEux3Um13+SaifvS2BTDQ5cONO3ScdAydrSE7fjLP8ffMsTn8t7++it/87Dj+5rk5fOn5eTx/eglJyrPm3g7mHZ1O49c/cxXPnFyGh/OCfrz0IsfqNw8vIRbx45bdiQ2VMGplnv0gi8gXTq5wTPvwgfs6McR3zJFJvvCwyGbOYXs3r60BekccncngC09P4D/82Ri++OwCvvzCPI6c53tMpIrLU1lcGs+zvVEcvL6Va28Z/+S/XMBfPDFja8Qezk/tLZz32W+T8zl86muT+A+fHsWzx5fx0K3tnDcDOH1lBZ/82hj+358aJX6nzV94Zg4vnV6mrJUw2B2xH7mcHU3iM9+dxO98YRKhYAXDnIc+8+1p/O4XJ/H1QwukcQ4RDoV+tqc1HmS3Ov36yrkF/PkTk1yrJvDpb84Y/s8/PWvKVg4Vu2tS7w/imBSb33h5Fv/586P402/MGD0b0SIZlZJSysX/9sUR/OGXJu1Ow0PMl+FcKMvPQ6ecH1Hs3x7DLbta2SeSXSPJ5Ejz3lOvzbLPl+2HZbI0/MQ7N1EewrZOau2PRwPo6wxhMZXDNNesAbZN+FoTQTz52hwucv3raQ9Qrjz4zitz+PW/GLe2PXlsEROLOWzrCaEtETLZlfLv8JlF/Mm3xvHbn5uwdokXTxxZxMWJJN8L/MY31av7Of/dn1/Gn39r1mTvGNv5l09MM/8Sbt4VY//N43Pk97FLGXTqx4L89nniFa4nOl1gKGJHlj55ZBr/4U9H8PvkjSvLeqYWsvbjrs6WAGVIJw+8fvy5YHwiPycW3aNKOfGLj+4cwfkmSGR+/diFcbrT1KwI+aisMzeI75oTZH1f5JxCvykV3XrpUlZknXjliy/U4gRKV4c1ui4005vpzfRmejO9mf53M13vpYzjH3Pdxw03us30ZnozvZnuhhvdZnoz/e92um0aMKygQK4USAJ3+dTjbNI5ykGBrAvl10aQHuXVo1/qmuWhhTYGfexLSSTFE79hbVNeyAINRxOqvozuRqNb98PhdSArvoUZfeQ69ekX77Ieu++xDnzgn/fijne0YsvOMCJhLyYu5HH0qxmEIh70bg4iFnU29wVzUwVMXsljdqKIiYk8vvknc/j6p+fwzc/O4ekvLuLCyxn07Q/Y/YSu9ZuUHpMjOWSvFrF8jh/tp/LraEm0+9DP/C2kf/h4BqllZ6NOCitZMvYM+tDZG0CkpnyRonR2Oo/J2TI8MS86NznWkAK1a8f1UbzzJ7rwo/+mDw9/qBOdfY7CR3lC5F1bP/Gw7nKdlZbg0pkMnv1GEs99OY3LL+Vw9XAepZysMFm2Lqt+tfxG/eZCgP1X25/fELTxeeKFJF77Thqnnsrg8uEcxl8p4JU/W8HiaNE2f4Z2hfDwxzvwj/4/fbjl3vg6ZZuUtTp5UEobHbtaD+MX87jwQhr5KwUc+VwSY2dzyNWsm1xo4bN2i82bQzpVxsUzWZw7X8Cx76Yx/FrW4lwolyuIka+9QVkUalPWiZfC8dLJLI58LYPcchEXX81g4lLeSawDGUEVybMw+11DSzqzmgitA1kRugo1F8opjq1MFbEubQjXIt8AJHuSwWOk6eqreaTmSzh/Ir1qEar6g2EP2mTlqqj6/q/J88RoAWeGSzh+sWDyKLkUiP621gA6O3zo6QqYolIg3Lo38ezZIpKUoZHFEk6yn1zQBpvuV+zfHMBiyWtb1y7oXkcpV7/xZBovs/zpqxVML1ZNGbzCPqi3ZK14qpgKlbCwwPgS5wR1dB1oHpGVK0kwJWOl3himEST7Kl/jaSpfwvBMFi9Rns5cLuD8RA7zqTWFicaYrIvc8dgI4l0qW8VyUsfL1SIJokVHC88vVUxR6+dE1xXkuFZH1IHmva4uyi3nJnczW8rBfdui+Mg9nfiZh3rw6C2tiCWcTXk9ne0etCY8GBt1fnDg8ioa9GNPbwt+5PZuPHx9G/YMhdDewb4PFvHUSAFj6RJKshTysWM1CRCqVc5DHJfxUBm5UgUzuTRaogF0xYKIM0tHuIzWWAAjY8DpkbwpD7sSQfvhwVCrH70cv+kccIKyo77ZCDRu1Ec1/eYqOPG1QA2y3jzSwRQCsTwKmgw4UXmCbKM/h+V8weFBLa8tHgyb8pBVS2lowLA/UsRgRwghyoWOR/RR/rZ1+NEdCuqUVaQKZXQkAriBc6eUglJISgHbR/lT26ZSOawUSlx/AigUwyiV/ba+6X7J5ZyUgkAsXjI2ahVcyOVxZnYJ8bAfmzsCSHCMhInoQG8IHfEgpjM5zKalLPWgUPYRR5njvopbBqP40QPd+Mlb++352Vs34+BQh435XFGWv/qhRo40VojPh0KljJI3jbKXNJA3PjWcUJAFGonyVb18/Oy7KOsNIV8SvQXrWy+ROgfTeZCvVjCRTePYzCwWsznEKTutIcpCwGdH0n5g71Z8fP9O/Nj+Xfb86HU7cLC/n3lCdixtO/mo+loiATuOU3VkKIeFcgAlyJKH8yQZPZNJ2Y9vNB4EjksKKINrR2qu9Wg9qKfXxl1NkeVa1xCR/CXdVVjJsG/yxiuBLHCKsrxja32mVGQ9LC/xkKJQ7zmuFEmRlyzlmR7End2b8YHtB/DR3TfjY3z+/v47cKC7h7xvEFKCFEaFSol8LLA/1CdlW0ONphqv6yVV4FABXE0lcWp+nnOCFx/auxcf33sjPrDtRrytezc6fd1YWOE8V1X/cpzaBn4N1GY+OrLVOb60ZGNIoM1+sypUBVIa8p9zvKmUBBR44ZHSQBJgVofKSArNUlF11DpIID6TT4qjtCqCWfU4C4KXY0r9a4OOoL/ibT2KelD/Kn0xWcSp0SxWsrrvLYTdm2JIcK7xqF1WV5VzjR+37m7Dhx4cwHvu7sN1WxKcn7xmpfbcsTl8+lvTOH4pha39AXzg/k684/ZW8qCKr7w4j//5tUlMzGYM58HrE9g+ELb7ZVNcT+7YF8N772nHdVt1/2WNsDrQvMK/ZlH46tkURvhe2M4J8M59HTi4r838V+cKODmSMWsztUnKsYVkAS+eXMKnvjGDC2NZ9HKNPHh9zO7w/esX53CO60laJz5wbtQa3dUaxN6tYTvS8spUxqwK1Z96Lk+kcP5qytKUp6cthIuM++KzM/j2K0tob/GQJx1418E2bBkI4BLLf+rrM2ZJmVEdXIvE4+HJLL5zdAlPH1tCmf+u3x6Crtscm83jk1+bwjcOLdidkhRTvHJuEZ/8+hQ+/+QcFleKeOS2VnvaWr04fDaJv/zuDI5eIB7mlYXel5+fw+9/cZLvCVncdX0cP3RvB27bG8Ui59g//uo0vnV4hjwpcu6q4MTlJP77V8fxzUNLSHHO3LslhD2bQzh7NW38GuE7xrVA3xYZ0nhlOmsKyMHOIPZvjdnx2ybiEjbmkVXo5u4IfvJdQ/iP/3AnfvzRfvYB5z3yUP3cwfe28+NZfOGZeUywb3cOBvgNonsT83j2tSV85aUZs1DMc17/5uF5/Nqnr+LbLy9hC9+x3/+2Trz77nZ0tHjxtRcW8SufvMJ3lWXDLRrylMkSx8Y3X16kDKxw3Qb2sY2Crb1R+jkHc31c4vt/S9iHO/bGTKlpP0a6Qt6Qj+cmMtaX72E9H32kB7s2hfDS6RV84ekZvHpuyWTmjUDp4pUL9kMKzZmMM4tCurkk35tTGXo153K8aW7io7lEx5ByNkOlrB8ZOPnlOtaILmhkKm9tfll9+GdDt5neTG+mN9PdcKPbTG+m/91I5ypJjy2KTbfpNt2m23Sb7g+wS9DaKFDIlEd83M03/VW4pjuwRVRgxRXUwzg92kB0yzqlNwbDWVY+eWCbKSliauv3r1pUCfQtuzjJT/KcfvHzelDW/FQRL34hiQsnMlhZco5WlNJh53VR3PauFuy7NYZd9O+9IWZ36LWzjlCLF4Gw80tlF3KZCoq5CrxSDoQ8Zp322hMrePW7Kzj63SQuvpBDyybSV3e8pPbsMskyAvxo9xWr/Cjnx7nuFat9a0vBGG/xIREDzj+ZxcxI0awtVW+s1Yett4XQORhYtXwrE8eVs1nbYNBRe/V396lM10AQ++6K4ZbHE9h1axShmBfZbNnu7NLxUJE24mERfdfXw8JcEbOjBSxPlUlfFYV01bpRyor6fnI2zaxLQDKvCWLbNfZ4DWS5JgXayngJ+aUKClJ+FT12pOq+m2PYd2MM+2+P4+BjLbj/h1rQv1X3Uq5HqL1P1dF4f2F6qYz0fMl+Ab9IfqYWpVxaT6yUhmv2gmtQpTyZMqkBdHRqkjzXxmWW9KoOHXXqgtoTIH/t+NDaEaWCPOVlabaExYkSIpSL1ELJyjaCWiAFuRRBggjloUTeLzcoeCUr7TVFaYE0+ZmsexHzLNu3LWQKVRd032aSfGhlHkf144BkcmWxhLlLRfiyVcSCVUxfLdh4c8GUYOTres6yLLMsseNl+ZQh/5eyQDatjTenrMqFWa496kGIfHBlQEozyWFypYpgwgsd4jZbu6vUhTjLtVDOc5SDGjoDbeiOzhQwOlG2+lJ5jsUC+4+NcuVxFRgMJqTg0T2XXvhIRz0Ir0vrtZQQq6BsdSTms+xL0ryQrLDvyVv2rZQs/5dBZMRZkTqTIGVFVEoSC62Bmhqi0NZOFDTQfNrbHsAtW6K4Z1cMewfDNmZ11J+sK8ueMso+0kzaXziTxuhszqwFdaxlb0uE5eK4cXMMe4ai2LMpynACe3UvJ+cN67wKH+kDBLX5uMokzSUXZ6XcAnriAWxv82NHwm9HUF+mzJ2dLNr9gK2RANqJa1uPD10JD1bIs1MzsmDUWuCgfSsgZV1BglsHZW+JY4RzvynYtP6QZzre0ldBRXubtXzrgJXKiE1uRcOU5Xf1eTDYHkSCAjXQGsJ7r+/Ae6/rxfv39+LOze12PK3k6dbBuMmn1i/xPawBS1cy4N5FVSp7Oe78pMlrSind2SmFSzjMOd9mTdjxmkcmUmZxuasjgn7yLxHy4eb+BPzEcX4uh6l0gf3INpU9uL4ninfs6sQ7d3Xh3q3tuHUggf2M641yrRET2VB3HEilojHqrq5VdRbjNmQ1I6W0Cnr8di9imfTqcUGqI+e4UOdYvnRJ1j+O7OgoWFnNt0eC2N3eght7OnBLX6e5eztasautjfNShf1dMEr8JEMKe7cO3YtYqpBPHvJFMgque2X2Z1l8ckAKJ7tbk4Q6Y1Z8Z8uYP13iukE5lhIzGvBbmdqwpqv1lc/qOPea0ln3WEa0Gb4xNwzUZ3q/aQT1XcwfwI3tQ3jntp14cNM23NE7hAMd/djV0o1Ofwulz2eycW2oosRFSw85wJBOKuC436BI2av+L2M2v4JXZsfw3NhVBKo+7Grttnof3LQV79q2A/f17EQ3FwvJmNteKQjMx3A9D1yw1kthWFMaastDjwMub1hOi6HStZhTvhz51ekPa7jMKgm1lwlTGCorObyaR1aMKlejg4+f8lQT19eBojWnSKkl67sM5614xI/2hGMJqoJzS3kcubBsllpnRlOYXiyY0mhuhTLEwrNLBfzlEzM4OpzGYE8YP/JgD37s0QF84l0DeOftnTanvXhqxazu4hxDj9zWiVt2xe0HG0XOGw/d0o4PP9yHm3a2rP5AYz2wxZTTq9MZPnmuQx7s2RLB9oEYdm9KYOtA2I6xPjeaxdR8zsajZGqENB4+u4yLbNe+LWG8/75u/Pg7B/Duu7sx0BHGVb6nqr36EZLkqDURwP03tqKrNYCphTwuTWRsXtcjhZ/arTTlUV5ZJbZxLrl7fxs+9vY+fPzRfvzYO/rx0M3tSER9OHk5a0e1Stnogob7AvnW3xXBO+/oZv4BvOtgpx2beupKBmdH0kimi1bm6y/PmXWjxs/DxCl+6vlhtkM/GDk+nMHpkaTllVLzxVNLmJgr4N7rE6SHtLCtcu+4rgXD5NtffHcGV6ZyWEoWcPpKEk8cWTLFqawtf/SRPnzg/j7csruVY4TzoJi4Abjznvp9IVmyd6K2uB99HXxf5Pxk8q//Ks4nzHn8xh0tePxgF27fR75FyTdTfLOP6Ki7VfbBm7rYtkF8gG3bQhka4/vHy+dXzBK2wHknzHebrf1hvO2GdnyUvP4Y+fyB+3tww/aE3Xf59NFlDLO/dAqIlH8hvpfpHUjl9jPP+9/Wi48+0o+h7jBu3NmKew+0YfdQGFl+G/RxPVcf3EvcsbAfV2cyOHI+bbTdsTeBDz7Ya/V94l39eOCmdgx26dhQNu8aPHKhccy57z/OHEE/J9xSnvNqknKWyq2OYZUTnzVX2JyhudWUiCzHePeoUqeCusd4zj9Nt+k23abbdJvu97HrfLHbatl0m27TbbpNt+n+4Lq2EUSvwBSEtUfgxltIcbW8evTZqY9SlZdfj/MLfmWT65beAFhOVmnaBJfVYSDuRdvuIHbeELXjQQXaIMulK5g5U0Aho7yvxyfFYWWpjFPPpHHoW0s4eyyN0UtZjA3nMH4lh6WFoikf4y1+bNsTxb3vasc9H2lBOOrlB7SzoeCCrLA8AX5cs5l6SZA1n+4G7OoOoqMjgFjUh1KWH9d1Sjk20xQwSfpJohOWcqdGqk5404aCNG0jr+QxeSmPTM2SLRDy4LoHYujZEjTFodqrtAsvZeweOO3jabPIBaVP6SjLZ5I48kQSx55M4vxraVw6ncHwmQyust25ZdmR8F/tW78exKuYlDGyaIqxz0insIsLcrXPYEeVsry6WjKwVvvGoH5Wc6Xc00bwKhBpgX3no+utyurHi8Gbg3jPP+/C7e9otb7QXYALU0W8+kwKVy/nTPHUCOq7eh4IgqTf0+LFUpBt6vAhHPM6PK8DncK4gX7Q9krr+68eRD7FwuTAu4E5oPCx+02564JPFoKsP0x6FgssRwSirxHUHdr+lkJGEGr3mlXO1FjJLO7Eb0FLewCbd4axaVfAFCAyAIkyb8+uILbtjqy2U+NU911OXi6gk30abuhvoQuwj6tMU3Nl4VkPUmyrHWstqQHb72dbdE1UleOTrDBFvvpZoHo15rXBXy5p896izdpFisQg65OSWPqAqJRTdeDJVeFPVxFioXpqWA2WitpMrUUQNGakyHM3xl2QbLaUfJQrR4HSCEYfaQvEyHM2PEq5C3GcbQhMr6TpagAQqnl66y+L/FuAFEKm5NkIFB0isRuMyXXALDo+VZu9LmhD9cpsDq9dyuDwhTSOXE7j7GgWlyb5TGVxZbqARY4bf0sZhy5m8MrFNM6NZzHCMqNzeUwtFMziQxuqg61R3DjUig/dksD+viCiAZ8prqp5TVKsvFw2ZWTOLEK9eG2kiIVkGZ3sx+v7g9jTGUK+WMJ0roDLi0VMzLMvKf+7+nzY2e+3I+AWKTgjK7LOY1/VZOatgOYaKQ8boVrmfJzVUXpiD/ERJ7uX8kVJoOvxk1JfQzn2Q5WPlFZeTwm3DkbQk6BgkqYEx+ZdO2O4oa8Fd2yLYXt3xO56VN17ulrRGQ6zLx3loZSCqthT8XG8aJOa+Lwlk221TEoHHcvtgjaoNS5U7uxcAXPJHLa0ROzI0gQHxo6OFrO2Oc9+mc8WoaNFQ1z73rGzHfdv7UR7JIzxlSLOzWVwalrHzM7j/GzS5CHK8hqD1YqOaeQ8VNIAZRvLfrMs1LhoBGM/JxC755A0NY4lW7trQ1RHugZqx0tWTKUoq6UK5jN5tmUJ5xeWcGFh2dzTs4u4sLiCw2MzODY1j9ls1pRFWp/U53qk6PLp/js7PkCWbeXa6QJMc6pkGvPbbyRIBGnRPXtelpHicIH8WUjnTXHZGQ/A7yuzT4r24wuVV9vkN2Abt7TEcaCzF1sTXaz/2srDIpm58T1gQE80jndu3o1HtmyxHy2MZ5ZxYWkWp+am8dTVUcr8MjJ1SpnXgcRlddNd7RMvxPMGvou7lCPdo1ngpHNhZQp/M3Ia37lyBScXpzBZWOI7RRl3DHbh/Tuvw77WPq5LYbbfaZPqcHggPstSs7a6qD9Z3+oPJowOy8lHQsv+Fa9XeSOZcJT8NgnWZGS1vA0w1VWj35TU8ou7qpP5+YLTaJEkRYq7XmwEUoBontE9uhJjnaQghYtAP0wZm83iG4dm8Adfvoo//tqYPfI/e3zB7nyTku2JIyukmGN2sxR6UcqMFy2xEPYMRUwxI0u3V84vkzYPNvVEMdgZNmtq0bZFx/8OJdDdFjJ5bASSZ8qxc1fTSHJt1n16OnJSCk4p7nZvCiHBNXFiOo/hifSqsm90JosL4xlry9tvb8Ojd3ThngOduO/GLnzw3h77IUL9EJQyX0eddrcHMcn59MRw2urVI4vFuWTJ0pRHeQe6InjsYBd+5vF+PHhTJ6LhANdbP10forUfPJj1YO0dQ6Ax0tsawDtu7cTjd/Xi4Vu78did3ejl+6x+xCSFnO77W04V8eSxFTsy+8adUVN63rqnA7fsbsd77+rG4wc7cWB7nPX42Va+b48kcXUmBzuy+6YW0qmjwn1m4bdrKGpj/eljSVzhOqVjP2e5DunHcJv4Tv3IrR146GaHN++7pw/vvLOdfcEBtxGwe2zeY9ukNFQbRXc45KOsuBPAegiQDs1lOu6UhWuxwDLXJR0BLkXoD72tH+862If3HOw2mREf5rjWpXV/ISu990ArfuFHhshrR7mp+sp859D7l36wJLS5fMXKCaSUnFso4c59CXz4oV78MPE/yDZK9qS03doXwZAUgCSpPebH7qE4tvTF+H6y1m79OC3FMbGwQrwcF1Jsf+ztveyLHspAopbr2qBR+bo1VwLH/1ISmqKQyUXO6fnlDN+DWUktXYQZnzlnmGtFxQniVGcqiwo7/1dxGSOabtNtuk236Tbd72O3ZnHYfJpP82k+zaf5/IA/BNvsc7yrYEqkWryzGUiffUyupZlySQ/jaqgsn6OAujZICdjV7Rxd2L8zgBseiuAT/6od9zzajvYu52Na1lyTI3lcfjaPEj+o/RuYkMkyKtzlw963hXH1VB4vfW0Z3/rLeXzpT2bwpU/N4OhLK5ib1b1Bzge+rNp274/Ck/Egu1CxzU4XpCSM9gSQYwul8HvsH3biJ39lED/7q0P4xK8O4JGfb8f00QKSM2uKHn0/t3UHMBH1Yj7sRSThQ0x3ydWYmV4pY26siNRE2e7n0h1vOt5SIGXOLXe1oHcoaIo3Hbk6M17A8FM5eBf4AZ8pmzWdC/qV++EvL+P3/sE4fv1jV/E7PzGGz//GDJ7+/AJe+PoSnv2bJVx4IoeiFDTS+DSAdE46Mk9HOkk7ql++u/2nBukYN7cUsyGiDcBauBFcrmn7MEJ8rS3arNk4tywwfVI+PBZD90DQ7rtTf4xczOAv/ts0fvnjY3iW7VpecPjigjZZVLaeB4L2oQBiO0M4V/Si/6aQHTnr3nvpwiyfJce7DrxB0rx2XeKGoGMmtafSCMI3SbpTK/pVthOnYyMHdgax+ZYgLiWraNkqC9Ka9UQdsEuwXASylGmx289yhakKpp7PYeRSdlU5qjsib3lbHB/7Z20Y4tiQEvOugyF87GMt2LUvtmqVqbExM13E8IUSfN0+eOuUldos7OkLYehACEXyfaXgxd5bY+ssN0uFCtLka+Ov2KUA2N4ZQqHkQYD0bo35DZdwCoosN8/2X+YYWKIcu3SrTzs5bgc6PchPlxDjwNiybW1TTLm0KZZJl9ERlYLFif9bQ7mKCutenCohldbWsba819qgTeiWDj86tnqRn6hiqDeA3j5n4+t1IBrcR0BXU9z3AjGOlVZpyzYAGeR4l/wIVhzLKIfm14P0GYsL7Nu8DUcDKf2eOLWM3/jrWfzyZ6fwG9+YwWefWcJXjy7h68eX8MLJPGanvBhq47zD+UdHy37l0DI+d2gOn31xFt84tIgzYyms6PJAgjbm2zsC2KH7nCIV5Kt5eEKcAwoc67KI9FCeSJ0/FMSxyTwmKbRx5ts+5EFPfxVLeVmOUfZSZVyad+5ju2NbCNf1x8g+DyYXs8ikZCVo1b1lCFFeIj4prtb6shG8UnJUy3Zcbd7PMci+CkQK8IWctq0DyrWHsqJ7/ba3xTlH+XB6eglfPDm67vnLVybIyzmML2XQnQhhMBJDwhc0C8eFTNGUCOEK14tiwDaJpewKR/Pw+cqmeE1I81cHfq+OvywhnSvhylLSjvLsioYQCzJvwI/RpRQyBR1lLdWLB30tHtyxtcss9z57fAL//unL+J2XxvDHR2bwzYtJXK2tFTZHE3yBLLz+mokoBcsf0t1/6+fNeiiTX8lSGqlswdrirOPCx1FTU/rIokwK1ojfbwrwAlfAQpXrFPv66NQ8/vLcZfzB0XP43SNnzP3T05fwh3Q/c+YyvjUygfNLK6TFZ20O+wOm5Az4KggHKFvsq2rFhxD5n+AaGQ7rTs0acQTN8b6gFIju8bv6PPdxbFdxeWHFjowdbJNVK9dqTw4R5tXmvX6g4LBegpbFY9u24Uf3XIdberr4TpAijmvJkep4/SAPeQMYakng5k2dmE3l8Gdnj+O/Hnsenzz7Cv7qyjG8OH8By6XMOtrfCMRXD/kaDEhpWousgcaJvxTh+1GY8iJLe74nBJbx5MxZ/MXVl/D7F57BJ88cwaHRWbRHg7itfTs2Bfs4167NL9q4F890vKsmi0pZCxYfs/5zoGIKb/VxntyQQiBAv8bK+sFZ4WKn+8ykgBVehQXOXWdS2ojRcqWQ1frF8S1NSS2OBfm8dZBlantLEJu4Tka4vkm06+cLHUcpa8TnjqU5f63gi88u4Rt8jzt9OWsKLh0PqjJS3s0s5PDlF6bwX/7qIv7oK5fxN8/r2MssktkyXjqXtrt+s8TnKnjeCuidMJkp4eVzSSylS3a/nBRb88mCWQG2cE1s5zveMvO8xjGqe3i1jmZyZdJWtveg67fE0SXFJDs/xLVhS18EB/fH0NGyNl/oBInB7ii2bQojxbIn+B6g9umRX3FK012BUnBKOac7+FJc+49fWsaffGMEv/W5YXz10KwpHjcC1bG1N4xelo1wDpICbFNPBAd2htkOp9/EG1lxjk0U7P2kLR60/BpC+nHQ1r4Yfv6DW/C7/2wvfuTBQVNUTi4UTDm7Qh4cubCCP/3mKH7nC5fwP78ximePLmB+vkzZlmVpodZfmos92MF3iR0DUbNgFP6WeAB37Ws1Hm8E4quObnXmBsU48qIf1NDZEBRvOnbWJyV4/XjXMbN9HVJyOm1XW0LkSz3oXsYE6QtzgpGV49OvzeLPv30Vn/z6KF48u4Sh/oDxdSPY2hfFEPtUd3S6oLFS/50h0A851Iao+qOX/Ij7MT1fsiNe/+lvn8NvfvYivvbiFEanOeeRDvX9m4Hz45s6OWeVpjB0X95cYL5qsYhyimsJ5z37iFkFzsV2hCnpF9/qeGc/EDD8tbYYo5tP82k+zaf5NJ/v70ffTnr/WH2a4Wa4GW6Gm+Fm+AcxrM0NfXTq4Xc2AtqUYpw+uBVX5AejXLPmYRGB/PpIVR59SgqVq0h8KyALu9vvb8NP/doAfuEPN+MT/49BC7tHdgp01+CzX10wy6OKNtwbvn9d6BoI4O0f78Q//I+b8OP/5yDe+xM9OHBHwhR8R7+TxNLM6zdWJ5eruHS1iJlJ95w+oGcghMd/rA3//Pf78A9+ux97b46v3j2YTpVx5XwOs3NljI3ksDTvbNT4A17s2R/HP/q5dvyfv9mN9/yLTnR0BUwxKtCRkTNTBeQqVYTJ3PFzOcyMOXUqj/K2JPym8MjnypiayGFuoQx/EHbspe5kdEFWQze8PY7H/mUH7v1EHB/69W584t8O4OP/fBAf/rl+/NBP96Dn+gACDcc3uiDdabbA/tSdkewx24xhfP3GyluFPNujo0z1++x0sYrFRR0XunHfyyonHvagvV13A67VJYu3Cvv2wE1+bN0VMqvQeoh0++xOonoeCLbvjeDjf68Tv/lfu/HBf9SN3tpdMv8rIEfeTY7mHCtSgnvv5E/8m3781u/04MM/3onNO95AM8liPoqOFH/6Bf3SbBFHnl5Bse5Y1I6eAB58Twd+/t/341//ziB+9hf7ced9rbVUB4bPZfHCN1cwerKIuL+Kun2qVbn66E914v/7G734V7/YaTIqWXVhie04ell30dUiaqANsU3bIvjXv9yN//w7ffj4z7Svk+d0sozJiwVcOlTA8JncunsgdV/Qh36iFb/0Sx34yR9txXXE44LuNjs/VsLxy2v5vxcIcH647d4WfOITrTh4e8jkcIq8qzOywEB7ED9+fxd+6xc5Pt7bgR1DG/eHrvfytbNgjS3eKJ+WjWX4zSApRVNx47bpeNnNOyP44QfiuI1ynuO8OZUrvG6uLDJ8PpvDxELeFKwCKU7evrsND98cwbsORPHRm9vw9x/vxE891IufeqAX77ihBdvY3m6EGd+Nf/bBHvzDx3vxvjva0ddTwTPjKVxezJil4DWBXesJ1/gg6wJZiRU0R5G3ybTddXdDfwcG4nEMDxeRTMkigu3NFjHJ9Ot727CzK4FC2our7OPvBTKsLk0agy051v+99YELnpoyW5YScU8Ye/s6sJDJ46WRFXznUmbd8/zEMp6fmcV3hqftSNLrhwLY0sV5p1DC+aWU/TDl4Hbi6Hd+DCCF32JGR6dyPguH0Bdff5NqsexDvuSD7su7vJRGyVPF3Vta8O49HfCxL1+eWsJCrogSy3uqPvTEdT8g16NUlvwsIMix3BFzFOtbOvwYbNcmNdeRXN7W3LcKOkKvQj5I1aNN6pGlJLoTEWxubUWQgi9lIldVFEplDEYjeP/OLfgXt+3HTd09yOQ8mE0W0eIP4IGtfXafokCKAE0hIYbv6uvGR/Zuw0Nbu9HJNTKVL+LK4opthG/uCKMtHMRC0sc5vmSWiz2hBHbGOwyPC7KcK5dKq4qqeshXynhmahyzuSxu7OrDgwN7UMglsFzIIlNKIl1KccylOaeV8Pa+67C5pR2zHDsX5ldqGDYGWX3p/eZaoGNWRxfSlMcS8wYR84fsvaY1EEV/IoZWtustgUc/LiojX/CZoqMe9BaVwwoq3hxuYtt+ePAW3BjYiyA49gpeFLNejC4v49uTp5AvF+2Y24gYTzqkLKwHKWSkNJTi1+uYbzLOeTfRUaiuIl6uhfXLGWlrNwDdZegoIB2QwheU0XowJaLiZIlod2tyba5TVr4ZmFUq298a9Znc6EdMC8k8JheyxEv+cwzuGIjhn35oC/7iV67Hb/38DhzYEzErrzcCosVypowW4r37QAI/8kA7HrohYfOnrPFC4t9bAL2f6IjhyxMZPHcsBYoAxpby+O0vjePv/9YZ/MLvn8MXXphDknN9iQR//qkFjM/l31QxqXcs0VGvw5Fc6W7VG7dGsakraIrHK5Npe+RXnNI6EkEbKy+fnsevfuoifuxXz+Df/I8RvHYxxTQ/rtsUsbxvBWSNKKvEepmUtaSUe43KrXow62pOAI7Cre4djs1O8x1OClbdq5jjS2EX3/P+wfu68fFH+d6xOWrfB1IwuiAaNCe9VRCf1I/9HUGz5pxa5LvHRJbvYK+fN9QPR84t4NDJOZy7soyVFOfURsXZm4DuLfzukTn80h9dwM/++nn8u0+N4+jFNGIRH7bpntro2hHtjaC7GGUx+mYgC1JRJQvYPZsT+ONf3It/8xOb8L57W5Hge9TfPLOMX//MJH7+v1zCr/7JJTz12oxT8A3AsYBfa6tz16mGuzOGHWtCKRI5L5NP6cUU81RMOauM+hrQ0dYV+7EB8+qf5gqmqWxFPzSxf8StX1aKB3zYPav+ZrgZboab4Wa4Gf5+C3vtpUl/am4z3Aw3w81wM9wM/yCGtS5KLyBrA/1zN7RXlYXKyj9K10e8FbMy+vWv0vkwrE9Wpb8VUDZZifUOhtC7KYS2Lr+F3eKTV/N49bvLePVLaVQiUjLx0fmTG4B+JT09VTBLo7ZOP7r7grj+tjje+1M9eOfHujG0NWybHoJCvoKjTyaRmSli8lwWJ19M2iar2ihLhi07w7j9/hbsuy2GaEzHIcEsBIdfy+L459OoZqo4eyiN4dMZO25L9IZCXtx+dwJ3P9KKrfsiq79Gnp8t4Pi3Uzj9rTTi7V6EEh5cPZzHyJE8Uklnc0F5tVklPMmlMi4eyyKfqyIY8yI5WcbZpzI4+UrS7rNTngG25Z7H2/G+n+nBnY+0YWB7CK21O/F0XOnE+aIptzYC6zf+0Q+H7RfbDGhDS5xRWr1i+M3A8OifCpAuHUt5rV9hKzafqmDyQh46jkmg/pCC7f0/24uf+uV+7L8jgVhNSetCqNVjlmVnX8hhapxly07ZKOVk6/YI7r6vBf1bgmRiFaXaxp3aIzm6Fi3/V6CFj2e2jENPZDA7VTRFqfokGvdhB/v9nvtb0dKq4x/fmIuiTH3gbfFggTi+9RcpPPHVRcxRJgWiXUrUgU1hbNoSRk/veovKS+znJ7+wjFeeyiI65EO2zDFb1+XqE20G9g0EcDPHwYGbYyajolVgY+ulNI4dL9nRqo3HsmrzfOeeMG69M47tu8PreDl5pYCxyzkkWO/TJws4djKDhTlHEa47h3ZsiuK+h9pw4KYYElFHLgU6QvjIaxmMUcZD5NE19q5XQco23d+5gIqzSVvrX9HSNxDCQbbpwNYISnngpfNZrKRLJtMCHZ850BXCzTfqeDmfKeQ1Vl8HbFb9kb7OUaXrefFWQWNH3U7WYWLJY8eW5bJOnRrfiUQAd92QwA3bw4hRZEs2cNbAH6giFq9icQJ2JOnwvDPZaTNwsDeEd97ajh++uxP37KfMd4bQEfej6qlgJFnC0bkSRrMF5KoFxKMeSxtqD+P+3V342Qd7cXBHO9qjjnJdP/a4PLeCE1MZu6MwVGF7SYosDu3cSDVfm4I1+i5x/C2ldbxa0CwwTsxnKG+yJvGYcm1kJWVH+MmaZTpTxOVUHhGOB39YSor1bTSgvGeKBSyWcmZ13JeI4e7BBG7vj6A3GkQp41iivBHo6ONgSTeW1QHpdRWGgnK1ZBaV926PoiXsx1Qqyydn1pJ27CXzlIpSbPmtfScmc2ZltDkWRW8kjBWuE6em8rgws4y+1hDetq0Nd2+OY1ObF9s6Avih67pw+1CL8aEebHNWZyGzbw6NZTC8kCMdQWzpiGFyJYeTUzlk80UESYOOzRxdKCOdLWN7WwsO9MUN92BLkLjDeM/uHuzv4azDKiqcMPzBDHlaNkVeLLA2tgqss8SnHjS/6u65IuML7K+Xpicxl8nilr4O/Mi+Tbixpx39HIe3M/zojiEc3Nxja910Jo10kf24mLLjSIfaYvjIddvx4KZ+7GpPYEtbFHf0dePxvZtw51A3WsMR9ifn91LJ6lgq5HBjdxfes30bbujqRE8iiNt6u/Dw5kHW2VmjzgHHGkjHN/I9Q1ZvdG1NIv98vgJG07N48eokVnIlvG1zP37upv14qH8PbuvYhjs6tuPRgX340d034OEdm2x+OD47gXMrU/Dj2kqUEnmiI2wbIV8pYimXxWKmgD29Lbipcwiboz3oDXeYxd97t+3DUKLlmgqDerDNeSkBofcHjhPKerpQQNQfwPbWThxo2YLOQBeqpQBivhCu7+7Gu3Zsx61s12CwH53+TuxpHcCjW3Yj7PdjPpvHSkFrA/lDmZEM2N2DtuFvos/HC7sz2uZAPeKtaCAtxmcda6sxqXcWjXPHwtMsPaVMtLcAgooSPLJirbXVzedYhQqfHilE9RBX7QjVtwp6R9Tdbvu3RNHKNeLs1SyeOLqE0Wkps4GutjB2b4rz4TtYkGvkYhkJvhsM9ITW7kIk6L68gZ4o3ndPP/7ee7bipx/fgo88PIgP3t+PH76vH++8oxdRzk0FzgtSar1VWKFAn7y8jGWuKWp7mOtJmOuRh2OQLUaca2mMjzAupsoYm8nYXBYO+ExBqfV/fD5rd/eK92qTFGcjXCcz+rVVDYjaLNN2D8UwwDldFnzPnli0R37FKU0WmsvpIv7qqTl88/CirWn/+P1D+IUf2Y6Pv2MTbt3TZorYtwKSFUdPtMYPWdj1dIQw0CcrO6+tlbLSVP9LUTi3XMCLpxbw5eencOj0PNPZH6wvEvaZpeDDN3fgE+/cjJ95N/vgsS34KPvgsbt68cP392HvloQpPiN21KeO3S7YXZVSHurHSA6vNCdeW9mmPpDVnaw4JS+yRn322ArOjyaNt6JRj44ZffXcEn79M1fxb//nKL5xeMGUpOLzm0EuX8UU37/0HjU+m8VLJ5dxdiSDG3ZG8K8/sRU//8Ft+PCDg7h5VxtSzFvHvnXQyNtrgeYF0ezQVsWOwSgeIB9/+t2b8Ss/sRO//BNb8aEHu9g3Hjz12jK+8vyiyUCjBWU9SPFb/2MkG6vKqpdNwWoav9uUV5bvmRzlWlH6lnPObjD69Z+uxVk86+W493Lcu4rIWmb9N7cZboab4Wa4GW6Gvx/DXE3p0YradJtu0226Tbfp/iC7hNV10h79dfwC5aj3O8UcJaIe90PWPju10Mpfc+tBm3uNShUpAlR3jh/9yZUSJsdzOPr8Cp78iwW8+KUkkvP86NWv5b2qs1aoBjo2UV/q6akSXvliEq88uYypMccyQ1ZbOp5Rj+5MTKfLuDqcw6tPreDwl5OoZMtYvFrEIfpffXIF0xN5ZDJls3hs7wwgFvebpcTcTAFHn07i0F8vY/5CEZGEF6NHc3jlays4+VISC3NFs6Zq7fCjsyeIUNhrbZGi66WvLOPI15OYv1xCqHav4OIM00YKWFp0jtvSJo0++Atsyyzjzz2RgY/t9bG9xUwVY6fyePJTizh/LIX52aIpVPoGQ9i+L2pHq2q/eJp1nXg+iWf+dAkrV8uoOHqcdVDKs7KSlL9O2NkiWAMpgV32apuhttVgsFG/acNcimQXlK72CKw9dVYkfra9yPovPJvFpZMZLC85bW/tCGD3LVEM7QljYb6Amam81eXyRfub4sHosRye+Oyi3V0pZYw2XQIBbV56cOF4xhRh2cwaxao/QRzrbYHYDimfr70/9aYQZ3MDS2WcfjKDb35qHscop+MjOawsOUd2qt/PHkljnHL2ZqC9a2+Ish+mTCxU8DX23VN/rX5OY5myofZLaaRNQ7VX8iHL1VOvpfD1zyzitWczyBeqdlcis9qGlQtq//JiCVcu5mxMRaLanHd4OjGaw8uUlSMvZeApeuEnDRpbLkixKz5L6S2BkMJSZWVZePFsBoefT+HC+QI6ev2YW6jimRezePHFtOGVsjIa8KOb46C1LWDlRMfpoyl899kULo0UzWpJllCu3F8LtKno4Vicm6vg/KksJijjkg2JnMZYV5uUYz4EieLIxQKe5vgYI3/EJ81Hmlek2D0+nMEFzgmy8GyEKmWhkiHCGhnS91Q3GDsCl39SDApMxhlWfD2oSSl2/2uUgfNXc6vKQ1kWdCR86G33o612RJwLGjtF8qRcYpsLXhznHPjshSROjKbtCEvdhbqlO4Qd/WG7U0p36U0tZ3BoeAVHRsmb5QoWMiV848QKTk+ksJTJ29jc1B7FwR1xbOmMIOjzYTlTwJmpJL5+YhkXOQ/lyzpSmgSw3c7gJ/FqoJQTDAe8QYyw/6ZWijYXLuVKOK87E0mrjlnWlHJxqmy0J5l2dbmA8WQR0kPr3kHX2kl3TpZ8JfgiRVZTYV8A4/NlHL2SRsjnx927EnhgXww7uoOmyHsrigj2BLKFEsqrm6KKZJ2ap9gp2uzUfYY3DHAWYPwFztNsOturY9gCHFs6Nlbt10a/B3NcHy4vpMxibqg9hAR5Pp0s4TuXFjC2nMPW9gge29uNd+/twfuu68VtA3FWyTVlRZdkroHaqjbqSNVJlh+RtSd5p/pGF9NWjx13SsFVG2ZSJRwam7d19I6hDrxnXx8e3dWHd+zsxkAibDKfLZYRlqJQJvdqnmquEzxxYC3kgDZ9lUeurCTPzK3g+bFJrBRyuLm/A4/tGsK792zCO+nu72lHhvP1k1enMJPNGPtHkyk8f3UalxeTuLG3E2/fMYjHdm/G43we2TGAnlgE4+kURldSdpyuBObM/AqOTS1yfAO39Xezjk14964teGTbIDqjYUxzYCzXjkx1YO3dYXWz3Vyt91qhyjgyNYeXx2fNovGGni48vGULHt22HY9u344HN2/BLd39HA/AS5NjODo3aRaJr3/zWINrSZbkSErTw5NTNt/ePjBgdTy6XVaVW9EXabU7mdUX1wQi1+a6A2wD2yblQJETy6mZZWv/1rYWvIP039q5CXFvGOOpJK6mloyfqudd23fh3Tv24NGtO3BDZx8uzJKny+OYKy9xLaihVkWavNTzkrdVRahc1y8uOLzkaBQ1pnQ0SyLKn7Hd6GUfkGSF1Rc61tCjuVcKApdbq/mUbhmdeOE2i0Q3/NZALIpF/Dh4fTs6WgIY51rzxJElfO6ZKRy7uISrMxlcnkzjhZOL+MIzc5hdKOK6LRFcJ+u71iDn/iD2bQ1z/q1iiWPM7lkdjNkjC0bdD/jquZT9EEC0qT+lqMoxv5RX43NZTPKRUqkRlL7I+e4M516t6bsGwnj01k585IE+fOj+XvzoA/10+3Dv9W3o4xqn8XnuasqU/12tAQx2BU1R+cqFFM6NJk0JdWUqg1fPL2N2mfMo0+pBoaHuCDb3RVBmX77MeV+P/IpTmvitY+ovcD2ZnC+iPe7DwesSuIv8G+yK2J2n8+TD9wLu+5buezygH1nEfJiYz+H4pRWMsA+mF/nOfH4Jf/PcDPtiBie55oienZxX+9uDxtdMvkJe8J20P4oe9s0C3zmk4HyVPFjkeqC+7mxx8l6Z4Pv0hRXjmRSuxy4u42svLSLD9l3bqpTvrZS767YlsH9H1Pr72MU0vkCaDp1ewPmxJE6PrOCZ4/P4POOeOa67GrlusoyrsNTxsRqP1wKKiOVRjmS6iBmuc1L8bue79kO3tOO2PS3WvynK1NT82o+UBMIbsh9q1CIawB07AvFaSuSJuRwWkgXKaNEUoP/z65N48dSK1X8L18P33N2F27kmtrKvk3x3mUvxO6M2z14LNkoy5R9p1dhvBP3IJbecNgWiESYE9sMAjn2+L2g+cBWHFmcThdrpPEaslWm6TbfpNt2m23S/f11fa2vXr9DbhCY0oQlNaMIPNGzDh5zNR9u00xrJD0bzOX73WY3jo49l5TerQyfawPyrH6H6zz8MRjq8aO3x22b+0kwR81Nrj+71G7+Ux/BrOZx5NW1KuaPfSWN6uIhoC8vnnftROjcHENMxcoslK3fldBbDr2Qxc7aAxTHGzRdM0ZTnoyMVVxZKWJrlh/5oHpeOZ3H0mRQOfX0ZV14p2H1vugtwYbyExemi3aWn4wEzLJdcLGOBcWMXcjh1KIXDX17Buecy1hYparLzFSxNlbBA3DpGVQrH9LLqK2OWbRk5m8XpF1J46XMrGD+je57IL+2m+517DGPkRbTVY8q86at5LM6UMDlcwOnn0njtSykEQ8wvRrLNwj91vohsuYI08efSVaNV7dIzfCyLU6xLR7Ke+nbGyolHrd0B26BzeXzmcBqTp/LILVXsnj/tt6tPXTDFofWlNrS1kVo1y55I5/p+m7lawLlXMpglz00ZyTqkkGvp9yGe8Jm14+xEAROX8zh7KIPFqyUhtw3HlYkyu7JiuNQu9c/0SAEnX0jj6HMpLM0VTRGqo2XFl1MvpjE/UkJmvozxK6xPmxgkLpuqOHQczuC5Ly2jQFylAvt8SfdJFnDpZBaXX8oizj7u7PFZmnhwlTxWmdnRAuXRh1hbgH1YxswE+3o4j/Mnspi+ULS+6hgKsI98yCzVZO0i5ZOytnyliEjUgxTjqwG2o1jB3GQJ54/n8fIraVw+lkZbmx+bd60djzl8PosLR3KYZ/sjlB+vGFwDyWE47sXlU+ynmQKWKXtp9m9WCgP6l+dKmCU/LnN8HHmKMvXECl74VgZJ5kn0aFOawyML3P1ADFu2h8yyUDycmczjW19bxgjbqr3dJPtlbCyPV8nnFylnw+RFxO9Fzw4/brs5hu4u544hbY6feiWJo69lsbBSgQzSZtgv58/m8MzTK3jpcBaTs1VEYh4EKB8zHAtzTE+lSihxfKQ4FmQhMs++HSdfj59iHz2bxKFTBSRJZwvp0/53b7cPSY61ubkyrk7kceZyFheHywiHvQgyg5ROFcpMbrmK8oqjnCpSPlPse+GemmI/X8ljhH0zsVTFso5MpaiVKZO6+3CaY+PlU2k8K4tI1iNJ1/GsSxxD58ak1CtSboBB9lVKss3+HKd8nxvP49xkEdWyBwOdlOkYZZryPbVA+ZnJ4+TlHGaIQ0rdtoSsMcqY5nw0TH5foOyNsT3RGOtKccxyftEcqaPvdC/k6DRxj3MMiR5f1e68Uz9OLxdwflKbtXmkKU+ZahmLWc4vmYIdxVrMe7DIMsIxtVjExWnmnUjiuYuUt6ky28zGcWBcnuX8Vy0hl6+wv2F3Sspaa3a5hDHOjacn03jx8jKeO19AOqf70cRnjikdmykNrDZD9ZBZmuukZMujbAo4qQfOTGVxaDiHEvmsuzalJJESsCcWwNXlHI6MZHCFfNc9f7LkLJU86In7keB4mWZbTs6nKJucY8peypmHPOJ4iPjg11zMzptOF3CZfG4NO0f4zTJ8cTaHuWQVAc6J6kPpzmIhH7piQUytUG6YLgsQrxL4v2Y+Ycqv1pAf29rjmM8U8cyVlCnytOFZrmhzVJuhymvLE8tWSLc2mP1YLORJSxZL7L8pynWZA0qWRLLa7IoG0R6RQpXz7vQyJpI548PxqRXMZaTIJCptEmuzlnREySf9CGSRQnRskuNxKQ+/n/SSPzbPMt9cJselwWeWib2JEFrCQfuBw7n5JYytZLGSL2MpX8IJ8l+2ksoX8PhZjnPk3DJjZNmmxjvt6YtFzcLqwmIKY0ndy+dBhjI+m81wXikhzAGm+xy7wo6iRW09PD6HJ0YmjR5ZDivfQjZnCmEpnRPhADoiYfI0ZHw7O7uCp66O4/z8simVpdTKFDl3ybqXc5csHnWPmeqQAvDEzCJOzi6bbMxk0ri4tIxMhXMtyV5VGtaBaNZ9iYtZtj2X5xil3HlKRkcoyDmEdOcp6+OpZRyZnMGLM6Om9PSSL1wNEPD67WjdTLGEKytLGGU+xem9hRLPNvnRGYpyfJVwcnHGLCULFc5lssBh/XHW0xWJWHs5++DE9Cz7IIdlysZEegWXVuaMD/3RVutnxQ2vzJN3GimqgWNc44j9qhV1iXONlJM6sjsWCiJbKGI0PY9xllvK5xHyBdAa8VO2wugI64QEYCKzhGfZJ2eyo0hWUlpG9UpAfpFppjAUpXIl16JC9fGP+SQPooF+M6vmIz6TBiePw3OzHmRZKQdUzAm75R2c6iRH8VFbuCTbwsM5rIaGcWW05JawPXMVvZ0d8EnxUEtqBOHXDzt0l95lznsziwV7zo9nkUwVcGUiiyPnVvCtVxbwrcPLpoz7wP3duPdAO3raw2Yhl8lzHuQ8vrDMeVbjg3PJhbEMnn5tAV99cY5pWezZHMaOwbgphJR27FISs1w7dD+mlIM6elL33TntdejSPZ3Hh1fw18/OmZLuffd0su5evO2GLuzdHMf+7S24bkvcrBAnOPecGM6yz4F9jOtuC5oy8rULKcxyrtZxkNMLWhfSfJKcG/mux/Vi91AEd1zXwrojHOccveSFjqe+OJHGqN6Nud7pByL33diO2/e22dyjH+W8cnYZY8QhOtv5rqU17yzxHmb8yStpZLNVHLw+jn1bW8w6TTw8P5rD3q1h3LanzZSDrA7zy3l89SXKHteLHQNM25tAf1eE7x1cv7i2zCwVSEPReHSJffHk0UW8ci5litRbmXf/9lZEOAYn50kz+2x6MW/vQWMzXAPOr+ArL8zhL787S/moYP/WOPsvTL5WcOxiElN8VygU+K7MuXKM/DtyYRkvnUoiz/mqlWvt9j6HVv3QotYtDtDfwvmkxInRys6Rr6RtdjGHq6RZysinji3gBeKSNehjB9vxjtu77H7GZLaIJ5l2ke8/24jfeN/pvJ/pDsaXTq3gNNeuvu4gHr+zy9b2oxdTODuaNctK0TLB+s6MJK0PXj2TsaH0yG3t7PcY3y9K+PqhefZ1yU4E2L89bpax7rym8rq3Usrol04nTR51nGmIboS0XiXffvOzozh1OYVFrjcZKQop1yeGU6Yg7WgN4P6bW3FwX7sd1XptIN48370575/x9nHtpmCSiTZ2xUv5zbXMRl+Zc7Y/7IePE4479vXoyFKtYDYH0K9jv12w4sR55YsvWLgJTWhCE5rQhO9n8GzeuseWdC2A9a4LjfHN9GZ6M30NmunN9Gb690/6A5XPOR+M9Lsgqz2B4rTZpqfeykGgD08/PzaVl8nMuz6PPnFNwUhXJ1rF+70IXuP+vdxiFfPn+NFcqSLEj9JQiwf+GD9Yc/y4reGMdnntcSG7XGW5iimwzCpryVEsJQZ9aN/hR6zNyZtm/PTFIuZHy7Zh29bpYz6HZv1wP79SRbZcRf/eADo3+UyRo6NRZ1hm7iozMK+URbL2Kxcr8MrN6r47WdIAm28MoLXHZ9ZbOeKaHS4iPVFxFICyKmM9XqIRqC2+CNtH2iKta7wopNketqWQ1DGADk/VailuSnwy5I/29vtIY/eetY/4q4cKSE2X4WM9/gTrKrFdPg+incTfvoZfCpgs+VDM1Db/COqbRlCfuj2oZG/Ai0Rdv8maZGW8bErXtYxVhFt9phTz164bdPNZ32hPkv1TJoql+Qra+rzo2eZn+71Ynilj5HgRUdLfynoidf27JGsm8thHBuo+xOXlCvp3O30kBdH48QJWyG/FxTscOZPSLLdEuVhiX7OfwuRzuMbnFBkpHlRSFfiClNY2/bLakqy/C+KNftVNRP4oZS3hRYuYTkYkmb5I+YmxfQc/FMfm3WFT8EmBeOVkEU98KYNR4vnAuyP40U904NbanYQS3W9/cQ7f/uQSLhzJI0Da/VJwaU9HqPmUa925kiN9sxWEI8D2e4LoZb0ib5nP+GQZo88VSFoVHbv8psAW6IfkScrGL/ybHtz/9gQSLX6UyKsrlzL4Zz8/jbGJHPbeEEDXpiCyC2VMni+Z8sEXoNwve7Hv4RD+wU/24Lo9zkaaLORe+PYC/t2/X7Qjgm+6J2T4xs+VMczyEcpuL+XMWyqhFAzCk+c4WSmBwwHbBgIY2qRxwnbx33KygguX2ViCjnfTvT7irfaxOuOkgS6DpkxeZMdVKs6ReV52ho6FKweCqLJcdrFkeTvafRionXaYpywsFj1Y0S/fhcTpYnTGgC4+svo4PFlAwh9AIgEEIqqPtHMCWOSgX0l7KKMchwkKDMt2UxDE3QWWy+fFW6aFOK60Oe6CBgQ7tFjUPUAejm9nY15jRtXLci1fIP2RDDJZWSxLeeLFzj4xxIN5yspK3sPxTB4FCggSTyf7y5egHHHALM2rDs6pRR/yvjIywTICzLs7EuWcYBSYcmYyw/mFE4ruPfNpUGl8US6rOc4hHraT46XNR14lgmjtqCKV9GAmU8JcsYAc57mYrCNq+NROh4H8S9pMmebokB1gH8Q4BihVWM4wrY4dKqq+7KA8pMsl8o28IC2+EPvOw77jHBEjrljYSMSiJrKq07dF9l0667UjeVsDmvOr5D9lmXLgKVUQ9zuWIvrBhOqpimbSrrlUd1YlrAEcl+xLHT+qcaQ1xufTXV30sC41I0Y8SW/OLAENGuhfBcUzHCuHOG8UUfSRV7J+ZFxOFn/+CmWW/RVxmDM8z7UqX7L4UEjKZUdh5ayi2nTlhFGDIAex5lpZataDWX6xGZmMj/O9B/0JH/pa5OeYSuexUkxTZjl/+UI2j+TK5BDlN0BZlUWpsBXISyPdFhjyqhIAR6WJatnDsc5HgUo5QD7liLuEaICy0RJEqBpD0ZPDbCaHRcqHZFlKRU2iUgyJDvdkxS2JViQCIcOXqaQxtlwwS1nJpd8nJZLmWx0LLOsurj9BL+UvZHWsVBbt/sYqaetjf2fKGTtmkiWszvp79erBJ40M00sU7HIlRx560R/pJE+cSTtbzmM2t2h+P+XNx0f5qxWH92GWF590LHCuZgHvpayJ7z7WHaSciHdF4xPp4WRaKLIsI7vD7WjxtVKWqlgsz7MvMnbfoZSPJcpcvpolnhJCiBGXn+t6GTmddUyQIo9/yUPRz3YEKhwb8lYMR4uvE5lSBjlIYcI1kvOE5Eb3KMb4SImc92ax4JlFMRmgfCmVHcE61M8eb4g807uO3mHUHmeOrUruLaz4AMMF9onGid535HL82HEEajWzcvC6dybaUbHq8DoQXrM08krmVb9+2CPLRc0TLMtxWGG/6C5ED/k2sHgFD82+iOt3bEc8HHQU6G8APtI2MpXG116awd88N4sTl4iLJOgRsOvQFvfjpx7vwnvv6cOWvpitIRLJi2NJ/N5XxvDUkWXMzq/dz6c6tw0E8dhdHfiZxzeju42TDxG+em4Bf/HEFP7iu/OGX5T9Hx/chH/CJ2g80tzhxRXS8/mnpvCfPztucf/2J7fivff2mMJSSj6B8onuLzw9hf/0l06+X2G+d93ZhauzOcYN47VzWeQKDk3bB0J45PYWHDqfxvBoHo/e1o6ffe8ADuxoR6kml8+dmMenvz2Jr764ZOHH72rDx97ej3sPrB3v+82Xp/Fn35rGU6+tWHs1djYPBkmb336INTpVxE8+1oUPP7IJo9MZ/Mk3Jizv21n3z/3QFuzf1mI/Yjk3ksQn/v0Zs8r7wH1dRst129tMCffp74zjK8/P4+wI54o6nu7dEsa77+nExx4ZNJ4WSffzJ+fxl9+dwtdeXLa52r4DavllnffvfnoL7trfwfUhiKmFHL5xaJp8ncRiUnfo8T2d8+lO4r19ZwzfeXlF0on33NuJf/KBreyT1yueJS8LKwU8+docPv/0NJ49mlpXr/ihOy4/+GAH5aXXFKjRsA8Tc1n80989hxMXMniny/ud7Ybz8ngKv/fFMfzZt6dN8fup/+c+dLcH8UdfmcAffmnCrCS1vqtNOra0g/PX068lraz6/N13d+P4xTR+6tdOW9y/+PCgHdEqWa2Xl5mlPL783Ax+5ZNXjGa1/4P3d+Kn3z2Avs4wfvOvLpMHy6asVpq9U7A9UmJ+8IFO/L33DOL67a2mjL4W6N7IuaUVvHZlCl/w3ch1LwyP+Cglvj58CLIylPRLSWhhrtux9gQCrVG+Q3D+UOWr6Y7fq5fFGtgPDBivH0Q8+RO/Vsvh5HTBDTe6LjTTm+nN9GZ6M72Z/ncp3bNpyx66bpQLzXAz3AyvQTPcDDfDa/D9G34In7cPVcVog1Mb7LoLS2EXlFNhbcTpg9YFfbSrjJtuijGGFW+fuHSVX9gr2ljeeI/QFHpSvBXD/NBmHimbhECbeW69UkaV6o4S1EaXN0h6pW8gAc6v4lmswLqYz/aWCfrWtT1F5hV47MPd+Xi3DTA+RnuWf5W31jwpq0KdXlNAVaQAI11uG00rqnapSMbZuNAf1UX08LVLucJwWSWUXkNK0P6vaHTpNVA24vRHnLaqDrFAdCo+lPChmK6golMwleCCr+ooWEljUcfg8Z/xWvufxTX8wis8tuGksLtxQPzWJXQVZ/XyUZ6N+k288RGXKR1rZdUPUqRaG1WwLp/KM5tF20l7IdKqDfQ8/aRRTfG0sg8ZJUVDgX2QZ2TE50EgxnS/oXNkkjJSTZI28lV7md7IWpy0DqKd3YR4nHHSNBHE52zGwSd6wDLig6wQM0tVRKPsJ9Zn7ZCileUFRdVDehIt7AvSUI54sTBXRVefHx/7l+2488E2BNgW9bcsBU8fSxuOoc0hbNkWRntXwNqdzZXw2d+cxuFvJTG/wP5jX0lxqHoqpF2PC5Ib8dlLj7ZqlklohZwLB6qIUH6lEEoxzXRZ2uNhnxu9uQo+8Y+7cO8jLXZcrqs4/M+/OoeL53MIs42yDIsnxE/2BxGUGH4zxeFiqoKh3QFkWEm0QF7Leoqt1HZ7JaA79tjj5FGFHVIhjV5vEFltQBOP7oSSgqfo7GnDE2YHUb6qZKZX+/oc5xKSQlYb51VT1ns8BfJMfNNGupQRRZQDYXiKzmAuk1nFZUcQdU+il/yX4tTD9lY1tvm/5GcE2xcueVECG1mRGoVM1oY6031h9ifLS/b0mKIs5MiX6K5KuEhHpRxhfhawWIL8+rW/Nu6IQNavedIYDQeQL5RMhoIe51hX1WUyHyYvSE8x50O0VXTkGc/5rEy6SwHOW3nkMpQ/8jIQ8nFss29DzNGkcoUAAP/0SURBVIMg6SBCFI0GryeCgjdnShttJIqMSq5uRuHkWQ0FKC05m6c070muCpQVDXPJqBSMpmyS4kQKwiBpNIWA+O4oPNymriEmsIyCOjZY8lbVka/KZxaHDBcq8OkoXGaqaqO8XGa79GMOFmBWzc/qJ2MIJ6Uq5U86PP3AwXhEHCVvgXT6OP/4bQxIcVj0FM3i2ceKq5QjxdmYZv4KB0mZuEJSqGmOFYE23sk/V3FIP6XcLFUDXCC8WlSYUWuIFhGPJ0QecL6krGiOrnLS8UZ8Zi0nngmDzfmMI0nML3qrZsknkBWJ11MmLaS1xD6R/LP/hc+sZTkxqX4v+79UpCyS/0H6fcwnhbW1nX3s3CUXoLxRLimzFZN9WT6SNuavSJ1NIfeTDx7yx+5QVJ/UNoLLUrLTb7JKpHaPHePN/pce0ens+6pO0c48dMscp+wZhUwBpPlcuH2O1l/Z9H8V7Chqdo7+qQP9focW/rHslps4vOxfmb1LsV7Kqy2c7wIav+ozynjZR15RDtZhd0B0iET3WD31mSnAjDbygm2DT7LqlBVuG9vyc4H3+lSOc5EU1ARZClr99nLB8uwH0WdjnvQpX7GaRyAg/hErK5d1TYVCov6QvKgm8SjAMao5ScoAyaijb1Ofs04JtM0x5IkpD9WvFCLGGS36L9ngJKHxXyp42b8lolc+0cq+J95SkfNAjH1AGTFeayyTb7qDUGNYzHEUgSrjhEVzhf3gNTnSixAzalBYHrWVcZZPcQIHB6Mo96zf+kz9Uqc4ZFHFuenqTyljTUFo9Kjxokm0SInCcoUyBhav/q0Uh6qnSh7rTkEpuk5fXrG7/SSfgnjYj239MezflkAi5jdLWMPIP1K0q8zlibQp+8Zn9WIEDHaHsW9LArs2xdHVGiZ+8QPI5Mt2BOrRC8tWR0vUjwPbW+wOvnrF4eRCDheuJs2aUHDr3jY7LtTNI1C+pXTRlE7nRlMWt3drwmgVv6TUvDyRwdxy3mje3BthPXFcnsyatZ8s/3SHY29HxBSHkvv5lTyGx9P2CLYPxuzpbHGUxALx6fzVFE4Mr9hxoi3RAA7saLH7IpdTBSTTJfR3hbF3c8IsJy+MpbCwUkRPewjXkz5ZwUlptUw8zx9bMKu3oZ6IQ0tnxNJE34VRHf2pY1bXeHqdeEq8okc8lYVzKls0Pl0kzVKkyspe1pMDXRH2Wav1gSwztWZp2lxOFuwIVB1DmyJ9Or5UyjBZ3l2ZzFj94tV1W1rIR6t6PTBO/NURtFIGDpPH9fV2t4bMwnDnpqgpN63PKEuySH362BzS2ZLR5vJeY059JD5dnc4iHPThnhs70BoP2lGlp6+s2CO+D3SSB1tb7H7J05cdxaH6fEtvFGnSI8WvYM/mOLYNxtEWCxh+FzgSMcu6jpxbMpql5NtDOm7a1YYuysM05e4keXN1JkvZ0okAZevfTewfWXhu64+Sj4bomqCkhaUVHB6eNMVhWi/QVmgD4DynOUqKQ/Eo3JlAtLvVxrZZSTsTjjJavgrz2VxQB0/+5G/UfAIn7xo0w81wM7wGzXAz3Ayvwd+9sGfTVikOm9CEJjShCU34wYaHqmuKQy2VtolIt14paJ+RDMvvfkCu5lV8zZXyxrWY0+PidFxtADoBbW5LScJvVJajy0f72LKWs186qwAfdxNJ9QhqQQPdlaZNCe1jCa1tULCQvtdVj+0l10CbWEIhNaRtyhGPkkW3aNGWlJWrr4CgoyQVo81lbWS7irVaYctjlTeAJ8By2i1hXS6/XD5ZftXFek0/UL8hYBuSDii/RbOIPyhlA9umvVpGum1TDikNxR/dT6dolavt6VpYShHlsQ1AllUbVhUlbh2E+r607Qa61oe1DHLUJN3ByCTjmUD4yuSNaFJMfT63HpdnPikR1HbSqv1hkglPmI+StbfJR3EqY/JA1wJSXIguKScYK7nR3qztEdfwmU6H8RH2mfOLfBX2QEepyuLI7rmRPoMJUlZJ2agj9iRuqhPadyVYF5AO8dAji1HJC3FK4Rumu+PmED7yCz3YsjOCcMRrd22mkobB7sjUHXx2lF6ughefXsLXf3sBI5cLqMYcjtl+K0FtFtQrDw0UT/oKzC2v9r/saEjRICWZkCiBboVynV2p4h/9Yjfue3sLWtvWLA7/63+Yw4VLOYTibA7bo81gH4WiyjIFtqXIco2Kw0K+gtcOLeOXfmneLDk27/CjSEH1q3/9Ut6oXtLCzisHjJkMa4O5Ai/rzfmkMPGQ5rLtWVVlBiawTX3mlXxVS6Q7aIoobUhp4HlCAfjYgRUVkgWThyOZlVW1kSVBIT41uVgzz9RY95hMq3rhJH99AYqCIz1SJDib3MIjQrRRVmS6FAzatBdvhYvjR8oZCluVE4GPdQcCsp6T8ElwWJZ0O2VrpnMkRMoHr7/M8einHKoetok8qhYD8Abz5noCpCWk4yv97D8vZbS28c46tOkuKy3JpnMUmDqTfsaZIkvtVLwpWXxks9rvyLTGlCOwNbBI4guyXXnxhDnZT5JXM1NWVJGyT/o8YYZVViwp84+sh4L1yDYA8tnuNlM/ib6iFE6KE4mil+0KEK/GDAekeKPjT70B5peimpXpRww+8lUWSxJ8U8SV1L4ySZBMSjFW44/kwBYK4tDmpvrZ+pg000uH+B0LN2YnL1mx4WSf1egwHnul6KHsSjkoyx7JrfFZjJY8MC+DQqgxrjRtXoudNvKI12NaN2ViHtJUNs2j+lwyqjjNkZJ1Hf1aEw7JuNYirU9sf1lKKlYfIG1aa3SXpc3NpFllKpoQiEN8MholT+xz3ZOouVUopaDy+imjWgBq7RCvNB+IPv2zxYSTqJSwbL3VoclG7bST5pxmMF7zn1uPQyv/k2y1WYXWgyxWFC0FldM20sYapBRVh0iWdXeelHK629LWH82ZtcVMvBIxKq4xorlMCK2+OrC1UW1gvP14QH0qaxkxTWwQDv0YwH1pEA3ik5SqlEuF9U6xilZxknn+k6Wh+OFYy6ku1SF6pAQx7oljTmHSYRZ9wmGdXMvDghWjW/0t12mf+GcPcVa0CEm21A4ONNXnZCIN7DPVUSpWWF58pPyL8UyTYrTMudArJSbjbM1h39q6zXYxEx+1VbRpvmEdai/nUmfN1sM5VXlXlYQCNtZaYq0xMKUgy0gxKLD61G5lMTzCr/rIV7bF+tMUDJIl4RYDNV6ZVsmSPOYtljCwOPK3UxwSrD3Er/ti3WNupXBRvO4xllJMltUMrgOlS/ki5ZcUQjoiVHNFLOyzJxLU8b21dhHkygrdrUN35uk+Ux396L5bCqfSclzPdY+sQHl0nK/SXJBf41LHc+bykju+FzCfjhRVLv24IMN6snnR5NSjR3cs6shRvYdISaXj90XXG+Gz96daG8Qn0aa2qs2ydNZxwFoL9QMJ/dhPFpk6RlTkC199nPIJk34EkCJ9wqtjX40WzYuqg2lZ8lR1vBFPRbPo0XuU7jgVPXmWU7zuNBRdumPQySvMzM/+yjKv7hDUPBsiPilw5Retymb08LkWvFG9EdIYDfkdZaXmR+ZnVsu/kmlob60dGq75ImVC9RNHnDj07kaSTOGoI191h7naFOcjHkoJLVAfSTkpnkkR6sY19ptAPFBdKiualSTZkyJS1pX6gaRkU/0reoqkR/0bpfzraG7VU49vIxAfZXF4pGZxmA7qmGjjgjNfaLzWcKit5ucj1x8KItgWQ6QjwXmKi4WSbN5Rz1Ge+DJh87BAEynhqZ/5LXOb0IQmNKEJTfh+BkdxqPXTWVPXXBca45vpzfRm+ho005vpzfTvm3SzOJR39aPSHEvTpooppZimD3AXlGVV+VQL69GxYIqX3/m8dOK1DWebUS4KeZnBvkUZ59St7VKnnEuL/rr1GCLtWclP0Ae7/KpNrvKIRtvrZ13u9oPlZ6JtHJqHcTUaBarPyBDuWqTVR/BVnA9shZXk0uamC482XdywQKnaN9Tmg7WjRpzyKL/aKLesTTrRxHpVv0ebsMzv8lCgMmqThfhHCg/xzLF/YNgqcaqobXU6hVyoq8/JA+vLjfjsgvU5XcWpjMMXp42ytNJmvUDdKayKlz7ArFHpFx2qQ/vFToxkRyVYRhs6iiIoypRoIoSu6lWSyqoKJWlvXyQKv0CObXSqbva/8mkT3cnHMP3WXtXNzLJSkiLGxWf08Y/q1TGQosFkm64LiheojPJJHyBX0cIbYAW3PxjHLY8mMLQ7jGjcZwpDgRRvUiTq/saR0zl88wsrGDubt81Ef4TtY4Ul6YTo6nHhdcrDGpiVlRig/9pEVhmRJ5dVSnGoOw4//tNtOPi2OFraHcXh1eEs/vh3l3BlNI9wizCxXq8fPtImxaGUGciXsenGAD7ywXbs3RWBjuItkv4TR1L4vd9ZwuxiEV39PvKHBDPNp6PqfF6W98LLshW/NpaJTzSyMd5KkfzXnVHiph5tVGmzWxtlaqDmAOUXMX5UpEDQJrUkRjiKTPCT68YY9o2V1YafXOJTR4S0ASmrRcar/6RY0DwgrbOUI+SVKTKkyNFmtymuVCF5bybArEcKDm1OsqwpVCtSJDr0edUOppW1OSglCMtq9Hll7efzQ8eROhYXfFi+jBJbybKydJMc5XU8mLSBRGftZT2UDSkrK7IAVltklaZ2KodMZlmno4BjfVUpPFnepJV5zTy1Htg2xUs7Rl+taSasngjL1xSHHu391YrKr6xSqphoK1wro3gLvxFY/9ItiTfqV9ajAcmysopbD6SPA09KLynvBFIiCqRokkWdDUDJtJBSBshtk0mTKxFJPqyC4iX39XEEYVyNsYmd9SlC47DI+qU0Yh9JkemTdaV4y5pM4SZ50y6u/MRfD/oBgiEnMinppJyWBYZbo80kapZNMG5ZRxZcv/O4oHj2B/NrPnJ+0CEZYnGGdRSu7oLkiDRapHgjo/kEbG6XYlLl1ZnrFIdGN2VOZZ0qmFdyVLEj/YwlQsU/Jq9uH6tv1EfsB0ep7mZcDxZPcDeLzTKzttZImaUju6WQtA1pkuJaCYrnTj7R9Xq8yusonESX0pVXdIget61Oux2eqYDiayChXu2PNfBqAWB+0WHKQbfumiPFoUA/vjEaJNMEtVNrm/DJ71h0ij/Kp4yMV6fZPOV30Ik36n+NZdUruWI+Ke/sxzvGMqXX8tXAwadohxa1zalbdChOMuAo6xjh0KD5Q2NCBUWLFIUs7+JiYi2dQL7U0DGOntW+EG4+NZobFYcCa0ctq2TI2uvVueOs3/pWOAiay238ss2SCaOHwlUoYnDpb3dUaT1Yc2r5Hf6QN+IjvfZDsg3A4Z9Ds8pYfQqrmdbm9VBfh2CjfNaP1n8OCO8GqF6XTyB8/Ltah9sOh6Y1+iytRrMLq/gYJYWoFFROf6zlEbj93oivHtx636gdb0ZLYx1vhafr6qV3o34TPgfP+nzCYXTwj4PtjeF7qddFXN9e4RAug7qy9f3h0ie//rj1Chr7XPC9yp9Li0vfm/G+EfT+IcXhq5fXFIfWHMZrzLMCy1ffv4bcGOBBIBpCvLcNnqDuR9d7jxVmihSHuo/WmRedOdOHp376N5RsuMx1wQ03ui4005vpzfRmejO9mf53KN3X1tb1KwoovM6Vpz7c6MpTH2505akPN7ry1IcbXXnqw42uPPXhRlee+nCjK099uNGVpz7c6MpTH2505akPN7ry1IcbXXnqw42uPPXhRlee+nCjK099uNGVpz7c6MpTH2505akPN7ry1IcbXXnqw42uPPXhRlee+nCjK099uNGVpz7c6MpTH2505akPN7ry1IcbXXnqw42uPPXhRlee+nCjK099uNGVpz7c6MpTH2505akPN7ry1IcbXXnqw42uPPXhRlee+nCjK099uNGVpz7c6MpTH2505akPN7ry1IcbXXnqw42uPPXhRlee+nCjK099uNGVpz7c6MpTH2505akPN7ry1IcbXXnqw42uPPXhRlee+nCjK099uOZux4flo58fro7P1kspcuoVWHpcMCUPH1PUMWwfozXQt7TC+kxVrPIa1COwD1B5avhraVIGuGB4+ei4NUVbHj7aIHb9AvvIXwtqG8/y6IPfvou1iaZwrRLld49cVYwp5pRFH+h1jxoivAIFldcNu2B8MNwM1B5V4+KWa3GWV+UdDArrw93wKrCa4uYl/1SWYO2r4VFdshxyEKiU2utArXkqsFpG6Yo2TIbDyWT4HI/zNEItTvmsSO0RX+r2PiyfwrbRUZfP9kutrCsffJTRGKUC/M/H5Esu0wwPU7Vtrja5MuZWqL9Kd+lRFdb2WtjSGWk0Kqz6a3EmMzV5UJyUBsojHBaug1WZZ0Uqp7DJkmrgfx1hOH42j8XlMmanS5gZL2J+ooiJ4TyGT2Rx7rUsTryUwqvfSeL4S3kgAgSibAtxCbOUkLZPqwD9tp/rdmIDSKFm/4xIFtD+j0uw+MJy/gAfuoukZexCAZfP5nDpfA7Dl4rI52QBLD7YqBAGQ6P96KAUKh4vKrkKZkaKGL2Qx5UrBZw/l8fMVNkUSnZHp4iTAZ71nQh1+KoGeM3Hh9FV7edLqVXbLLdyAn/FSkhhY/m8tY1/KfVECOmT4k/j1DathbWmLJTi0AmTfjLNI8WVLNykwFE5/Su5SkzGqYE1/FIIWkPZRlPAqN2ymvQELIusuHR8osAU2qRRMlLW5ropE1lOm23WDi9CuruvrBZLMShrQ1kVlkx5o9bZJr9oLflZj8z96Ld7G5ndZJn0kFVO20QOaZGJLPMxko82+oOm6DPlovFiPTjKUrbVVRaQh6YYNAsyxxVy6VZMv6J4uQozSUo8C9Ovas11WH5tUBfXSHGVMo6igbRQmE3ZVeOv4ZayTXkoqFWzrvPCFyYCyavSBQrKCkwFhEt9Ky7WKwhFm4iWo+iaXNkPLEivE8dHeAWVgt1dqjEucPghmVBmJ4KUOXSZ4ot+lXUnFPG2JJkTAsZLKacjQ2vlVY6VsR4pVdQ+BmtgSlIjyokUSomDHe+odJXVf80jVpVDhyVa34sWZaRXFlcUUNXroBNv6BF9bJzi9AiXcOpoS8snvpAGybbNeconGixg/w2ceBYUsC2WbjQIDwszg/2zApJhtdepV1hMLpnXZEHxbLvaasd7qmMlC1YbeS+cVkx59RCf6rIo1SE/cRhehRlklCkkvZLxGs7VR8A4K+uU4QBkuDamDB/jZbnsVONkt75QQO1QO8UrtUHy4darAqrcoqwQUyxOZQyd8qiOWhsl+8TE9UFhYzbDWsGUX3idugzoOPhqIDTOHycoGXD73Mo5vHLlz1EQilc1XlheDX4hcB4r785/mkdqKQ4+ltE8avTrUYKh4ePyVunkpcU57dFbipTRxmsjv4bVlLj0i27yMZFbxvbMGPq62hGQNbDbboK9ezG8FvN6MJJqNAkaw68DN72W503zE9w8b5TvreQR1Oerz9sYbqTP0urTa6B4DWn3iMtr8qpWth5f/ePCRnEurEvbIP174akLb1TmmvnoymJOcrL6vfAmsK48oTFcD26apdfnqYu3tDpYF1eXtlH+jeI2gjfM58bX0q6Z75rgQS5fwMRiCme8fSjqDgeNObLTHctO2OGvE+fMI6pUf+0I7iDHrvtDGNVv2Tl/aE2qSaXuPbzyxectzWLkylMfbnTlqQ83uvLUhxtdeerDja489eFGV576cKMrT3240ZWnPtzoylMfbnTlqQ83uvLUhxtdeerDja489eFGV576cKMrT3240ZWnPtzoylMfbnTlqQ83uvLUhxtdeerDja489eFGV576cKMrT3240ZWnPtzoylMfbnTlqQ83uvLUhxtdeerDja489eFGV576cKMrT3240ZWnPtzoylMfbnTlqQ83uvLUhxtdeerDja489eFGV576cKMrT3240ZWnPtzoylMfbnTlqQ83uvLUhxtdeerDja489eFGV576cKMrT3240ZWnPtzoylMfbnTlqQ83uvLUhxtdeerDja489eFGV576cKMrT3240XXuOGxCE5rQhCY04Qcb3uH5glld1S+K2rCSwsQ22PhPGxr1ijdbTGtgG4F1ce7Hvyl+GDYLt5pfacKiNB2j1Li5pFA9HQrr6NO1XE668rr1KE11uHf0KaxHlnsCu9uLrpsmf2Nc/f1+LjhtUPucfG6cbThayKlnrYQDijO+MV8jfW77XaivzwWn3rV6RKtA7XF5LaJcvrh0u7xs7I83A9VhZQiGo4ZL9a7W6SSu1nutdqicW299HItAyjodv2ZHTKp8bV9YFniyoFQWbZmViFlWf9YuJ8s6Hsgn/sivfHLdbc9G0GanzyzbyKcC69TGvfZLpNwgLUrTnq9Isfx8VJdoEagFRdHqBFWxMli+mYkKsqkKwhEPevs8CDA2NVvBcpq5Q4zrIu4oMTGz9FPaa5YhlNprCIRU7htBLZ8UiLLQ8+UrjqUe47QP7FjtAemVKrLTFZSWWAHpCw34EW8nTbriijSXdXxWgWWlYWR7vNowCumoLj9y82XkJst2R11owIdIN3uD9SHIR4zI6Wi9kraPWZQRPo7bSBkVKcXEq1LJlIrloI51dBplSjKW0H19yubVUVemdNMGtO4uDJqrsO419JAeX7FA+gKoSK7ZOK+3gHJZlyGqGh0byTr8LKdrxFiV6WkoRN4y8fnD8Mjax8d8AeYrS2FHfvlyRrOUdVLmVfwhttPLWoumhCx7guyTHAJRx7KyWFSDrVmkT2Ups1LmMRyOllHM67hCp22VimhjC3x5yhM7OOCnPJGWpNrDOG2+kd9e3U9YjsMX0p1rpKFEeljW48nAqyOISauUMLrzUEc5Wt18jJXqXG30u0CUdj9hjvGKlkLXy7AsDVfLEJSP/WtQHy9/PVBcVFbWiq9LE9SXFdTCUsBafxQk2Kwu5FgiWTtC5I2XPJDytcg4yUikNkLVR5S/ejCLQjWY8aY4rCU7lqz8X6Icycy3xI5XPuGWBaHGoZvfJhPyN0wZlVUtGeBhGd39VsnpPr4ieU38sjRtBJbVXU8eH/vBFNXOrONYmKnPNB60VsmCUTLO9lCWTK7KbJ8pisQT0cLBzT70+opmSei2xQHKimSeeVwlmYxiFac0U/gwUrTIulD1OPcISq7ZLsq5WCeFkGOZSJYURItkkNk0H+hI2NrxtIL1ceSZrMcMnyYhhstSHAqXg88taJvKNVqcCAVZidFEnsgS1pTuwiWLRvkZ5R4Jy/aZn2BprEP1CK8bXw+yyF0FUwKqz3Q8nvqAtElJVQO791D16h5Mtr1cu7tQbVVW8adSDhEN6bT+dOJ1x6EuWF21NhRvCcZ3o8/pd1nbuPyrB+VXXzs4xQf2I/2khIlO++V15z4LkheyRtURp+pv/alvv/ihO+5Uv+6dNL/wi1dsZ5n9I0sfiyNOa7sucFaDyBtXcejGWViKgKr6SPOo+pByW29dWLNotjFCn07jde91VHm3L9U2m+tUlVkfCkSHZEY/cqjhJK0o6KjSMTw8+xJu3rMDIVsLHGCqHQGqoyu1bn+/gdr3v0OrNqLjfxfamvB/PzT2rSxVZXH4mntUqXvHIcec8yMEjleNVYHiOM+564sb5wsEEB9shz+s+wOI3eZEBwyH+TTjefHET/xHCzWhCU1oQhOa8P0Mns1b97hLpYEW32Z4DZrhZrgZXoNmuBn+fg7rjkMBPzEN6pVc+mxcVRwRtBGlbSVTbNGV8s+10HI/MVXOlC+1PK7STfmEy8WpWDefyrj1lrUppUTGy+MqyFRO+eR3N6BcfNeCdcoruiqnelxatA0mV/GGsy7OBZV1alvDJ5AOycePaeGTXw1SqvCIL6K/kVdrpR2wNJavj3fj5Kru+jpduhTvKvZUdX2+xrJqq1zjk/LXwq4yrp5/Li0q7+J341VOuNx2KFzPF0uvhd1yApXhfyeO/02RJ68YTa8UiTp2Vko9bTjrKDzhdTHIdfGJJtWlkPxS6rlxQudCRTgYp/1W7aP6dPxksa6OIMvSb/U7HW6KCFcRafxjtPwuHS4wyZSESHhRZNlynvm1P8M0dbud4qg8KqhIxZMx9YpDGdPI6EdKS530di2okE4zgFLeOsWhWSKSZ1KWVYLaFGIW5tNdjrrXzqPjGolbj0DKmzLzeaWEsQTRUEEp4GdbnU1jU/rozjmZGjKD7u6TsqFi9woSZ6TEPmPj2JhqiPVnyRu67GAms17h9EqhEuCj0cY4YWJcJRBwGCMaSZ+UhFKgVKRc83IOKdWUiT4pR1RWCjdHcegoW4iccXbXYDlkcXbUoseHcu2X9T4p8JiPvWHp5VKY/GYcwxXmMWWkP8/yQfjDbF+oinxeEsu2Cb2VNVQIh8soFCRXrIexFYTgbynCXyIfWaaoY0cJXl+GchMmD4SbeaXgIh/LKboULG+4xDTSmI/AFyywfRIY9qFksRqlHJacdlAWq8USkukgognKjo42lYKxynIhKcwcXhoYrY7XwCHF7i+skubVgeDGS4EovpOuVWWiC8z7RopDX1C0kQ+kRelSEFaKUmKxjNos5Wvez3z1ikMRQB4U2F/SY8giTgODIN5ZXLBisrsKqpuMN7nWMaJMchSH9FNWEAybvJsiSwPHzz4v5ByLWN1tyL4zRbQd9UpadAYti3pDHPcZ9gNdUxg1tNGZNUiLFH6OEFi8XFMScaQ7ikHmIQukU6oUg9bXNlcyu5R45VV5cMJCI8Wh69f8ZkrMCmcO0md3Wqq9Ugz5OA4qsmx04zZWHNrY0Ngz9pbt/kQpDoXflIfOMFWx9VCLE15tHptVmpRZDJsVieqU/LEuu99KZJi1X5l96CCT0lX8lHWt0qUcVooUYqKvUXHoKMMsyvILVIfu53PBLOBMmeljfvFYkVKGObhWFWTXACnMTUlYcpSEjlKUtFLe3HsALUL8U8cIlUuL3jHUXiIwv/GFMsS67S7HN6hXMmkKQ5u4xQ/1HR1PjQ7js+YU8UH4KJPse2svQWnrlYeaaymnjFu1smT16y2OXXok50HiKDJK6bUG1dJlaSnem2zKepZ+4Rdv7P5FA8mT5kjxh0AUSltbfyUTUg4SD+cqolrt32olb23VH7v30CKZYVVx+CKu37kdMR1VahkdEHVroe8fULv+d1CK6v1Hx6HrLjyXio3imvD9AVISaozr/sp6mF9eweFLk6Y4THp1bDrHsr2cam5z3I3A+REA38ukOOxsgS+udxrOGxrbiuf7U/0aVeH72tN/z7njUBiVy4VmuBluhtegGW6Gm+E1+Lsadg5pcVPoNsOOa9AMN8M116AZboZrrkEz/P0X5sehuzhKCSbXVQQpXo+UM7Yxwnh9Yiqfm8fy87HNKj6C+jwCN83FqVi3rFunfZTKtRy1MnRNkeiG+azi5D+33npQafdz2sVp5ei6ZRvBxatUlXXbK6WXi6u+HpdSF98qzXzUHlZsMW5Y+QyX4mtpAuFUHoUtno8bZyA/H4HosKOEanmsHoLVwQ9/N5/hoGvtqeWTX3W4ZQUu3126BPLrEZjSrJbX5eNq2/iIHsW6edy6XLp0Z56OyXTyKK9TzvbC1RlMsM18KcAsTNqI1KmpRj9dhUWTg9UB+V2lnlwVd0F9F2SErxapunQnl+hTfVJcqIxoE2g/RfdUqpyLU21w/euARaTQKDGlnCXiUhXak7Z4Ptrz1l4Om+4Qfg2QgYpOqXQNVa4FZkVH/mwEdi9czeLQlBpsl3juY0RtrwgV0iorQylRfeKB22bxRJvBdWW9sgys0eP1qJPokSJIdwMyY1XqUiKVAsSsVpTOR5vM7oZ3tSKFhzaYFNZ4Vz4/vNoU18YTO8NbKjqWhVKysbxXVmksR05C2a2oC6TJUWQ69SifKSfZJt2nqKNEpRx0LQulB5KSSvh9sgqTYlJtqykfzdqNYSk87B5D1uorFyRsIsUB9X1WCgDGSQlKjvq8OUdpWHAUC94g64xLQRAivY6SSn4h8ZfJswAbQt5Xy1KYlsjP9FrDxHPxzJN14mp9IKVjNMHa/GIKecG+9QpPTWlYyHmQTdf6TwpAljHWKL9AeKQ0Dtce5lnNp642TXYDqF7lcdC+HlS3q7SkI6WhWd/x0RGkCrvxgjUrRCl1yBTxRdaQkjcpDdnBsgqlxxT1gqruq6RsGjDKtTR0gHyQYtCAkepPCqspHTU+TZEm5AWHh5JVs5xiXRobBjX6V3E6IMtE0wlyIFbyIlT/JWPqe/YPmWtKQ+GnfGgs6BhaxTk/dGB+JUmZtgq1umqgFNGlcSllnfRyjmJG7XLiHOUgEdWBlDKmgLINXQdIlqMMkuzwK7bMeiUrwr8KdaRIwWjGsbU4UxLqmNvahOUo09iPpsxTnzKsftH4IX9Fkmu9qCNnBQrraFRZMcqKzSwuy7KadWTbjgglSDFmCrg6elyQMk13Eq4el/o6UN1sbAMvG0Hj2Y4JNmtEziuUPY/Ggoq5v9QwGWFQ9MqyVFawelx+G30s5wiP5XEQEEyx6bTL4bPGrOY+J87A9asuSKm2RrPWG/FFyjbR5/CVYckTwbE2lE+8Ev0KOI/1E+XekX3i1sKihUu8sR8zKCw5kjxRljR520B3QNQwp9Xl1FnPS/UxKVKapUumJA/GDAJly37YIJ/4q37m/Mp2mN+wS45UJzMpKEKckJUzTx24mAVa14uSnVrYBYUVr/S/DVwLXyO8lXw6LtN+9PUWQe2S0lD8uxZsVO9bpfmtguo3OmphwUZxAtX5vfC5ETbi1d+Wf28EwiN8/3fBRvj+tnX8r+hLgXC9UR/Ze/rqeHXAeN/wrmjFmdesBTXoFcFHa46tOzXQ2Je8VEolZJZSKBX03qF3PWetcn9MoTlN5ZwfZViU02632ma4Ga65Bs1wM1xzDZrhZrjmGvwdCjvLLf803abbdJtu0226P8iuHi2O+kitWy/dJPugdOMFrqJIaW68/M4fB5xyjl9Qn8+NXnXr8rk0qE5XiaXv+kba7AO2FqG87paZpfHR1oVc24ZTOuuwjbwaltV6ao+VU3ot3nmcvAI3zvLX6F3NX1fO4vm4ON0tFLeMldfDCIvjI6WdPQyKXvmVJJxuOwRuO5VmuJkuMF7U4urTV+OVj5GKF44NgXnEI6NrNWqtvJXlY3UqrzIQLJ2Ppbvla4+yCptbp/OXkexQWTc4wapdy1bbL113bKja7io33XYJVvnjBNfRYFurLKMqHTqY3+9slJo1hepRJCtx+WcFmebyW0E9tVQHxBwjQi7z0qu98qoUGA0bT/W6FoEZ0DGPWQfSL0OSmvGJgencrgHKZ/vfLGflpWyx8rUKhKe+evmNoQ4YHbV2SmmosO72k1ZVYbNAFNMJGuUV3VlXTxzBet8sH+kzZZry8wmVHTqcfXs7snTN0lA4lM8az//062FZHVlqFmgkxrHCqTjKTSn3tMFlwlADZTN8agbLM79Zwmgj3YllO6SEqcWbJlbtZJg4TakmMgg6PrKic/mEURt9UlZJGVOTZkeZRxror0iBxH9O3cKtew8ZktLUXzalsxQmHjtJlRVIDtQ/Jcd6jMwQwZQP4mZbTeEgPEUvKgVKqc9nSg7dcWj3HEpWfV47WlZWZLJoNF2GLBRrIMWI6RZYldtnxsM6dolfBoqrsd6a4DTjdWBWW7p/sA6k/JAlocCsHtXOWpxZGqpOKX30n2HFO8pE9afaVKNN/KJ82UBR17HZ9rCgyZJoEkjZJGWh5FQbnxprGmerIHlhlBQ34onxysEpJKaEUnFZ2aqRQixcNfw6DrbWxRYvxZElWj1CyKD9ykAF+Cha8ZagMB/9J83OnCF5YFhJhkJxDjhWl/QwXnQ5uJywFK2GVjRYXeIl87OAUx9B44LgKLLUTjqcMJzNWqUIZ629xhM9khHKq1W8BlaHKcvWNoldvAaiw2gRCCH9Vo/yOn0tlKaQqz362a1Vwz/OHC4iFKe6FK+nhlf80ua3xhrDRrf6ymhWY9g+/bUJUTO306iqKe/q26ICjpAbHabEcyqTotcpU6NH40L/NT7l55xgdSm/S5fwWM3rweSqPl4kS/ZY3sg3ulVaqBRQv/FRm2y8Oe1VDYZLNKig0ai65Tg0mNLQ5E951/I7fvaBVS4eqbwVrPkFmiOdOIs1xKJD1ItW0Uaf2k1c4qdDhwO2Dlpd7mNYrIweKcUlJxpLzlhXqtsnot/ht8o6BLDxqvMtgqi0emthFxR24htTyMHVseeAY3Hl+DfCpzTlqYfGfMLXqDRSk+oxNdYraIxz30euBY31ChrjNqJFsFE7NooTHtFRDxvFCRRzLT678FbqFepGHI1xG/FP0NjejfIZhRuQuBGv3krcRvga49Q+lwy5r+ez8uvvGmwU50I9PhfeSpxwvVEfiebX9bfF1QIEmw/cCCXWKnDmC4vktKF5k+O6LlzI5FDJFUSUoowOW1tYzl1jTKHoFGm6TbfpNt2m23S/r13n1V9rpzxym+FmuBluhpvhZvgHMKwtItvQYlCLpB756z/k13xM54ekvkPlOkgc0Eeuu4miR3gVdvHKNT/j3I9euW4+xahO21ij31H41cWrgBvms1bzGqhsPQ7Db2Wccox23NojcOtw49ZwbFAP8zoYHDAeENw8Cq1uoQnBKjjKJsNvYYc/+qd2uhhFi4X5KJ/bB0p3y+qpD7v81OPQ56S7YGmMcdup/PWutVcZiUx+F69wWbr8hNU66sDls4PLye+2322+xTFdQdN3yE+3zBjpCZy6nHwKuMrCWpCPG1rjh9Mmpy4r54Jwez2rx4WKLmUwfZL2N5W5UnX2ka2A45qlpBNc1x8u2B6scKl+PfKvNrTmXgOkLBRI+bGR4vBa5Vctr1SXHOWrRamMwuvwNIBZFzKPV0yW18qygBqvzXf6zQLPmEKw7Gy7VUQQ3eIZ45yy2gDn/4qP9TJRFmza8Kox21tvrbMKwu3io994oYpYt9HCR5ZpASntKtZmZw+arjb9y9pEr/WM+sXe3pWBftYnBaQsISvsYFNCOkkEjWFZxTBOIeKyoyKlWq6RSSkg/ordxyee6LhEnymQmCYNM8tanJpXYR2il3WY8qXiRzVPzrCclJ3iA6Q0oICXZY/KKFMo1DpIx7KaYlN9oY15berZ8X+MU1k9NTCFtA2U9eAPAcFoLZ/Qyku+G9trIMswsw6TbqweD/PWhs5q+w2UbILkBA3q4+pk43X5iMT6hvGOjoPpGltSMNWCJkvqVynNpGDUQFInGb+cfHbvoJS88ite0eS9q6Qx0NGjFmbDZeFpll7EKfzWx2y3jNTkkzwpr3CRXuEXv8Vns/aqbX46Cij1J13TJzt4rDGSVWMyXdKsKGdcsF6XRoGTbK7AWFDjuUSItTr1WrVyhdOpfx3UxjhzmGsKQ8bZvEN+WjnjpTIxvNqZjDI5Y9jiyeva44wH8b6mPKxL08M/RKfxTqRWvazxasJBnPqnI4x1DKrbF2qDFEv2awfjfa1+8Vf123hknMaq8Lpxq+1WmI8Ncmsk/zt0OESILtFQB8LjEGheCxqo3hq91iaHRoGjxJbH6XtHJp10q6uGxF3vXL9TgVzRqjxO34sPzsQk1/E7Y1t9pLnFfMLCeNYgmbFBwXjD6bjmt7jVPw4+eVfnT/HQ4YFjTak453EUjpo3avwU/aaYLRmdRoiyCmr1On7+l0yTZusvWaJxYjO3VkSy6sgR8Vp/O9aVDsmiXbzgo9x2VKpoI7j1vUUQPtfavxHshIINklSF272OX/3mRGyEz1Lr+lbQmE/46tMFeq+ot+Ry6nL8LmwU90awEX1vhRbBRu3YKO5vCxvxefUdm7BRHY1xjbwSvBX+CRS3Hvfr8wmP8DVCY1nBW4nbCF99nPI67XNKNbZXoKxv1pcuNOITvNU4QX0fKcV9970WKKs7vwicOchFoPmiDhjtpFntFuWCaCll8ijnC7VyDg5bMwSaMLhAGTl8rLTcZrgZboab4Wa4Gf4+DDtLvC2cNbcZboab4Wa4GW6GfwDD+nB2N7XcRx+Ppkyx1ZMf2IxzQT5tH5mf8fqgdT8vXaUX/1i6fRDzsXxcfd2PXxefE6rhrJV1n0YQHq3m9WmKE047rlLpNVAe1aEYHXUqcBVC9RsF6+pV2PXbo1zrwW2PlWUGt71y9QiXHqOVrlAor0ubW15QT4f71IPwOrQ5eVXOVaq59AmDXmjc+lWP0rWHaLRZev3miFOL4TZfbQuS5cRDPVZH7bF6nGzmGk4+Lr0OHW4OJ87Z/qyapZ8KWV7h0z8fafTQZeWyntOJcqarYSHpAmp6m1WwdqxS4NCqew1Fr+4jDLDxjvUE6+BTYh26M1EKGu3rar/Yjt1jvaZLkZ/1eAPO0aTCLPrqq1XYBauZf2TgZAo4/rdjEmuWfwbEva6QCy5ygTqJZdwoO0mPjRPNG95xKJRqh2istUV3G3p1hJzKEZ+VDfKPkG4AOqbUlIc18OkX5H7RTnwKe8som1LFaYgs+nREaVnEaQNZ9fu9bF4ZnjxHr5QJshgj770FKRkCDDi8lw6g0nDkpTbW7b45FRKzyMSqKXVKzp2H2vSXHPi0GV6E3QVmZaTkYN1V5z44x4qQ+EinjiDVPWImLKpLTCiQrqLyVkhGnrySii/IeKYxmwG9arWHeb06D1X8V71+5x41j6dAfsiiz++g1RGkwkcB8vl0XKmMEwsoF/wo5gIokpc+bx6VDPlnG+ikl0h9gRo+rw/eEGNr9/3prkJV6vHLYjGPaonx4mOgaG234yIZ1hOJVREMq8YGULdIWUsCV48gVdW1+/UM5BUqtl2Pji61OCtLV1U4JycaSLFYsaNFnbDAiZOQsQopdDko6+PWQEgK5L2HfJElpcrqGFcSwDp1VKlOM5SCtCJrQI0b/ZfsaswIjF5HHi3O8DNsclIjUvMF+0wKOWNRhfJTkJxIGFmG5StFYwTTnTpMISKFpIpLlgXMp7Hv0Z2YrFHKGR37aFZ2ZJApX4wSoZDlqeIlu4xVVe7Rp6pDlZjf8VmK/VFELVIh4jYrNMqkybIUc1LAmLbGLUxaTLGmJHWUXNKm2axuw/f/x95/gFl2XOeh6H9yPp1zmIzJMxjkSAAkSELMFClSki3L37Ukh+v3nvX5873vu75Pz89y0JUlS6KuLJmiJCvZEsUgkiJFgmACAYJEToOZweQ8PZ27T47v/1ft3X2m0TMYBtsSuNfM7r2ratVKtar2ObVOVdm2nEyajkbP5ftbkBod2+KUdRVc9cp8EG+/zLZitXpeOXXX2YCyteMjH6asKuJlW33a9pXyB0dbYO8RrZ4Nu+1K/XeGbUeqy87YkqAsE3/5EfHc+Xi0q600lE6K+q7qqrIVUKOpjzFLstmWraTjynit2EEyM0N5/GPBQwuAWXJdsPagzBZMNfn8YJn4UR6NR1o9LLuY/5FZh2huK1E3ia6tY63fa8JeOuu/bGFb06qMl36FQGG0NanzVW0D6GzifFHiiIEE9oUWIdkxRpuSNsfRFZ9eAzZ+qt+QttG0H3XI3xxvN9ZTHy9IKRksDs9y05d+r0AxBw+WSUbJJQTns2GTw/lMq6k2I65stTLQXh06NeqE9fLX5imI4gek9Fdnu/mfadYDlQnn6hhsNdJbL+DTCZ18fVgv7/uFq8mynh7Xo9t6sJ6dfVC+trk0nyT8oPhezVZX6MvbFXivw2A9W11v3rVAmNJPegq+Vzv7sJae4Hrz1oLaxdrHS68HLH7NCkkD1vXfLyseYHneO0D92efNu845rJZqqBYqHG/1npENXD17tqChxm5lOPntHqSDdJAO0kE6SL8B0+6rBP8E9+Ae3IN7cA/uP8z3uiax+GgvyA6wSS9eKhOOBb+YFp4FmrwvozYpZU+Opr7kqlxUfRoCncWjCezOgKSPp5TylNbUmi6fRzQcdpdHS8Ern4fAJr0IKvMvgeipvr5Li4ekVY1OfTv56ll8xccCcZp4JpJKhOvT1rPK9bxSV3fi+Tw7beKD6sQ8PQTCFfi8O/EVdIvYGWe6wpp2XeFtkzt8UL7KFUjy+QpUrmk8f6pAoHLp7W/dZLblZTqTbqduneDLJtDd19fluzI9W7mfr7T+151MFtQ1BNpAc5BMKO4T5bOCf9KhGWUxL50FpjwLDhpVp4fSFijktTIVTmEVTEukdYWtrnjYeYaspHiTBeWYp4BbhJf4qp1ETxeFQ5R5ahsfLHjKu3xB/CwAoURnnks6kE217SVvBhagIA0JqmCdZ3PprTloyaT5W29efn2QzAqOrDcRRFAwUTpdC3SmYVgrrCKUJ0WteelZq/NaDQpXkb14KcBWV5+in9kZhSG0JKRs1tDksIOw8FQWJ57O7pMVkmrEKxVRwM+Bzu5yZxKSsc0v66zDditueaFaBOEqSzp4CF+gMwsVzHPBRFYkaEvPcKNK+yXYP8iTIrai7vzBSEOTXBE0kDL9IsXKit0F2trU1VN950FaIdmMJqkG25P6Nyph1Fkt0qwgmWxSuzjqtQRqfsBMatCE2lI1Gq0jHqceqQra2l+UvhdGmT5PXahTu9ZAq0T0EoWkmSKJqk34GyiwEIsSV86gNqFtImGra/W9fvwaYJGCgdcCO+MwxUsBQw+sjjMhgWUy+krvWg+oe5uGWHFowWvzFJyLpKKI0FZR+kGIzzScV6p+KD+jrjR3OCPDeQU+MG3byWpyl/5sgUXRr9GmYqVzB5s12pfjXEpBWcpAO4cSbMeUtmS0SCXz2PfTUYSSYbQq6vv0d/p+q0r8UBupmFaNOrxw3LX9Cui8RNrfAlfeyi1ByAKGq6AVZ6YLfSKS4BjOJtcqNg0hCmYp2BLlFZFfkkazwgLPVBaIIv9wNGqXJl81aavAS6vVoDt4+V5ARvV0NmaY9tXZowY0kc4XZFVeGvdlDyKutSkzwnY+njdgdUBohY+Ichwg/5D6IQclBeKaCjRbkKzDN6ignZHHu/hGTIdVG2pCutmgrysQTnDn9NGUzGs2ZQuX51a/cMxiH/Av9yJgvp2V16nIa/MUALTtc5llgUsNnhyv9OMF9Uf5okDBsqaCnBaIcw1g7yXbntaBHyT0wSbPV+xFG9j+w04PswvpaQxS2+odo3aRnfR5xsYhdkwFQrXNsc4Ia9oY5z4D+LYyeZTHfifdI7KJ3jm0gVY1h6mPdLb2lV1MRu9HCBac5BP7gmhrO2QXXHwt+Gca+mDnH2psYZ9o6SxRvmhtO2XK0/LOLZT9lLYXJnnJVs5HJB91jGi8jpvdVNZpu+8GGpRt7XaSAuWprBPWywuA7cmxMsL2/F7gWjaVN8Xkz/LJ/8EgffzP8Lp/r/p1gmjYVsBr4Hrsd7W6/zNB7aL2uZZUCpLqTMsrwMbXK8drQWeegcYbvUs78mtLZZRnltUolq+20Q8JWhyHWg1+1hES/wT34B7cg3twD+5v5HtocuMOfpXgB3L+u/LukF6bH5QH5UF5UB6UB+VvvPL7W5+wL4Uqt4vPfhDKryPoxBHorkCSfaF0WRZY0bN/9/MVmKlX2tCKL02ORVP8As88QWdwSs9+YE0SKF8pTdb5wmheTfL5dQzbk20t+Dj8xruK7+FauiNf8qzmA/Uyby3KE6esCckmdIfvT7AorXrK8/lLbj8I16mbwNdZ9WS7SFgT4G2royLpqRVypVLbducTEAW5jCYhWSZ6nmH43V3iQwtotNui4ZKIrbBkvi+Dy/N4eGkLbvLZdPbKBWo34YmP8gWSz01iE48I7YpWdnll3uVSBBFgQjoIjIZH2xSUHDbx6vN2RfILW0Si+gQL8PFZ8ze+fb0iyzdd6E+NiuJbsiXTESCRY1vJTspQHgkovxNUt0G6FgBko4qv0WdatGzKVGW6C59/JLPqCVMlbrs+Jv0JJtIJ19qoLrE8GUI0z3ZluQJ8TZ0PKFlIwF9p2LlgRHPgCpxeAeIZYz3ZUfqrDuvb3K7uwqFMyr8W+KsOQ40mSgXWY91YVlteOhmszGufFhWyoJuCBwRb9SdByF/BwqgCHXTGFg0aqtIPFaxVYIeNqdWRNnHe0ko9f5LerMdLDaA724oOVFacMNJCOkrbUPdltmGB9EaGE4jGWNfEcYqJlk2kEyz4F4kgrJVBpjilo+y2DWmyjia0xE8Sc2wgH03qr+BZpJYljQjaMcqv1UltBcNaaGpiPKRIlQJImjSskk6KtbQCSJOaUcTiTfbHitlEWmkuP5SIoaEVh+QjOcW5jST5KqBFPXRGnLYoJXI4WvEm8CkHZdYKsWaBusTrRktE2+zwtnJMPkWby6dsZViUeWLqgcxT0XmDfLBgujK12inVRkX+JgRdV5oeiukk2U5sJMpGw2tg8QI9Aq0utDZX5/Aqm528ZcBacWarKyMx1GjfGhmtrOgixOn3CTWBghs1Txf1dTkadVJTqD+sgB7JylZ56UF+LvoKTkVYSBHtvETJqWWSbAcFDuU7ommrikW3SVsoiC4SFigRUdqB9qurX1LGFvWi94DFJldbq6Uku3yZvqa2DqmtxFSTrV4ekXh5BiQowKQAkgXWiaGgoECrxiyQSH4KmDVRMzmaNfWHpvMJDXo+yAd4i/JfOBpb8Qv5r1ZqGi4NZkFQ6ceyMPtGm/4ruuKlszQVCNLKQH+FmwJYDcoSER3a0+WTjltWRhSlRV+rDlVXsvBitoKf9n6mvjZmMk8L0+y94zmV6GlFnQKD64GChJLV9KO/++8QY6J83l1wls9qT8lmQb1VGxtj1rP+S19Um5if2eBHuf0+Lb8StvmYdFQ7KF/66XL5Vma8JYKcSry9OrShTZYzTxPnAgVe2/Q3J67qy3ZKqB86+4ie6Rbiy5c0/YDzCpgKHEu8IIXjL96sK9HM96yAl27kY33JvzphtZEU0LOta21sET1eHkgeqynZ2E7+VoVa3aixRHbSCiLDlc00JrJ+i33ZrVSUfqShYKLpplXcHm/j4/R2unTIqHStidH5c3jz9BPYvWUzskkFG6XgKthnCv27Mtuqk6r5qw/r5V0LJI2CYlpltl4djQWSO/o6QaOr4ZkdeT83VcRHP3cRW8ZS+OD9Q8hnYqhq9T0FEG9dPrx0YpEytTE2kMJIX4rjQstkFK1OvLWgwNXx8wUcPVfApXn9yGMVahznMqkI9m/OYfuGPB59YQZnL5cx3p/CAwf6PSwHsrf0kS7i9t3YVHXnluv4yKfP4LbtOdy2oxvDfUlvHHBwLVuJ4fxyDSeoR28+jk0jWfMH3wavUrdDp5dR1o9DhE86oizJkokI7trdi6HeJM5dLuHSXAWj5D0+lHE9QYp0gE9vdqmGvZu62CZRPH14Hqenyqjox1MkmklGUKmJNz8zkmWV+ZuHk7hlR6/Z4xjlfIXyCEx+8qgTt8bxUHg3betGXxdfbh2wXlteT/teC74fP1XezMISnj11CZ+K7MdyJMUhVu9w4hBX45wb49zYoDzZfiWYKL0tvTqmxDJJ5Mb72XaurnDN/kR99Gd+w/xJfdrdSZLXanrtPSgPyoPyoDwoD8r/9pVH8t19/4r3VfBr+BCkg3SQXoUgHaSD9Cq8wdIb8SHLMtCXR4KK9YXav5S/gkPQsy5tpWhfQAWdj8zXo164PuSGI0j3aoIMqBdgAR79cN7w9MXW53UFMF8TDloQ4n6Ab5PHmiAUGPYa2QRK+1+p7e7JY1/qXdLAl05JlVk90o9mw+ga5Zdu8aq3bXs0zbG7r9gOV3R1F5gOSuvyyvw8f6LDL1/J99IiIZsIrVkhj1obPZujGNweQ8941Cbk6wttVLSSifj6zq+51t5NLMtpMhBosEzzn0ZP/0hUuJ3g8xPYsyd7J6zYn3c9ma0ipEUeWo1VpR1itImm2wU+TWtn/l+xB59XgqS89KjgowtGuQ9jAgsW0qiyq/MVljNP2dLT/M9yHWjuuE4/aJTbiMdgNurdHEO2P0JcoDjbslV9akPnu6zLZ5OLTCSXuIig5GvxUlq44uG3r0BBNQv0ST4iiYTwFLg0MOLeI8tz9Jl8j4JYIS1kdEWiT3w96xI9W2mohHDEnM82F74WJJMvkDF3+LKPBQ15t0CMypS3DtTrKgihpz+MydEY+rvC5i/FUhvhuLOsWkOXQJPXYWMaQiofRZ52TWa0Ek+T+Mz12EGTkVo1JCGIbnLZRLWruwri4ZRU28VTQE93BDnSrMnPsxHs3JDA1o0JLFcUeLRKpKPxQJNwmpRXkIY0febqLDK4ic80i3Umoc4rlCbK0+S6zjRUQI2io6SGJ57iUdKPrWh8RCuk4IGlZWDWZT0tQLPVV1qpRl6So6VVliaTFCY69Yna8tG682sFYkhHW5Sao/HZAjAcOEIaQDzZ7JJDiUyUtNmWBsyzcw9tbNOlPNGgXF5eS2Mhleil8+eIK/L24w0+KJiQI6/+NK9cBD0ZXileTGeZH6WTUTPHX2B2oviUwbZ+VDb1ULGdaydjqX11CTxH1gRwVzKCwQzHp2R05UrH3eSlFntqtbRo+6ycOrKzR0/50ltmlxJ+eyt2wYYyPNldNMz+RGTnsWeTS+SYFh1V10W5FDhUQt1CjyP04b2DWSRIt0r/qLJjuhUndAr5kQhYB+fly6XLBgo1EJ87gXLa+Et7mY9SHqG5rTM5LpJeOhZBb5pjUkxXHFkyz/Fyae9i+8XZJjUvkKMAIf+aOBbHogK+GNLVYjrkpTHH9PTkUj3zXcnF9omH4uhOJK2p7Mcg8g3TUYSshns2cfXsaJlNzcbCUIZDUbmtsHMJ/SF/Bdyc3K8B4RkaqXi28dtddE1e6z/W6LyE0EHLypQWX9Z3LE0OP8+CgWo6u5gvHY2W5ORlfsdCy3fPlm928Hl5NRQUtCdPf+WrgZUWbxaZvAKhWCX3bCD7EV1VXLDORiBRWZXN5y2fY6mtIPRkcfrJr2UP55P6oYJk8Gnae1H4KjPqGpNWhbDxQXzEfzWbtvICpvIt5lsQs822oD4ON2LtYequ5ImACw7oSWABWkt4hO3OtrBViUpSdoqeqyxic+kcRgZ6+RlBQWFX7IOzg5foAOU5vquwXl4naEtGlfo4Pqa9x69aTZ8HPHzpulJrFURP49vaEuPDa2G5hlMXy+jjuLJpNIVkPIrL8xUcPLVkAan+bv1QgCahib763AwuL1TRn49joNetbNdlN4/ueqDx6cjZZXzz5XkcO1/CSA/9RQR56XOvVpX15OIY6k3h4myFnwub6M7GMDmYtvqduqnvdgaxfHtda0WdcHQpuKZg2lh/AqP9KWRTMfMLsw+dxvB4F32JJ74KtMlGU3NVvgcaePnEspVlUlFML1ZJI2rBvC89NYuvPjNndrThWD5FRNEXvY0jacN9/tgSnnl1AQPdTt+1YksW+cKXSe9bLy9iz6Ysumib01NFzC1pxwJ+bq618NjBRQtkalVegu8m8evi+2tsMIUSPyB8++A8PvGNaWzUj5esO/ljj8Mb6UsizXdcJ6jY2tKzqWC9PIECsRRlxf8E6+U5WPXTa8Nr8SrVKi4sFHAoPIy6/aLQ9wRi6zOSn3LKrd59UFqXR9fGG/4P089V1bBZpr5/8i+/ZThG0go8CNJBOkivQpAO0kF6Ff6WpiPd3f3/Sgl7N+ruFQbpIB2kg3SQDtI/TOnN+LByDGwywHvWl1L7YtqR1wl6txoJlQvPw7rySzO/erZggb89b81g8kDS6l16tY5kjvX4fdTmBPkFN6KVWaKh76i8KdsCk6yf648g2x9FNBFCtehNcom8JjV1ec/uwYHJr9WCUWayzOa9Vc8+FHiIvGlyJRoPUxYmWnoOoW9rDLe+K49UTxilhRbK8y3Es+JFfAWiPL6irUlq3xiioUlzWwzAL+B2Md94Sz6hel/WJZ9yXCCUz7z3DEex5cY0bvyRLPbcn8UW2mtkYxyJRAQNCq5fnNdLsLP9bv+JPAa3xVFeamHhYgOJXNgCCz5dTXdqcsJsyP82+aw5Pk3UUBabryEQg8X8pwzVFb6Pw2fNESdJu2skikxPBM0a5TedHV3V0/lfsovVU1uSV9gm0x3I7rKzhDL7e5dks0lzltk/PoqeqjpSjobQlVFrUPd0CEObYth5Rxr7H8pix11pbNyTRN9IjChh1Jab0I6Pks3mNiWPaJK3JpJMLOWRthY0SV9N2ypbfGwijJfsZOexMU+TKZo/ljjKU32jz4r6gbYCtzfdl8a2W9LQzpvTZ3VmmPM5XQLVNV+Ub/AmMFL06fXm4dXGchXjT/voDDibw9YzaZqtmDZ5PHorEGlTjhASLJuYiOLmezO4+ZYUbrghgWw2ikothKUy8aye/sj6/EuiupZrYYzT7w7clMAQffLMqaoF7i1w463e05aBFrCTHHT4tiLr5nWdwhDPVmUxjzIPDkVx3x0ZjA1GcexIE6M9UbzrgQxuvzWNwydLWFqmD9MYEdLWBLfON9Tly8U/tr2lgoLOT+lXthIripBtF8g82SkqXOKxTjoTQa4nhmSWtLUCgTpo818zLjtEuFW3NteWleqjYemnFT3m2MKX/Jq01yoaPilbcmisUHBEOjejpBMha22bSDsoKKA+Tc8Kx1muBhY/TbiqvbSSMEadvECX9QH5mCb7m7KheLCM1DXh16C8xECOumwdj+KO8Tw2UCetipgrk5ZQye+mkTRu2ZjGrrEENvfHsWM4iRsGkxjrouxEObtco00ol1NC/8mTY4pWGWp1pfhJZ/Vf2VBM6awWGKNODbZFVyaM/WMp3LkxZ7T9a6InbgFFYqJJOzYsMEJ6lkNCFqD1ntkuFmhW51EnUhbtqPFJHc+2FlW2hHaFfoIgW/JGWSJR4omWdPFsqbMqtfIjFaOcI0k8tG0AMdKaKTWwUGkjoXl4ItpqDcpnKyzM/qQrPrrEQDy8x5XLA4lpNie4YJi8oIkk23SiK4lbRwawpTePzX0ZbO7NYFNPDpu6c5jIMc3n8XyWvhPG+eWi9R8f1B5mDnMBSen001ji/IEI+m9tp0vlbB/SSLDRxnNduHWsH2X6dKFecytgPMHNne2B9eTvbvAwfvIBvbNcAFF2IabJIFzp51NR8fqBQ2sHIZlcqqmgHNtYfKSkCqmY68eyIMEq6PLAyvQgudQ2SogGsymWBS2EYyCFvGeh8dnwiCh5HR0fnA6eYQ2UpLPxkl2drX3eJhbB6a4n0tSzxjvJbrycLO4uGsInnntintRTHS+AZ7xFWIFB6c+08dGYQ2T7Lzresx6FJ99khtOJ44DSfDSZefcDhNanXbaVa2WorRAyH1IeC6yRScv4E5/t7HRweliZERcRXfIfZvu0zDBOFsMXjvol/cwPHA739bJvyU4svga4H3+JjktfC/Q5RiCeJpX1OV8GBzauXYWW8PzPEgLt5tpJU+AHcvQjEDWHD7ZKTf2Iecof6o1hciiFXJoDCUFBvsdfnuc7K4QNw2naikik87XnZlGuNAx3oDuBQrlh9CVHJ/21oHY7dn4Zh84UOb5F8CO3DVjgTtfEYArjA2kLHOYyfKdxjOvvjmO4J4ks5ZEOCqSZjfisFX0KADq6zgYq03tDskiMThvqhwzunDy+7ahPf55jykAK3Vm3grRa4yjHYtlEPxJROwi/7v0go1pr4sJMGYdOLWGhUMeRc0WUWUeyLBfrGO5N8bNHE488M4+j58t4z1392DaetVWZvo6j/UkMUp84dX/u2CLtW8TWkRQ/M6RN/k6QX2oV4yPPzuPFE0W8aX837ZE0WWUj0VNQ9esvzmOI7yet1Nyzme/OoTRGyKc3n8AS5Xrp+DKeO1rETzw4gi1jGasnvX28btLSOYSd4PztSnnWyxPIpLJqp/zr5a3107U+6sNaPB9K1RouzHuBw6i2Pl6V2dBtbBdjbyxi3ipt5Xv8bJzjiEjbNqoNxNOiJWThaywM4/RnvuXSVkH53j1IB+kgHaSDdJB+A6UjeQUO9X5UTnAP7sE9uAf34P5Det8a+nE+uC+wCqbormKBf/fz3MQRq9pb1cHKyjKWKV9pTV0w5VjwO2qzBDz0D/ux980ZVMptvPiNEjK9EQuaiLB9EeazdlQLJ/jlVtmsp2Baab6Nve/NYMfb0ohnIjj17SriKQUF+MU6Ql42j8e6+iG//tl8HP+xPJohrRi/ABNZ05ia42prOZgH4msBwBT5x0OolR3PLXcm8aH/5zDS/RFcPlXDzJk6knxWUEIBMlv5w8uChCTs201BT9OjTv5iI1tITglLXAmh+TtNbFgd0WEd/VK7aziKe346j/f9s0HsuCWL0fEERieT2HpjBrvenEVmMIT5qSamT9SRy0fwY//HEDbfmMKl03UcP1hFuieMupjJnuLNSzdrBPKRfqG4Vh3JDmYpW7hlCKom+e1OefmsxVTKqiwBk7ckcPtP5HDDLSkcfaqCerVt9je/4ENU7eHZWTaKkZdsYDzEj9kipokmsxMvZWmatUV7antatYXax/mPJ7uAaYVNJFOj0sa2O1J4+z/swdt/ug+TW1IYHk1gclsKO25NY+c9Kcwv1NlmDVTpZzqPTHOlChxIYPMXMhZtxbOa4qsi8SEozwKHfKb4Fu+xQDGf1Z6a7GlqzkU+xkuTZbUasLwI/NT/PoC992Rx+dU6jjxR4gdN2pqVtCuk6kg/nVNTF2GzB2mTcTQUXpkg8kHFMeY3atSbMoP2lFCa8BQ9rRq0eAfxLCCrCj4INdlGcbaNTZMx/Mi7c3jHB3qR7Y5i0w1pbN+TRL47jFcO6lzABuz8NQXLWLHZYp+kU5xdamP/vhQ++FAeGyeSePiJMppVGadlwVadF1nl1SB+k8ZpKbimjgdtb8dn0mq1qGuzbro3ZUimt2/M4B/83R6MdEXxpb8qIpkM4Y570ugdSuDIsRqmLjdQp5I6v63BhqpX46TT4NWkrmxEnSsYqSGk5R2akNSkLm3XZh1ts9iWDNo9MBJn/4wilg7j5p1J3Ls/iUS6jTPnnJ8qoNgWDTaitU0iCp1lqfbQtlzNtlZXKOrs2ioSJl8F0uSxNukepX/zatXQkJ+zrTSBz15t/ULbKyqYqTPYLHBoE3UsMH/jnRi2BamQzTYSgv8lAPWRr5ApxyaXbnBMyaaj2DeWwI/flcWb9/VgkuPFpVIdR6eqtIf6YBsfuKUbD+zJYfNIEv25KG4YzWBjfxIDPREUacenT5XNlYy+gDbWdpBSyYKnGh0oq86pNL/QNqXCoeNr+8ZSI4KtPUm8bXc3HtzbjQ2DcUwMxLFpMImdo2nspnwTvSEsLrUwX6+yiUiD/8y7NWlJDtpiUZfGbHNky9PqJ/FROoJ4ss6bxhDaiI/yU40mRLS21oo87Uwb1xlzdbYhq1ngkHLGIvQF3pNMb+1LYPdID8q1Js4vVjFbriFF36pz0I2ZbqwrdxVtXk5EGcjdNXaY8P4lO/CKs13UVPRAZlIX+l0rVEc62cL2gSwe2jyBHYN58s9i92AX9g938zmH/mQC2/pzGM4laMsaXpyetTFwBfSo4J2a3YJmWuGjoAVlYaqpAK8e2Ed1k8DhkPw1hFw8irvG+vG+3RO4VFzCuaUSSuwjNp4RWYFqq0MI89kdwkqdeRMnbVlp5+oq29qc+fpxAP9ZoFEVBZJFBDuBhf5KZQtQyK9ZT9t+ykpGjPfVoJ/TyfqSCedlC+QXVsZ8PgvFVsCqbQgt0bJ2UaUGy0VDPise6jtC9PqQ/MVkXU0LXHBRP0rgsxpSOlm+AnN6ED/KqIv0ZRsbZy1krGfhUka7RNb5hRLKc2ykvxqS/zXI+M5EuW0SXjYwuTzbhDnmWP/z+6DQtX2u6spexKUspqfGC2PnaBlvXaojIHkXNHA/wLCxmXU0pmm1kMokt9XlgC6TubZRJvu+tY9RIhgj4lF+y3MFFnD37CnaufIiNpXOoa+7x4I+Zu+rgGop+ORMfyVehwor4IJh9AXiKt/GqmvQF1jbXgXlzOWSBfJiHPPjvASFSgPnpyu2RWdvzp03KVkuL9QwzSudjCAVj2Ch0EQ6EUEXx2Ntj/nYi3M4craEKMebnlzMVrTpPf/CsSWapY2hngTtEcbhM8u4NFu1sSmlrb/lG+uAAoenLhVR4Ni+ZSSNt942bKvt/GuA46+2SJVw6gsKWOqHZSm+w5ZYR6sQtYquSP0OneY4QJ1k6wR5JvhBqMH3pLb2lM9K/045LrCu9FeZVtgpwKh6slGNY8n5mTLpV2013/xS3fSf4bg6vUj7EE9uPbtcs5WKr5wu4PiFCstrRm/jUBrDvUnSbOHQ2YK8Gh+4dxhbxvO2leuQLuqnVZv+d4qTF93KwU3D6wcO5RWy5ytnClik7nfu7LL6ffkEBj17dWXjOHhyEbsnM7hlRw+2b+iiDRNsK7YL9dJKROmgzyIfvH8MG4YzK7YepLzdxNNKxe8HJPda2dfLWwudfv96oFdisVzFpc4VhzYWqi4v6w/qN0x6/da27XYDHvPl8F6+kLwOoG2udZ5zyLZ4d3KoPU999ttWbuSDe3AP7sE9uAf3N+g90t094FYc6p9399Nr70H5+vn+PShfP9+/B+Xr5/v3oHz9fP8elK+f79+D8vXz/fv1lE+0fox3TWG596S+pOqrpL4cCk9/lL/y61f7w79Ma9WEpQm2eox5whOmvvxbEIiJVg244wN5DG6K49KJOp5/uIhQsY2l+TZqy23U+bw430Kp0EZpsWXzyXGdg5gJ49RMG/d/sBu33p9DvR7Gw58pINloIx4NoVoGSqwHnZPGeiiRb4T1EiGb0J+/3EJBdBdaqJJPjXySifDKRICCW9VFx7vB+zzLi6Q7NBzBrW/rwux0HUeeLuMCZU5kQpg508TynKNXJj/JCsqQ6Pa2gJxpYZllcQXpyMImYZsh1Kmn5AtVNelF85GHzXvyXiff/sko7vpgHu/9B0OoVtt47Avz+Mqfz+E7Dy/i4oUKtuxNYfv+LL/EtylLBS3yvPPHuqCzDV98qoIXv11Bc6mFCi/fBtoyUbaPxMJYJg/fDhXaQbZYsVVS7RvCwmwTbeZVSrRBoYUa78lkGFNFYNudabz5R7sxMJbAxz+2iDpxNS+hs+2q1Fn2K5C26NeXSJt2jKQ1aSF/kBzexCpBgRsH5M1nC6BSbGHT+eycQYHOb9OTgpEK7i5famH7m5J420/14qa72TaX6vjMf76Mb3xqDodfKqIeamPrnjR235mxYO/cVN10Xb7cNLm0ojVKfvJ1zYEWLzZRk+8I6GsNClA438Il+ltpgT7JNpvjPZumL0oGommLz6mzpMW2bJJmlXZQYBu00wPvzyHXE8Gxpys49nwZ0TRtc7qJ+Sn6F2kuTbewdIl2m+el8wFJsDLbxkXipOg/5iseaIXu+cMNLFJn+UiSvgfynjnURIFyl6Zoa15l1k/1+5PaHugxxjY82cSNB9K47715KFb+y//2Is4eLWNwMIaJyThKs1W8+qJWDbKtbPGE+ippsTHm6F/btyZwYFeS7RfCk98so1YOYXoZmCuEkEIULzxZx2yFfYY+XaiwT9HPkrEGqbiAmyZij18IY3YpZFet4VY/3sf2KS238OhLtNNMFa+cKuKrTyzh/GXyDzdIh3qRyoVKBJfZ32Zpu9k51me/6M7q/Lw4QnH6cIV0L0Vw/jxNk4lg+iKwSDlaSSAbqYMjDH0ujDftz+HevVlcOFvHI39doos1EIu22P8iqEWSuEQfmaOPL8hXOI4oeJ1NtRFu0H/YpxcoxzTbWprNsB8VqbNWSmfYvxarEcwthXlpGzu2c5n+3t+kL9NHQk2EYry0+oaN61YisiF4haL6lYPXZhpDVe6iEbxTAF1KJthvyg309YTxnpu78cGb+pBp68xEjtGU9eXzFbx8uYIEde7NhfDm3d12HuPjx+fwZ08t4NiFMh5/sYjHjxZweIZtqCCnIt2aFNQY2GzR9Rt4320ZyypU1f/oA6TRqtbRrrOj2N68xG2zv7SiGMnFsHM0hTR5fvPEFL58fArPHSvj3GyZ414LN433Yd9oBifYttPLTQ5/TVTDVTTIR1eT/tWkzzVDLXpKAjXmlelD1Rr5JIXTtO1lbewiTqteB81s9bTLoybodYZqlQg0jQXTNIYoyNqs0HeYV+OYW6Nu5wsVPHVuDs9cXMR0oWqBZq2m1YR4hX2s2gyjQf0a1FlXuN0ys2jg0VhbaUZpj8hKuXwglCiiXI+ioWCSmklBErZdJBzluBK1VY2nFwp45vw8nj4/ZytVBugsR2cK+OizJ/HsxXm8ND2NY0tzKFPPGl8cOhXR/tHG/jlgUbZxhLrK9Dq7sKrVQCrnpXL/ioc00AP5eBQ3DvRhU2+O9GdwerFo/huNRm2L1jqfG7RVg7bRFU/QR6N6V7MvtOinbBMFLaypNZlsPwCgm3hBIJtMZmGLg6dbhevSyo8ouKYqbC/3wwGNqyrToKZnCrgGdHamrXBEnOMPhdOj6ot2ywWStfLV4RB4a/L9b0Et9Q2NeZTTD7YLfDklo3TQs4KXLpjo4euZ+U5nOoGCdbS9tFFgTVsU24p52l91RMv00juANnKBPtag7W0Vnt5rRFWQ0PgybXxNLG2XKL5iyXyrr0syuXHS7EMUW40uuwuXvNT2+tGErxs58FkBI8ktmUVHY4d08XFWwfLos/bLKruIG/F0NX0kk3jRj/VAemKlNlOZgvi2slRkTAYrNJ7yE+PLfLMZ+0qusmCBw8He1w8cqsQCzOvgyKfFrbNMgcLrCZ74oM+gClDpDOn1an3s82dx6MwyBrviGO5Lm62ePjKP3/r0OXz9uUW8865+jmUR9pkWPvnNKXzp6RncvC2HUrWJf/nRE5herOOGiRSePDSPf/OHZ+1dd3KqjOMXy9g5nkZfdxLPvrrA90YVs4tVPHFwAY+9PI+PfvYSjp0vYrg3iolBt7XoWvADh5fmqsgko9i3tcsrcSBZtSpfAfOnDs9RhjnML9excSSLl44t4C8fmzLeh88U8Mizc/j8U3N47uiifb4a70/a1p3/4mOv0o1adnZgTz7htS/wyUcv4sSFIvrycaRScfz//surthXqYHeCY16LtC/gY1+8iGeOLJLmAr5FnR55dhaf/fYMtk9ksJnjfiYZs2DeN56fx7cP8i3MdrtlR57v4T6kUzFbcfj88WULyN60NYdeOzvQ8ddN/cqHo7SV7HC1wKHGXvF67tiS4fmBQxHSajnZqkz5H395jjrEMTmUtq1HpZMoid5CoWbnRF5mm967rw9JtvsKUB43lnjp/8Hw3fi98Kp8t5/3Vhw2Yin2d/Vl9VV3qf+6Psw7lVoZOz0FV37IoTKhWj32A74sI/SHaNw/9xQ489nvOBxZ8ir3oHz9fP8elK+f79+D8vXz/XtQvn6+fw/K18/370H5+vn+vbN89YxDJoJ7cA/uwT24B/cf1vvW0IctqUvg392Xy9VnP78T/AkHwdpyt+0fX7vtEBrVNm57Xx7dY1GcOlKzQMRtH8jgtvfkMHxDFMPb43j7z/Xh3h/rxq43pcDvvJi/0ADKIdz3U3nc/nbiTcSR641gckcMyV6+yDPADXemsOctGSR7Qnjbz/Zi74NpCwZOH2sg2x3BnT+Zw10f6MLt5LP7vjQGN0cxdbCuqVLoB/OK3vVuiuHBn+vGfT/RjQNvz2JsW1SK4aYH8pi9XMfRp0q4cKiOBG2w+91p3PuhLtz/4W7c+s4cNhyI28TEwnQLozvjuPMnctj5pjQuHyePGtCqAsl8GDvensZdH8rzyzdVWmxZsFTbe8azYTRKbey8K407fjSPeCKEP/uFKTz5uWVcOFzD/NkGzrxcx+VzVYxvSaJrMIq5xSYOvljHAz/eZQGfSqmJ8W0xvPef9GP/gxn0bY+iSpoKUoXSYTQX25i8OYE7P5jDm/9eL+6hPYSX6IYFPotTTTu38J6/l8fYTQmM7Ith31uyePDv9KBSb2Jifxy3PJjF1j0pJJIhjNBe/VuiKBUVhGxh291J3POTedzxnrzZZMttSQveXDresMDiylwEnzXn6gKBzv00ke8mwrRGi2n5jfKEwwxNUSgopnSFsj74073Yd28WZw9X8bv//CJe/U4FSxdpo6MNnKC9UGtix4EsYrkQztF2mjh/3z/rwSbqNXumgSrlVZChVmD7vjeD29+btWDf/Jm6BTxvek8GD3y4Cw/Stne8K4etbN+5uSYahZbJM7EtgXf8TBcG6SM7707h7h/twg23p7C03MStD2SQ7XKBQ604FP7Wm+O4l3Z/20924y0fyOOm+9Po2xjG+VMNZLIR3PpgCne+I4tFGqheVpCEfk19e3qjeOdPdWHLvrjZWAHwsRvjeOeP5fHQj3fjTe/OY88dCfpDCCefq5svKVjuQ6gZQnmqjd0H0th7ZxpTF+r4nd9aQCgTxg27k+jvjuLooTIv1o27wKGb0HYXlunrWxLYvSeJeiuEP/38EnqGwrj39iRu3Z9ElH3v/e/M4gPv68Jb6LubhiIo0i8X2F+18kiTWEPDCbzzHRn85Du78SBlGB2MoLsrjF1bk6hS169+p4Qcu9p9+1LYuy2F+Sm2Vz2MciWMHha8i/36/T+SxbsfyOGWGxPI5MI4e7rJPtJEpQDkUzHcvjeJv/ueLrzr3hzuvzGFfTviSKZDOHqRftkVxTsOZHD3Pq0g0NlyIezdnECJ8s3SVcKJCG6YiOFDd+TwrttyeGBPGttGYijT/2Zoc3YrDFOvu3Ym8Jatih4D77ib9G6KIhZv4ZVjTWwdi+Htd7Bd7k7jwRszuGNTEqlsGxcUzCxrtYYc3pugM4dXR9BkPO8tF9jgH0trRY/hJVxZm77carCPUe6+WAKD+RAulcv45PPLGOxuIRmK4vBUFYenq0hGwugLxXH71iwWSg185dkSHn+mjulmAxeKdcyXaqiwM9j2q+QTZv9U5FpBrRHa5sO3DaFQbOP8fAPzFdqYcrfrvNpxhGNhXpQ5qq3oIhhh2yhwqNU33zxUxJMnGphinZNzdZzgmFPl8/bRNPsyx63FBhrlGO4f7cadmzPoCidw43Ae927Ooz/FvnIRyESiuHUyjR/ZnWN+N26f6MJAhv7LsWep1kA/9X7n9j6Msz0VDJwtNy3IcvN4CndN5JFLhTBbpX7s65lUC2/axHfIUMq2DW3Qjvdv6APVxFK1he5kAu/e3oM++shEN/1nPI8Ht/bjptEc8sk2FioKzrURpW3qzQg29bN9t/XjzVv4bhnKYCwXw1A2jltHeqAjr6ZLFdrIrTK1dmQj12jzmXIBl0slu0azKYxl0ji7WMBj5y9irlTFYrmOxapW0rZx40Av3rxxFPdMDOHAUB+2dGVRQQ0ltr8WxQqa9MmhfAz3jA3jTRMjuGNsEPsG+1BthLBcr9Jn60hFI5SPPjyQx8vTsxY4rLcaGMgCb5ucwN3jw7h9dBDbe7ttNfNUocpxlT6oN7f8UU8NDdb2djTf9IOGbhJe/iA8ohBXK3MVrDX3lY9zwNPYoa0eLUjFmwWhdFkUXPbxFDJQmn8jTfo+eSvApoCWsmVTtp+NRQ7N7pa2Txq89F/L9SWrJriNl/oZ3x3GnM9EUgDRv/hJZKW+rS6kXI4m6ZicLLc0MSjDShCNejsenjBMW1DNA3JkuXQQnt5kRFExSYmPbGVvM9ERfRW2hefTkLwxk1EMdQ5iW/j2IUVZfls4vgoaWVCA8tjqW/631Y1mI3ZtmSUkXfWuVRDSvUctWOm1icmjCrzaWuWoJzmyyebLRRCK1+4iLp7ODqqn9mIZx5RcZemagcO1AcErS1dBxcJZU/2qoCChVmbZZ00vT5VFw+fVCdolYGaxYmfxCW/HhhxqHGu+8eIcvvniIho0xT37u9CVjeHyfBVPvLKAZY4577xtwFbZf5PpAY4dN9+glXJp9PLzXYxmvWNXN3703mFsGEzbj9q06u7MVAVxFr6dde/Z34+9mzI4famC54+VsG9LBnltAbpGRj9weHqqbKvINo2k7bxA/6rZdtvuBxRakbfI8V3bcmqb1HNTRXzq0VlbffiO2wf4TuzH3Xt6cO5ymZ9TG+jrctt3Li5XbEWigoY6G1HtsrBcx8c+f5FjZQT37u+l3BF85ZlpjPYljLa2Dx3pSeDWHfz8u68Xt+/spu5xnLhQwi3bsrhzd6+Ns4ep94vHlyyQODYQx+5NrEt7KTinYKnG1pdOFmwl5B6O+1r1py1OS9RNKyV1BmKCefKf1wscSnDtZvDcseUrAoedWFW2rbaS9QOHWmlIz3X+QZ9R4FDB3FfPlnDTtrwFIn1by2aiZb61ljdBuLaLhvqNB+vlXQtke/UNkV+Phw+vhye+hXIVF70Vh7Wwdg1QH1f3VT33bMD6ouHyV2n5Y5w/jvKP5etHFvFEHBHt+BB1dE9+5nEnlFCCe3AP7sE9uAf3N+i9Y8Why7SPm0E6SAfpIB2kg/QPWVpblWqayCbH+GVRX6j9L5N6b+oSngIuneB/r9SckuF0gIrcl/yQfYnW+Wi3vjeP7tEoXj1Sw1e+Wca7fyqPWx7IYXhTAj1jMXdO3WgME9uTyPZGUFhs4tLxOm57Xxab96QsKKMVY4lUCHOzdc1VYecdGdz6NreSceuBNNJ9YVwk/XqhjQd/phe3vbMLvWNRdA9HMbolgY07UwjHYWcCFmeaGNyYwIM/14PbfqQL+aEIcn0R9I9EbWXdhm0pXL5Qw8GnKlhcbJFWFvf/RC8mtydsW9Ee6jK5M4HByTguHKxZ3k3vyGLHTRmcOlRGQavCllroYfkDf78bB96Uw9lDFVw6WrPVfKEEv7hrBWI8hBsfzGH3vVlcOFXB539rHsvzVE7/K21UtRrzfN3OkZm9XMPF4zUsnGnivg9TZtopkQqjl7xHtsQxsjmOsW1JGr+Ny5fquDzXxtZbEnjTh3uw/74s9Y0j0xM2vNHNCeIBM7RFjXK843/tw87bM5jckTJbqS3OHSubXpt2JTE8Hrc2T6XDWF5uYPqU2zL17f+w185l7KL9BogzTv7DbI+5mTqWZlsWNNZkkRxFUxe2UkR3zZHyn7Y5lQ3Mh6izba1HFB9X/tUqt5Ej/bf8ZI+10TNfL+CLf7yEFFWQr2qFngKyS1MN84kscY6/UsPiQgvv+gfduIHynXy2gnnaRFtaKpj9/n/ej203pXHhZIN2b+CWB9Ok34uNOxLmL71s3w1s6+7+GKbP1lFgm0xui+NdPyucFMZvSGKEemq++9SrVey/K40M7fEK/eXkqzXsuiOJh35aNk1jaDKGvuEIJmjXDaxbWGxQ/xY2bkvgvvd1o1xq4OzLdczTXvL9fTez7o/10BhtnKGdI/Ew3vNT3bjl7gzbOoKewQjG2JYbKMPyfANzWj0pOycpjMwbbaM83cI4+W7dl0R3Twxz1P1WBfko8+VzdTzyhQIK9Sa0RadNGBPUQpoIVgBwC2XbuzuJGm37x3+0iO0bo3iQPnQL/buvL4pdtMWGiTg2b4hjYiyuuBIOn27Y5OqWyQTefHcWD9Dnx6jPYDd9oz+CyfEExobjKBaa+CL592fDeOgtOezYmcGR47TbhSZGSPsh1n3L3a7ucA/bgX41MRpHnG396hz9rjuKe27J4Efuy2M35cxEQLoxbCZfbcN6qVCj6UK4bXsKNzAvmSYC2z0da+Pw+QqKlHHHphTef3cXbmQ/6E6GMcjxZXKE8o3EsFBl35lvYYR2u3d3CvfszaE3F8GeDaRPf51baLK8jQ/fn8ftHFPGu2LoSUYwzrFGk5zFSguz9McCxyELHsq7OQ4aqBMp6BAOs5lob/5ToEZ5tjWpyolqW3mqMYknXRZrTRydq+IM2/vOrSl0xWI4MlXFK5cr1mcm8jHcvCXDLtTEMuXfPJjCdrZNdzxi50wtlBukQ8LkUWc71xWsIYdcKop37evDudkajk9XMVtqmagR64HsK/Qlf/WVVgWOZF3gMJNgPzxRxKmCVjI2XB+stzDfqGDPWBpJjtVn57RlHsditu+BDXmM5lKY7OH4mQ5RniouzQNvvqEH923LY1NfnO0TwlA2QZw0tL3wIvWg6Hj/rmHb3nO6yH6yWEM+HcWP7hzAgbEuji1gfhXzHFMn02k8eEM//SrCuvQB6vrO7SOoNpu4uEy/iSfwo7sGMZpn3yU9XaO8NvVkMN6TxFyFfbDSsJX0OwZSeGj7EG4c7kIfbZRhHxzKJbG5J4tdQ3nKX7dVhBbskp3Ubrz0Hq3TgNpqV9e23i5szGcwVSjhmcuzttpP5VrFvLOvCw9tHcfG7iy6EnH08NrYlaMNUliq1XjRqKSnYOXbN03gwGA/hjIp6hHDcDaNSdbT6qNl4krm7T3d2NqvwKFbcdiXTOFdWyewf2AAXXHS54A5kktjnPIsUX7Rr7N+RHEkz++8Py5tKlEn4nT+SMgV6L/y5N+agPaDhlaJbqstalVO24RdsEPBOMO34BU9X6sOWa9Fm9gvLYxm2AW5tNJQ5MTXglm6aaxiNm2nf7KNPXvjl5BMXgt8ibsqSQYPDI04JoPajTfx0gpAjX2UcwV/pZofBLBonMnLP/pvKKYHlbM029VW49kkveRQ9xW+/nv5QrSfyfgMHH+T2eT2QLpZgE/yumrGw3Asx3BkH4tLCiSLikRabL061iZ+2op8XrK/8tw/gbJNR4Lp1nE5YJnRtz+Wg6bOOLx24FCYylqbvxYcLy9xXeCQO4NKeroaH/8svlfPlzC73MSdu3pQ4Pv3xRNLFpjZOJxAf5fO9kvbWX3npkt8ByVwx+5eC25965UF9HKsVZCpJx9HnX3o0nwN2yeyRktBL8GzRxftM9vujTkLqo30cszpS1jA7NJchfn8XNDLz6NrxPQDh995ZRkHT5ZQazRs9eCLx5dx6PQyFgt10kkiGY/itG1p2rAz+CaG0jh/uWSr+bZPZvH2W/vtTMSx/qQFCXUpSLeT47AW1T19dNm2VN06lpGxcPDEggXPdm7M4tad3bba8hvPz7I+PzcPpzHQnUSO465WKWprUdnwzFQJlWoL77l72HC0k4fMnsvws8FQEqVqw84J3L0pb1u96ozDOt8Rzx6TbgXb/vTMdNnOMXz55DKOXyjau2SU9PWZ8fUCh+qXbsXhtQKHrTWBQ22V4cpUX4HDl44X8MjTi7QPTAaz94llk3OA73adJ7n2jMNVcN+ZroTVPMkn6PTHzjw/V/ivIdMB14NXqVZxwQ8ccuywkUO4Gks0AAv8fsuxyMiYDKIp3I5Lpd74orutvGa/jiS1jS999C8fNxTV9f4H6SAdpIN0kA7Sb7g0P8brRWj/DYJ0kA7SQTpIB+kfxrR+sa2XpL0oCW7Ka7XcgAnD0ZdMvUT5R1877Z990XRo3s2BCPAL8hV0CDVeC6yTykYwMBzHwFgc/G6PJ75YxKOfXUZxsYUt+1PYeU/Gzk87/FzVglvlQguXztTx1FeKOPdKzVar9fTFML4piZGtCbz0RBkvfK2EOeL2KGByd9pWaz35RAlf+mIBL71URf9oDPf8nS7kB6LI8tp1fxp3vbfbZHz+sRJlKNjWkZM7k7aNpiY5SvU2Ij0RbLwz6baiJJ2v/NUyHvta0bbAvPWtXdh6cxLNagvzZ5oYGk/ghrtSiGk1IQnnByLYtj+NdCbitsCkASLpkAWcqqwfz4bQNRRFjPwunqmhQD3jLE/w0soanb1SmWvjyc8u4fGPL+Lc8xXktYKAMiczYWiBg4Kl3/jLJbz8SBF9XTHsfVMWI/sSWCoCQ3vjGN0aR3GuhW9Tv88T70XijU4kse/NWQzuZpnkpC03bU8hn41iivSe+dIy5s81cfZwHRdP1VEquODUM98o4eC3K7Z2Y9vtKey7O4fCXBPffqyMbzxcxMlDNfQMxzC2K2YTVG2t7qKwmpOVh9g8Kq9oIoT8SMRWoXbxynRHoGPf/AkW7bImJbUYIlSGrRbt7o+isNDEhTNaLUP9u6g/7ZPOhRBn+uQrlPV8FalUBD00UpRtp4Df+KYUNtIeMfKoUYbRHXHsvDGDGCstsQ0y3VE8+Pd6LDj68sEqvsD2/eoXCjj/cg13PZjH7jvTSKpuPYSe/rjZqTrdwkuPlvDcN0tYmm36i0PsbMQw2358TwwT9KNL9KdvfKmIv6JvP/FExc4ZvOOtWcRJ7/S5Frq7YzhwYxrZUBjlmZZN5u25LUU/imPmvNv6bjf96x7auVZs4fFHiybfiy9Wke+JYsfNMWToK+264y/QPHE8H8al6TqOH6lgiH7/U3+/G/dSj+XpJr751QJOnqhb37cO7QOTAs3je482z6RzQTN86KdNJyeT2Mj2feqpKv768wUcO1rDMNP3Ur5+8sxmothDve+51en0FfrEF/+6gOnzDQxR5xT7gc5cku8rOJYbjGJoJIFonD4fa2P/zgTedHvGxpfHv1XBF8jj5LE6JkfieCv9Ok4ZehWEZB9X+3/neAV/9fllPEK7LBXa2LclhXt2pTA128IrZ6uYWnKrNM7P1vHo02WcvkA5clHcuyONA9tSODRVx9dfKtl1ib51144M3n5LBj3pCCLspL3ZGEbHktgwEMPJcw1854U6ZmaBm9in3rQ3i1ArimefquHhLxfxzMkqehJRs48mWbVCzxmRl4KFGms1dkYiyKVi6GNfG8jrvCzyMoen4eVAGhwUgOC/OP1fW+Sdm2/w0kQ/x4RY1IKFAs1BasVNb05nUYWM5gGOie+8K4mHKN+79+Vxx9YMBukr2qKzHopgtDuOPdRp73gKWwaSNkk7nOO4MZrCLRtT2DWUZt+Iws51bLfY/ryaTv61YNsvkn88wrE+2sDZEu24VLYz9/KJGMc1oKcbGO5Oo787jLlyHc+cKePEfMW2e906FKM92njxYhlPnCji6XPLyCUSuHm0G9t7sxwPYxbE3NCTtcBdin4yRB1v6O/CWD6DjaQ72ZWySettxBnLZWz70YVyC13JGIbzKfTQ1gnqqLMJBzIp3NDXhSbb7dWZCl64tIzLxSq2D3ThwGgOA+k4MrE47tnYjTvGezFXauDp88vEW8JUuYTNPTnjm43HEaF/W2DI7y2efSIhto93KaCnVcQ+2FhIt+jP0s8nh7GtL4+LxTKeuTiDF6bncLFcwa0jQ7hluB8DqQRybOvbRgdw1+gIymyHl6bn8fSlGRyeXWDdnK1U3NSdsx/2pInrc0rw3THZlcW94xO2cunIwgyenZrCqcUC7cuxviuHOLStIJHlkxJMqwbNDUnFOr6RYh7TyvPAAkvyC1up1hkEo2LEc4En0WC5fxFPeisWJlLiIzytNDQfEl8DFXqPAuMjIYlrdx/Igy8/FzTU5cvg8Fwgzs8j6JcqGhivwHWwunWntiplvyNNycTeRRJmEO8ikKZbWai2Z54p44ocRFimy9nBBVPJ21ZkClXInRW8Z1uB6Hg6m3m6sZIm77Wy0E3i8786vS6hC4hmeQLWMXzbYtihSAZnE9cOIWsz92yXiSAielhpCILsoCCgtihc3abQ0fKZXx+st+2ibWt/FTrK9gMsPqyXJ5L+WHg9IJ6DPfrRVBjn5/h5q1S3LUV17uCdu7tw8/Ycjp0r2paar/IeY9/dtynr2voaoOJOOfQDml6+Z7ZwTM1y/JGe+sHD+GDCxmJtl0ntPezXgtpT5xFqe+kyP1vqHaAVebbdtGuwdWFYn4kHEu4cREIsys+fY2n08D1WKDVtrN88mqUdQhZs01aqChJqu88t/Cy+e1PGVpOv+FMHSD0F0JZpM22/+sKxAm7f1Y09m7tsW9VUgp+ThzPM68HYAMdlvke0WnHrWBZ7N3Xx/R6xd5ACtCJf47P0UfBRumn3Dq2uvm7fWuNP3ys4v4Jt4ypbm70pT6HMz3W+HdZhJX9e63tr81R7rTpr84Tvq+JkWVPBg068tWDZHYVqP1sVLYKrgyuTHfZVficrP193e/YvtlWxggq/UNRLZRax/1uuSoXrYwXpIB2kg3SQDtJvrLRevfZ+tTsLgnSQDtJBOkgH6R/GdJNfEHX3J3X0wlSefcHks9VhmeXxWdPZmqQUvnD0ldSmuJleCfrw4ldWu3fMma6AvtRqa0NtKzp1roZvfm4Jv/+vp/G7/59pPPtoQQQxMhm3rTu//CfLOPpCBfPTdRx+qow/+sVZPPeZEpYviwNQXG7i4JMFfPRfTuHj/24Wx1+oolxr4plHFvHp35nCn/7eAv7g9xfxmb9cwqWLVQyMxhFOhm1bzgPvySKRCONrn57DJ//vOfzxv53FZz86hwunyrYyrVJu21mJtVILpw5X8LXPzeHTH5vDf/3dRXzqz5fw3NeWEW6HMHlbEstLLTz3+QJqjSZ2351FSqsB8yEMTESR747g1VcKuHiiZpP8OhPRN0s8E7KVYrKFbGJf+L0yNz/btq03i5damDvWsK1FfWg2gMOPlvCZ/zCLj//HefzJ/3sKp1+uoGcoivEtCZvQnz/XwPPfXMYX/8ss/vwjs/iTP1zC539rzs4B7BqIWpCVJkSl0kSx2MBzX13Cx//9Zfzlr87izPNVPP35Ml56rIw52r+83MKfMf+RPy2gVGEb7U6Y/odp/7/8xBL+y2/O4U/+4zQe+QvSP1FHhE2kbbykkHxDmmk7Tk3CZQYiGNkTR/+mKPo3Kngoe0Xs/DK6lfMf/ZE9aKx0PmzBXE0y1cotZGkcbSvWqLFck1Gss9QMoVRq2paqfdkw2gt1PPvVZdsac9PtSaToU/VMBAfelUYmF8GRZ0qYO1vBhokYtu/L4sSREv7izxbNX/70dxfwmd+ctWDDzW/JYmBzArML8omWnX35+d+Zw+//n5fxV8SdYrvoOCqB5owalZad5fn4X83jv31k2uzyex9bxMc+Oo9CsYWRjXHM08mfeLmGi+cqmNiSwthwFBnqkCWBrTtTKJeb+PZXyliabmLb9hiSyQgOP1PEZz6xjI/+5wV87Hdm8cVPzeHc0RrtBqR6VjtaqBZCbiSCZdru5Ok6+27L9FNw87GvFvDoV4voHggjHY0ioRVlEY4BrG5nl/GeqdBHvUCkVuSk2DZqA/lohXIdO1LGr/7aHH7x383gk59YwOVLNYyOJzHRG8aOyQh23JBEOhvFE08s4z/QX/7tv5/Bn/zxPF5+sWQTcdrOUoH/Mp+LmihkOxcXWti5JYabb0wjmo7gi48u4CN/PIf/i23wBzrv8+UiSjVgSEc+Ub5DlOHTX1/Af/7sPP7oT5bwsT9dxHeeLyFDefd0p2j/Fr7C9j10ropltsfzJ0r4z59ewktnWnbW077xBC5MVfHrtOFvf3kRv/H5BfzhIwtYmK/jvu15jPbEoFWUAq0ceelMGb//5Xn8/sMLOHy2jt0bEkinInjlTBWffaSAP+J48F8+t4zPUO4jbHv1TQV0ZU8731COIUXp3Il0FCP5ODaOR7F1MorJ/jiSkbiNCW1W9IN02r60rYACn7Uar1srSteAciRmgg20XGihXmYfqkZxcqaMi4t1W+H51v0Z3LMjjXo0gjJ1uWtrHD99Vw4/86YefPDWvE2a7xpJ4UcPdOPnmPeTd+SRTbdsNaoco1WnHPp1x1ogz1oxwVsMdDkLbGn1WLFaQzysMy/5TrAAjIPnL8zjL56fxsefWeRzBWXq9/z5eXzy5Yv4r89fxsOvlPGFI3M4v8AxLJnAaCaLSjGKEzOawA+jLxPHQCaKjT0KkLVt1VyKth3JuhUqO9mP49EWTszW8OqMfqLyWpA02vL04aOz+G8vXsanD13GXx+/SNmb2NKdxnAmYQHPnQPdNpH9yZen8IfPX8CnDl/EXxw+iYVKzVaxyPAxvjtCOkPPImJecIadzNpN7chBQSsitdLHh3rInaE3ls/ippE+C7J+/uhZfPzwKdI/jT955Tjdu4U9fX3YkFMgM437xyfILoTPHj2DPz54DJ8+ehJ//soJHJtZstWKG7sz7LttaNs+H9Lk2UX/VP89OreEJy+fw5dOn8JnjpzCw8fOYq7CvqigkfnZaj0/IGZ3b5WNAkb+u10vJW3HaZcXGHPBNY0fxJOfW8BNA4iro+Cg3mOhcI00xYt8DUfboCqQrlbxeIS0Ra8q8RIwz/grgKVtTduyq+5qA9HXpfHL+/yhepbfCSrX2MY6Ji8bhfV0FxmTh2XtVsR0lh5OF/JEjDIKqc5n8XWrb3T3bSLdVkHPLDOe4kde5Ekjs06Nl6+c6urybdVJgyB9tJWsoYka+bJ/WYYutZH34Uo2pDgGxtfahhS13arC7lHZWHyIZPVla12SjXkWtCRYm6/K4Wwq39YvehRA1OXGBBP9+wQFSK4wXQdIX5V3Fq+XdzXw7bEW1JbaYrO/S9uEtnFhtmwr93KpsK0a1Mq6oxfKFlA7ebEMnd+5aSTj1f4fB1v5Pv3Aff34x+/ZgJ971yT+H+/fiH/yvo14552DFoBcG4T1Qdukdv5QoRNkElXTOX+bhhL0DOrP94TGueePF9CXT2CkV2cEvhbkO/rsqp6gMw6//twCFvlR/aHbBldWWQqEp/6Q4eeVu/f2mk1Xgm8doC1Qf/yBEfyjd1O/d09Stw34X94xgXv29SOhX5xdB6gtr9bO3w1087PgXXuz+PsPjeNn3zVh1z99/wb8ix/biO2TOX5G4mfJDh2+G576Qcva4OJ6eT5cj4+rbK0MEm89O6vBNZZfDVbeWf6YqvazPGdbe7cJSKdeqKAyV7Bzh0nVhgC78yFIB+kgHaSDdJB+I6b59UovRveCDu7BPbgH9+Ae3H9Y7zF+qeTNXpIKCCpA6K9E0uSE/YKWl00iEYdfJ6Gzo/xAoiYSlKc6uvw6DtethrkWTB+tY/5QFds3R9Cf4JfmCr/ANrUlZhSJTAjd0TbiJBZPhtGTjWAsDmQ1OSIGBG3reezZEgYow8hIxFaenXi8gi98ZMGCU//sX/TgY783jH/5CwOY3JpClHUFWq2X6YqgVmzjuT8qIFNvYfNgGNG5Bl74SgH1ahvZnCarQ6icqePR/7yE498s403vSOP/+yt9+Fe/NIi3/p1+o5PIhlGikBcKbSzMNDC+WYGTCPo2xzB5U5I2juDVZ8qoLTYRbtAu5TZino3WA34vR8Oby+sEnZnYLHsJwuJsA4vkl0qEsP/mKOKUYUnnirF+Lh1ButrC858u4rE/WbItSv/Rv+vDR357EP/rx0YwuV8HnTlQ26ZzURQWW7h8uoHSUhuDG6J2PmM+3kZXMmSr+DSPvLk3jA20SetSHRcPVdBm+7zrZwfwb35lEP/iF3uxa18cT/7uMp7/XBl1+kMsq8lhz1do+3qFeakQMrR1J2T7I+hRgMowgajsE6Ed2NAlr/71QrXWQiPawgL1eeZTJSzO1zHBNkmMxlHqieCGm9K2Rd9zny2iPNfCppvjNtk2MpnAz/9z5y+//gcj+Ml/M4B0F31gKGar+7QCNE5bTF+q4vxyE9HBCH0qgu6I/N7xVmynOt3EVz5dxif//Tw27YiaXT76sSF85P8eQg/5+1Ap0d7narbqcPtdSWy7PY7RTVF0D8Rw7mQFJ8njBH3lnALK5PGenx7EL/7yEP4d6d11WwJ/Rd2+8CclXJpiD5RfE6ed1OSyo3/PAzl88O/00v7A3GzNgnl9Q1H0joWx5c4kfu7ne7D3Jp1dqZVHmiCmfyXbtsXkDG3XCfLxGJXT2Zbnz1QxsT+GLXckqHAbl86vBmmG0+ynxJtZaOLxg2UM741i330RLMZbeOxQDZVqw1bf6oymPGXui4UtjDBdD2NoQxwDwxH2oSZefqKM8bEWbnoP2ywD/OknC/jV35/D3OkqDl6o4csv1nDufBs//dYcfv1X+/Gf/t0A3v9gDsl4xOa5kxMhDJBPThPdBPlScjKMsfEwNpFPjv5+6mgZCxw/+vIh9ORCWCw2LUAYjUUwyrFDeQKtkDxysY54rI7xfnc/fKGO5WID776zC//mX/fhl369Gz96dxqferyER1+uYJltm1cXo+O2NdGmyTuOA3GarG8Q6O1nP+BYJkhoFV1vFGFFG/3xUoGLRAxhyqmRtLTUxNKCK+qESLuFaK2Krx2bw0e/dBn/119dwi89Mo1f+/ISfvFz0/jyK7NI0ca3bujBRK/rw8tavbImEFiLNFHX1WxhqVTlOFPnWCzb0e9TlEOH+rFPXgua9QiqS0nYeXWEaKKBWIaDlgevnK/icqGGXIoy06bTjRK+cnoBpUYD79ubwc8/2IX//b4J7BnRipgWyq0KQukyXjhVx0KhhR6OG9v66HfdGSzXG3jl8qJtjzqcc9vY5ZNJlCm/goBXAwXXziwsUX+Omxzb4rGmydT5mkqx/YfYeOeXCobXl2tipJf2INKZhWW0Qi0Lxmh8UwO3FCSkvJpkDUe0glJtxrbxgvKdoK34MuEYRtIZ+lkYL07NYaFSRTIcRyKUQLFSx/mFEsfcBPtR0gKwWnV4bnHZZEkn6Fe0n96rp+eK9u7tYv9IJvgerVbtHSxYKDdxcbFmi9ce2j6Ov7t9H9638QaMZVP4zvQZfGv2CErhAmKxK+UTdAYNBS2bWFYQi/roxwUEBdls69COvCuB47f2Bff6n3yiWWNf54W2VkOtjoMCrW6VTRUMC0X4AiNdgR80FITDUXtXCXRXWiDZ1AZ2UVY7f3EdX10JHkKBAAV8G9RTckom6ogK79KXn2/oQwryhSWLtbHLc0FE4vBZaUGnrSwIaLTCbAv2af9HAwLTRYEZ8gzpYNkrbbACwgvJdrKLfjAjvyIu0xEvLXCBRJengK0CwE5u2ZJ9nXi2/bG1BWkQR//0wU92arUa5OPbV22swKbTyeyny4IJ9KtmlWWej8vunp99P6AfA1wtgKL+HJdeXlqwXt56oD5QU3DXS68Fnd+3cyJtq52fPTKPV88VbIXe+EDKgnIN2vXwqSXUeB/ojqOf1/8MUBtE2I7SOZmI2krAq2+Z6UDbUkvudYF2adJH5K86o1CfEQ+eWsbF2QpOz9Qw2Jfie2j1c2EnaIvXBMehmYUK/tNfXrD37M9/aMLkUn+xoLQHah/JnJAPXqV9fZDvamtb4eq6nvb9QYMCeWl+v9APPHw5riaLtJRv+ePsDxqux8f1HtJ3sE6Qne1IgO8VyFfjoBvnyZ/jTWfAUT5jaY1/JY4T+kcTBPfgHtyDe3AP7m/ku3109v579yAdpIN0kA7SQfqHLy3Ql1W+Gy0YKFDQRl8ZldIXZH1JXZkY4E1PStvkHZ/1NZePBv4XaiU1HbV2Ai/Fa5xZ/pSZtqyMxUNoFtpYamgyFrZFk7ZyqmrOrgNEStQ6KWqyMZ7VCgHWLbXsDMNdb07jn/72GN7zMwPYujuFZCqERl0r1dyHgARx9SNp/UK3XFGgTQFLlvGuM/m0ykvBLsleaYeQ3RjHe/55L/7Bvx7DPe/qsfMPtYXo/FyNNCiEJ9DiQgNHXirZREjfaBQb9yYwdkMCy4t1vPK5EkrzTdicsuID1DGRDaE620KR/DSHODgex7IsGgnZeY4R8pBuNQXydkax5c1JDO9zW1AJ1Aa1JuwcMZ0naL84tv/Ug/daKoy3/MNu/Owvj+JdtMWWXRn09EZZpq2iiNABUkH01C4SUdtICeOK5hPNIm1MuZcWW3j680X82S9fwolDJeS6orjtTV34iZ8fwj/+vVFb1Sc/ahTb0OSsGHRyXOMWrm3lTAQFVc3vKIMUUTCuSNtpdWF3XxS9IzEsimB3GJG0JjnYnkz20DSDQwkyCpnNWvSpWqWFM8criNMHtvdEcICXgogKuh5camGGvqcAqXhntA1mXwz5rggy2Yidq3nhbAWvHixheaqGrLbUIx/ZyczH5wYztNJRphfQfZAZj+H9/7QLv/DxDXj/zw5g+940crmITerK37RF6iCv8OUGHv9yEYtLdQxtiWHX7Uls2R2nLmG89PUC0mqPCvDk10v42Ecv46XnC8hkwriddv77/2QQv/Afh/G+f5RHjjapEk+g1Tpzhxu25efNt6Zs9ePn/mgaH/mPlzBDnd/05hw+/OFu3LIlgRtvzqGrx02+G1D2cDWExEAEMdrWstgGxdO0PX3MOYn0d23lzefb3LIPiUHWpd2Eowku9UvNecub7Jf0RkaEHPhPzEZfQsFEElZd8mVVtEsN9s0ais0qznBAOFcP45aROP5f7+jCz//dPlspMDzkzlis2pjhhHFbBdqjAz6bj+mSaqJNVCePy5cM/q/2xbtDTGvfSjOKeiuChUITjz5fxh9+eR7fOTZvfXn3WB7vva8Hv/KPh/BBjj99vSEsK2ZGGiEtuyVTTeI3G1EUp8LGt7is4LFjo7EmpL16jbFAE3g1FhCR44l+EWHxlnVAEi+3IzhWquFCoUx7VRGr19n/dGZTAxfnW8jEIhhOx+xHII8eqeF3vr6EX/niDH7/m/MoVlt46XQZf/L4An714Tn84bcKlhfSCqk6x7hKHa0qHUtCdwL7QyJX4RjsBVB4T+aqyKXjqHJgLJQ4JpdXJ91T0QTisbj9gKDNBtuV68LPHZjA/3LTJO6YGEBPOoF6o4EyeWn7PGnWDDVxpj6PBTp4dyyGzd0ZdCejKFDHZy7N43yxgoFcDDvoA5O9KSzRV3R+4rVAbSlNxKLKtrOxsEM3awte1s+ZrtTCKFWcswvXx7TypsZulukdaS8Dgt+E/n0dsDbn5Vb3W5alRX+pXLEJfm1bnErEkKa+QnFo/EufUMBwnjapkWc8ErMVq75cAj2fXFzEx15+Di9dnKFbcewbG8BPHbgB/9sdt+LugW1ItTPko7FPP+5wbagggIJiFgxtse35bPZY8UvSth8ZaGWbp68HftDMQOWRKusSRwE7/WLGAwsMWqBKPkNd+N53q4d8ep6mXnBLdz9t/YiXbK8yK+8cgDqs4IJikl28ZecIbaxgnoJvwhONlq2ktnMWRVMBJzqIGz9W7aI6CsatvQQWTGT1cES2UsuofhtRuT7ztQWqCygLX/KorUjXt9VaMJ+g7bXSV89qE/FYC7JxiDZo084c06yNtPqz5cZ0Ss90nfXZj0nDt5k0V3DV8ZHfSg7RUhtLYG2tyRzm+7aV7K6OPmeoHUwxK7se0PaUGv+vBirRSuC1n0u+F5AeCrBdTTrl6+y/7mwCX31+Hi+fKlkATGcWdnMs0Wq4X/6z8ygUmxjuiVsgx4dsMoy0fp3WAXrnaCyxoC75/qDA2strd/OB67BNkh9sO+XtBKvNP9J/WOckJvjOOF/C15+bxq1b07YSX8En9Ym1oLabWazgtz97BrfuSONDDwxi40jGbC2dne9cP9gPhzLsE6ynz4dmu9ex3xV43iWfT/HDn9rlewaKLvmj5L2WvvHo0E1P5lsdeT9I310LFiRc0/f1DlewsxMc3jr8KdPq+Ek66s9eni7poR8D6O7eXx4NGxccXyu3K8zvSg0U5pZd3+If1vbuQTpIB+kgHaSD9BsvbSsOvf8GQTpIB+kgHaSD9A9j2v+yqxelymyyQvlK6wumCvXMSzj2Rd+7lLYvnlbGf3rm1VlvzfdbC0wpeOhnK2Cmq1V3Kwv19V8yKXBg80w+IYK+F1eZ2ZHFL7OkqagRoVxoo2cihhsfymL3HRmcO1LBF/94CX/wkQV86pPLmJ+p2Zd+7RxWqbRtC8t4IoyuDfxSTKLLpTYqTHdPRKGAZJnlIco1OR7Dve/ttu0gH/tCAb/3G/P4448t4PmvLKNecV+uJXv9cgOvfKmIcrGJnfemsO++LHLdEZw/XcX02YbtWqZA6YoC6RAKy21Mna/ZFpsbtqawYXvUzlVcnGuhuNTGZV5926J404/34K4f7UL/9gTmFXj0SJiteNmyrQ7DyO7ZdBi3PZTD2M4Ejh2s4s8/Moe/+M0FPPLbC5g9tSYq64FsbufM1NwWjZ1zSCKvwFSLttPqRq1wO/Z8BR//zXl88ldn8dU/msfFU1Xsuz+Hu96fR7onYmJFqLPsGybdSIz0a20UZ1u29alEF1SWWijMOGaaetWT6ohPsjts24FeOlNDOh3Blu0p9PWFMXuJNEhnkfXq9IEb357CyEQCi7N1zE7VbUJY7XfoiSLq5TZ23ZLEbW9JI5uN4uSRMmpLbgWo8BQ8PvlqGX/2XxfxsV+fxx/82hx+i+386d+YwTc/tYRLJ2sWiFkL8lfNI9LtDeSj+f4o+WSxcX8SR75Vxn/9Twv4CGn9/u8tYok85bNxNlCNbfzKtyuYvlDHIOXed1cWm3elMD/bwLe/XEar0EQPO0uz1MLBgxXSmMOv/Ic5/Nc/WMDJw1XsvTmFOx7M2vacdfqPAkvif552HZjQ6r0oLtMnH/5CCV/4qyI+85lFzC83cPPtGdx0cxalQgMz5xooayWsrcShHrx1k17Gjycy3WS/sB32rgO00nCp2EKKvj3CflOg3Zcr+iW/Vu/yrm3I1thRP1sIhesoztVRKWg1F/sJfXdqOoSpRfoO6+6kPu+kvj3pOPaynxzYkTA/+YMvLuJ3P7mE3/3EEp6hj6+7XRdBc/S1mTYK+oECeWhVRqo/bGNPs6UABceCuALTCnaCfVBBJa+yB00OHE22m+STzAdP0vcfKeB3P7eMP//aMl48UcHeLUncuy2D4UwM5RL1UKP4A5n6qoLH5Qb7tvMZxSWW+KxgJEcbb1dA4Wsc5VhVYx57Ucj92sDk6IQWibSiMRwYyeC+7UmMD0RRpZwNeqat9q6H2e/CtkI7qUlZ3nXO1NxyFefnSpgturMuF+ljZ2ZrOHG5gsuLZTemSCJV0USp6q4FojRrEY6lYRRLYSTDEexnm493p7BcrWOhxDGvsVovSmMrdKN6Wvl9x+YcbhzN2uq4zx2ew2cOz+KzvC4saQWg+DvTTVfYnyvs+/Sdzb1ZDGdTuFQo49R8FReX60jSP+6Z7DH+55fLmNGettcB8hX9QGQtaBJW59sm4zH6RB30ShTrDUlOGWI2JjbYjqzMNlKAVyVqXjcZq2CiD5rMdUFQB5qc1pabjVDN6mVj2hJXq24b/Fe396q2aW1Q/wp5VBoNLNKWSeJpVUmDbVljm2ryuDcVt62UyxxPlzkmd0I0Sl/j4KYzDT939Kxtc/rFU2fw6vw8tnb14JbhUeRjSdrXvbNXBjCv3XW58wflh1ZAHE8PC1jJMTp8Qo5r4MnBmwvA6VKbO1z5tgKO+oxgJDXIhzSBzZv+8UGT1Jq0Fo5JZbJxDLJJb/V6n4douGer58mjrTrt5WFvH7WRl28Mladgo9dGVt/pKx83uQzEU7pTBst3uQI3oc6+KHmMh+jpkp66mK8AHX1hZeBc0aHOy70DTFzmd65YNBtLRvmVbE8b6scbAm2f6rZqle+4lWO2Va7ZXviiy7oss8CjrSCUXAo8Ol3EzwKqvCwQ6NvVbO/yTXP+MXvaBzRnFyeF8Lyy7wJc+3iJdUBFtrOFPX13ILkUXPHbThTUj64GGlt05l8yEcMzR0qsp4Bg1M7gy6Zj2DCUxokLFTundqA7YXb3A3jTcw0saG93gmRNsd6ZS3U89uICvn1wDkt8cajdZvmeXeTnx7VwmR/eTl96/fFJY7TO3PN1spt7XAGVFyscI3j34exlndl45XtCW5EucJxf5mcEgd51Pbk4BqnbYrGBv/72PHZvyNn2rbKaeEndWX4+0FmNAp0D+fCT0/jit+eMnt4f335lFl979jK++J0pnLpU5DvV/VDo9aDId83xs2V87fkZfP25y/jG89N2fZW0HnnmMmY4/svlJcOl+Rq+8eI8vvGcw/HxvvLMtMmk/rHMzxtql/VANC7M1Wwl5tVA7fnUK0U8+sLMFTy+9OQUnjw0x3fzle3lf/fxQc9X8129S/x3mQ/XmyeQG9v43AFXy7uqz6/Q9e/C48V837+MgCe/xgNlK8vGOitjhvApZ6PGMcUwlat8+x+kg3SQDtJBOki/4dL8WMN/fA/6r/kgHaSDdJAO0kH6hzGtqQR9YdWL0uW4tH1z9IEV1vuy7INNCvGuqSR/OklfSNf7qq6v90u8Osv8SalkqM0v4G7yQb9Itvk0j1EsFkauL4LeLTGbuF8PdH5epieC/k2a8A3j5OEKnv96AYeeLmN+pmFBQukejoWwNNvAzJk60rkIDrwzZ3VyoxGM7k1gx+0ZWwVZrbYQbrYwkI9gbGPStgF98dECnvlqAWderV6hBEkDiy2cfLKCy+er2HZLGtt5oRXCq88WUatpYpJ2sk8gZlI0Wadeb+P8sSrOHKqgbziGhz7chZ13pNG/OYa+jTFM7Eninp/oxk0P5tHdH7Ng29rgqeZq9Etx0fRBj1oQ0T8SN/uefKWMpx9ZxsFvFVFdZv11Gkdb59miCIHaxGPiT7AnkmEM7Y4jTvt19Udww50p7L4zi+JSCy99o4gnH14yPskU7bUtiVgmDC3kUNRCN5sTpV2lc+FyE4sXGijMNrHM54ULTRRmNPHplJA5NRmjQGMoFULhUgtHacfCQhPb96Xx4Afz2HhDHAPjUQzQTtvvTOMB2imZDePVJ0o4f7yKCPkrAPzy14qYPl3HxO4k9r0li3KxhZcpb6LURJj2nDpRx/JSg34HnD9dw8HvFHH4qRKmztct0KE55nViNgYKyKQ0ke6lBYlUGIO0uyYzT7xUwjPfKuDgK1UUivRvm4SkPWnTOmnOLbRw+lgFmVwU2/ZmbNXp2RMVHD9Up5xt9NHOu/ckcODGjG0l++wzJTzx6BJOHCqbj/cORKEFPK2a+k0bcQUCqLfEVWxDK1ezfVFE4xGcPl7B/FwDvYMxjNKf52bqOHWszjxN3K86RKvQQlsrDAW0SayL/f8qq918kO9F6R9nzzVx/nwDSXaIG/ekMNgfRj4fxdaNCezdlrBVVJ1+KlAyHaYdaO9zlxu2RfCBmzLoysaQTescwBTeense7787jwx59LIfpNjOU/N1PEb7Pk2fm6IfSd/O853KdOA6e4r8tb83ghFeOhfzIvWeKzQwOprA7VsS6EmHMMRxYzdlnByK29a2c/Szypr53ai3wiqdiuLAtjhu2pamX0TwIn3t6y8X8NypArmRVjKKbChsWw4rfqEtBFcudrw6ba0JZAXM5ksNTC/VsFTVZJxarbNjdhhKHdYCFlcCRxWOIxFMdsfw5h05vGV3F7aPZZBLxNFH220fSdld27Beos4R0khGmkhG24hF5IcNHD5fsu06m3T0eKSFRJy+pHbquK5wcIIWR3ZnQxhMpLChK4Fdw0ncuTGHN2/tRToWweHpIs4XSvQbN1m9AtKh1bQg2BjH8yzHigvFCr5zdh7PninisgKZRPMnoDUGlWshnF8qW0xmvCuDbDyBE2zDmULb7Cek/SM9qNSbOD7H8VdR3+sB9sErzE1Q4KXarODSYtlWQO4YSOGGvpSdf7irvxv96ZR+fWr9V2OUwIJcGpE1ZtpAoYtJqm7jLIt8iPHlpdUps+Uylso1bOrJYWNXFr30KQXWd5PHCHXUWYozpQoWiXNybhld6Ti293ZhJEP9owlM5DLY3t9lcswWNTHeZrtytPLaKR2NYTKfx83DI6bm4blZfPv8JRyaXrR3+WgujXRCQTzJ2vHu0FjGZxc00iXhOT7Isz0ke4dpsFyxAPP0T+g+HULbP3vPC6jJtrZ1q9HX3b/kI0JcBRfMUp5k84JeXs76IDrsDRY0Y12rKpnVI+ms+tWOpcVLAV4+y8dMXofnzjXU5SvhcPzUFczZuOLj7KKGFk2lVCY/0PtTacmlZ2X7uNoilNkePwXnfL7Oxqqjcv5xBrR3k/Jc4NDT0VBZYLRdngvUKkPyiZd4rraTcPXH5PJhpdG8u9lJcjmmK/XFk+CnHY5fV5gcf1dseiUo/1rBPIFw1qIooGIm6ID18pRck2Wgz7JrAzJqG221qfP8bhjP4OYbutBnZx7yXc536taxLO7d14Ubt+YxwHwxU9vF+FlCq/IGu+Mrn7eGOTZsHs2gWmvi0KklzHEsp/WMnupqtXAndHEsHulLIJeJsf5r7SFZdT6ggnoK5F0L0omIrdrTXbREU7TFoxO0mrKfY7RPT2OGtj2dHOJn1HGOPbk4dm3I21jsW0r6TQwkbZtWbe1aKjf4vq1gkuOhbDS3VMXJCwW7TpwvYG65Zttcr6eTD9JNdMcoo84QvjRbwamLxRU6J0nnNNPLHL/Vxn35OIZ7tH1z086h7MQ7xfsi31lEQz/x1C46a3Ete/nUMNtZ51qud3ai8rTStC8Xw/np0hU8pNfpiwULlL4erOe7AvPLNY55vXkC9RnrU9cDV0NTP7W+SwTSs3HGBhQHNrbyvxuL/L4tYry8Pi9weO4iBWNnd5EN0kE6SAfpIB2k34DpSL6771/ZW1q5wT24B/fgHtyD+w/pfVP7Q3xWwgPv2SZ5vGf91dY4qmZfI/nF0b6GstwPKNrdu4Tng77Yt2rAze/Oo2s4iiNHanjk0RLufyCFzdtTmDpdw9FnSqgstG0V4O770ti0J2VbTT7zpSVUFtvYdnsSG3elkO+Loo4m5s81kOoJY/ONafQMxXD0pRLOPl1DiMzS/WH0TcYwvjWJpUIDMQq6e18c974ti537shbMeekry7h4tGar/3bckcHkzhSqjRYGNkSx754Utu/LIN8dtQDOqeerCDVD2Mf6mvwsXW5gw1gEd9yXwv778+gbilvg5+zzFcyfbKBOY4ztiWPLrjS6+mI4z7Kv/7cFFM5r8tXZUgbS929NR0QaQK0ke7YxuTuJvXflMLY1hsFNUUzujeOud2Rx10PdKCw18e1PL+H5zxdsa6Y3fajLgjlHny7j9MtVpLJue84DP5JD91gUp6nfdx4t47a3ZtHVG0Wr3mK9tm2F+eA/6MEEbS+aR18q4/hLdTz4oTwy+QhOP1fB6RcrCGd15ksI1eUWescpy64EhieSaGbaWKIN4vkwdt2bwUN/pw/DG1yQt288xjZJYXAsjqMvFvEK23l5vmXBSC2EkM6tCP1D/lNro7rUou6wwGF5oWXBOQX6bLKEl0B+xiZDmD5UoQ653gg2709h1z1ptnEUA7TTjjtSuP3BLG7Yk8E52vvh35rDuSNVJHrDFqi8+GodE3sS2Mp6/WqvIxX89W/M2javtUIbzXIbY7vi2HNTDr3Ub7AnhJ3Ef+9PdOEtH+pFhYhTJ2pIJcO47Z05LMw18NQjJRQLCrKEbEXeHe/LI9cTwaGnKrh0toYb6UcK0ClgnB8O48BdSXzg/XlMTLqA3YvfKuHksTpyExGkU23cQP8em0xYUPM731jCwSerqNEWI9TvrvsyeM+P9uKGTfRt0tq4MYqdO5IYJa2jR8p47rEyCpQxnQsj1QgjpmBhBhgajmHT1gQ2bokiQffdvT2OrVuS5ttaDFMsNPGNb5YxR33SafZdby7p1Pm21bvllhQa9PnPP1HElpEIdu9IWcDu1UNlHKY/10ljhP1w+6YERjcm8PQrJbzKPpBLhbFtYxwTI3E02a/G2e8VRNy3O2WrPZcWGvjiXxcpRxi33sF+0hXD098u4thUG5nuCHZtS2DnNp2V18LG/ijuOZDBLTdmUIuF8RePL2LbEP2R7RjT6t0QbTcSxUN3pnDTnjRSqSimad8vv1i2Hfu2bYhj+2Qc2Txxk8DFecrdaKOvK4Kd4yncwL6hRcNbxhN44MasTUA+91wRX2f9JOnv3Uy/74vjiUNFzC1UUKmGLIhz984kfuwtPdgwGLUzRnPsf1s20v+HEjh7tornjldwbqmGZIZGkisrYKaOr8k5XkVtqVlqYbFSR1lnszEvFKoDDfUP1xba0jEU886SU5+hrpE47bEtjUw0giNTVRyaqljfS9EP90/msGcshfE8B4ZyBDtGOe7tztlqz2dOlPDlV5eRaCkw1+DYE+HYHEa5WsVl9r1zi1UUquxkIY5T5KlVVtqK0eYc2QG1bWKtGcVILoado/RVjm1Nytsbj+PmzeSzPYPbN+Yxks/g6EwZnz88ixOLJQx00fdHMhjMp/HM6QLOzhdRpQwh+vamPP2mK02eLduaszeaxp0b07hhKEtLtXF6voyXpkoI8zkZbWFDbwqberO0Wx2ff2kZl8s1DNIft/WlMNmTwYWlMr56fAFnF9lX2QdGaIdbxnqZpm/Nli1od9dkN+bLVbxwqWjBOQVPc8koHtg8iGK1bivyLpSWLQi3uS+H4RRp5zLY3JW3wN1QJkl7RnFivoSjcwU0/YlVDW4CBV002LHR1W57hropXw4Xl0p47vIci6O2Mkfvod5EHDuHuhAPR0zeSdrigfFRdKeTeOr8DF6enreVmxoLdw92YzTD/sc+kEmwPw30Y+9IL07OL+G5S7MoNZrY3ddjMr80PYP5UhNbu/rw/u0bsYGDQSNURT6eZF4/cbI4v1zEi3NnsFgv0+90TpmT3wWeFMTSGYB03DbbSj8qMP90E++2ws3GZ8+nDbQCjs/Kdn8cqFiX7BLVDxT8MmUq0CV/76TDJ+srDnx8t92eZKNPuhxePi197mCdkIKg9BzvjE0Fn91KWcrty2CT5l65flnj600+ncE7vzn91WZGy2zAuladutjSYyWELI9ln2HShZSjrKOAjmjy7W4fhPhuo98L3cZa8ZR3t7XtKWUzvio3BsZPgjhcVudY6lZrKp95FqzUA/utraqU7Konvkyqkp5NX9pPdvb81cYT2lQ8tI2tVVCZbGSDj+o4fElp7aQXtGcYvcPtLE+lKUOuvITNpfMYHehFTHa9TjBq/OPkvRJUphW7MsOKH6yTp78ucPNaIlp1bVZeU6a0AmW7N6Zw8/YeDPQkV4I/Wml4Az/r7NuSt5V5VpMFKh8fjLMsje6s2/a5i+XbxpP8zBC1H8Uo2NWdjaMnzff0MD8Lka62BHXtBPTyM9b2yTTtxDF8TVBRILtKYgUONwynTZb1QO0hefrIX+cSdmXi9mO7LaNJ7CD9XNr90kd4iXgYw8SZHEqt0FO+Ao7jAwkc2JrBjg05t8WpE9PeKUPdfJ+NZswGCvjpRzt37clj4wg/R1kgMmErMkf6knYXT9nAAkzrgPJl3wHS3bkhjQ2UR/V8WoM9fB/w/dvL94KCkzpvcmIwic3kp7L18KTDAD/PbJugTLR1mmNjJ3Tq0Uf8TvlkA/Xrvhw/929Jm406eUivrkwMQ2rDdYKO1wPys/V873ryvhuQexX5Xru4UMCh8DBq/HLgxjP1f+msoK7S1nFcJeV5Y4VrG/m/xjjidMDKeCC7edfUtw7yrkJewT24B/fgHtyD+xv0HunuHvhXSujDpN6FugfpIB2kg3SQDtI/bOltoR9f+cKqKSX/S7UmRZSrL5PaSk0TMCpXvvD1rDI9C0+1tL2dLuGojuGyVOcG7ntrDsmeMM4equDMExXc+kAKm64SONS5gItTDTz12WWEym00Qi10jUSx7cY0dt6URSXVtBWDo5P8kj8ex6svlnD0ySrCuTBKl1soTTUxuj+GW+/pxh0PdWHjniR0PkphuWEr0l56rIizL1WxPNNEPdvCxh1J3Hh3HnvvziGdD+P4wRJ6hqNYnm/g5AsVnDtZQ6i7hRtvy+Pmt+Rx41ty6BqM4MyxCnop17lTVZwh3vL5BuuHUG02sXVfxrZQfembRTzysUVEc7I3v5xrbo52MSs324glQ6gX2pg+WceZU2X0TsSweUcau6jnjhuzGB5P2Dl7X/rDGbzwpQLK1C+bi+DOH1sNHJ6iLpFk2M70U+Aw0x/GCdr5ua+XkEw3sWF7Avuo221v78L229JYmK8zP4TiUhMnDlZw9MUa7n5nVnOMOEF6Z1+sIkraCu61K0C13ISOtdpC++8+kEV+lPSp77HvVDC+P44te9K48YEcbn2wC8MTCRx7uYjP/NoMFs5pIpd0NP+oyT75Cv3I5j3DfG7CfEP+Y+cgMq8uH1LabMS2V10aK8q2nT7VwNSZmq3Y2bQrja07MthBebbtySCRiuCF7yzhE780jQsHqzb3GqOO8ajOR2xhdFcMY9sSYoHnH1/CM18soUGd4knqV2nhxKkaRjfFsOfWHA7cl7eVlKMTSTz92CK++FvzuHC4hvEdCey+J4vCYgNPf8UFDsPxEBYLwP3vy60EDg89WUKMyk3uSGHP7bTLPTls2BDH8kLDzswpLDVw6OkKLp6oY3iUfsT75p1JDI3Fcf5SHZ/63AINo/PjQigtt1BZbmJsYxR7b8lj/01p3HJnzvzi2JESPvXZRcyxPExdW7Srgnmx7jbOnmyiWqTeo1HcdGcXbjyQxoFbckgkwvSnKmYv13DD7iy6M9o2tomL51qIZ6y5sEQZd+1N4sDuJOqtEP7y4WWMk/62LXHrPyderVwROFSQUOdOPvNCERcuNTFP/bQd2q6tKdx9ex533ZpFO9bGuZkasrEI7d3El75YRIj67b7VBeYUdDxzoYHL03XUa6y7ZbXuOO1y/FIVv/fFORw7x3L6bU8mgn1b07jvZtpkV8q2wW1689pLhaYFDjXBroBaTyaM/Vuy2MXx4tzlKp49VsVR0ukj/5v25XDTdtqUvpRn333+zDz+9OtFHL/YwEgvbd4RODw9TY+kY4XbTZy+XMLYKOXcmMVtO7K4a1cWezekcWJmEZ/8VgFHL1eQzLQQisdgZ+BJMJvIC6OtpaYCzfbJ2Smn4SBq/UQdRiOs5vPb9SiftXSRfVD9h/Y7MBmxIPaR6SqOXa4jwb5zerFu52EOpKPYTTnu2UO9NmdRbTXw1Vfn8ciRJVuRGY7UEU5GENb2wRyMGrT1Kbpbsco+o20kIxxHKg20FaRQn6Q8bRmW7VetxVYChztGM9jUl8H+Dex/g1oxl7Bt+r55chp/+vwCZhYV4GhbO10ROFwoo0b7aU3g1GwY46y3bySPOzf3YB/pqvfLVOVaE5eWq3h5qohUpIkSZVBwcCOvM4slPEw+xUYDOeoxlI9hojuLly7MW0Cw2Kgjx349mI1fO3BYqyAeayIbj68EDo/MLuKV2QWcXFpGku0x0ZXFBtKOs33Et0aevbkEy0t4aXqRsipg5ibp2Vq8aDO2Z1i/COHztp4uTOYzmC6WLXCokG043EKxXsexpSL6Y9K/B3dMDGN3fx/HjQieOTeLh0+dx4VSyVbMSv5UKIZtA13YM9iL/YP92Mrn4+T/mVMncHBuAXHKOpJNYTvzX56ZxeGZBcyzPfIcyPeN92Fv/wDuGBvGBtrv5FwBf3n8KM4U5tS8iPBFYuOt/NGCVvJT3QlateYeTLUQcd1ZhtJP+q6C29pUPuaeBSHZQfVYoKCZglUWKNRg1aZv0+dc4FDgvwt0RupqHhN21+pI+3wiUSivj6fJb8nstiSV7ApQSu4I6Wnbcfq8gprEtfpk4p9P6Ad0RM8m1QnujDfRd2nhuIl1S8LOfQwzj2gKprqJdvGULJqw12oy1VFAT8E90XOX6ETI22jyPSZlFH8UKEDpyyPQs38uor+lrgKHFiRd0VX29exu4kou2VjySmClxUcgGyqQQJqssIJjW526NveDBm7bXcnrLk91UeMfJ7cFc1VA2RQ43FQ6i/6ebgscOt6vD03ysM+Mvr91gHLWBgTXy7sWCFe+vR6kElEL4OUzcWovnZ09FEBTvsp9sXy+Az0pCxr6NNVGXRxnNo1wHJzIWTCLhNDX7YJpWtHWeT5lnrhDfSkLGpqfrTb3CigYOdCTsNWEkmk98PkKTwE7tZG2WR3sTbqgoVdNePFYGN2kKXyfnu7K78knbdWkr6cP0lU26KE+cfZbBc7GhzIYH0yvewkvxveF/wOEq4HoSpbxwfVpjfa79tB3B63sl63GKce18PJsj6vZtFOPtfLJBsqTvSeuodv3GjT8Hwnyx2qthvPzLnDYjKftbGW/n/jBPxtX1Z+V9u+82KOYdD8kcFssO591Y6uSGk+JxfFIOJcfOyhyVs/9V58M0kE6SAfpIB2k32DpiY3br/3JJoAAAggggAB+COCB1ie8Jwf+F017SfKLtdJRXkq7c69WQV/aladJF5t45L3BL+7KF/j4+s655a4U4pkwpk/Uce5gHZtuiWNwUwwLFxq4cKhqASRtIziyI25bT+pMuuNPlK2+aPcMRTG4OY7kQBgXT9RQYL3e8RgygxGcPcL06Qbamqzj911NUOZGotj/YBrxZAhTR+qYPl5HLBdC/5YYTj9bweJFnSlGHdJhjE3GbJWgjqYS3uLFBiYo3/JsC9PH6ijNNJHpjVCHJPIDUTTqLcyeaeAy6Qrv8vkGZqnX/KUmFuohbN8ZxT/+5TGk+8L4yn+bx+d+bQ750Qgi9TYi+v5NMNtQL99W2sYp1A4hNehWGvaNRxGhHssK6rxQw9yFOmrVltlY89Q73pxBnTabPkq+5+qKOVigb3xvEsmuMBanmzh/uIYo9R+j3cZ3xpGhPAvTDZx8toaRbZrcBC6x/qVX69h+d9JwF6jXIvVR0EIyWQvSUNqmdHBDHJuIN68tLp+qYvFME0O058j+GHL9EZtjXrzQxKWXa5ihTE3KafMS3mSNgmaaRLPtS8k8SnxbvOLNWqk9FDgUxFju85eNGjYRSx+jj2gb2b6RGDbsi9v2tUXaYYpyTx+sorbcIH3iiSR5a6vOWqWN7uEohulXqUwIl0/XcfZk3eauZQPt7KYVtZlUBBvoB71jETvL7vJUCxeeLmN5uWky5wYiGNudRI12PvdyFZWyCxxqIcaW/UnEU6xzpo6583V05UPoHoxh43baPR9m+zVw7Okq+na5s/ku0T4XTjZQmtf5U8D/9psjuPHuNJ55tIiP/MJl5MfDWidjtgs1QnaW2fa3pjCoQDPzpxZbOHekgXKtgboCvDKUdJYRqVeT9opRh/7+GDbtSyBOeeolBah1rqG2DATz4ygWG7hIWbTq0I9/VKhPN9tTQcdUNIrnXywhnQHGRuNIpcI4d6mKuQLlJq8M5dFqi8G+OF49W8FSUQHFCPsd7d0fxXb6mbZ4O0WbzNOXN/TTFvU6Tr5aQ4R1xydiGErFcehS2epqBYBtwZZMrNRdKNTtHKkzF8gzUkc6lUBvTwgjI2EMDyfRXmjhhXM16KzCrlQbNfaz09NaKUW7paPo6o5hsi+KHjrF4ZkaLs7VUKHPJNIx7NwYR3+3tjBlm9AGp6c02V9HlX08S5/X6oiubIL5JRTqTfOrsPxSsbxIAge2pdCX18S722j0laUCFqbYV+kb5r2eb1uQUJNuCgRwkGpzsLPnMI3ItqJXU946i9SPmKZxbfWX2kTlbP92mD7BTrZ9YwrJWAQXqcuFuTrCsSiaOgcvSd/N0Z6ZGAbjMZQTdZxf5NjEPqHz8lrhBlrEQyjuaEoJytVUoItp9QXbTln9VAc8MkOBRK0OlG81KHOG/j6WT2Mgp5NqV2G5WcNsqY6FBfa3kMZt6sFKmVQLE30h5Pnv1HIJ89UaGhxomzpzKhpBP9tgE310iDbUqu9XpirIJGiNSBtLFfa/JcmlFUZNDFM34ZfYDidm+c5gB9ZKvb40/TzDcXihShka9sMCxYUycfbnvjQKNY7/RfWaMDb1JMiHY2OhhjLlkN4KCm7uzphclwtVLMiWbNJErEUaURsb7LxI/n//tgncON6PR05O4y8OnbE2k520TbbePRrvtHqs3dKkbRMDqRR64inKzP5eWbK+L4+wIAVTXfEENvQQJ5FGjf38YqmIuWIFyzXqR4LafjhEemmkMEY/7UtkkAgnUGmXaYMy3zcFCw7H2KF70yls7srRzssWqGyTXj6Wpv3D6Ap32ST6Ur2Cs4tlLLZmrN1tANa4SpvZ6jwLCLpBRCsm9YMObY9peZpglu9ICw16hrcKpjdtJJAdWnwXatWs8zXRlr87H2fC2UqT+U32BQ1IVln5kqlN12zSRvI9ysC+7c74Ew+/Lsc5c1MOoNKBl9t6VTjsayYIccVfuaJvATfh0bZyEvFhX1OAxf/so5WLbsJcfVEvKQUsFQyLkKcngzHWxLunsJyDIPtYwJ2jgQKMrwEWKXAoUA0no94hCtT5NCgf+6D/bIEnycc8asnHGvkTh21nYtobwY1B7kxDBRyVVoCSabWVaPr6Gagt9YLmo4KEaks5sNnWBf7s/evZXWD2c0/Mlz+wsrLYH0fnzuIt00/gxu1bkdCPJRziCmiFrWjKBzvBkeyw/fcJbhtTbYnpZH498Pmu6uZA+WvzBL7K7o8DR2JVftVbzZM8evaAWWwJe1yPvuCqddfAWrwVXSTc2nosMszOfMvz6qzDaC09P60tSdWMSmtcVPBN/9blux54fIWvsxxtNxPyl/vrDHKByUM83XwettJ0DV/j59FbqbcGrmkXH4hyTVnWwHr+fDUf/25AfU562pbu30We/H5mYQnPnrqET0X2o6hfgenzhQd+ANBAnz+kk+lFy5lRqSvT9iMBs5fyhGx/CA7Xhxd+6b95TwEEEEAAAQTwxoXQ5MYdemPq0eUYBOkgHaRXIUgH6SC9Cm/c9H2tv7C7UvrCqO+Q+tIsDIG+OvvBLeXZxS+YmjK0gKJ9+STwWVidwUWV+alYQhORpF1lDu+RLHmReLOuyT+jqu+tpMEv3jF9meUXcZ0LSIEUUBTtWIz1WFavKN2GzipUdEWT/tqlzJ8Y0GoHzWvlByPGo6JzAW11GGkkw+RJfBMjhAq/fMdZKZ2PWABIq7RM3rQ4kJboEt8mErSCjfU1wVfTSkjqorwa5dFcZ24kguG9KezYncStb8/b+XYP//4cjj9VQSJDfUlaQSrZyuzEyyYZmNZEgOYi65RXWx8mk+4Lfa1C2atEoZxqBtlFoG1Wm9pZkDSVL1trmtLNY0p296/eCJndkpmwC6KVWygV20ikSJ+4TeogvWVLo6/LNBcZPhFJAUEFtzT3oABqg/ZQYFf3diSERIKolEftKno1ytVim2giWQ4kPrp0hmKDcsoPXB6fyVf+xdrGVRPrcgepqbRAz9JN22WZjdR+rKAAolZsSr4a+coPImxj6UnqZhMFBwXiERVfPjfYVpqL9cHwjC59Jk1bKRhIzCLbubxMPchDfiSeEelJkM9SCkeQ4M0Fm5+Itkq1YyHNrAP8UCFidbaBRL9+sS376HydEIbGYrZy9u0f7ibPFh7++AI+/puLGNgfhRfHs7MQa2yznrEwIvRtxVzKpC1bx2V7TwYDPmt1n+xr/YbpTJZt1pad27a6UgFP+Vam121H2Gw0LRiuFTsK0Ag0v64AvFZpVdt1tCL0dXa2MAuqmvxvK9AlXFdPHTHkbRXYaGpiT/4UQjrrfvVeqzbZl5rI0n5lTVR7MqtdtPLB8lwWbaj6YZpNW6xSdg4S5XLDVj/qDD5zROqovpxOacloGzPlKus3kdDKog5oyCCRMLSDWSQUI+0G+16TtGhXRJFONDmm0NJ0Sm0rW2UHzCQVFKU8mkSjfcIx6i2dSN9+sS8bk02hEEYuG0fcW5GgNi+3K/RXjjWWswbUGOrvepSdZbeVvDDz2NEjMfqzGk9ORJtGFRQgfSOo/DZSPXH2e+rAZ636dE7HNhQNqqIJzxgS9NUWiuyMCox4sT9SUBspqKcJR9Zjm0k/rTC0wAXlsQCFE9NsJ1DbibbwFJCOqC97SkbDMcqhYCvtU48jFqW3W7BB/Ya8Y7KnbK/eTR7kIx0VjJcfaLzTCkqN2VotGqf9IxZ809hPeSwIwrTagz6ssyalOwuYzbvGEXYqerKzhUAKMD8Wl42ZLXMzrR9jCNoaiN0jQbzqtAjfDcTJJ2I4MNiLyb4kzi0UcW6pbMHIDV1pvHv7hL33Pn/8PB4+ccnsKmiZv5OkG+BNf60MsxUu1Etz3C31Fxv4JKvGpxZ9mz5Le8doQ/lDhf7ZYMflW8a1gWjSp0nCAtaxUJw8o2xF2pu48kq5j/xUpo22E7SrtqNVv9QYoNX/HKNDSepeVy2UqxxH4nU2LXlSbtnF8RIXgXzP9WtHV/me3HQCrSKUH7iXD0vUkASnO9uExLSytcm+FIq41XnW0Lx8/zN65KOxwZ+sVo6x4bMmul1w0tnSyah3rwuMyQ9Eu91SIFN9RPbX2ErdbQKf9Y2nJ+cKODmUZ7oprb/u5kC0JQ9to6Bm2H7tQx8UfZa5swOlg/iKtnjLR/lkNGU7ycZexv6ju5OZeHQEt6pH/U34vJivMdjRMmpixTqyPxE8+yug6lav6ccNspaj5bZpZVsy7fjqRxOqG+WzSzODfVE2lWyipbE+QaqiT3pmfbUBacpHiaN2sbbx+PhtIFw/2KtyVBsYnT9ngcO927ZwTNW7odOg1Mzk1VB3Zf56IFyhv14AZj2874ZPAN8b+DaWX+j5+wmUKeDlfnS4fruJlc/jB8l3PXg9WTrBl6UTpzNPT9p+WzL6feF68kRirW7Xk6fn2YVlPH3yogscJnIcQ9RXHQjfeBpfJpShJ72fLFt/vLHGcHStAdbRGCB46Zc/bncHyuvED9JBOkivQpAO0kF6Ff72pYMzDoN7cA/uwT24B3feN+JDfHDJzi+z+srpUgTm2xdGy3C5+qJqOJ11+OymuDzwyvS3UeEXZF4q1Nlk7UYbjSKTTdbTHJxPt0rcctuCe5YvYlF9qeZjHaiXeNc8F5krcNZS0I7PkkcgKvoyrUBOebGNypImuYjj5p7RKBia0dMkXyQesoBebbmNmoKGxNE2fnXirW4Pxj+kVyWtWqFFPJY1mBWnPMTTGXfxbAibbk7hwb/bje23ZLC8WMfTX1jGK98sI8a6WjkWpnSykWT07aQ8l0OcGGmSt+hVKU9V5+8plpDWRKwMwP+i0w6ZHs2apvlYrjLSFT0FYm2LUX3/p85x6cf8BmnKFrKZgoY6109toskAWzVHPi0F5CSH5OXdJkBElGkXzA2hPK9zCUmfCOGEykJ2VmFZtik6vlFFy8jUzc072SSzrV7xJjrsL/ObwvNsokv2EIitQCnZSmBz7vQF2Ui0KrRRie3RqGgChbrmwm5RC2uJTVv0WbnlSJq+Wn2olZDi6YP5sHRO0g60nehWiGtxnYwmYD1EgnxJlzFYJYGmAiHk5exFOgpeEqdEH1wirSppJNiOqio8BQP7RqJ4yweyuPuhHFLpMF56pownHytiabGFZI46sI7ZWcFQyqGg+zJtX2LbyUDJlGQ39lKal/KZIV20IkVz3fE26tS5qDMkFXym7lHWk+826vQj+otNHglELMZnGYzPCuTUNUed4AMbqtmg/FKQ9MXQrbah3rxVSCcW0YQ9SyhLNEq/Iq0i+0pZPwBgK6q8bnVYy34NL5+lfJTbreixIvO/MOUuLpE/aSkIYgGoNOWn3RRwVjBCtiyXtUKSZeEmL0e7E5xZNAa0UZCgXsBD+luAuNZEiW2uAI7q62wl+YOCXNJNoOC5gkoW0PP0l4wJ6ldlXrneov5N1HjFKZX07/QNA2WaU/KZtOXHGvtMZ+u/boIeEeqmZ+UT3+IRckTxZb22gkZ8VuBMNYymAgMc4CghdW1RghZKbDwL3qNOFFlK9UlHQQY+ux6nNHF0Bhf1EE+3Wkpy0Q5RKUJsBRV52cpD2l8rweqkWWOeBVNFhz4UIe+oxU88xSinpNS6sSo7jSibXmYD424uq+CnVg1X2A5RyUed5JI60002UkV5iiZ2tarDKksX3ZknP1Wg2lZNMteYyC4Eo8Ny0ZE0qqYfH5i9HQrFVCCSehgObMXrxnwG90wOYCSTxhCvjd057OzrQm86juenZvHC1DxmS1WajwS9djX7iSaf/fP+5EdmAbO7eMnOtL6HKL1qtL1WhMqWsp9KDLz+JaFj7A/SUdtgVznIa2V/nD6sviCmGpulpxaKyuZuBan4sI1aEdsettausqTBd2OU74yY1bXAj5EQV3Uun7vqe/x9YJG9k5UvwwpVl8Yc6ac7M2yVpHBEm2kjKRRrE3qLd1+9PDB5mePptArKV+CK/sB/jh5xSF7bgpq/eTjSV/UVsHPBLiGzrcnT7MHUCk9j7+xk+MbcFfllVtfaTp1eOK7QvxtfGsWt6NEYRj+ira2djSbzjQ7TlMG2V6XtLEt5Jje9gHmqa4FJFZGvcJQWL8tXhpzUMlQouVS+6jTupr82OhiQqz27oJ9k0p05/O8Cg1Zol5WRjwUYjYbLdyj+M+VVPS9fvuDOODyHob5e+rDs4JV5oHRnnvqy093L6AC5lmzgv6P12U7ptTTX4gnW8vFBprPPrOuUBfDdgW9jmfJq9rxW+3aC6gvnau2mLJ/H9fD9fuD1ZOmE9XDW5snfvts8Za/V7Xry1A/K1RoueFuV1qOrvyhzPz5wPFbAxgCBOpFqC515htOBZ2O4yv3xhxdxph5/2WULNbgH9+Ae3IN7cH+D3oMzDoN0kA7SQTpIB2neN7Y/pKSB3pO6BJ2rwARu8sZh+nkiYF9edXlplSnlXwJ9YdVEveb4NL/mf0nW6g8FvVa+0PKuVU7C01yY+yLPi0Q1Hy18rWyLatKdVURLq8uEZxN1Hg2B5NBWiBZk0vdh/WNZNO7qCt++Azfb1DXs8DQH6X2f1pmBNtcvHKbt18gUQtt5Shf/e7fSCiQlsiEMboxhw/Y0CnNNPP3lJbz0jRIWLjaRSIXdPB/xJYN4y54CyW42ZNICO6SlLSOND2VSwE7HRGli3764EyIUTPlmJ8+ePk0FPRUI9PXQ9qdqS60olD10V6DUAqbS1wIFbmWOT29FJoJNG2gSiKw1/Sj6kkvKKDBhUSOmE6StVZBWv66KbpJOZHwbMkP/rW0Um1Lbi77PS6AnpS2/49kHmcDmMghaxWlBVQUqpQ91NRnNVo6PBXtEQ4Sln2RXPi/TjZdytIpIq4NaFLDN9tIqwbYCJSq0QIMhmQ52CXiz+vzTJF2tvlz1ZXfp7EEFUrUoTXa3eAehynZOdUexe2/Stko8+HQR33ykgKPH68gPUgfKInpiIPp61iX/jZOXzqC8AiLCJ64ChubgzBMvzSnziiWZpN9KdvUUE4+EXZBKd2WwWpx0mhEXY4pp5RzTqlP3AntxTVy7uo4JZWU6HhUdJh1lr76apY14kn2Mslm+5KY8LWsMPssorKgVjMo1GpRfc+Ix1SM/C44INAh4ba+6WomlFZJhC8x4OMZbXtCRJlGRjdER5YsmMP9rVWGYukYjCkyqQH7TYl+njp5uZkT1LUVllCc9vDZUcTTGvkPdFRSN0V7yf6smRZxB7B6KanWn5CKQnk322511qEOIfEmJepO38WI1BZ/isovkYR7lDsmRtJRUESZbUcC6Wr2oxvXsJB+MadDQDwFMXt7JO2yrvknHV80CDyyOKcCiB7Yl6ds5h3RQiyE0KZeWZ8o+aitVUduqr9XCFmzVKlRHwJOT4IIZlJc6RBKkWVOwNmK8BK5fOkEU5JKY1r1oTwvCGDn+YfvYSlbaRys56ZlWJ6RBUgOB2VDDGO8sccUi5F2+vgSRtR+Q2GpF+Qyf+WjnN+nXBLY1Z1hmw3Spijh1y9L+o10pDGUTFqzV2YFfOXMJZ5ZKFF+GIG+trNaDyIqtpZVF3Yii94sLakl3Ibl67twoJ6Z+7KI+EtKy6LbzDZNRdicftWOEzxH6WYTtrWfbutMoiBVtQhoaF3zfpzebTbQy2wL5koftIh2tVMvp7e7hev5wNZAs2uKz3dRAohoE+5GB58OSQTTYXha0ky/IRsIUjv7JIBLK/MXJaRmqa3eWO4H4KK8QHyeX5JVuZj4ZTXYxmyrIpjqruFbuyBq5CI1r70kVGu9VEI7h8bnVVNBPfdFSpKM762lMMlzHs20vBZaxYaxvsV0kT0u/KCJ9s4UFCXnJT4nr2oh12afUx9R+4itwgUPRc3h2/qNtu6q6Upgy6AcCohNhmeV58sipFVA0mZSnVd6yiRKiI91F1xyMd29FoNqf8poNJYfRaNm4aDpIPvKSz/i+amgi7F+qy36aKy9ic+k8Rge8wKFhrw8Sy7adNLVei+n8dDVf21LK+p15grV41wK1p32Go1/4NSSH6XmdNL5bcPSloyX/u8B6PL4XvtamrPCDEFX8r9W+PwwgrTWmd+p/vXnfC8i3i+UKLi0WXeBQOxd4fdT6sUff8thCNoZ5fdpA48haGYi78nnBSxPJ6l5+PDjjMEgH6SAdpIP0D0E6OOMwgAACCCCAAID7W5+woInATbldCSpR4EmglS5+wEs5UX0htRTrMl/lAn0BVb4uTexolZK+sKrU8j16fnBSoDKtolj7clZ9H8/n4ef5NPWsfN2F42+XKjzh+PgCX0blSw7p7tcVhkr9+j4Pfb3WXWC24n9+T19Jq779a/C56BXwFlVgK0XcurbXc9vgiYeuK/TQP+Ir7dtA+UqrjnjoLt086lYm8OsKlOfbxAefh7DX2k9pXb4djAdrC9v0JAjfcPjc2W7K8+3kQ6fMKldwU8K4eUiHqzxvvh8KYupMQ/FSufxPZxsKlL/WH/1zDzumO9YFrfazYBMJtKLUlfbXXRNZkk86iZbu4mb8eRdPJ6UHKlSgwwINfFZkwwejST00oV+hXTNhuyutgKPiNj7oSC871ms9IF7tWAMLVSAxFEbXsGbb6IOJMMLkYTFA2fF6QfipFkJV6kRSiFN2iV8Oo52gzJowIlLEJqVXQdviNSlk1AR3VpAu2gmwXYwhlGogRN8MtdgGSea3EvQHTWRLNk06aRmw6CioQDzbtnQVmprIYgNEG1Wrr2pWXb6glasetBRApCzhCA2iY/R4swaX/VRPoJWyfp7q6kg93c2vImimE+SjTOobJt9QBJFWxVZOhuqUX5sTR9he0QriMQWE6jZZrq38YtEYavWq80cpz7xwgrSk3hXO4YFT19rRTKG07gpUhNkGtsWnC6LpWVuKXgEreA3yYZnajzJaQCKnKJcHWqKqgKEPWm7GNgxp68aaGppVYuy92tZTdaVvjXpn1d7M1/mo2joy3rS7gogh2kwBwkjKyafVl2wAltGGZdKOKU3CCppou9Eq6VpwlH7ZpMxGx8l8NdAqRaNXkn5yKEqjvXZD5BPTlpfMU1BDATMSCkUTpE3HsCDGVcDs6/oJBxujuZKntD3rD3nYmXpRykzaFvRatWFbe62ablfy0hpBbeopCjH+681GEKeJphbazK3R7aL24xWaDE21FSGigCdVsaCTx8O2WNWY0jFBa0Ef9cEOPMHqqjUHKmuzgyjg0252+IEF6ESTMmglMNlr+0qb4CVEOpYsKhilQJgPLsAlX1H99R1aZ/TJX2gcL2d9UIDXxnHycFuXxpinNAtJVsFTbVXqgqjaXtTJp7P3ZA//fSBw5/HRnyx/Fe/KPPKhv0t+nb2o6oodt8jXcMhDq5JV7rb99IBjCd8w3na5xJOvrAHbctmzqaXVr5hWg7ozHR20teWB5PDy2tr6gH6q/mvnJRI6zypcC514Att2lIqsyGwsV9uo1dSWv+RF/U3HTvnMX2gAk6dJXNnY0WCGh6cxWvyUL9mVqTpr8ghmY8oiuqIlGgpIhnnZVtQ6V1FyWLvx8trPfLbWwMjsGbx5+gns3rIZ2WSc9Twn/BsM+qFQnf1GP9zxTPYDBa2OlufqfOL/XrAej++Wr5qyxnEipvHhb0G7BfBaUJvrjMPnTk/ZVqWlZJ7vD7alN55eAda3I6vvHwUN9eF4LdAxNO64rcJFSmOEo/fif3BHXAQQQAABBBDAGxm8Mw7XgrKu9YEpKA/Kg/KrQ1AelAflV4e/ueUPtD+xElgSlkCBH00Q+bUUMBKOn2+zLLz7gUM/iGT4Xpl7hkIK9qyvpbrrEvjBJ8PjZQEdfTHlXWkffNn0ddXHF30/iCXQ0wptlglW5OWzT195rtTR0qV83X3wdRWofidoTkVZnTQ7eahMqwYtYMYclWj+0dfBD1QpLZ5X0GeBbyuVCc8H8fExdVcbWJ5Xv9MWAj8l+n5dP091/HZzsitoGnY8PZrKV7lvG5+3D35QsXNKYkVmlunu6CmDwAetJBVopVFTdzqEymUL3zf8NhZ9C1gyLVBN5alMeZ3yGF1m2LayokfbN3hXHV2aGnFtsMpDd5XprinUtYFD5WmSVzENGkOGcBfLTXhPFxERvuhLH52naPPNqsL8eDaMal3BC6enzpfsjAH4oN0z4ywXvWaYMijwqdiJcFkmbrb16VVAqwRtsZDkiBG/s67OH6NAtqBPq2c8Xd1foiiiyfJQpEUelLMmXsRvMl9Ry2QDYQUdFYBUkMACh6rrt5oP/jMpk7dNWtX4kKy7AKhWTLJKuMY29AKHNhHOzJCYroCvJ+n5LHi1NaEdiyHSqNL+XplAd+nuVxN/tpVW8EVTUepHm2qrVE14rYjsZNHqSVttQ/YRneunc/tsAl4EBSLKS8ZVPdnU5+fHVYQiP1G+wL9Lf4F8hs8h2lT2U9DDViIpCKgiTxcFCxWEs2AWC0LiZcEvDzw6ttJQh3HqXMa1gcO4pyPbSHEfo20dTXU9HRx5o6WgXiimAMSqrLayWUGMKC/rSJJF9VkuvRWtEQFbWcVHkQ/F+MhER7DJrW5UloLIlIe6h5NagUU88ggpcEnarYqIKEhJOqKtoFrDBWRMD604TJKQTVoSVXJoQtwT2fqnaPr5SgtRtpL9mpr4VF0hUF/azIKVzHPBIbUHefqTqALVZadVnmpppaUfrHOrcKUPSbK64iYCVRGy8m3LZwXT5N9aaafAlAdXCxxq0ZiTgzZChXfqIvFIXzwUoLQgnP6LL5/lup1BQ4EfOFSena9IZD9YRe2tTEQUONQZfpZlg4fqyBdYR0zsuhJsxSFJteQXflptqDGG9lUwkZKSJXnSx13Q8kpa6wUOZTy3pacCU54ulqf6VNKE1hihOuoYusRTTq5gIdtDdVXVll1zzDEfcXJKtit4yqdJW/pKTvfeo71oy9WzR2VfyRC3YKDl24Aqv9VqHvko6SltMrq2vEKvdeCKdzXp+4GalcChfE3svYChvddE2/xIfMRDz5LNpVXR9DfevIyO5FS56Ctfj+xf7FeGa3hmMFfGukZTzqZ6K/Qoo61eEh3lURbhajw2/yUltl1ufga7X30SD4w3MTLYj3g8Yf4nCnWOATqfWJ8n/ntCne0nHlrBdT0g2aRjp1z6jKHVcjG9D7w8wbX0uBpfMx/BR18P7/vJE6zlIVgvTyvSpJvOv10P3Oc1tr+Xvpa+nfCDxLua7V8P1tPt+8nzYT2Zr1ff7weul6+fpzOWy8VlHLu0jK9NxfF4YiM/dyWu8BXr1z5Ytt6t+gGC3kWWa88C9z5RpsYYInfqqXGB5S/9h094GQKHe3UIyoPyoPzqEJQH5UH51eF/frk743At/M2XOygPyq8OQXlQHpRfHYLyq5Zrq9JOEKoBvyzqC6ou5fkk/Ikv3VWmL91Wh89W5qeVxUsTY0oL15+Y8On5X9V9fH9LQf/SpI7KrqDbQd948uZP1vnydsooWKHfea2hs1KXSd1VLt1csUvziXXcXaAn4ahcuvDGL98h2JmDwlQd/ncph6u7wHjwrsuo8Y/QjZYRcpdP23B9XryMtqFY7StgJUdlHTyVXuFHcPkuJdn8eQbD8Xis1O0E0aVQxpoIzjYOrEgTP57Qmpu2dhWKLpWbsVzSgqi8+7bRs0DPArEQjnh0THMa2La2srXok6ZtQ8a00TCixGe+jmrzaXfW90F5frmCDaIjW2jbUsVPbMtQTx8Kipa2guXddBDvJmVXEIbFpqfQNA8uvlqtyBITxz2+BtyqLBaIHv+IX5j1HF+XL79K8ZKpPRYrwGIJ4h5ipKCDATW3rq0uJbcuBR06JvxXQXLLr/jEq8062obSxRKIx3phzRWrvuaejJ7kUABEdHxaytMWeKaBk0UxjFbL0VI91Ve+5qbdnLPJ6Oh0gHAVn9JcvV/EPMUWQg0SUx7TWsHYbpGnAkOiJxDeSiXieJNgkl9BT7OJL6NwFWT1ZJKHaVJ9BSSHbOVnyaYCkZcuugxHz7SZDjO1Rr4SQgrcyL9NFDFjnmQWSBxLi48Eomxx3hWcbhJHDa5JTSHpmfdQxAUZXJCMaZOR/EVD/9XOakNbxadHBUcogxcgsgCCwJyJcpGPu0SPOApeKAClVYXKYueyFWCqLzn4R/TcZORqnvCEE6b8qqYsN1/JxpFulil8XmoLPfO/Ckx2e5QclmXkZAe7S36vLxgdXrbtqMqMt/T37GJ9QTRJvC05FYwRHeXz2YJ3YkAcGzvkR8LRhDVxVCSyBMlvJEnTmcCV02rK5X8/Lb344HUk48Vc6/nGW4SUFkguV9+2ZqVuSrk/VKjVdHazDqm7glwKBNE2ZjDxoQRqu05/NVCZ124sM9+QL7CeT850lR3ML7w6HrymLwosaGYP7q9uZmNPZws4so2NJm+yoz0Iz6NndnI+5Gd1gvpjZ7bzLfEVEdpHuogX/5ubsU1VbmZVm5CfyWU8iSsZZHfmi7bbalhoPh2Vi6MqiKBKFSCUb/h2UR13Obt4/qJxWRVkewpDzpRPsjj7OL589hSVLPaekiTMc9uaWoGVCSygznZe8VPrBOQrnpTT5DF+/K++YCDZVC57Ox2kreVJTj1a2slnZfZfvJjLOv746NpLuKqnjqVsz98oswtC8r6C61CUpx91NFmnznYYLJ5HPpVEIpGw9yiLDeyzlVdHWU2ON46ls4kCONLbBbu9/OvAE/h5Du+1ddUMQrfPVR6+EJxMV+YprSwfV3w66/p6dMqitLteK7PuPrg897y27vXmXY3H6+W59la+Eg46dbM6a/IEvr6CTnprberjXWEX5l+P/fy29OX2cQVXoyfctbop8b3mXc0uAt0lx9o8Pa6nh+D1ZGa1q+ZdD1+BbhpXVD67sIRjcxUcbvZgPtnF4dbx9vWy8VTPlvby+CyeJrR7sLtXxUBji40Rync59jz1rYOWMlDVjjqvgaA8KA/Krw5BeVAelF8d/gaUeysO12L66bV3H4LyoDwoD8qD8qD8jVV+f+svvEeX7ix1Ofwyyxx9r1y70kxTSf6qOfsSqgf74um+8Ar0RVf4Cv6oth8gUrl9Cdaz8nn54PP2aXfy9ekKxMenKXBfqr0v26QaYenaOqtPq/qpjpu+cyA6WvHmg558GlaH5QJfBx/0JCzpKtl9uXw5ha8c1fFX1a3QZVrPPq5AJYbvP3vlZnfmaMpS4Ci8FsTNI2+YPo9Ou/uX0hbEY7muTnk6YcXWmhRhkeYUfAzThQlNrNq5eA21AvOV56q5oBwv4clGsoO/0s9vA02Z+joL/MChD3rSXHFUAQrVZYZk0USNwKZcFQRpsYx5ms9V3iqFqwDl9kQjsA1ZL1pvoxklf2Vqhka3OHVnvoQUfdvKVAJ7/AUmlwKCtI/Nmav8KuCvxpOAouDbq8V8oygF+Zwk/RplkC5WoGCLgkQWMHKVtB2ptuM0eZWvu1YEKfCnbRXFxw/SeGCrSWRAbXVJGiEvwGjBNKVZrsDbioyk19IEu78Kx0BtpEl3l2dbtmo3zQrvZht3Wb7wbBUPafpz4B1gAVOthKsqYskMk5mXxFJaQULRirL9QzqzrU7dWGB50oV1tSLOB+Pr6WW2ctltBW2YpzLj0QE6f0x5LU3Wm8EJ/q6FUlmySCbhyS/4XysWzU8tzUsgceSnkk/5Jp7uwhERh6P2lR+FFJTWs4prtJGCiPIrdTTVpzNrG1hb3Kf6LA7FqEONZQqEeHStPyT4aLIQyRSknQwUOCQ9BVHIS/1UYBOdsp/ka0lm9V/iyI9l63Yd2qLUBWVEj6RXtkD0G6gBOzPR6xMWP9GqyAbbRHop2GTGkiMo2CR6Xr4CFbbSjmkF+6xdRFNAfD0qoOIFTBU41ASpmsjSMY6KNfmhaNKW0SbNpmB2g5cq69IqCxeIsjYSfwugyB/FW9keQUKYMlj/MJH5zHZwQTxlCI9lrO94KOns4kB1HS2fx1qwVXqkr+CXfMfawwKH4uV0c6sXFczy5aLMVs66PkgMswVpmB6Ot/UxyWtbnEo26U4ck9cFkL0RhQ+vlU8QiqofkjbbxgVh5QsqkDxOTgsc0s+cb8gQDtx2nJ7cCuJGaD+r3CG7D2oLU4R2oajuvEDJTN5qN/41FWRomc0L1mnFo7LkUrKBWznoyWC8Vm4sdzKrKcIRrb5TXREVjurJL5UmnsYy5mmrztXAIZ9t1aT0lv8ybX2L71X64+rWsGoLp7ezCR9MZtEQX5UoX7TdakejL8Wlns4z9O0p5Vjm+Cn46vQ3GdU/RXwFZ9W+Jqvhq72cfyrP/NnKZStPXj5brtlAKxPpc367Cdei9J1gyhi/FuuKZrJcwh1nn8CuVB2TvRnks2kbjmxc8WoJJJ1WlmlFlJpJbqxAi1ZTWcCFefbOvw48UfbzrsaDUkpUREVE+R08fFgvT6DPKJ11fSD66/JdU2UF1qt7vXmC9Xhcb14nrKfbenlKy4byl6vZ1Ie1Ml+P/XRfz/aCq9GTDN+rDdbL64TrtYtgPT0k6evJzJyr5l0PX+Wpn6srz8wv4fjlZTy/GMWzkTEUEznWoxxaTc1LYOOKKpn2AglKnivvpFX6brxx9PXoj2OWEB7HhfVXHK69+xCUB+VBeVAelAflfzvLX3PGoY92NQjKg/Kg/OoQlAflQfnV4W96+Vvan+SXX31ldbg2mWRfGJny8n3wA3j6qqkvlQpAuUkqgvesPD/fDzLpr+rqrq+gxsfL13yaoDNQJ3CcVuv6z51Yfl2fpuBKKqt8BHr2ZfK/HPvQiacJDH1h76S/EjDrqKc8yeaXq0TFYT4J268jMJvw7r6Mrwkc8tnn5eMYqI73rDqdEhsvXoavjHWgk7+TzVHwJ2hUblMCvGv70pU8Xp24K3yY77fT1ejZRAdJ2XaRTWcTTW5YcIx3LQrSHIhbgeFANEVLUxyirkCiaIqffE2YspdfQzI3iKltSVtamcdKFsgUTfIWnupZ8JCXzjd0gvAS+IQ6QXnE0yItydmUkCIsGqKrurpEqwOEq9WF4ar4MM3yUIu+U2PV5Krt1uUpUH6SQteoB591abWhzji0YgWTeH/NVqUKHMRYrrMMLfjAerwUC9B2p6EK80VCk+nCSVGxDhJuwlyVSFtBItk30aAeROL/FumbLRVYI32jpXZu0lfr1DUhZo7WCgiH2Xbx2bZHbfBSw6rRmN9OsM1acZLS+W3mfVcCadq2pFTEtiWVUqovXopR6SxD3VVVc9l+MM8Dra5rRby6NtmvTHdbAdEy+7FAdJReo0s0qu352A4d20kqQCdZLGCjbNk/FnFBwToJUTat1GtrMl44RLcAlubhFcy1AAvzFTzReYMKXMrONFabxEI60NFftaigXYM4WaaNHunL/jovsU7n8uWWn1JWy5Oi4ue1XThBWepNyiMeDjSJ78YUyqKJzWgYLQVoWTdM2gp+yu+VJzwXgCO+eAlLq1lpV8v7boB1wnHaSnJTvxD9oF1pWnDTdBC5Rt0FGNUJZSdjqjJVIghPWR36rLQxCyI6e1M7SCpl9fXzCi+YraQCMTrDU3Y0G7wOiLYRo514M3uovkW75ewKstCPtRRRARshG1lH262aY67fdis8RU3g40lOlfNZS5ytbZkwPsxXgN7PY18lQ4599M2OMy8tOMMxXNtqrgCrOsl5V7DZnnWOmYJH6n+kbxEtIVBOb+vJtXDFeYaStRn1VnsKl3pr8tnGBmbKVvQ/tq7VbSkQLOHtBwWqT560g9nKB7ML66mu9x6SnS1uaHorOKZEzAWLie6Cpp7+UotJq++v+uNz5zaunWcLGn+TWcFUx1t2cQFW+b2CtLxISgE8ly86vpw690+DkJjqv+zIMU0BXvVV00/F9ncF1Eb+eYbWHhqD1R4W4JZMEbaNbMT+J/0U9KbcMi0J849k1pmO4i2ZZMsacWUf0TKJSNe1tCq61ZMaX5wsDsezkdpOPmYMCMaDNhW+fIF35yusq4Zg2gUpHQ/hOzlJx8OduHwak5cPYWemgQ19edsCMsVxSPIF8LcTLEgur/H6ZgD/86HJPlfmO7rOd+GhC7N4ZSmOwxjEiUQ/UhwvdYazPotoK2YDjUk2iLO/en3RfkBjY4clLK+zXH1+JWioTt/RhV/85Y/bXVmscVUIyoPyoPzqEJQH5UH51eFvSvlVzjgMIIAAAggggB8ueCs+aYEbCxYxbRNu+vK4DqydnPKDaHr2a3QG1vSkAJAfbNJXU9FQcEmBIN19nnr2A1aWJ3zV1RdX3vX118frBEuJXphflPkoGv5XXYEfgBKeL4uftxZP9YXXKct6fP3pk5Ugmle3U2aV+GnR9kF0VNYZOOzE8WkKy3s0EA/LZZ6epO+KnCvlMoWjp5Ro6bmzfQTKEyhf0FnXwKvjy6VnTSmulBNUwy/vlFkrAbVSLqIVR/yvoJrohZukEQ0hpslTw14fRMlfgXi9oC1LNe/RrJNHbJWH2le0fLBAJjOvdV4gVKYqkl9oCqRcA92A5Y0ofahCuamvbWXqgcUZmDQ7rAM0DTLpCCrVFhriaZnUJRF2ZwOSva2iex1QEEwxpUw9jKV4E20FC8VT4q8JHGoFTZMCRTU5n2zZnL5WKfpgZxgqj42pAGGk7O5aZSiCoZCCVGuA1XV2oYosRrBOnuRpK1B0LVCwUXJXLAXoPETR01x5JyhgKNxrgDuXkbz9FZQe2LarChryf6gadgFEC+BdG+KxOG3AdlIQoxOUlLOtCWJaAIUytFsJC+CpsS1wV3f1Q2qwSNMFynRmYVVRr3XkiJOwxkEFiqhKSO2rAJ4FGVhFQUjmqcy2KVWAUucdrgX1V537WCWuAk3sp62KJwvxLUjB9rXz2zxQwFMOvC6964UQx5JYw4KCfhAmFFOjsigSJz/SVpTIB/sBAC/5WluB2Kqzi/KU3RkItV8i0Mak7fOwAFtHntlMQRbqr4CIndnWog0tKnU1oMwRBY2iZicbX2piTvF0pqjsrolVL7B8tbMLBbbyS2f+WaBPdVdl6QT5iwKCDfqkAliK69n2l1THz3NBNLYS6fmBQ39V2upqN5EnnrFxTunO5FtfXwWqdGZiUz61jvutBA61crkTJKOtOpacGhsog35o0KKOWgWsHOq6YhdvdYuf54DjCu1gNjHfl31Ey4G1EzuYdI/YSj/2Ew3izPP1lS30blqd5F4/zwezDX2wpfMztRLT5NFgIvyqe5bxDFbzKCmTa9tM7UJe3uG1Ch4qGCkbXBHEJbwmcEh7qb9p5WOTLxBbBao+zbYkNv+r7WRP2VJ05Yfsv+Y3kp11mN/UmaCkRgRXj5dspbTGemcH9iGVGI4D8xnax7WdZ2u1gecn5leyDWVsNt3Y5LZy1SrP1THCfjShPpl0NksfexU7lo5ja2jWPqdM9qZt9VUAAQTwg4FitYHzC2V7fqY9ioOhYcxGckjoHRLVO8sGfysXrLxr9C5in7waCM/Gs45xQGDjcwe9F3/pz7ynAAIIIIAAAnjjwmtWHAYQQAABBBDADyO8DZ+ywI8CUH4gqDMgpS+L9iWSoGCXnvwgmh+AEijHx/NB5X4d0evEUZlNYnn5SvtBQlHV5eep3JdllSPLvbvk78x3HBx08hc904t3HySPH3S0NC9ff0EnX+EqVzZSWnx9+n591bUJOd2ZFk8/KCgQrk/HcXB3YehSPaMvunzWV3ezFe8ClRsPPq/FU1rlnfSE6/MRiJZAdQRK61pr587yTvBlER/TMcy6EfJukiYLFDi0AB2rK4Ao7SIsUHBPFZWjlYC2UMGfmyVIdiXF1V9xqPaVXn5g0mwtviwQPQUKja5oWT5lI+0o8/S83opD0bTtoYjvqK4BBQ7FmwJKpwbT0uuawHIFDo2+BGZ6RTefyTo0LChI+toJsEl8rfrzSmwr1FQsjAZx3JTvGohQfs1va4UgeSj4pbnuSI26JSVEB0gGKd4BKysOPZZOFtqT9JqK8EVFr7my4tDuhuPht+Ksu2bVoHhIFunOZ50fqMChgWQQr3XscAV0livIqPkuzb+Ldmdg7lq0mN9WIMwLotlqKulQC7ugoae2BQwpfiwWY3upX5HZ2gCl+HpxDBs3iG+rnZQnXOklfdmOFghUlgI6whETY8Q/9Det0rOVeqqjbDau5ub8AKNw1gXfLxTwoMztcIKP2jZUAZAwwskwmkUFihScIZ6cRgGImIjzv505yv5QoyF5D2uVJOWzLUo9nhYYNDmlB2kpaKGkggkK0NCWhuOJ8noQTjjdtN2pHzhEhDTFz4KE4h+1oKltnSg0rbYTiIcXoGg3aeROu1B+uwQr2zuynB2vrU7EOoo7KTAkuRUMtYCV0VA93mXPq9jaBcIom5YPU26tVrQxho6gWIkfGJKTWx/yVhyarBpDLTh2JW2VdQYOmWNtbsE69lfbutKMzRJvxaHbGtbR0UofBZssiEg0SaO/Chwqz4JwppLkkpCU3eqKn9redVptV2kysiOHvYDfCoioY2ey6VK6JV9aAfmbC7QZPzOr7C855PvK9MnIhuIvGzkZhevnGT8PtCrObRvq5FspXLGxbCWfdGO6C/g6RlpJ6OzuuK6ASHRk2YpDrRK0Did5orSfgmbSz9G0gKIFCDV5LrnIz4J/4i9ZiGc+5/HVM33Rl8vaTHnCE5K1AVHIQ4+SU7gKNrZRo4iSQ0FLtQn9w4K7fruorrOz1eE/bd1qllFaAhJsK2WPz8q2pFp2S7AVYkbfe5+TttnX9JdMftDU0fKDu7pWgoYqY9Um+2FYAQXhWX+SLyioKOBfFtjWstUGqtPziCwvIl9bRn+TF9vV1QwggAB+EFDh2DHDcX0mkscsUvyMyHeQvRvDFjhkx3Vp9k03pmqc1njg+voVoH5v44MlrF+rvuVbXQHTIueBv+IwgAACCCCAAN7I8DpnHPoQpIN0kF6FIB2kg/QqvHHSb25/wlI2AcgviwrOrARVvAkpw/bKLO3l68ulH6gS+DS8hN38tMp8PEFnQMqvZ4Eo3ldLNDHWWWtVC+HpK7DufmDJl0s4oq+vvMJRrsoUjBJuJw+V+V+llacy4QpP+FbXK/NlsaCWR8un79NQnuzkf932wefn6606Pj3j6z348Yb/P3t/AqBXVeT945WnO91ZaBJIINohIQRMQmSVsIVlABEQRFQYg2YGcBlwHHReRf/+ZBgRZ4RxFH0VX0dwhXEBFR3ZQRA07MsgBIFEgUBMYyCBhCZLd7o7//pUnXOfe590J80iQlLf7tvn1HKq6py7PM891ede9Bgx3pWS2/hf90Gclf1BXUubIkhypDnJSx2ejYvy0EGS+eVxhpepbAfQJsdi+lrlkaMWT+qwJZdUwApDe7Qjarr55LuDprQnr0MfiJHxy/sn77fcghjMh/qyvmKzpnUSg8kHA8djFnlMKIlFHwf3TUwZ2GRD3qSbNdWtgDn2PluyJbdlx6BMMrRHfZAo0mq53yQLofGZFqAUIFk5VNt0dTNJk5jaPj/SlbIZm2qjS+WWAFVf5L3oZgVNqp982SCSTNKq1iz3A9+SYsROPKpjNAoNsEQgOrRRm2tJwrDyiNwDCaQeZNoevslTO1X2pCGeqzCbqjeEhWK0IcGJmm5rG8ZlvUCXeXR8YlNtGUjYwct0fyDxweBp3MRsxwFjQ4k815tJbDdZ//r0x94PSXIP36aoaNF9o4H3kuAh2ZZjYgOMK8eF7kMDxyIZZCXtnYAkx9JqLUvKMLYMRE5oqYjkiD2alEfU2s5QPqsG0upEAybYD3lg8KN+h7RqWx6XmjuJCmAMFDaBqAcrk4AkDe3xpDwKldUFHEusWMQuGz4s2YoeNLEwgag6lnyh8+z3geEJQHaOttd+FO/GYx/CsriTTewTmzquXDWZ4MwnWPkEID7l18hB4kZjs3hIMFmCxs8hHvnIjyVItJ+ebHIwMWp0cSKqvvbV39+ofPVBwsx4nPcKxpBwiMdzg8rX8fZkUzoQTIGQUHCYDD7jkGKwY4AmmDYRyUjsO5NVe4yPK2hsehyQJDQdm/xVie5LG0ds82syHUH0LJx6exsQr/jGMVJkvQG+dX+nVYLFsGjJ43V5VKq5sePI+8tY1cdQ90f654yij9rAVhKqbh4fZFkOzCbHn63807r6Qc7w+eNlOW48Ng1Cw+m2eDwW94vcPsvSeJhds+N+bXwUtruGrDFdbMHmMao+fsREH1HiGKePWqh9PyZIpBkjtceH+1WpEjRhnzrPhtWOjXwccMInmcJtqQ+SvtZmjZpgFR9y328Wv/o1fe+w1nQM+tCtwywSh9rxZL/q8Q8QSFLfkfMDlWNAj9jt09Z4tMeP8nQHFONW+lOsBE37sL4vzbKyle7plZ4VXdK1fKX0PL9CmrpWSQv2XDEQCLwM4L2iXfo51tPUoh+PnLt+uvPPZ544VCU7h11msGvIurDzNp3LfL5wOcjXgszPsEuF8vp/x2FG0EEHXUfQQQddx2uPHjJx0tT81dmAOOg6gg466DqCDnpjpg9de6nR3B4iI3mTk032N39aKt+mrrRED5D8oR0a8DIfOk9QpdYF7H40aaJjbRMPujxhVUxyNQCNShypzPaQ5X6gk63YfJ0Smc5l1jG7MBQkqrCTaeR9+pf2OXFoCbgky3r4RJ5t2vgoT1mK+hiCclIv9we/mQcsqaayPDa0z/3FT+4zJpk3pW66WlqMysEkNO0p874G6AJkZsnJXBTtgOmiV7RRHyS3evU40DrzroAkGHESn9HIlFGfTgceF4nD/DhRtKs6zku5OktCEZjN7zLhykQryTb0MKEVfNv7oqjD0s5auwR0iQ0/yVwxngYOEjOoG47xgS/TVLbGm5Om8E1VDViCEQJoCW2+TUFVlW4ZWrPYeCSp5ZHUliUN8aO/rc163Gr9eSah4edYGmBJQA2e9xgaXTxaVOut2pbkF6KcOGpIHHJ0kGCpaQNL5CGirc1vq1Rpa8kcusZdY6FOmjNGUB7P/mByQu9J7XIftIQ2ftJZB3kc2UG0pYRX9klw0BuIo6bjTX9sYoxER6uXZp9OUic51h8P3/gBLUr2DJVeWxWFDeWhn8ekH5AstER3T5MM4RGa2qaePNQ/rNaxxIDasxNJY+3SsW9JBw4nM4k6HlNoyQyl8c2JlvZrjs9WAmK7pu3tWFK/aWVUBajwDkWF9YNNeb6jtU7SDFl3Te2oLR6hytgn2Gqs9SUOOXYs+UisGKZOQTxqk1WHxK90flSpv/eRwFSXPlO3vqqQtkajmHnuw5KEZos+6MbxrPupD3uoWWLJYdcJ2ideNXHo/ps0nt70uF7acsw06fFT8HQ8WIgB3/OCJJeq42AJMgupzi94JHMsg63tKLiO6D6r2ThofxhoFWCTxCF6fh1XiV4XiseScqywf5OPfG02G7rveeerJbqSnot8rN2+btq/4jGa1ge8DNX2pcQhQ8ZYcqzxCE0zp+OWePjx4wBFko7oQRK3VjmeLQFlnVW+jqnKoP1zxNm+MhRa/dvx5+Pk7xBEh/as6NQ+Ky8fL5YYtkDRSdf8PCZ2XnGc01fVR67nQz1xCE/7QMKSY5V9QlmB+lU9O7x0XG1fWx+Sno6Frzwt8UAxnqgQEzL6r7aIh04biBG7KmL1If2zDxHVN7tcH7CNPd2ntt9alWZVoh8bpms23KavOKTftPfjyh3oMZX2he1Diw6bugctuYuO6/pjfEm0Y0P9Y0P17V1pnNOqY63VfraJHHvAkuZr+mTNii5ZtXyFrFi2wviBvzDYL+wjPQfK159XNV6LMb9YcI7xJZB+lq8XLwGY5J/L0lUjnZ48+lg5CIEK7PPVztMBwHnOdUZLe1+vXXPMmMtBKWbO8fu/+FOro1HuTdBBB11H0EEHXcdrlV73HYeNmo0IechDPjBCHvKQD4xXuZx3HJKcQgVVkk08trKYjLK/UiS5kOeEkD9alF+fTLJElpZZl7/lSbWcHKM0n8i0zi2tJbnK7fhBbBznWV3/1PQPdderI7fnPrlJb5SJL8eU9fJNdk76YQffgNtlYiom0hS0z3Jiph3yPAZFPxTwcwx5NSA2rY1RDvSIIycns4wmqXmKOY2BCiwu5aGPb2tb6DmynUwTA3rFPkh2ADbQz+2xRawg+83IMcLK/csoxi4lWpj7NXtNujFZqmKbD1Xk4wLQKsdA4jD7BtmXW/a6ITFs/Idq37r7fKULCZq+NJmtfLKM9thPfnuVn1bDAELJ41ePRpFi1A75hr5NRmtVZdkGrxnrHaplt8poo3zminOiEB349Jv3G7IKkTogpOGtNelaw8PwXK/GRD+PmlS6RTdVl5UamL3fUG2bjzKgSYAwudyrBONdThxSVwzpTm1JgjWApGHf2iZpojOAmIlTdXlUKe8zdHtaV3tmV3VYQGM8Hqu5PtBfNlXL7zgkbluJqDzovCqx0GXsAMcRfPIGPKqUMo1rocPjTxmoDaB5OO/HWyu9vF+QSficPM3hUx8IWUZJrMSBzxxzGUar0byjFZY4ZP+t5RFi2phjqZfjVI8XVbPVd5as0I0JRVYJrCl1FpHp9el+VGU9Xocwoa82fCWgbmorJ3J4t6E9CnWo2tLjN79HsRE2iQhICqqTtWv0OGCc7D1qOk7aB7PFY04z6t1aLyyhp+36ukkkuS36wQrEvjU6DqxENB4xq33tQ34noa+wU5D4tGSLslGlykRonnBVHrZ5zKkZNz38qm3GI9EGfLHfyz4KowlKkxThfYYkCX3OVK8rJN+amvWaoqTasKQhP6w4zSe6/lZsNYI4LCD9xXfx3wQIPYFGsox/vvADX0uOFWoaF76Jhye8lt+XZ81tLDQuS4LiR+XmjwQTMpJE6g+WJeG0ooBFbgnbxqKfWrFHswLGif2ooZAD8kVm2FaG2qadvfMQfxYDsSvWNw4l2LsH2Zdp/Hy1JRvvukzjoTHyaFYDFzENusmuHTomBKWwcPJxwvFONcWAHX88qDGt7vw0oAn2/kq7qOXYc6kgMWj7iNhIqpLc0ONOfbJvyFLbI2YTL8OTlvStWfvhCd8ayVGORbVHosQ+z3nUMPHZMer7wIGe/qXQfjNWOeFK4tB86tg732Op6U6ycdG6JQaxSZKVdnp8+LG0RuvY4FOG8eA45NGwfpzbPlF9Sxwqn0SsViwcbHKcFT5ozSOEsVQ8olbj0ZrvW63pebJm+Up5/smlFudggW3QXwuT4Wrw5vpF9mF4Gey9HHjpfdP90qr7Vj9DfB+8fMjjtaHQBqtXxwuPeSAfL338NowN+RgoNgMnNO8e5B9A1MBAYa7PByZoWBb16TltSX3l0iZf6/yfY1D2cbXHj1olR5mRDdKe62/SA6Ug/B8YuL5wre2Tuf/piUMLuK62LkIe8pAPjJCHPOQD41Uij3ccBgKBQCCgyO845PORJFA5ucMtKDw4+R14AF2bjCrrKk1ChvaU3IQyhZYnjdDnlpSy7KOMnGxDzgbF+wfxQwtobANizgm5xljKPEpugMsejQdHf6k3+gW5Py6po9EvsD5qNWtnv/kWHJu5H4wi6hn4xheyrIeVciwZuENaJL7Ysky33BZb8PP+zPsAA0VdgZ2sQ5tGILNSN/qT9azfWuYW6JEkYVIaYKp3TZ80KY+FUGkqVYaiZxo2bWl9gGdj6uxCDx51bOcVifZ4UK3X+jRurfd291lCLyfXym0HNw2VQDKFhCOwRz7C061nrfSMrEnTao/F/lhyUoVJHd+8Wi0nCZmDZmt8VOlA0HBl5PAmWamj2aO+ySv0tSTj/YAVhSQtWbXX26btV9WM54k+lafE4QsBCTUSh7W0gpFkodljor5Fz+dVWvI4zHxAbwDFo0q7seUltPEbgU0ShKt0Gyj0PNe92qhBJw4LkFgrJzvXcBypu/UlQC1RoRsHEv5B6kfjSsO8Mo+VehmWOCRRmWAykjLG02O2jyTAGq1ydtRhiUJUSu+WK3gkCamTmMMnq7xIlvGo0RZ2mPphtRp6rEJshB5sJAkpbfVWT2+ROOzron3PujGTROon+dwfuAbUWpukdyWTo4lXI4FaTxzaKipi7mnSc1j1BjjUyZWSEOrVY10vbD5WGqK9xzChsoIx+ch1xrrRhyVfmnjXoCc9Cqi8SY+Fvpw4LIFVePWVhXoe9LIyjnf6aSPGsVftDwDeh2iPTtUDH7+15m69LlozpVm5qPuS9zzyLlHtFtfVPt4nqbAEm+10El/Vg93+SUL92nsB7WWqqkd/tV6zdzDynj7lkShrBGOA3N6Dl3ZSCfTXE0+MFYnqoZY8tP1GcojkUYIns9w/8WwQjDOJZVZAs990XEka1qG+1NmQmo4TCdoUH+PCGPT1tnhMllHVcWFFrsKSqqbDSaifm4whQ0JCrth3qLQIK1IZFzsubQUfx4LuIz2BbTXfBsAxWfZbThpmsBrWJ/AZl9WqQ/IO/0r3NevnItcCZejFBZ4/VtXHlboFr3H16XcuG2NUucCQwEyJQ/0Ds0D5c51qE0nvIpnoxxW8ZGwd2P5Tu+zP8r4k2VhrarExr/pIdcps0uq+D+CtWdEtK558Vnq6eGZ1ve36kI/7/hJJ+TjIq29fLPx8Ytz93Ood4J8sXkm8XH37S8ASzukYWh88Ma16pX9yeLkxUCzF+NlxnJgvM8yHnvsDHS/4H+jYzeAxosRePpfK8H74O20b0aS+uSY0XnPwW/xDUEJj4rCAXbO5xjjseo6e+i0nDS1R2NiPUtv7/uPHVgYCgUAgsDFj3RWHgUAgEAhsgjio76d20+ggQeKJKUs4KQeJ3QxT56ZWy5xQAjlJZR+qqV4k4oxlEmvLbSlt4RQJLaWzNdpZAk3ruR365k9pbmOzLiz/p3iNGSKBGhv2ea9cWQeL1PFjdd1AY+IQKif6GoEqEWMH3XJiswy7j1cmMSPP/aAdvBwTaknV9IxGL+mUkRN9wFd71scO5HourS/Y0hJLFoOWJNZA9p/jy8i+qzETm+8f2ilTDepvU03WkkyrN3d/ymLFHPOIxA3Ml+qSTGR+FD/wrF/IdMsJQ3ju1/UAyUKziz9t0NekxxQxqK611Z3dpDL4zG+YDfjEYxb6gSUAtORxeYACnsZOnTjz3DN1Fg2xmKplhO53bdPTpbZVlQU7lIUj6g1gGIYPq8lq1emlDxrv2qE1aWZM1J/PpWv/6YM9sjI1LANeXnHWq2M/tE/1tZ/wU9JnSJfS1NUgav0myFSfZCCPNbWEo56cfal9jQQKE9okz7BL/ynZ+oHtS9WtdXvJGOR8wAYTh0Bl5gNkn8znk1As+83dWE8s60DHyt5ZmPTpb36s50DjYjFwEaLORh0eMZVjgEc/iV/3fyFT1FcckmhiYNQfST1t6Kv5qCceySXjJTbAltYtUUi8lvBQXkrkwavpMcLKxb4uDaLcDmS6EWmC0VffqZ01NamRFNa+5dWLRSwVWyqzVWEMQt5ZdWCPWIbwzqWVPVrqoFkCSnmsBqSOP1bJ6oD541VLdvDBecd5kemEpmF6brAC10Qq0GufJQftE0XjJemCPuOYElmeXFEmJ0AC1yISkr2lnJnxdDw9meU8TgiScrzTzRM7PtFLUku9qR6T0yibU2tSQE9ym7S15IvKSFDBG9KqTXTsODGIi7Y1tZsSh0bDL60CJmlU40KGusISjRqHXe00Rk84YZ8YicsTh0UDLXl8JfvMSttvjFc9cWj7mwS0/vJeR1W2uGyVpfrGG9ctYHPJap7knTUwZF+qqf1Wba3pT0owNvLMlq3myzxWwpGUgoeM/lDJST23Y0ztIyvMmThncp5xZSLfEnjErTRWLRnJjtb++sQ446L7xB6Dmncy8eMol8D7ZCsM7TBVXWWVEyGNiUPa2uOBS3o2pqwytIl3YuXDgUl3bcsHlsbp46990DH2VYI4rMZniUNb2Yg/YmHcgTrTAP1zWCW6U/wRpEpoezveWIWox6CtOjTaj0n3hy9GChm+8zgRN59r6oc2tul+Uf0+PWnsWGB/Kh99G3MsKQ0s2ZD2g9nX+HtXd8vzi57Rc46EtOsDxpDHKa/D0zblxEgea+Op7otNrllfLJlbj5cY+aLQ292thdbhqw/Os/7iy/Ax1HEvX78U2UfleCnx8r7vzwd65b6VfeQxMKS2GaaXrullv/2hv/ga0dg3+35nQ8++Xc9+U15eTdu7Zs169TY0prm/+TzPyLEQCPqN42ztVMFip68lexYfPjRGS4hpHYW1Ot52LdnAuADa14YOteMlBVJBY+Iw+y3H0l/icJ1xQVnrxdjnMVB+8Xmggtw3+t4IO9+9cYnWuvmo69Mn98uYlo4zYPw63J7z5qZHlQYCgUAgsDGjadTosZ/lC7Z99uqmH+laBh100EEHHfSmRe8gs6zu0Fq6MeQm0SYatM6tZ64z9UKixtonHUDdW7ocmD66utEOGltZD1g92csJIL+RdVhb3QDc7MdbZLnazW2SLiXtrI1zDOjnRJbLPEFGe7Ob5MRBzMD0iv65Z/Qa+5JhflWAnAq6VkImHignMC2iRFPimzhoywYfu2zmHz1Feaxs8ish2zVoG2yV9x28QlvrOaaCn8psA8rNuy584rJ3HNqkntKqYHOcyu+jrg5r8ElIpMFkaob5cZs7T8j7I++DDOqZtkeFmi0dR+ziV0tyBoRe2FRbXlL1Ptt+UFC3cSA+ZznwbweR1pkEBjimDyQykJk9K4pcBLkJOwa0zyTfTAd14kn97Q/MAzEplu0UjzlV8I7DYbr1WFJP+Ra02iSxw0q73FHa9rJXtJp9wbe5n1QiZBswFm1vHbCqvX+wRgKFDrA4RdmWRMy2BkAhInmWxoGN/hXvOCQGpemT1cv28J+BL+b80eFgSePi/VIwr9rYvhEqI3Fqo6NjQh85Bmk3hCQcbJKJqJK4099iy30ojYv5yz5zfR2e+sOmHXzKtgNf62rfHl8I25J/SpOoUXjSUCvaN1TXgfJsZWGK2R5Fii8SE+izMblK8tf8pTZ6/PAuw/IEfBFfTkAqGB+3qQyOJdpbncloLY0mOAafQaRVbow95enBa0lI+FrnnDBVEolmw2NlpSClx53iT6YMMDjPOJkpcVaWq1G4yM0fB70yCC0nM9yxNtK+WBIU/w1gxbK1oUtqAHcOAqcN1zQ1r+25xlhShTYmU59K2zVZf3KA7p+NyW/ihs+mWhafUrYPe5RLO3g+MZyH19oRe6nTzlOOXjAsBuujmzf/HEuMpcZFYtATQmlfKPBh+1wP6nTFtp+1psOWOLixrmmFZJnxGV+fbAfImHf2JC2xpL6W4jUoz+MmviSzi4xuGi9JWpp43Novs6l1i9Db+rjTFv9KW/9URoyws10DdpBhl3HSuiUwUEaOzCfRPWYbbOX32fjrAKX2mKratbY6dnasKGl62tZsaR05YLdBGx+b8Dkv8/6BYz40LmtHqNrIOg/FudqjVeLBGcx6IsFU7A/jSJg6LsjgaWl02k8EWuwX/6BxtsJGWO2brunQvFfN5DbGgZnkumnpCYUkV5rHllK6X8aafppQS5Ld9XMBX0pZMon+mIz9yTh4I3MJsl1razquZ/6JSTfGN9utbM3Nuj9T3wC+0EWmfJOZS/7Qf9WxqsrNnupk//ykJBDqHrPvXx7NaseNheOBY8OOUWKlvdlLPhR+nuM/yfhRGc3NB+2IVX9yksialsYl27SNn1wv+2RLY1DWB+4DmW7GcV6xP3hUNv6sv6l95hGj/lgfbENeH2dg9nXDgPvWusXkMdimbZ2HHJ6PqbVXXn2csEfpdniUrtXVluujmx6vC6W6ljQ0wv3muIHtV7OT4+Y4UvsomQ/4VFPdYmVLftEtdHQzq1piE3vFGNDWbRAfuvwpxpifPAami03q7Pdkw/SzrF5a0k9R031iPvhJbfWPbiY20Aaeu/f2+ie1gU5tdYNfxI9ehvKyT7dHawpvt/iWB9LhwihyfDCqQQcddNBBB71x0fZpCuEfhEYEHXTQQQcd9CZHk0SpQz8qE1kkmBSUuc6HKRvgtpIb+TIP+O1mapcaUqCDzNqlrYw+5WRe4U/tk1DyNtUWZt82/Uu8yVm2nSclrC+6QWW7dgPstUofsrxIJKYtyzOfTRsandsYT8Htd5bjmymNyjjDS/FYjGwK9CxZCN84pmrI7fP4ZYHZoAKdGhVt2ZI9g9bLY5yBvIgvxQKo5bFBbJMUChJda6kiswkPJWzCxHVsBYbCpy6It27T5NZW69YRH1O2DMYBqs4BOs60M5Puw5OG2pZJ2mQrN6JgxSVs9odHUgIxFvZKQJmtBHIU3l9VV4P0v4dVgvhFF2fJDom/Zt3S/Ps6sHU+aXXjWsZC62uJBZa2sYK5JUtYQmm/8UOCp+ChpG2YhCf5RAwMWorBVyRqmfmNwF0zPojBtwxbKZhpcikW0SCBaj9+c1iGCjEA0KE9/rNNyg0tNDG/KV4t11JnvLR94pb2pQeS+QVgeA7JN/Zj7gv2M7/MI5FHmYzlxKAe1Ep40JY4Ann/ZWi7SoKLeqa1sHbYzjxsWxIKWs8sJk+tXkeZsglQzluYafMVUQi11LolMAmvsFO2kBtS5B1SR1656NCSRIQl9twn56yvMkzAJ/p23YBWBeLDPzza6Nha/iTDTm70+7xtgl1vaJdiMj+4tp3WD1Stj7FDPZvhupMnZXWMSWz5/tBxsf46lLKxziuzGuFjii3aqT27uCmPHw1rLRlzEsjpuPMx0y3pUVqiL08aM1kLzJd+Vth40X/frA0SEkEktywhlGwbaK+DaPtBddkvtLNVdBoHsSQbPgQap15QiaFYfZVg/bE+6a+NucZnB1AdxkPB+o9d3YgVYcEDxM45wcYqLGyqFn3n2IChcVs/lV8eD9tyWBZLHhcI2tMG+3TIV/X4Sj5YabUjNvKJnA8yQoVj9vnPAWxiQ38t+aZ20INLndVBrCSiT+YDn36s2OetjU3j+MBP9gza1gLi+4e3dRogo7+MAxTHTX1VpcWlPn3VX30/5tYGdDNSjMQFt3wcWx3drG9+SU7gG1/IGFenzYfybH8bT/uZ4i50Krwh0jpqM2lu5dHMPib5ODVdbVMk/JRt+8CuWV56gjWdFyRdaIe+behhA5+6KY0t31zf2iUd/WPtC/hg1OWGej3H576aPWlDgoq+5VizfYvFDuakTwyqr2Uyxh8vU1/MTLZBbGonJztd6LRdH33klYUv+uW0QceH/Qgvj6XFxFbQqcRswSvpYTfVvW/Oy+dtIaOedHOirzgHDeyrpIf91J+ivyU/8BnT+v5XntYLmL7qoAu/aKv2tG58bOQxszbIoK2x8wnH9jXngffHj3tqbtPapTiK2IwujSn7KOm7rsu9jfux/qGnpVk3PnVvl3nYNLu6KcPKTLtNjFkz5XkMbMbjDz6hoZL9DOuXXZOskjYFeuUNvukBpamnza/5Jbkb9Xpqz4//Bh100EEHHfTGSTdtPnrMZ/3TLxAIBAKBTRfby6zi1tI/Kj2pxc1owdc64G+6dSzkOZFWRm6Dfr4tBabXoI9Otg8/T45lHsCG2WRLMm7hy0CW4wbuxevWTjfjoJPKJK7bNsoBT5XyFGNFJ/vIfcMvwKfezpscfU9Ymhnj5eQcf6mT2DI/Cosr6cJjHFzmbdKcQ6Gf4e28T/3J6rH5ZmPZ4BfYeKY6xtgNwCZnEhsl299pUsPnvr1uc2ZZEZ0+kqZa1T+olPte+FYdJkiICf+mr2WO2Xzkqip5LDBh6B8SaUyqaJ1YbL6GpBx0ale2Rx1f5NxoZ4aQUbWkHKxEEzf2lLamUyBoAAD/9ElEQVQVd5jVjbrxqWtJ38iT2KvXqA/VMVfb9mhF7JWh8lqrMgkCuyZ3f5YQsbHgHY1K8zSsVi2p93g9PwrU49KS5J/KLW4SSpTQKlsfrA88llSDt4RkalCsOExz59ju4/1+A9mz+BXIiSWtJrQVmLRnbhq+lmaCMWIjRgCTLcdNmW0yRsyJ45820OQa8vsOG4FfEjda5tWFxZik+AofyuB4KuKx4BLgA/gZuU575EWsVNRWqq9N7yXMKw8tGYNfHKQEoK8Ac9jx6k0KeNJRde2kcTv1xKLWdWDxY+2IW7einkGzlJyu5fdxMrlLxlvBewwt0cUxqDGavZxsxh/HRmEPO26rgB10Cj0QSRKuZdWh8nyVoYrps51kyQxye++gseqA5qT3sDxGRRPv+OQaQhgkgvBhKxaVwVjQD+X5yjTaqQ4TnCQOiUN16mO2Luz6R3zYtwsLO5XEgPKICXDQqoJNQnOy2aCqntWdLKD2fL9hF6OMg26q6xPOyDgZaJv2AboWB821NINMENMH3Oif5MP2Ex3Frm0uUOtaL8VnGzHqLxdkO+iVS5JIZRaT9RWb8IgP3bWCCvuvvnIKLWxrYf32hKL3x/vg/hw+QQ6fSWf6ytjRjjiUb/HrRpliZQwQe/+wrf3Hjl5AbB9aDFXgx0xp3VcZZT2YaWzMBzHARkhCtFdt4zOpEpv68VgZC+WRgNCDl8Rznry3x9Iis79u0kv66b5Mhj29UNh4EpAx1a7asPPETn7s4Zw2xMM4u4+avdQTm/hjrOmbf7aZL45xOPB1f+Q4vK+Ydvv80M63BPgqt7hM3Y83T3giruuSNPQVbiQZvX+Ycrsg0WZPfcKx2Pi89/2hAuPzFxu1lqH2CM7eNb2WcPXxSTq6Pz3x4zyPhboJVV/HEBI9dGDnvhhhjKJKm2zfz4HUBxP52BnPGMmGwvsHP8XPfjUbbq+om7br2zFixwzcpFPeUlv3n30qz/iMnfqgXvQ97cPsE/smb+gHelrnWLJ4VJdjsfBnSLop2ZTHzBOM+VhJoI31tx6LbUDNeBzEoICd4kCHZJb7Vh1rk9opym2wnY/hArRXnRwPim4j2QfJnPWZ8aJuY5Lo3Jesl3z6+GU9RQ45G0xtaUd3TD8bQRkaXRuXbBy22lOeX6fdmvWd48C1jJ9R9+99twQ+fUaH9tmGjqNt8D0g31K9SDJCawtrZ7Y9PlQNRUWBbtqyvzLK5z+b7Z/cxgW28ePXuqSvP3+++QGrBwKBQCCwMSPecRgIBAKBgOItcqm9A45bypzMGggkYHKikDrv2etP2ye7uNH0m1KAPjX0sw9uRqnBRw/bdhNrUgftPMHmmrQx+8mG3dxqnXcNltshzfEZP7Upt82xgRwfyG1pwzQEesTAo0UpsZpMGPI7EmGVx9CiTnrw8/jlfoJyP3I92+M2HV3aZlDDDsAPtRwfuo3I/S1LijEwM43jUe0biTAa2wIF/eFdfDVWybljq8PjNV3MpWCT9/fxaNHmmsrNSh1r1LhPP7j7oWqDB/ilnEEB+Aw+8/u9a+pCm9zXjfcZ1pRPfDbZpUAL+5TsN/oJDbDH+PgUcQJ9IxhLNkJrtGTt1DbvZ+xt1X6t6pP8Diss9Q5TXo+qo8Y8jopYvNPLHL2HMSDo0sjhTbK6u89WLLLSsI9EY1ef9G6mcuZIu5RH4qSE4r2HmyvBo0MZVN2GdGt9uMZHmXm831B5G4rF9tMwHUNtawk+xrpFx3O1+ueddwzgBkAyk/GzhGEJ9i5Di0/FPF61HIuOW221Fi3u03YUyUDl2TsN2R8sy8yA5/mP9cLeV0gsrJ5LMJ7+Wo6AZFlXzROmluQZJBhX4gP0E/NpX9dae+0dgcVqwvWAd/p5cmmQIMnBewAVa7s1COhS0vGFwB4pqibMDjR2GZOU6AQvJD57J5/Gs3ZNfcd4YlB5Pc3SNKJJx0QHKyVkBkSz+reVW4lOaNLzjklxSzJo7H1r/ESzxCR+VL9PfXtdx54ELe9RHBT0mG9ao/Y1dg4MYu4bKk16rHB+kidifrQp7XN7VyEC3UhisIrI6qz2soScgxVJXDjtfYJ6QVirFwS3wYocvHbZ2DB2JMm8P1pPPHIuNhmtfcvvOTNaDzTeiZXhyThiJuGi9cbBU9TsnwLYN0ycd+n10+2yf/OjQgue0havft7xDsd8rpJY5b2PTbzvknCL5CN2oYkxjUtpHLiYKEf76HoFNG6SlTbu1o4VgPV26JMYKuJj3LVsRE5UILQVOAofH97zx3gwXjqmtqJSwTjnegKfF7Tt5Z1m6fPBoH1p0mOy/o40H/umvMpMwXHZp/uneM8jyUdbIq572t43pser6WDPeWvXckFjX9B3lfV2mTl71ySj1delfSexovHgl8SC6veqkeTV/OYYiNn6PoT3svnF0tpYQoJjxlGX1Xn5Ua0kDexdhlrmtgBeUxNJTO078SDPfjOI0ZKE6HMusS89bsD+sTiwofZy31YtfV5WP/O86+v5Yv1l/MttM8+gfPZ3g54lExk5+lXqr+nRptTfaluu1emc0XZlvSp0vLNef6Ct2rMkXDoGPelCmzrcfuP5Uffr75zU9mqLGNexZ33sb1wGDx+/vA/rsdg4mj0fR8a0iKU/FPGxL+lreUxT/4pxqfvAvvelAf21TePSH/ydsYpCj32UYqau8eSxqqKkR9+sH6X4+uHZuDTsy/VD+5KP09Lx532r7jOuOU1DeYdq7mt/8fV3XOGjcez7628d9baOwkd/KI2BoXKcEp/6Lo3L3C/+zMpAIBAIBDZmxDsOgw466KCDDlq3vOKQ20ESYsgz4HOzaO30htMSZklOEibzSdCwkbwD1M2+ltyQ5qQeyS02s4uiAr5PajCPrDenWmaZ3cxqQV4Ii2ihY4kvU1Ckeo6zvDVZPNTcR/aTkenGpGGOEeR20LmfIMsbebZpe23kEZdkRIMunNy+QNIDyPCJPvvFbJa2nExkM1o3QB3QnyzL8ZcBn+QkP8Ra0c0x6y9JLUuqMTFvLbVkQp+VPrqRPGOulmlO3rnUix0NuqmppmPv8QPiI4FXnkZBRjLP7JIMpK0Foe1b9FjDLb6U0dSi+xwdVbBxUduULDCy8VQRPthv5aQrNXzkhK1Ni+DYbGlpSlonYchB1ttnSbu1zeqPvq1ZK33D9NjVhvRrLUk+rTP3TdKL/qOXk4a1HudZEq8B8Pq0H73da6WH+R78Nmn/huv4d2tb8ixr1Xerlq1rpWmlyrS0xBrhDled57W0ZIT2WWM3Ob7QoVQ9e0xpP/7LIHba1rqSHVYxklQgATlM/Wp7VjkWqw8HgM3T40t1qJMkNP00NjZuyLRv0DlG0yFWNvj5wEhtjY9tko5ZBp+ySzfkuY/Ya+1TX1qBT7JQ+2KrDmlDMizbhE9ikcRN4xihg3/8ApKftAHIAG3YiIN9bcnKbE/HT2lbZThU40n2a8RGcgZb2V5/UJkl70jyJUVWXZGYNB9azzYBfNMq8QYEyRMtcixCwhCT5k/tsiU7tgKxW20zbh7GOrDVfMjyCsZmJha9z77Sr9feu+hJG2gtmzmwqbMlQJdIDhISgCRiLRnL+cB4kiBUG7YyyZL4jLPWbUx8GyjWDJJH9VVmtE07Wus1EmeWRMUPfUHfkx4eY9o0WPucYfI0T8iq3yYdV0vs0FZ9kAQjsWRjiZ5l1jVOOym89HGp89y+VvVAYcLXV2FpICZKsrRikGPJYhzCBDQHLUBHx2qIXiD0hPYEY48l/0wEOE4VtCU2eyyrJe+IR8clHRdmXzdW6BXjWsSnOkD7ZXElfh3EwOMHSd6lPpSShDXiS7Rdy0ms6dj5KkofU0vsEQDutR+2r9JFFZ/+GYBd3Uc97C+OM5dxccGmrdizsU77SVHT67o9inQIiTJ0h/o4W9a2WT+3VEltWtKazexhV7eChz1iw6En3LDhMtRJBum1AFtrdfw5flPCcG0f7/kjAaKKBu83/UmkxqH2tDP4sYl+jCpMxY4l7OV+pDEewn9XqB3T1FHs02MPXW2bbZu9ZBdguzjWPFhrRxt0SCKoVHXQc3kFZhvfvh+s78mf+YSPGrFoiV7v6jXSs1Iv4Oix/2iEDfOPrh4jmWfHP7Fjz+vmC47tb/w6XcCDsKr3jWOMtrrRG8aAuvlWpZyE0c3HiX3E+Hh8pseoWnfq+wI5IEaERYKGvic9a5vjM9r7mG2Yv7RPtKJs1Wm0B9DP9nIseqA6DUvjtGNY6aRnm9mnLSoqK8VSL3PdC7OR2nkMag86bTamRcx1+wWSjrWjv7ld3nfms4TGtlrU7TcgjweNzK839phT/xV2DOm5WOhkn1oSjumm48d8IWvgWRuLu7zP64BfjLNtZrjij3EojlPbaamdOUyxULPjDX30qseBwWKhbYrXYtVtoP6abdXNdu088q3or6Iyzlo3v+X+En8Kkn4U45Lw1K2/t92nWkRtdoMOOuiggw56o6MnbjeNEk6WRBlllFFGGeUmVx6y9md+g6g3hbDzqjVLyLhKkYTJgMeNJgmZXAc+sbDW2hb8ZCcDnmu7zXxzCreZG16kSYGpxtwWPpZIDBGj3xYnG7qVaaC3wmaPZBLIq/RAsRJRWYVNpcuxUUKb/dQ2J6VyAhTQVxsHpXMMeQwLj6kdf21KQGlLTqKn9cxThtkwvdSG1aAFUj0nBkF5LJDmKQd4yKhj20rd0MF3uX3mZz3qNt5DtV+2Ak9lNfXJpD0S1SOphyLzIuQWaUNjzDJO+CBOWhBLXvnH9JnX6nokAtHhnYE0aCbBxqM+E+0TM27b3m2oJeZ6erQVMfmv9Yn+51WN1G1Fo9L0jb4yd05S0xamETjABpv6s/cN4lcN2KIkPQixwwpKa0vib5j6wYHC5o+xpbC5b0WmK1BefqehrSjU9jX1w6NASaTZKjwtSeKxUg8jVuck0BHrG6k6zytvOOOidrQ9yb8hlqDRXwaWpNB6gD10sWnJQxJprGBMyTUSib1q317LhynToeV6QP+1oO8kDq0tAwZP+2ErDlEAiT8gsi5ji182ViLSzhKmCsYDWrvNsdDU2iQ93eo0XyzSTiBuyxkoaTmHlDS0fUPSoDEW46eNPE+uA0wy948OflJ8PNLT9gX2LAmj+6kLgcdgx2taNTgo5ESNtqfwxze6LY53eMU+Vr/mx5h15IQfiTeSkFaigx3aAOqYwYTq26NKaZf41ifoDOLhcaE9TVYWjVNsRWJT9XjPoCX6lIcd96FtLPmgJR3pB8xhDiGBzTlNv2hP/y0p6ePMjrTrZM2Tcp50SwY2AFudpz76SMQqhjSRqU82m0iwDbXSE03Yxj91pSw4+kMszcrnINDN4myS2tAm7TeTr30WK121FXmcw3bwqaqt6mPi2Ptn11oungqb5GWcmODVH1Ycupyxwq7KSBTZs3o9JoNN/NKHFDMT0/xng+1ExszHzVbxoaYiG1MbN+2LXeuIUYeGaw9jbAe4OdRfJqChaac85cPDjyWE+tuX2j+zj8MEGxP9WasnpT8aFC59Zrzww9hqrMke40AyjqRgHqu+dK3OY6Ys47OCxx7jxzHCBLglixiLtJ8YG90htnqVa4C1VqhdSyAn+77TiJHkHn0wB9YuwxMBycLadAyyz3QcbRcAs5fq6t+SyNhBX20bWz9YanyA2DjhhjHgu4/K8ji7AIbxjE9cTO4bPD5rqxcjHzqC6NXPZo/fbFpbD86SrebF21K1FYGsMFSCsUMX2va7trfVgt7C/uYxdpL+4zuPez7WGVeOHb0e9nabDsdvT1e3dC17TlY/02lttSHKWsVuHjf3lIgqrC+ql46BMjiH3KTaNLtuP4+XjQG0rQzO5xQ+6LePq7VV2vph7emX87I9g9ZzzAY3VucluoDSeUVyYtRV8JX5tE/9UMJYGdmXxdyo5xWzk/uQacYKlvdVWXnfZSjf4lZ7XvexLe/jCtxYcpH8ZOR9ybFAf4HF5MeftQVmExuJn3wCM12K13yUxijvR2DHQSFzvfrKxHpfKkh2+xs/GwPs57bwy34V1j9cIUtyxtxiSbpaMR6w88Dq6HCNyeOhPkptTCfpmd0ME8NjbLXa0CdfEe/jnjhmxkn9k/j1vtX3UZahV+1Pig89pe0YQj8Zpk/3/+cluEItyiijjDLKKDfasmnU6DGfhc7I8oyggw66jqCDDrqOjY3eTmZZwsVuEpXOsuL9O1pno13esk5OHGaU6yC3s1J1AWW2a3XjglRPckp08m2y37O6jNtavb11Ae1QT1QG8z20zVog14uW2Et1eEXCL/OTP4CEGr5B5pcdU2XLuo1+Mh/aZErobTy1Cj/r5vYOp8xW0rNEWJJY+7SBPHFhSP6LOHKZeDmJWDTWCvufxF6aL1GOCv3XjxfjqY0098F8KmaMp1uensIXscBjCq/sKuvZ/KlumWcV3YHMkTBRy/va8GP9VpnpaEPisLnu3B5dmiJPgDYfTJIn51mvCAajSQ4nzedqJZV0Lh2IPPWOJKIlDk1ZeaqPiUw3whJ22nlLqkHjK/toVr6SRcJNfVmCiyQaE9Po0Hf1y4pHHRU4HjpJACN0S/FZRpS6q1UBX/2aKOnnIQCWJMQXsWlJn4q4+rFnyTkt0SfpaW1THxFYzInfbzwAfhofQ/JtNLaQp7gMJVt5In8tj7KlHZsKrR8kCdKqNT/w9JekkcnQGwDYxkdxoqet3CbTln1WEl+6rYW2ZILysEHCRFlF8k5j8WSDNVsX8N2kx41uesyoHejQJPToFwdd1i2h2J/avsZjJmnHDlIbniBUEhvY183r6GMOu1o2xocJ28naHr/9QeW5j2a36Av15GA9oG0xVpacVGAHfj7BzIT6gWbFIfbZ1gN7TCVtNSBTJXGn/WAOlwlRs5GuVvRxbbETSCYwaCZIbugjNZi6aTXHUFwnNTbecWoT05znKmQ1NuNTs1ViTFh7QyvwYe08Pv+HDPx4iR+rq7KZYWBtcCGID8foKWkWeLyl9oNuMn4cm7CBm1NFjYGC65o3tbrrMQbKTL59ElnrFq/HCiqfLxnWt1RnTGnGvlKeffZY7J7Ys2OSMaHfunmCJiHbpg3jg821tNO+2OoqYyif2PCpfPSp24kLzQmKHaUt7qYkS/0xF5S6ad/5vHP4/rH9oSVxFfuIsNWWjRsXJ0s8Yj77Yazxi74JlO5TLy63sJXPSlFP4gHa0MeUaMGOqnuiGB3asmGOBFweR/dh/r1B0qvq+n6iD9Dehj7XEzAlGbbptyVdGSeMo0+dqh1ZSkJr27yfLA78U6XPjDU0iUjdxyzlVB4lCWFZ0yt9a3T8rE1ql/zZ2Bo/269vTuZY7K9uxIMu40v/EpKNOo/GyrZxT3V0kDe0zfvbxgAz6OW+ml02BTzaKa8YWwP8rKMbY2q+nJcsJRKqLhNL2KXxzHK1zchnXu5vRS/HZ4ABH7lWi3EEbs8EyBSW0LJ6YhjK9gYBc5Rtql/zQz0DmW+MlcWdeNR9g8U4Jt+pcFu+TwwoFvqqRv+K/qPrAitA0d/MUJDcLGzSNrUv2ib9vGUxY5X3kbNUVj4msyptyscfco8DtUb71kck0K7hhqzqNgpRisUYHLula0lGYb+Aysxe6lvFh/LKNip6aBmjztN4/nzz3CRz9Yyggw66jqCDDrqO1ypdX3GY8XJZzgg66KDrCDrooOt4ldEHrf1ZfYrNbnRRsLk0uxcvN808bpNtQijpAvT6nUxMyKv10KBmNlI9WylodNUWK8UseaU8S+opO68ixBd8QBx51V/m5RKU+diGzn4oizbKB3kMoBgb6F69QacVOvjjNpvpg6KNbsY3XbePJMvViBW0K2SJ9rFghV7N362oQCfHlxOaIMcGCtuKMt/BGKVqstMf8J9jNs9aMnlXG6pttIO2CjCBEWAKiwlx3JGToB3vBWyGp+2wYTwFf4sQdGP1X5YRL/3y3qa8jPJ6mHxVJvY92af2WG2S4oG2PID6rA3VYwEP6GvRa0ZMxZB9G/LjSfGPXVZSwiMA+GrfoHXsU7I6sGe4HlvqFxUMkzDsaVYT8JQmoUluwh5XmkDsTERb3Io+niSnsdVWGumPgMVHTffRUBXxCFKVW39160385rQasE87R9u+EdpmTc14tsKNR4uSdEuT8zYOtOERmtD9Qfn4yo8m7bP3oaXm/hRB6xMM6iQxefdhYY/SlFWPfuFT9WjLwTSER4lqaf1hURf83LYMfKhZK/MjSVlpCU2faAOd61m3P9jEvcIODC1ImKHLakzAeCFibFh9VbZDnebJhPkiZn+6pO234hGmyPKGUMdPeHci4wMnvYvQ3jGn+4zEjdkgGaZ+WQBFjP2uQlRVSxLSBLEl/BJPbfhqMKW1L5UVgrA5+JPcQDs9/oYM7fFHnXJOsc9JbGo7Eh1mT7dsxx4tiir0QMAf8afVUjwu1GyoH455B/E1qR3VQb8/mK7bMhA/sP1HrKnPJGaoQNtjUZGh6z7ge9KmH2AKu0NYGUbn6Rz6HKysEqQf+NCrWmmVivXJ+qh9Kr+HrQzswsIH9oDZZ2xJQjTZYx9tklnb4sOu5TUSZIyd/irNu/Q8qWK/ZtJXuKGTfADs6uaPZ8WP8iyRpvHZiUibrJxgsfm+ZvFjHmvbd7qt1YulrUTU9mrZYja5jYGvPCvDJ/vdtz3CtUARpNu2EwpfXWqDR5YiZwxUwvUt7eOcKLTHfDJGtmIz23L4SkLaqKxPLwY2hnbBq/DKMWTQH/rFODmt7fRCZf1SP2ZX4SswsYsSetp/4sCklqze4z2FOaELaLt2rfZP90de7ci7/kw2pMV8+/5Dn5WG9bGENaRWWj6tMusC7zu0HQXNONd1eMSpKupniuqoAWIkYI+dccvHoMeHQb6h0H87fhW2ihC56voYoO62OM7NZmpO+3p/GBgfBx5pSttsEz18kmjkWIdvx6eeC35ccu5p3M3sM6Djovu55/lO6Vz8rMqcWx4fi8P2I7EnvvFKMJ+Msfuv79PSqsEcTzpmXY/+0h9I76ydk3o8mz1FHhNsez/9+LC6lrS3tinm3K4M4in78T4pzA7t6vE53IfLnVe0pw959Z62U4PJhsLs0hY95Wkl24HvunUf/MLLqx/zuGdfbqjOp+6ot60j8RJsjJLcx8iveQ1KbsNYJX4/vNxHa6L1vG/r/YNfT/6VY67vS+VlOrUxKC/Hh2tlGNv0ksxobOd2xnf/2S4yo/P+MHh89eOKsUgSOze8nflMfEOZR938VePIx6mPs/fLxyCNfXJUPV5SVVHfPx4j+o28yvGXdfBB7Hn/KP/+/7g41XUr+Qhat6DrCDrooOsI+jVJ66c4pUusDDrooIMOOuhNkObGkVtFOHbzmGDzZFrCyUm/Mq+MfNNKAiqDatmeQUnakzzKj7FkKz9605JvVnOQPCxuy7VxboteauJ90A1/yNhyzIZSPd8oA7jYKXilJraaj03rsEnq0Udg/lJZBlSOz2JUmphsHLBFO93oT/brY68t9becIEROH7BT2DAzroNu5pusBOZESbAO1Zt9k6nuOrHSXkv8AMp6vMay5A8T7Gwk2Vhpx+NLORBsQlB1LLGrfHufpQIeCcLi/YUNqB9LnhROpI0DSUNs0dB8wme1odbRbVYZCUoeNdqrvDU6aIwlu8begZiALnFUQKKQRB4N8go1UG/mUD1++pjrVB9ZTH7CFi8luoAqlJOGgBiHtzL2Suhm7zAkaZiM1fDPhLr6aH7eeX3DldRtGHN6LbpvuofIsLU+jqza621TJZJA+WTQqj2qtEuN5qRR4q3TJ5B4JM5y0hDUUnLN+ksflW8JWkjd/30N9siPWJKw7ENjqpEwzLEBYhkoaQjwV5rfsncX0p65c+asaUd7tVPw+oPqMV6WLGVM1cYQEnjYtASe/pIwS3qVAwMfxEFZBjQb84/EiC2fuzeQKOD9gMRH0rBIXmkb4ytNkm5tl95u6PjyzkM7gBr9lKFiknyWfFRFe0+ive9Q+bzMU2HvJ1QbhT14es6YTxIVCUzy1TiQOAAzW/VpRzy26pGxUl4fxwFmSYBakmcA4IfHhpKoIB61UWvWHZP8YrN4R95QPYBSfMDOgxKwUUMntbVkmyVN1Qf8dDzXSEiqT0sSkpQi1JKPYtz7gY2L7lseC+mZcAUJDaV5JGn1YHUwEWtzzLysVGEJxYbrJrBkIfHo+blWT342rj+MH+PQa+eUXi+17LPVpshqWidpg46Oe3oEJjweyUliCj17516yTT8ZE0tmKuGJOWIiPuWvXaNcxiP1rwTGxhJaehxafxlrjZukrPlo8vft5Ulwe/SoPX5U6cYdpoBfJKjKULs+XowTJxMT5a43xJK22mcdA/rQ19MnvfwjAtc/ha0+U9/0v/HzyeE8EmR99sjP+gVFvdZ5xDuEBF6rbi22+ScrIr+wrV3LIzPVp352kPiz9yDauxBJqKkt9gGPRmUsdN8YnfYRIFb0Obcy3/YH+ycfXwpkPvnO+w25qOU+oEedsSbp6DKzR+KBfck+MjnnmR77xXJvjmH9tX2j/bH9zfGS4qDvlqyEr/1L+4CaJ1Z0fBhnPZ453rBpyQWuE028D1P3j8XHfkCObY5D7LovDUrb+mNclak8miP3uh27Stvx3Kv96+3WJsSX/XJsaX90zIbotanWnK5PupmftPn5oXGUkjFFLGmrgPYWoyOFYzBdZXC+YZexxq7vH+Spb4wPMFvoe9yJVcD8lBkKj7W6Zb9sbs/5GkRq5Sj3x8ZVUfDKfnI7G5vquIDMo52PH/vLx7GAxZLGCRn+sJv0ivjQsxjQLY9LaptR6Plmx3Zhr57oy7azfbuOEF8J/fHcv8pS32hvxxpbAj6MLsWiRBLWYy76ZoTHhMxiVtTbIq6Oi9WB2fN9Wfg1nfr+MFgs9bGysSDEcn+sndvPW8Gz4yDZxTf8xFMrmKiAWIqxb0CjD+L3sOs+bEyhjOf2qv3T2BTomp2kB1TKHy+DDjrooIMOeiOk4x2HUUYZZZRRRqnl3/T9tHTziMBhN5mUupG8IoFHcsmaab3y7r0SciKqDEt+pToJo2wrJ6uwREKtDJt0SPUMi0fbZJkl53QDrNSDzje88LMfaG5/K/1jS20BeshzQq6cxEMt9yD7Rh9/Oe5yvHWrDuxZbArsZr3sq1GfMcn9Arkf+Mj+oNnQgoOt7KNsj7Y5Nvi5b5bwU9r6qYLeZo1RB4n5jbwao48kGnIFf20jiacNUGEKwexrWSMxp0zmUGmNfWTo0B/o/J5D/0ssKhvqE8rEZb6ZQyEJqHX8s1FvVr1yx8q+mfJhLLJ91PDJeMAxPbOpPrTOPHqP9oO5eQNKjXU2raPTOoLJ4rWyplvHP81NYWMo7ypUO6u76pMpLUrzqMIu5TEX1reZMrVPzAHznsKm55RGHRsa0zC10dmi/Sex2Kwb9rVOorCWEoUk+iwhqL8kCm2emiQY9Kqay9ab9FEzw/RYIylo9pQmqZZAbEOYPE8+SB6uralP5tz7g9orxomqxoMuCVKSnLbaUP2w4tBWWya9CjKPvqCzSjds4jP75f2GOXkIGu1YjNovxil3h4n8xLOVh7lNfzEA+LS1g0g3zoHNSByogEeCItPxsX2T4wC5XbJriZpmPV4tUagCjmOSa5bUc516jKksQ3mW2MMvibOSDkk1O7R1H1nSEB6l0qavvlnlWE4KEoMlBaFJymn/kNtqSNUvQLXky6BjSJKQVWnUbUxJ3mlptogPtur0rdGrQXoPYX+2OBda9RhftTr1IQO79EfbWjvqTYx7k5U+ViU5dnP7Bh/MD7N6zhJ2qmOJPezzTsEaCRwtiZ2kRVOT9ouElsat1wN8WYLQLelWd1Jrata2tiMTT23oiZ9XMNLnGuehwvY7cXCuKo0lSyLltmXTCrvekThTWCJKaVvJpnX4/j687FdlrEizhGHmOSwexk4PTvZ7Xw/JII0BX/zR/ltCxyZ+0WO1JUkg77NNrnOdTBPENnFsk+ro13nJoNUrKw71RB/CSj4dz7SQSX2pniW96sj9VYn2kf2T+q8NeE+h6zAOGjsr+XQf2jsRre+MjbbVsbGEmk1suzMSgjYmStM3pwHx5gOFOscIxwN9ZZ9zjNMX9hFJOvqLnOQYx4Zu2hw5Kw6NyKCTZVL7S8Ksph+g+fMyo9bUqnJserKiPn5Zrx6nrUQkeccKw+TP3zdIbNqGMeNllPkxpuwjEqKmq/0ymuPDZfY41FLclqA0sH+IhaQ3/36jY1Ha76aR+kFra6d2zI+NOf0nFtUnNlPk2KJI42vt3YatVOSHZsbRy+Nzq2Xlsuf9/bRmU/ct+9WgivDUju/reh9A9XwF7qdfXWJPfbIY7XiH5T6o535b/5DneEwXZWLxYzQ1cDa2+wFJWfdLXB7bulADGdhjXzWi5LfeN+LW3xyPxphjcb/wsz33XY+lAbTV8yHDbJgPP5aqY9VPX629x21+8WF98f1YxJLiA8js2DDdRBdt3Z7TaCd7yofndtk3qNb1rA/EmmC6OIWnyqan8Fg5Pp0u0F8/KlBbBudXV/RhX8fK9g/tkw7x6XFqdkuxAfdfHxdv6+eN/rF6HnuDucn7I+kpszJ2JRTHH/Xkw+rJj8Wc7FEq0+NMsJjwbXFXbVssKp/7pZ+6CL0oo4wyyiij3EjL4h2HjfKMAdoVCHnIQx7ykId8Y5DzjkPq+eaTG27bYKUNWKJKS9PVeuZDk6BBDt/brWUa0/QLvUJm03wGaPhMJFjii0k95VkyqwFZ1wmPEaBp2iX7bJZU040Y7DZbbVoMqV22l/kge4XOSad1kGS5b7TPvnI7dPpr28grxk3BmNEDG2fdGAOmF4jdeKZVt5Hbemvne8yMZeozm9op/KpyX5O2sbkCLTFqE6kmFZJHxsNOr8ajurZvtJ29lw9dLdyPWBKT0lb4EQj2KRXo5HEF1icti1gUSJkKskefaml9VENMPDPXgS/itdWMSpvtZDP7Bh6y2wfYBH3Eq0TuX1agLzbBo21atPFQNVlMc7t5803bWkoW2tyLNjEeyipnIZDNqZU6RRVd01e0NuvYaODM+ZMULRKj9GPIWukZpvRqeKpMY+St6gMeNPPj6odVc7yzD/8GBoM6nSdpo+R6wb7VmGw8SHiwEirZsESkoqY+zL6yjTeQTeQs9FG3pqdtbJUibdUHXTN+3voDyUHsp3E1mjK3IW/CmKR4+o0FPXyTPKMtCRMSY0oaL9saqC32034yYMPs6GaJIM6BVB+uiux3xqxZ+erHEnRpMx+MKTLaEQNt8ZOBTn+xAPSLpJxu2Ei2rK52sFlpb7E7s9zWdBkLVucBC09/UqyWbERPf1g9aD7KdhNBQsr0tLBkXl75xo6nqrT1Nbev2KiD8y+fD3W4sicJNQ4OGHwxlvg1oW7JR33VnfrTWisJFfvJ0POMtlrmuPNBTFLINr0e2IRuOpl9xVY9MCZWVUNrdavFyU3iUWP1BJ7aNXtux1eEJluoW8xasoFkIicKLQ6t2zVLLyD5M6hmOw4FElBUtOqFVjBSiqsC7NJfLVI7HwO4xMIY1DdWAPqHQEbdrk1OK+0Tyg7nYbMeg401rswfG7EzPnpt4XqupPVLx9veY0g4ShfJLG2Oj/JEu42J2vF2KKgdVbRhYb+xKo99lGP0E1KFaSI/rZarNePcGPypw3zCIz61rMeBjYn5TceNyUgg4pQGXLhVz/pH3CTFSDSSAFGZbjYJb75pp2p2HHHyezw+lmkfW/zqA1cWi4kK25bgViOmUxuqdgDHlSpZI4och+rb2Pp4WHsiVR82tubT4/axJyGKLuqMK3EoTVMLxSsen8eADbNrfrCuoFTajteSPTeiW2prcQLsmCiNQZPGoftozcou6ev28cttkwcj8ZFldT6x+DGQfXjd+5ntWN0aMPZ10Fb/JmsKbNv+glPyUbLnx6PXDfjM45F8m761R1fr+FWyHuu6emVYuPrHrk2pz8Yv+bUYUWTL/bIYXMdiMtuKbAM+coBuisegYhMpXSRSzVVql8bK+Fp4v0zBAa+whY7HYuNFnR93kOypLmPgLZKtpAvf1Op9h5HtOcnxoBXrO+1ok+xbiSi3T76TDY/Tder2tX3aj+jV2yLTNsVYmVNjA+uH17zQNjZWtLX2Vf2CX95SXFZXKGWlMuxvYa/w4cc9gJNjtg9WYnSm6VTGsBHZn7bx47xu32TF5ubNthv3DR+6Lb75AYsULmVGphvLjJCHPOQhD3nIX0vyeMdh0EEHXUfQQW/C9MFrf1ZhcZuot5BOp5tMkkCmBJQFN7dhs9to1SGZw62tt3JkHUskaWkJsWQX2pJfWuEpkrQ130nO3+wWpXwLm4EugMeGPjzqJLOyHz7wqRIDU3kQ3Pyix/Sa1+r+8GO2cpyqiw2mPLIOoC2/jQm8HEMG9cyrt/X+wsBNOW78YttzW/6YTsYEHYAefcnx8Zct88p6bK6l0I6xWIZHdTInapNS+stqOiZ7mTtQEzZXYKZTY5vTp4pc21dsKmiTx4Yxxz9u4Kd54WLFYbkdsDGw5KCRBmwwr02ugCQf8/PokQchZMY7ry4EyraYbN8q0EVKHgXbhdPcKRJ3a9SoljxWlPbdScdyDTaJpvZaVL5aj1ctMcWY8VhSe2QpscHcAIaqD+LoYezUrq3Ag8Eg4as5Oe4HlqzN/aTjChZeEh65n/W1LUCc7DPmuLVcazve+wKsD6kvntRU2l31D5WZDlX0sYn9PPgg+VwvsEEMbOjiM3cn+0cHu/QTHRIe1CnRtVi0or/WnGQGY4oMnZzc6A/wsUnuoRHJr60cZGN/YYtYOKjVpyWz8JGhOrbCsJWGiadNsk6RXGxETrpp2yEtvfa4UmD6bOsDSTRtiw97jGkelGJAdNNKcV6z+hE2MfFryRl0Ua7CEnoFsr2sl2iFrdgjUQYPexsCMauutTEfqY3aJnHD40ktSWgJFGUzLvggOQfP2usuqDXrdaK3uAYCVh0yAW4steWJPWJ0W2Xk5KH71Vh4jCeTqS7kbx0Wi0qYMLYLqMaoJ7Dx9EJlKxBRy8k47GksPBbTQlFfxJUnnC1ho6W/N88PQJuktolh+tCddgt9RhO9fIIlXkEnWIzq3yZ6FTRhPOm7boyjeoSpdVVLx5ZSxsvIE9Y2+Zzg41LXy0lDH+tSWxJsxGYx0Gcmu7WvykPNjtO0L6yt/pjtip5yVWb70s4dfDF2NCKJR5KHeOiLjwGPK3UauZ42eSUh45tActBotY8tkrisdMQnMtzYo0r1QmarDfXHP8lYRq1jwopG23/E1aPxDTV/JA/9WAKsUsQ+eupPx9BXiQL6qn5ZMajoY3wJzwaDitpVHj1WA/rLscDKIfzrdcFUseljlhpbEg6w8sgfT8p5Rf9Z5UgsTfrRobTZpg3utGRTZ9iy41Bl+CYGt2mRGE3/eLSo2TOuNUz6HreNgbHVP31KcHk5ZtehTdczz0v3cytlTRd9JB5va/ERj8ZerC7MMu2nrfhKOsmpqcDDLvDxUxgv6WpZrBZLfGtqsSXAzz4gbd82xsKxqm2y34ySTS20LMUGYCbYSrGy3wziL7Wxftj4YhAR46OC1E9s+HgjT/YsDpVbEOuOaV2HWFOMJR/8MZPJXr9jAFRpveOcaONnXobSNgYKs2Ex1HkGD8LrCu8nat63ij382Pmdx4U+pLb0gxgS1vGb0d8YKOo8iHLfHNV9SQxalO2mMSlgMrYSv4GXfawzpg3wVY1pHwC1Uz5O3aaCcckxYZK68nLb4ngpQ3VMnscUW8lGvOMwIeigg64j6KA3Qpo7Dv11iZVBBx100EEHvQnS1EjE2JbqhnQTmWWQ3D/nW0h4ORmIpk1CmMRl5c9f6karTpGMg04bFL7Ltus3/V7Pt+XAJztUT+s55uwTmhJbJKAskYUTmKpjN+LJnrUzgcNU2JRPnDRz2/Dr/UVmyS39QZ77wQYfH3X7UrQD2Qc61kb/UGY5yPzcb/PJZm3UdvLJdKL3z7dss4w8jvy1WLKCMlTd5wRUYHMrurkdpZt0DHTg4LMS1KZrlc+UKiawS7+IhfGFZ/bhacnUDMlggG+qiXQoE9ump4pWKo8kpiX2SOiZX7WrLFvFgiEFdvCRYfvaqwazgy6KlpF2e2ZAG1pyMIGEXrdua9FX0MTGRUvyAjyateyXBFmNRCLmYAwElfP4zjU6OPiwBBtzzTx60yw5LKHHfJDN9ejY0s9ujX+Ykkyya1u2/B4/Gw/iZ0eWOz0A8MQKQ6unkpWGxMO7Cq0Paocu2qNJU18HBHL8a0xFN0o86ydB9gf0soz+5vizvTwvBp9Y4FFXP7Z/dLN9Rz3BcjXKG8I+YR8bE14Orh8kW0XSEJtsxEYCDps6viReLHkxVOsk9JK8OB669XaCrYeJcOdVQNC0Z8sHWIYd1GlrPJDgFSdqCbDswHZYHKmtP7JUSVYeGq1XNmId2udJxaxHIk7tW9JLDZJMtASbk3VYbMpnww/tmphQd/vWnxw3zRv714jUT7t64N9sw9M49Ty3WFXuq/mo08jbAI/Zqhbmmr4eu1aVdezxsiR+LIGFD93BVmfynB2s2n301yfTHVqmC4JPnqb+ZWDbTkJ+2c9+4Hp7b1fTMTFreUx4zKb6seuostE1fWVYX5VnKw0tFrbUB/Vtk9TWBl0tTR8/5gFBqU6s6NOeGN2W29Nf6nYc4ytt7CzrkymomtvKMWa6Do1JN7iFjoZjtuiPja+Oh9mli1rTa671TXXR8yQeBmiYaNryQxgaD/r2/j1V9CShXgxsn6W+5wQcSTTqqg/wocxkh3o+F6n7xurAvOoxKaLgsOGzBlTUJbH6+w2JyW1wUdNf9o2ppotYtoNJ7FuojAsXLR2TGiuW0pilvvDoW3/8LTGzGrNZjx8+XTFjZ4fJHPULVPEeQwXxeWz40lL1aWE+dOx8v9T3LbDHiirfxxi56/k7D51GPfPZjJ9tGJn5KVaO17Q5lFskIpIecbAxFqUkBfKWkcOkeXgrSkbbfi+Q6haX2qUsAf28ZVg9k1bXjba27xn/Ot9jRp74jcjtC4MlmKgffvKFLI9nYUe3+lgpnePKG/rI4FO3xvDQ1RhNjgr7O4236SWgk30pO/fX4yjpAdPBf+KXfWjjun8FMoPSuV6Wg0JHy6JOVfts54xujTGAgXiZb7Z8LIt+WFHSMWS/JT/m248zqzeMveuldtZWYWOQqlp6/OwT46RNUbJXPw7SPrcA9VfrtuVjz2SI4af9nUE92Sl0obNOrlOWN5B1KLNOgeRfN6PMb+6j6pXaFn4zL0PtFeOYkeoqMTNWBh100EEHHfRGSOsnJ5+b9ifKKKOMMsooN9nSbo51U7JISGVAkwgCueRvrgP0LVmmJfycOIPON5usNqOF8XSj3qw3s9kfelZP7ZD7ra7LMo+N99Xho9cmQWEmn1rFRvbjk8olKJl56GTQBrifapscH3MfoJAqHxn9ymNhMTX4pA/ZftbLGlDI4FPPY8VfeGy0z+34a5MNqlD48t/Cpr1TUDfrS6obrT/o95CgW+ONas3qVx30DVFek44h7xPEvPJU1Rz2qc7aNLmEbi29F9D6rTymYfAJTayAMu9vYre6buUVggBeU+m9hdjLeR+Sk81pNWCz+sdvBtOc9Cn76BckHiuTkArelagsHhNqryjLYo4j3TKPR5Oanvq0lYXKt/l5BePY3LXW3kvYrMqZ3y/UBu80tPlvtc/keN8I7ePzyFRov8rbTMNd4TxLvvRofK3sBI2F9/4p+oZ7CVY1r5Vukkokcrpdr1+oKSs0Rt5ZaPZ4B5yClXm875AdSPLQYkmyDYLhYYEISdC00/FhvGRrQKCPTmpnIH5tW/Bpz5b5JBPZ1/Z4Tfxomce9pnuER4aqrEkVm5hYpx169n7IAYLhYMtJSlSgtT9DWvU6NFKNM5c9XO0yzrzvsUttrVGzOVHIWOGHYwpfJI5KyTmTARI3rSrTzZJkGdrcEnq8pxDkR4oCZKm6DvT4KHxD9iqd26ZGlsSEl2NR2CovVk7yq+1JHlrb7qaUYOxTntvLWLtGZWuaVa4DxbHGuwZxbbZVgQQL7z1Um7QvEor9QWNpGkqyTdVZTWj2aK+fAXqO14Y2afsUh8WvvomR/iYfrDj0VXNVeOKNBEvqrxWqZ6r0U+PHDpO8JGxAUjWQ+Griubj9g6QYsPGR1aZrKxS1M6yKs2OT2Ok/ydAGeIJQj6vmJttol5OGHiMm/GDs61tTJHIMvM9PTyx/32HuHxcl768nRpVvqyW1f71DpU+PezZgKwP1WukrYtZojO6L9xHaZHCfPyaSmGyVHavh2EkF8NFr/8DhiR9W1DWld0l6X3kPoZfNqoeOtkljxqo+bAOuf016DOYxAPYZpf311Z740k1jJslFcg01Hjtqjze1wcrt2J9+HPLIS/vvC9uPxNdiST/7FLEOI+e/EBwkS/xdi4nW488TKMStMibac8z2N8VA3Fr3fYkOyTvGj3bQuvFo0ZzcswNGx1xt2WZjo37ZH7o5oNWq7SaOB3Q9tr4ejgX6pTabhmvbYVZHxzdi6VU9PT40Dr5L2P7TxrS1ihnW/WwXTPqttuir/mKD/eU+MWZBWJxUPeGg9mzs2U++gtFBH3wf5/4VwJ8lNj25iR07LhBZ+xSn2hjSqsdMC/uJ85TxQodY3b+XjJvHWYbH52OaYfXUlxwD9TIG4jdiHb2yPn0u+W1EjpdjJdspbOlmxww6/QB+HmcbF9pRz30rwZI9Cj/W+u9zI531vKy2yX1yXrKptnFbicXOqXosfi1Z108Rs27r9Hc9PONn+xZnPUaL2WzX25Z5lbbJXu6LtS/pUTfb6ZgrUNJTI2rGx0WVU5H6apvz8piY62w36xnfbRRjV/BSmdsmfm5b5ZXOrey33N/kt38kHWyl/lfalvj92Svizjytaosoo4wyyiij3KjLplGjx35WP/qMqJb6mcgH5Dr8kIc85CEPecg3Pvmkte+2aSVulD3J5LCJAi0zD52c6IImEVXm2cRVorM+wA68rG883eDlNiC3sxvTxCe5aDf3WqctW+ajD4yvOrkOlw1/Zj/pgdynSh90g8+qOn6yraY0ieK39q5LLKpseYbsv0dv5rGX/cAnPmLBEvzsh7bwsg+bnLCax+7cepxs2Q+l96eqByzZRyIwC0qA1YQsNcQGPN5nSBjMW2oHpLmp5mNAIMiZYFzDGLof2JaYRJZo+gXov42Plj5q9f7kshHYIGlgKwwVvI/QbOsfeyqhygkNXg8TQz1uH+ZAdtFvUR2fEFOCYEhOpseS0k9L4mm/+obV/FGbjJ3uUBKGfS0ag60w1NjUOEm/UdqUXAn5CwaDcV6jMZt/7A8EbV/r1pjUB6sHSbRZ0lAbkkAkVttfrSKbDalJr5bEXcP28LXS1OntLGYSOsy1loFvS1w42Yi+VgJQof6u1To2+lrolLJIymi91qXC1H+b/x/AVoatjNSNPllugOShtqMfNpbI1jhdHAhlwGfgeFwr9WSvWGGIf9rlWJCtb4xtDHRr0v2t+3St7kPznXgDtoWPfWLBLyW5mB4dF5IuyEhQkiChrjo13nEIlGf9ZUxJxqHALyvm8Kl1s0E1+bFHhKJqJ1viEXNKwlk79rE9vlPryc46yLqNMqVr+CAZqBsJGKP70aN9ngMkcVkb2it9a5q09Bhp3zSMxy+qnWYeUcjOVrt6AuTVcZ4cUjaJskYf/YDzaXhLs/TSR9poe+zhG399JGUZe/UJzxKxOsgWZ/JRa+b9dlpv3Kk6pvzUmkjiqEw3S0YyTlyT+jRuO1iZbGXylR3uibd+kZJwxcltiR0CIZ4+S85ZHGaehJKWaQVdI8rJBSZeLSnIwKkqw9bUxIFOn3zzMXU7JFitPw1g/zG3a0lUkxObt/WTGBv0z3XW0m+N2ZJ4XA/MebX/dq3VjWSdTbKbjH0NrR20ZdFMWmuhf4bUyic5bX1/5QRGRl7lBswHn4s97AeOH+ygz/7SfWI0tqjzS/KLiwpjpr+1FpVxYquejZXbNftUrUSRBC2+NR7GleNDeSRl0fExUCu28k5/+TywviKjrxwvxOTjZccCduxk5tjoUdscqxxTHgPwPlkgzlDQZy/TfmTslFcfE8zyx2MseOafhBp1+LTHfq9e0lVWTO67HfPtNftr+9LGw9vzqFJL9LF/TEF52lf1avwcJ3b4sQRjihlJ3ndWomslY8pxZBr21xO+9BFd3ffKs2SH+jD/6dgyH9pv+lFrYX/VpGe12iqOvXo/GGezjl9AXzmu8INe5mfQb9QZPzv+0FMQE31Im8HGSH2m/aIVs1tB7ktKoBis/+7X+LRJdrCRx64xlmJL8oH6ZvIcm6ISb8le5XxLpenSnhixlfXwVO6H6ae2oPCnZWprY2e2Sv4VRf8U1M1n2RZotJfarLPfUh+MzDxAe2yzGhe+2dOt8NMwzrZhS+1zfjBQ/O0vvgH0DNmvyaiWxo9zVeVZVgF84qQtJrNeY59sc/9gnXFWed5HmaeeXUd1sWklsgQ7ZmmD7TLUdz5ObQzKsTQCvykO28yH87Pc43b6qVse1BHVPhKblSrSrU43liEPechDHvKQvwblxTsO65pRRhlllFFGucmVf9P3U0v8wLIkmpaAG06fSHLVfAMKMt3LJICWtAc5kZTbASQkq7hNzhNc2V9GuQ6yffSzTfOgPJPplhNq6GDbfJR07bZc6ayXaTTKbXPSj7rx0pZtuKaPDUA337JnXVa/WazGXGuJwxw3MNv4SfW6xO1n//Ch83hazAnlMc6x0g4YpVXmymljdLLHqkH4LtDx1zb0xVYcahtMsQKmyVZROI195qWZw7axgu/NpZfnbpLMQs4fhcVkNY8f5NhZ0cF8S435tWbd7DF2tNVx0z8kCQFz4Nhg4cEQ1WHFIRM12GG1IvO3lnfJDhoAm/1gsahPYrU/xMg8D4bwBY2Oimye3fSUrbGNUNkq1enrUX/EO2yIveKOxW40BzQf1lKT7jW6v3XcyrCEoLYb0qWE6vWOVJertY6vobqpj6YVWqrfvDqPOfnacM4l5REHE9nMoarcHh2qzq3vrIajLUlItbMhMJ5qXiv6iz8SRpZIwAl+tK48S/xx4KYY1wv2EWPIuAHaYRtfxAg/DxR6ZRAzAZEPQC9v6lcYL1ZVImcuGt6GYiH2lDhltWSOIR+4rET0AegHxEJ8xMJ+oESX5J9urG6zBF3eJ9giyVo6GIaM7PMEISeJ/locxAOIAWYeA9NRHiXJBRKGWscH9k1fN1uBaDrebNDAdGuvxwNJHNhR2CNM+aU/CbY6TklfxdfQNutpaavYdGDt/YKYHKo75wXHxrWmT8Np0mHr0+uM2tGTqJtkftpXnoRykMAxf9TLqxjZub2+Gqo2dI3G7YlMxpVVW5a0sUQXfGJPdtJqNuuABu+6JbuNKGLR65YdC7Rh0pYTW630NGtc6YTRfpgf24nrwq7rVFTuCSva0Telrb3W2O+Ms+lp3ZKjXjcU8TjYP8wZ9+kxb/FZUsYkRb884ej7z9orbe/xU55Ngls8jGWq04+av8POE0zExmc741m92BhP+0Dp7bDLY0bdt/dTe5e+G5THpkrjFz/QJEJcbhJW8hG6TV4rz/j4ITSWNjOOdXjfdKOfHD828U5fkBIHPB8DS/op395nqMjjwv7I7xCrJ4LZfBxIXNp4QdeGqr0u5eeYXN9XRgJKYmbfWBDWhyFaN13bV95Xg9ZJ5LGqDz52VRPDKtOxUZ6103HJE/sAsdnSmGy/KSzRyIbvnIAg2WDxoO/xOKWfOz3dNs4ZZluFfMtxn9kGfPVtLemH96VIouS+aUlC0OW0pW9JJwE9Naw1HKmfNb3S/UynrFz+vMpMgz9uGwZjlexnujgulDR+AWRJjZit4nzgiUEaGcUf1yOOJLPxpk5/OZ5R13HwccrHsLc1+wCn+NBY8nHkDbVI9oqYM1JfKHPfimOwiIXY3C5JbniFjey7DJXVjw9sWEX/4Nvr9MP6wGb6qb8gt8dHklOib1X6kfYvMRkTQDeC8cvykl62hbxoB43JFLPFlNxnvWL/Z6iQWItYMmiEmhb5+Kwk41S4/n7QEELtM1bW1uvIicP7ldqU7FXsWBzE5bwcgyqm9tS1n7ayONvy/eHVzFMkv6DYPwrbbyn+ct8cxKx6xleUY2m0hX3iy3aybxuPpJ/6hPz+/7xEaRWgFmWUUUYZZZQbaanfAijtj3OCDjrooIMOehOk8+cjyHXb9CaRG9giyaY/JJzylm8i0SNZ48kjt1cGtoyHPnXs+a8h+6Lk9hZ+3ryFw+vuo48t+bP2bNB5Uzq3p6QP6dbZkNt4LHojXOJllOvIc4kdZHkc8pSY2dMNX/Bzm2w309lfRraVkfXzlm3RL+qZD7yviZOZCuaci0eM0l6rbP5HYyTxR0XbUDKZypiaJWWwMIgpDub1mSbO0w3ZBgX9pCQm5CkKq/uUhI8V40NuAFmeVLZ5DK3nZBn1IrYkY3Wh2VUFs6H8pGJ+87gXUCaPG/U2MOyPNmRTISRCGitNUczJo6PG6fcQHj+petgC5FGyns1z68DYowaTfeJqSe9BRFZ0XmE0ahaD0tglQYYdklVakmzr7VZr6PEn8YrOagBFotD4Xt0g1J/lHmxLdvmjNrDP+w7dT2nbALS162Er9SnzzBZI/HVgigoSgoxLf3okDfM+2hCwl5IrKU/ixz3j1WgXtXL+Ax9suf+5hJcP/mTPQFwcxIADgpWbgAQVdG6fgW45Bk4kmqRmZgMevzYOaqdZnWd+1ifpB4gJXgnmN8eUAY8kSZlNM92Y02wZpgISYWZLN36xQUe1ncfA5D/HM6UGpyzqlsSjGdD29sjR9YDEf5NeZwBzjr2W4NLY1L/NT7J6L/ul/2krwDFbglmyZFamaEtMuhnL+2HXCbuewEPf/VSSaf3BEoP4zJsin8ApFuuzJfaSXAv65IkHC6wB6Lo/m/SnWZqA5ccH120xGesTzxxMMJSfZIYcH7+EZXIqGQjSmFCC3N76jJxNSQ66VLe47SCk6tfFMsor3twOOpxMtEPecLylepGcKEDd4/WEJiHwh2NJbRA2ZXqHpPcPv+w7jh0elcmqQWJgvNM4AesL+kzes4+ddD4FbZx2H6rDisKUSHQfyHtS0pA4cwxNqUvYpcOMHfHrGBCDbowRMju+2Uwfd6lm40pb1YHMyQy1Yzq62WrPRHsr9Jv5q4DjejYWScNNkoSg7ppZzzaT6ZZ8Fzb68JPGpBHEmGJxmuOS8cYW8edYGaPkx2tJlzFJvmBpnfZlvvOcpl4b2ixDNx/u+yTtjwLWBjd1X14q31ipnjbsuV0lARX06HNOshjfC+BmU1zaBw0ixZzapjaFKwDhDd1HFmjbui9nW91kXiAwHW3vJbrJVkI9Fm9k/TQ3GEy+qSd5GWa3sGmN4CYaUvuWbWc2dD1AR4Pt3Bz4OKc2ZQG02UaGiFhSP1OfceolyPLMwyc2KFVq14bUzsR1mTL1l7HNthT4zWb0T/brjHyOIqN5buuy+qY8/W3ovkOZ9N3CMVvJnvr1GCFcTx17/JTw05hgvGhrsZVg7dFNzpOOtU/x5XbW1voAVEabwoeCEMxcXcf90i7Zw6Tx8EnbEs9iK8WSYX2jon/s18uggw466KCD3tho/cbE52L6cLQP2qCDDjrooIPe9GgSQHxG+o2pw+ZuFBSWdNPNf3Izb5PUPHmkm+mga/pJFwWlqdSTTTBLUL7dsmpZFpV9AEK0MHXjlpanXFoyjS23xFcCtcQt4rD+aDXdIq+T+ALZAmXWMyTbZXnZH4AkiQqXtoB6tt9fG5B9p7mqNN3s+sU+SjRgrEAeDyim8mw8+EmKzC1bXYOhYG6A1YaGktEiiZfA3K5NnyrPE2WOItmksISxV9cBflglSS4Duz3EZDtex0Y7yZyrJZttYojJSN8Pthq15AOwkpAts9lspSjCBCyTX7EBBDBUh9WRHHDkDWwc4AP4qc6qSB7TyuJAGwd003sVWbzlNTdHHKw2zPM97IecIGGloSUEad+sBQZxk1bP8c5CS9pB41tt8DhS19NxgUdipYVGWodtmwdhqxDV9qDAhH5NN/xpG1YYWixu0GKkZD/D2+AqRvRVx/aN7vSUQ3A+4Q10IGQgpw19p12mqWMT0OfkZ0CQXKKN9ie/99B2EqAtqwLLOw1QzxvALxv6OQZAUm21EhqbvUsQH8g4sCxGLWnDmKbxNC7JCjvQczvnrwMbaLWZEmR5Ps/m64jZEnJsSlOiT0z48iYGa49P/OsGbSvXkl0/EbDvPJI77C9btYwtW2mIrE9qremxpBq/9aEMSI3Nk4Z1mWpW4uHcIbdQBjSPi8Ql7570+cwh0tOj1wKS81Bqs0kFXN/KsHjNn/fLDzblkbRr6lWe7oDiwGUSnNiZSFU+8Zpf2qUgTc+rA0FH2Uvrr9bztal8UbR9x8EPL+0fRfFevIZ+4NTZ2k43kpdeZzD8oPckmtrLenaAJTvGx1fqu5bZJ3btemo2odFjXNJ4oGZ/SiUo8a1d8uWT6KWkVIIlUMxen2riX/cl17tkg+EpT35bexXVH43qMF92DKS62cRXtsPkuB4cxGHHC5Epzy4U6CnfkopuyMYpG7SQkXMMqF18Z9dascefghzrWlaPMaYeq+97kmE9vnKS2DiUiAFDOuYWh9nCJ7GXLlKWOPT9aciJxwQbY22rrZQiNtW1mN2eHRtk030wfUu6qOVj0JKxFj+//KHNGv14g+c6Po4kWUmaZ79Jxg9JP0v8aZ12uDFbeaM9+rppW3s/YeqbtcntNY4isYAdBY9R9fFyW5j2vmETfW+HXduHlN5Qr0MtMnRYq/XR+ckOyKW1S20UOU706+2MZfaLdgbXddRtuD3lWxvjpHYQJT1gfSjZKWJJNnQjDvRM18oSP+n5ees6viFSWWFP0UgX8SSeyor+gqTvx6ci9d38JlmxmYCSLcWXZYRWxI0olQB+huoWY262EiAr+wKDtHM/3t+6TduHJR7tfAxN6ltubyZTv8t+vanRub/5vKq3B2VbKjPfSpp+botetp10sk8AXR7jZC/7KsZON+tbagaKuA3Yze1Bne/neLZB3bfKuFbalkA7oHrFtaXEMyTabJkb7KTzqOChk/pgUL61TzasCo9fL4MOOuiggw56Y6Ptm7h+HNY/HIMOOuiggw56E6SZTE63wbDs8zJP5kJnHRIm3FTCp25y7MGnsSInEEG+CWUzHqrwkx7vy6OObzZ8WCKJTWkr0SnZz4CnwkIXeY65rIse8iLBpSV+8oZuOeYcBxvI9jOgsQV4HGnum8VtXOylisKqKrM40ElbGeX+5X4A00tt4dOKMu8rkGWUFnOyzRyzzTMnkPxjvJlzHpKShkz+Wl0N9vEuQx7PqTrYJ4fBu/ZwymNDSerRPoOx5PGh9anRBqjZpqE6PtjWzZJS2ryX99CV5zqSHvOf+V2HZRBL3heAOrx+QXMSEvSJpF+etE58Xm1mSbeUtACWoFM0q+/WkTUWW1nCMCcN0exs0ibJFAnX1s3USKJBr7ZdtZpJwsRQ0N/eNq2oHo8vBbWV+kd1eHchjyntHaF+cgI3oU/3CStFh3Rryao2XHXV2w7pUgaJlEGAx3cCVuDV1B7vN+Q9hzwGlVyFvd8QmyqDtyHkR60SE/EP4f2NJEqTPWgbsMGCBCt+2Se885Bwmd9fX9KQkG1ckiPzS0BaJ2HYmPjK4JhLKzwLwCPmvAF85zj0mCRxMWSYbsN1//IMW0t0qBn1WWzl/aHitSs5nku8MvQAIymVHwvKI0vNRkqAws/JO2ywApD3IBov901V7Z2J6td0SIAMVT1tu04sKT7sr1nZJCue1YOZVYV5/EpYy2NAG+ImGZdXBvJOwjx+8MqPEW3R84gVhmV0d+s1o69XmjXWYa1qm/a0yxcm+jG0V1qa9bwrJ10U/mhUrn30n/ex9eg1qtn4lrjTQHinISe0rSTk2m/vp9M4SU70egJoba/vUNoUfgeAPZJT+8m1tP7IyRIsmVQ6UUikWSwOS5SVrlXAVznyDjfd7H2GClaRNTWv60MvgjyG01bVFQNN3JxgxEQCx/d3TY91e0ypXtTsOs4xkPnoNaXEWPossUdF6oU3T2ozRjYJzZgpPKHDOyJ5ZnA/48R/BXCSWx17a+zc6A/4zH2jz/UxYXxSAk9LSwzafvH96Y8+VZvafsgQ3mfYolz3kWmc54QdsoLHykEdY2z6uwvrx7ftT5UTt68yVNkQHnXb5RtjYn4Zf9oRC+/449GkTdLXo+Omx8Zavc6TWLTuWD+0YuPJccj4+HsBbR+lPlMytjyCtK9H9y2PJDRwLKDHWKXjIn0wEgN96FNd/UakbBL7+HB5Ga5LX4iRDX3fLAZtg8/st57c9GOAtsThCXLs53FjsHwf+mpP1dX4rQ/ariy3/arHEUlD08NfQ6xF/60trf19n7wPMb9Xk3c6jhg9UpqH+nmcxw5ke6xSzKs1C6Tj2atpDJK+8dmn2Cu3Rd7IN39uK2+FTtFXRUPbCq8RymMfFXqKImlYRmN8/cCSWiC1RTd/R6y013oj/Fx3uemUkdrSXztm2Iib/ivymK4TM0h6/fmt2NOt8N2gV/DQ0a3s1/qWULRX5DEteLl9knsCsMqz+PsbK2jdsl9DiVfpR2lcGn0YH/tJx9olP7Yle1VeP8dVQrZR5oHiXCi3zSjHh7wUX3+o+CjFXdhIcXo9H0PJrzXhD7+pDDrooIMOOuiNjI53HEYZZZRRRhlllFFGGWWUUUYZZZRRRhlllFFGGWWUUUYZZZRS40/OKBoqtJchz3RmZdrLkGc6szLtZcgznVmZ9jLkmc6sTHsZ8kxnVqa9DHmmMyvTXoY805mVaS9DnunMyrSXIc90ZmXay5BnOrMy7WXIM51ZmfYy5JnOrEx7GfJMZ1amvQx5pjMr016GPNOZlWkvQ57pzMq0lyHPdGZl2suQZzqzMu1lyDOdWZn2MuSZzqxMexnyTGdWpr0MeaYzK9NehjzTmZVpL0Oe6czKtJchz3RmNa44zAg66KDrCDrooOsIOuig6wg66KDrCDrooOsIOuig6wg66KDrCDrooOsIOuig63gV0pUVhy/nM1CDDjrooIMOOuiggw466KCDDjrooIMOOuiggw466KCDDjro1w4d7ziMMsooo4wyyiijjDLKKKOMMsooo4wyyiijjDLKKKOMMsooZcjESdMgA4FAIBAIBAKBQCAQCAQCgUAgEAgEAoHAJgxfcRgIBAKBQCAQCAQCgUAgEAgEAoFAIBAIBDZp+DsO87NLo4wyyiijjDLKKKOMMsooo4wyyiijjDLKKKOMMsooo4wyyk2yrL7jMCPTjWVGyEMe8pCHPOQhD3nIQx7yOkIe8pCHPOQhD3nIQx7ykNcR8pCHPOQhf83K4x2HgUAgEAgEAoFAIBAIBAKBQCAQCAQCgUAg3nEYCAQCgUAgEAgEAoFAIBAIBAKBQCAQCASKFYfVtYg8u3RI49rEkHtVEfKQhzzkdYQ85CHPCHnIQx7yOkIe8pBnhDzkIQ95HSEPecgzQh7ykIe8jpC/6uSx4jAQCAQCgUAgEAgEAoFAIBAIBAKBQCAQCMQ7DgOBQCAQCAQCgUAgEAgEAoFAIBAIBAKBQKw4DAQCgUAgEAgEAoFAIBAIBAKBQCAQCAQCA6w4XPcZp1WEPOQhD/lACHnIQx7ygRDykIc85AMh5CEPecgHQshDHvKQD4SQhzzkIR8IIQ95yF+iPFYcBgKBQCAQCAQCgUAgEAgEAoFAIBAIBAKBeMdhIBAIBAKBQCAQCAQCgUAgEAgEAoFAIBCIFYeBQCAQCAQCgUAgEAgEAoFAIBAIBAKBQCBWHAYCgUAgEAgEAoFAIBAIBAKBQCAQCAQCAUWsOAwEAoFAIBAIBAKBQCAQCAQCgUAgEAgEAlKzvzl1GGWUUUYZZZRRRhlllFFGGWWUUUYZZZRRRhlllFFGGWWUUW6SZW2IDBH/rZaGfvgh9zLkIS/TIa+WIQ95mQ55tQx5yMt0yKtlyENepkNeLUMe8jId8moZ8pCX6ZBXy5CHvEyHvFqGPORlOuTVMuSbtjzecRgIBAKBQCAQCAQCgUAgEAgEAoFAIBAIBOIdh4FAIBAIBAKBQCAQCAQCgUAgEAgEAoFAIN5xGGWUUUYZZZRRRhlllFFGGWWUUUYZZZRRRhlllFFGGWWUUWo54DsOo4wyyiijjDLKKKOMMsooo4wyyiijjDLKKKOMMsooo4wyyk2otEeV5kwiUGbQXjUEHXTQdQQddNB1BB100HUEHXTQdQQddNB1BB100HUEHXTQdQQddNB1BB30q5AeMnG7HbWoS8gori+TGPKQhzzkdYQ85CHPCHnIQx7yOkIe8pBnhDzkIQ95HSEPecgzQh7ykIe8jpCH/NUnrxkz861apRPTYdUqnZgOq1bpxHRYtUonpsOqVToxHVat0onpsGqVTkyHVat0YjqsWqUT02HVKp2YDqtW6cR0WLVKJ6bDqlU6MR1WrdKJ6bBqlU5Mh1WrdGI6rFqlE9Nh1SqdmA6rVunEdFi1Siemw6pVOjEdVq3SiemwapVOTIdVq3RiOqxapRPTYdUqnZgOq1bpxHRYtUonpsOqVToxHVat0onpsGqVTkyHVat0YjqsWqUT02HVKp2YDqtW6cR0WLVKJ6bDqlU6MR1WrdKJ6bBqlU5Mh1WrdGI6rFqlE9Nh1SqdmA6rVunEdFi1Siemw6pVOjEdVq3SiemwapVOTIdVq3RiOqxapRPTYdUqnZgOq1bpxHRYtUonpsOqVToxHVat0onpsGqVTkyHVat0YjqsWqUT02HVKp2YDqtW6cR0WLVKJ6bDqlU6MR1WrdKJ6bBqlU5Mh1WrdGI6rFqlE9Nh1SqdmA6rVunEdFi1Siemw6pVOjEdVq3SiemwapVOTIdVq3RiOqxapRPTYdUqnZgOq1bpxHRYtUonpsOqVToxHVat0onpsGqVTkyHVat0YjqsWqUT02HVKp2YDqtW6cR0WLVKJ6bDqlU6MR1WrdKJ6bBqlU5Mh1WrdGI6rFqlE9Nh1SqdmA6rVunEdFi1Siemw6pVOjEdVq3SiemwapVOTIdVq3RiOqxapRPTYdUqnZgOq1bpxHRYtUonpsOqVToxHVat0onpsGqVTkyHVat0YjqsWqUT02HVKp2YDqtW6cR0WLVKJ6bDqlU6MR1WrdKJ6bBqlU5Mh1WrdGI6rFqlE9Nh1SqdmA6rVunEdFi1Siemw6pVOjEdVq3SiemwapVOTIdVq3RiOqxapRPTYdUqnZgOq1bpxHRYtUonpsOqVToxHVat0onpsGqVTkyHVat0YjqsWqUT02HVKp2YDqtW6cR0WLVKJ6bDqlU6MR1WrdKJ6bBqlU5Mh1WrdGI6rFqlE9Nh1SqdmA6rVunEdFi1Siemw6pVOjEdVq3SiemwapVOTIdVq3RiOqxapRPTYdUqnZgOq1bpxHRYtUonpsOqVToxHVat0onpsGqVTkyHVat0YjqsWqUT02HVKp2YDqtW6cR0WLVKJ6bDqlU6MR1WrdKJ6bBqlU5Mh1WrdGI6rFqlE9Nh1SqdmA6rVunEdFi1Siemw6pVOjEdVq3SiemwapVOTIdVq3RiOqxapRPTYdUqnZgOq1bpxHRYtUonpsOqVToxHVat0onpsGqVTkyHVat0YjqsWqUT02HVKp2YDqtW6cR0WLVKJ6bDqlU6MR1WrdKJ6bBqlU5Mh1WrdGI6rFqlE9Nh1SqdmA6rVunEdFi1Siemw6pVOjEdVq3SiemwapVOTIdVq3RiOqxapRPTYdUqnZgOq1bpxHRYtUonpsOqVToxHVat0onpsGqVTkyHVat0YjqsWqUT02HVKp2YDqtW6cR0WLVKJ6bDqlU6MR1WrdKJ6bBqlU5Mh1WrdGI6rFqlE9Nh1SqdmA6rVunEdFi1Siemw6pVOjEdVq3SiemwapVOTIdVq3RiOqxapRPTYdUqnZgOq1bpxHRYtUonpsOqVToxHVat0onpsGqVTkyHVat0YjqsWqUT02FVp+Mdh1FGGWWUUUYZZZRRRhlllFFGGWWUUUYZZZRRRhlllJVyPxl9/OVyyH/cI8d8Ubcv3SOHfPJHMm7S+Aa9v0T597LdmffILock+pCfyTFnflNGFvLGcprUxh8hTcMb+S+mHEy/x0tt3BHS0ja+1G4w5csZ5ytUjthPWtr3X5f/Esv9/vH8Cv1qKptGbTH2s0VGESgzaK8agg466DqCDjroOoIOOug6gg466DqCDjroOoIOOug6gg466DqCDvo1QY+XLU/+lhw4pU/mXXGe3HP11fKH+5ZK3477yB4z95cld/9EVq4u6ye8bPQussVB+0rrE+fL4keV3O7dMm3blfLIb66QNf3q/6PsfOY/ydark37GC/av/f6HUr+vaej3PanfcoxM+sS/yPQxf5Yn5t5vTQ0btK9xfkbjXKVxPgat2wuKT7dXmj7gK/K2E/aRpddp318Oe0qP2LJddj7mE/LE3ZfLmlWdLgMvk/0CL5IuVhzmLeiggw466KCDDjrooIMOOuiggw466KCDDjrooIMOetOl3y/bTGmVJ256nzx2209kzZPXyJpHviALvvJTeai7XbbauUF/xH4ydPwRxcq0vPkKu0OkNlTpLd8to/f9gAwty7d4q7UbuuXUpG9/fDNU6X7jHbqn2thccDF0JPb2q8qH+OpAiy+tEKzKy/QHrN+Pp373dFxr/X4s93snlKZqn7Yyf02tWub+WXv9Y/G4v7yy0Dblt7SnODdDvp/rZ7nG2bR1Go/NqysZbXzH7anV3Bf3WfXXaK9Rfog0NTfI296cxp4+sf/eKrURDfLNWpRokWHIt5hWyCrx9rf/1kcnDFr/FaaHTNxumj221ARRRhlllFFGGWWUUUYZZZRRRhlllFFGGWWUUUYZZZSbdPmvsssX3yHDfvtRufOyW9ajN15GHPNfst/+46W1q0t6hrZKc9ciuec7/yhPLliU7LxZ1tyzRLbdYztplcfklk8cJ0uG/p1s888flt1e1ypdq7qkdbiWf75ZbvnqP8vKNdj9O9nuMx+Ttpv3kPtvUPrNP5Nj9l8iv/rch2RlYxzbf1X2OnFP2VptiMbQ1bdA7vnMe+UZ5Ft9Snb88Ltlysgutdsqrary/MM/kVu+8wVfubhOfwbTb7X5b8fIduqv1qP+1iyR+Re+XR7/o8jQ/X8k+719qmy2Rvna29bWLnnqt9+QOy//wQuO89n7fiB3/uArHqf1v1vuXzJJdmxXWhVqqx6Tu65cJNsevb9s2dclzdh99mb59ed1DFO8lXiaWmVEban8/qdnyR/v1r6pfMR7bpK3bP2w3L/ZnvLGEb7/WmWp3H/h++Sx3y+S1mMvkwPfpPuYkHU/9T7+S/nVt79QjbdL/ajv5fd+R2770TekrxingUtWHL7l9MvlV2cfLSuf6dig/itdxjsOo4wyyiijjDLKKKOMMsooo4wyyiijjDLKKKOMMsooi/K78sd7OmXcgV+UfT74RRm9/QDvuNv3i3Lg/pvLEz/5Z7nijJly7b+cIXc9NVb2mv0pac160iY77LBEbvnMHnLZJ/9WlgzZU7Y6+cOy2/D75befmSG/+sxMufILP5A/jdxfDnzfx+r2DUaUqEyXykf+We76zDXyhMqf+PV+au+98qwJ/04mf+jdsu0z18jV/6L8M/aQK7/+a+nc4d2yxzvesa4d+x1Mv78gD3/mv+ShTpHn7vsv9fd2eeIR5W/2r7LjWyfJ6ru+Ilee4f6uu2mpbH3gO2QrVvoNGOc7ZMIHGuK88C6p7fp3suMheyW/irapMvqRf5OrdJyv/swP5JG+7WSfd0yWx7/+drn2M/vJFd+7S57bYn/ZbmaKc8JXtZ+T5Jlf/YvH8+n3yo33tci0Yz8mW41yo2Z3wi7SducZxf67vWOM7HL0p2xlaPfPj5Ff/Zpnqj4md+t+uv47/2mNNn/rMTJF7pLriVf5V6vv3unaj2nZ7iBKxaD0/gplzZYb2m+UUUYZZZRRRhlllFFGGWWUUUYZZZRRRhlllFFGGeWmXi6SlT+eLdf87C5ZvfV+sv+HvirHfOFWmXnq/5VR48YnvT3ldTOnSu2PV8u8u272dj1Xy+Jvf1Ku+v4l0pXtKR694UPSuTLRm79bJm7XKo/d+G/y3CpTkrVLviIP3TBPalP2k7FN9XYutN9EZbqfMmkU9G5vlu1HLZWH/udfpLsn8R//pDxwz1IZt8sRMiLrVcrB9Dvpm7cS/fy/yf1nzJTbf/qDgt/92CJ5XsbKZpNLeqllQe92jEwbu0juu6gU5wMfkt890CUTpx2eVUV65snj117t9KqvyNNLlLfoTln85CJlKfP3N8vCTpGmYaislbY37yljO26UB351jcvXzpPnfvQTmb9mO3n9rm5Uf0WW3y/zrk922X/3PyYytl1GmTwrKUp087BWkRWd0p3otQ9+SG7/l8Pk8YcTnfnrK81kP/xXQRkrDqOMMsooo4wyyiijjDLKKKOMMsooo4wyyiijjDLKKCvlIum54//I786ZKVd+5p/lVz+5RZZvub8c9JGvylZjkU+V4SNFOh75QbXd6lukp+PWOi2dsmppSf66NhkpHbLkjkVOZ/6fn7MkW9v2uR3I8kxlup8yaRT0lm0yovNRefpPiU78rqeek762sTIi661TbqjfSc+8lWh+2/5exr7nR7L7J2+St/zbrXLk+/aUUY16hhJNnDJedvrErfKWz+mm7Sj3mdYqTWPHpzgVq56TrnI7Q4n234JubWuVIVsfLG9O9tzu38kOw0VGt/99XX/ZIulORLZjWA/97C9+KY+NOkSO/PytctD/72cy9eh/ktYRdfmgSjPZD/9VUFZXHCqCDjrooIMOOuiggw466KCDDjrooIMOOuiggw466KCDTvSqm2XlPZ+UBz73Fbm/ezuZdsjfJrlIU2u76xmd9Mt0Y5nktZFV2uX+J9OJKFGZdk4jnYg63dwqTSW6ru9obL8OTb/vbuj3QPrbfFH2POP/yO7bijxz/w1y54Wfk2suvEueyXql0hrZX2ss0rVI/njLjXI/282pvOkauf2mm2V1UgEVf4lTpu1viV7z5/vr9tJ2z6+ukQd/97DJXavc3hoXGIheu+Rzcv/nPiTX/ORqeexJkS32fL8c8S8/kzFjk5w/ZX39GbFFOk4GkL+a6OqKQ/sbtP8GHXTQQQftv0EHHXTQQftv0EEHHXTQ/ht00EEHHbT/Bh100Bstvcf35IDPXS7t7f3IqdVa9e+N8vwzIuMmHFKVT/iwvO7wf5LWTCdJIX9skSyX8bLlTuOdtt8hUpsyXkb3dMjyP2R9kOWZyjQc/pZpUKL/tESeHa5+JmS567dNapemJeon0f6b5PT73y7zfhu3LNeSfpdpJ7ycsp28vut+uf0L75Unrv13Wf7ItbK2T6Qp69lfb2eNMr20Uzpbh8mae86Qp649QxZf9y9e3nm1PPXbH0qfqtRbOVGxU9CJm+iu5V3S2twpz2R7uj117X/L03ddJEsfvruuX9T4a40TBqaHDN9fakPvlu57/l0e/8FxcsfnfiDz+7aTHfZ/q8v5Y3+Tvv5MPexkedOsz5bkqdTf/T90geyusrK+//3r0A3vOORv0EEHHXTQQQcddNBBBx100EEHHXTQQQcddNBBBx30Jkrfd788U2uXXWb/l2y5zVTnbzZbxnzgA/LGtk5Z+L//rUqL5Ol75knf9sfIzocf4+2H/61sM+sDMmN6u6zJ9hRuN9FrviuPPdAlO7z1q7L1NlMQytrt/1N2369dlt17lTwDDTO1TL+JyjR/kj37XSKrV4mMGv+PMvT1+zl/3n/LH/48RnY+6ZuyWVu7KrVL897fld12EXnstv+ux2e//NG/1u/xqd9TnL/Z3zX0m9+HZfUKFY2bJiNef4gMaVbmqm5ZM3w7GffGPF7/KJOO9keVFvYrcc50/n2/lPlLxshO7/u/KU791fHY47Svyv7Hz3bau+/69lvnFLTZz6y10nnjXbL4dfvJ7sd92ONbO0WGH/2fctjp58ukKSV9a5Jpa5yYiX6mU1bKWBn9psOleQv21xEy/tSvyhEf/k8ZPhz98TJkp11k7PAuWb4ovSvR/tTtUc677gIZM3kP2f3dn3U+LvRnvw+dL8O3eL0svOty5yf9xvavJD1k2+12NJJMYpRRRhlllFFGGWWUUUYZZZRRRhlllFFGGWWUUUYZ5SZfbvvvstPfHyGTRvmqOdC3qkMeuPw/ZMFdtya98dJy6Fdl37dsJ6NqrtPbOU9u/cZseWYJ8s/Izl88RJ7/1sHy6PyS/ea3ypgTPyX7TmuT1Eyeefgncsd3/lO6ze7fy6TP/B9pu3mG3P9rpQ/5mbx9/yVy/ef+UVaYfN14mw/5qRxw+HbSVlsq//uVw2Vhh/KHf0AmfvgDssvrWt1PX5f86bZvyP/+zw/XaV+Ug+q36k3/L9nn7/eUcc0ij/x8hjxw20zZ8gOfl5naJ2/XJY/ds0BG7dEui0r97zfOsR+TSSf+reyU41Qsf+Qauf3bZ8jqHpX30/8xp94t+8kv5Zdf/5zRa2W2TP7Mx2Szm/eQub/2/rTs+U3Z7eg95fXDk9G+Tvnjr74hD17/U5OPPP4mOXTsDXLZ1//daLOj8R3zVpFbPnmcLDW7M2WrD31R9t6+VZqW3CJXfeGj0jP2UzLtw++WKW3Jrvb1yTu+I3f97Lt1O/2UI7cYLzM/9E1Z9eyTMmb7PWTlMx3W+nc/OUuefuTudfT/auXE7aZR2vLDAkEHHXQdQQcddB1BBx10HUEHHXQdQQcddB1BBx10HUEHHXQdQQcddB2vNXqzQ2To5i0iqx6TNc/OG0B/qtTat5MmdJ5RncHaH76fDB3dKr1P/1r6ehJvffpgvbTGsdnz0vf8okQrkG+ufWjrkjUdtwzeXhttSv3OqOiPV3+bqb+SfJj2aUvt01OpT/3a1zjbNM5OjbMsf9nHQwG95REydOhSWfPUXS/e3vA9pbbmLulbk2iwhdod1v2C4uVdh6wyHLFluyUO773ks7Lk0XuSVDHYeDL+AnRacdjI98xiRshDHvI6Qh7ykIc8I+QhD3kdIQ95yEOeEfKQh7yOkIc85CHPCHnIQ15HyEO+qctZebj7rDNl3q8ukKcfuecFt/+LyysrDqOMMsooo4wyyiijjDLKKKOMMsooo4wyyiijjDLKKKOMMspNsqxZZtF+o4wyyiijjDLKKKOMMsooo4wyyiijjDLKKKOMMsooo4wyyk22tBWHgUAgEAgEAoFAIBAIBAKBQCAQCAQCgUBgk4a94zDVA4FAIBAIBAKBQCAQCAQCgUAgEAgEAoHAJop4x2GUUUYZZZRRRhlllFFGGWWUUUYZZZRRRhlllFFGGWWUUUbpKw7JHPLs0jo/6KCDDjrooIMOOuiggw466KCDDjrooIMOOuiggw466KCD3qTo18I7Drccs7WM3mKsjBixmTQ1NSduIBAIBAKBQCAQCAQCgUAgEAgEAoFAIPDaRG9vj6xc+bwse3aJPLP0qcT96+JV/Y7D4cNHyviJk23glj+7VFas7JTenp4kDQQCgUAgEAgEAoFAIBAIBAKBQCAQCARem2hqbpaRI9pk1BZjbOHcoicelVWrViTpXwev2hWHJA23f8Mb5anFi+TZZ55O3EAgEAgEAoFAIBAIBAKBQCAQCAQCgUBg48IWW24lW48bL4/84fd/1eRhjWeX8uTS8s+rgd5m4vaRNAwEAoFAIBAIBAKBQCAQCAQCgUAgEAhs9CAfRl6M/Fg5X1b+eSXoGi869Ncd1n/+2vSWY7ayx5NG0jAQCAQCgUAgEAgEAoFAIBAIBAKBQCCwKYC8GPmxLcZsZfmylzv/NhjaVhy+2n5GbzHW3mkYCAQCgUAgEAgEAoFAIBAIBAKBQCAQCGwqID9GnqycN3slf2zF4avtZ8SIzWTFys40RIFAIBAIBAKBQCAQCAQCgUAgEAgEAoHAxg/yY+TJynmzV/LnVfmOw6amZunt6VF+IBAIBAKBQCAQCAQCgUAgEAgEAoFAILBpgPwYeTLyZS93/m0wdI0nllafYfpqoAOBQCAQCAQCgUAgEAgEAoFAIBAIBAKBTRMvT77thdO1dfKJyihR+vPKywOBQCAQCAQCgUAgEAgEAoFAIBAIBAKBTRUvJr9WovTnxcnXfcfh2lK9v59XQB4IBAKBQCAQCAQCgUAgEAgEAoFAIBAIbKooZc785xXK39k7Dl9tP4FAIBAIBAKBQCAQCAQCgUAgEAgEAoHApopy3uyV/Knh3HOIXr4a6EAgEAiMlK2n7CPtbYkMBAKB1xCGv25PmbrNmET9JdEqo7fbRyZt2ZzoQCDwmkNtpAwfOTIRgcCLx/gZB8mbZ7QnKhAIBAKBjQStk2XSTgfI9GlTZHhiBQIvBfs2D5EpqR54baAxf/ZK0EO2nbyj0yz0e5WUu+y2rzz4wN1KDBI7zpYP/o3InG/+UOYl1ovBmP0/LO/c9gn5xQ+vkKWJF3it4XT5+T1Hy+REga6V3dK9bJ7M+eGX5PSL5yduf/C2W919nhxwyo+Ufq9ccNNHZC+5W7580EfkIldKOEkunHOK7DpCZNE1H5Gj/uUFHK+GFOcytX2S2l6Y2IZGv4Ptk7a7QduNXio3n/U2OfWyxAZvP1euP3OmjMXfmxv7MgAmHCYfP+MUeefu7dLW5KyuZQvkhm+dWRnH8cedJeedephMJsHV2y2LbjlfTv7Yj2SRixWpP+UEWHe39qFD7rrsPDn1q7cm5rp461eukHMO7GfiecHlstuxZycCzJSPn3+azNJYW4mVOG7/npz20e/Lw66QMFi9vwQmyszZs2R6aRx6u7qk8+n5cvdvrpcFnT2Jm9B6kLz9fVOk44cXyN3D3iazjt1R+sshdvzmi3LVQ4kIvLYw/ST5+hfeK/vn7HBvpzx6zfnykc9cWjp/9Bw74hNy7iePlWmjE6O7Ux6+7Ety2jnXVfTWwYEfkQs+ebTsVbb/2x/J6Z9oON5N7zjVa3F6gDgCrwWse50p8Kc58u0rbtfKC7gWbbmPHH7YvjJhdErK9a6QjvvnyI13zJVVzukftd3l0BMPkK5rvyZzOmA0S8vILaWp5xlZ1VWyP3SUtA0TWdm5XHoT60Vhm2Nk9iEiN/7gl9LRl3gBw+A/Rxtg16f36fWpfl1YdPuP1vm8fNH2A69pTH3bJ+UAydeUl44Jh35MDt+hS+b+5BtyxzOJ2YiX6X5vQNTGyKSZR8l+O46T4el776olj8q9v/6lPPhMw3e0QANe/Pfr/f/5PPn0cTNkvN5Tga6OW+VbnzpNvv2g0/3eR5Tw6GX7yrvOojZTPv2jz8qsqa7YOVevVyedJ3ca1S6nfv/H8vdt18ppel262XiBVz+aZfQbj5VD95koo4c6p3d5h8y99Qq5+/HlzpB95MgPvUmWXfoNufXpxHqZ0DT2ADn00Bkv/DtQf2gdI23Nq6VzxYrEGAReTJsXDf9uOOHxS+SSm59IvI0YEw6TT5/9CZnFl+F+v698RC6+870yLX0W1NEpd375MDn5h4lswJmX3ibvnJSIBnQWc0wOm0P5x8Nkcr6/WzZfLvnip+Wca+yLs2LdOSDmUDqfXSBzLvr8Bua1Aq8otmqYq+nr0V21QpY8dJvMuWuudL4c9yajD5J3vntPGdPbJd1L75fL/ucmWZZEBps72l1W/uorcv0jiQf0HumEt02RlfdcKD+766nEVNT02nnyvtLdqP9iwXe0Ny2PufTBYEiznDlxkhy29UjdD0r3rJD5f3hMTn+uV550jfXisM1fJ6dNGSebNS2Ry+9YJP+R+AWahsvXtpsoe2yhN9nJ/oIFf5Kzlq6WfNV4/bAt5PwdJ8oYbvO6lstvHlogp3e5TJpGyc9230o6HvijfHR14gX+6pi+0wy5/3e3DTqv9nKWteKZpq+iMhB4yVi5VB59ZIFti57qlJZxO8uRn/yWXP+V98r4pPKS8MGZMi3d4I5/49Gyl1dfOEbPkH84Y5AxbbBPP5KzLrxbv86Okf3ff5bsbzwwU85+/0wZyxfdC88ZXNJQZsiZ5/6LnMB/7C64Va668jq56pb50jlikvr8ulwwO6nJSXL2P+sX3tYOuVN1bpjXJeMPPEXO/mASl8GkY4r/0YUdZmv/E86Riz8+8H8FbzWCT7JuWZLb5e2x/IUatMsJ53/WYu22WG+S+xbrftnvFPnW/3tv0gGD1fvLYtXD18glP7zQtit/e78sbt1RDj1ulmzfmhQyJo+XrTs75LHORMsKmXettytvN/4xiQOvMRwtX/+/p8j+evg/eoueX3Y8tsrkoz4q550xI+ko9j5dzjvzWJnW1ql6l8svfqF6z7bKtOP+parXiAnvlQvOfK/sNa7B/sGnyLmfL7dLeu1ddftL+okj8JpC+TpTbL++N0kdG7wWjT5UjjvuABm7/G65LOlddtty2WLXI+Tt+0xMSv1j9J57yqRV82VucalulxnvOFHevmfD9X4HvdGe/TbZIZEvGn+6Vx7rnSIzdooVS40Y3OdoI/S6cJ5fnxb97ia9LlwuNy/o//PyxdkPBKpYeMeVMuem6+X+gZKGf2nUJsve736/HPqGZnnitivkF1zz/ucmeWLteJl53Mkyc1ysaB4YL/779fgTzpNzTpgh43sXyM3cR/xOrxvtM+XU886TE5KOyJL6/UNpW5RnTPN/nRz/HjlyarfcfNa+ctS35krLzofLCUe5aPzHz5G/n9ohV301koavJYze8/1y3H7jpPOOX6bvK7+UO5aNkd0Ony17b5WU/kIYvuNsmf2uffQ70Fy5/n/wfYlce/dSadPvQH/7tn1e8GqfMXvOklnvOFjv0gePF9MmsGHwzwpX/uSs4p8M+kebtJA0XNYx8LWnHyx6rKpr2+JuF/bkWXnFgXp/d9phMnnEUrnveuZZFkhn2xSZdea5cubeSSdj6Vy9rnIvd53c/OASkbFT5MhPflm+/vYkD7xKUJqr+fGV8lv9IGydfoS88/A9Jf0L3kvC6GnTZUz3fLnqO1+TixqThqDrQel4plnGvL56jzZm0njzP3qb6dU4tttWxvU9JQsfS3TgFUKT/H/bTpXDXtcqS//0hFw3f6Es6BouU3acJl/anCzNekBC8A07ypk7biWbJdY6GNIiX5u6g+wxeq0sWPCY2n9CHnhuqEza4Q1y9hZ1+yeO20bGPPNHOe6OB+Q3z7fJ34zL99DN8qUdJkqbxnZOJA1fdRhMPu0vUW6E7zjkv9q3luH8Vxr/yd62tW6j9PTsD60y3ORjpMUe2joABrLDf4E18njUjuqa/8BfD0/dKu9693t8O/Ztsvex58mdy1pk7IHvlU+/DF+yTt1/qh49HfLwPP0iOGEnmdX4Be8FoG3GSXLmCQMnzwoMok+LLjpHvnV3p8Z0kHw8TfrvdcZH5M0T9LvE3EvlrIsGOZE34WjZa3v9ajHvUjn+3afJ6Z85U07/6Ily6Dm36u17m+yoPh3t0jZCpPP+S+Vk1TntW/eovEXa+suErpwnl+T4dTv0UzfJItWdduApAyZetxurX+g775eLSu1s+8T3k4Zi71Nk1gzV67hJPm2xflpOPPpLcvNSHds9D5dPa99fkN5fGD09y6Wz8ynbnnrkJpnzi5tkQa1ddt9l66ThmLTN1tK96JHKf2z1Pu/tytuqNUkYeG3h+MNk1zEiS245T971UT2/OB4//DN5eGWLTJ5xdPHPBG89fqZM1lPx4Z+epHpny1n/rnqn/EjuQ+/A98hbk946+NvDZa/Rek248fS6/aNpJ/bPDsUpOntf2VH1PI5s/3J5uFft735YUgq81lC+zhTbytKEhWJD16LR06bI6FUPya+uniNPZb0HfihX3qU3wuNVZlr9YaJM32GULHvkf9NNLd+19LuSfs9qbub7VPrOxXeoYXyDavLvYiNSxpLvXPbIQv8+V/mOlr5jrfu97gmZ9/gK2Xr7l+fmfGPCoD5HG/Fxv34sueVLctQHPq3XhbPl1Hd/Vm7QrxB8Xn48qYEXZT+wkeEF3HsV8oZ7r9WLpWPhooZVPPkasIH7quK60Hg/V4pLrzdbb7+zjK7I6xi9x6Gy88jFcusl35U5DzwkS7nm/fkumXPphTKno1WmH36UfuNVmK8GP9an/nhpDNa5pmlMrRtRIvJFf7+eIf/0rhl6V9EhN3zmPXIq9xEfOFb+47facPQMOfKT+d7oOjnrAw3Xl3dfLosY3JVz5ap/dy29GKmtTnn6Mv3u880Fdo/RwgcV/4D1t5Nk0TXnyVm/ddXAawETZap+l1j10BVy7QPz0/eV+fLg1RfL3U81S/ukfv6BKV9fBnjscdMIP/8Gkheo7S777dMuXQ9dKj+8+npZ8Gd8PyEL771ELvnlQ9LVfoC8ZZf6JGtxnSkBX/k8N79Ua03rnv/F9atqY71tFAP3he9c6Xpkc1X96SRsYLw2Vrz5wBkydvFNcs5Jl8ujibcOZr9eyE0vuuUjDdeek+WsK12lP3z7E2VdtnPlvlV8M+2QORdd6kqKD554uN7fdct9F54sJ36KeZb3yPEXz5eulklywOyjk1ZC5wK9rnIvd6acqtfI43/KmqExMu3guE97taE+VzNfFtz7S/nFnCekadvdZRf9iCyjOH/zvU+B+vnbNGKiTNieR5L6NWb0MBX3irT02w48JR1PdUlb+5T6ykfZWrZrHymrlq+Q3q3Gy3al7yntE8ZJ0zL97lVaDTlwXBkv8HuMXYMav5tt4hi+pRw+rlm6//SInPLks3LWs8/I7N8/KvO7m2VS+xbytqTWLzbbUvYY+bz85ndz5fIlideIkWNlj7aaPPnoH2T208+p/WfllD88Jg+srsnrt2iT15tSs4wdXpPnu9bIk3pQzX1ev33XPA/znnGTZN+mJ+X7i7sHtfox8Moi58xe6R87hT2H6OWrgX5p8P9qP3ifI+S4950sxx07W2bNPlned/wRsnX5grXlQXLkSR+V2e+ZLe887gQ54YTZMpWLcQXNsvWe75cTsHPc8XLce9TOSSfIzvk9OsN3l8Pf8345fMf6F8f2Az8gs9++l7S9pGduBV52LPyRnPxVkl5jZM9jTkrMF4uPyP7T9Qvgwgfky7+eJ116zO16/Iv84rbwbrmzs032+ofPyqkvNHHVb5865KJ/v9STCkd9RD4+XbejJklr93y55F/PH/xjB/OjyVpbqqshLztNDt1j39JjNjqkc6XoF5SdZX8ebfr+PWSsLJWO6sKW/vHbubKI1XSjt5RpzmnAYbIV33r0XOqSKbL/UYf1/86St0yxGB+9+7zSfxFfLhfd26HffqbIrn+bWIPVe6XR96gsWaYhtJYvQJOl/XU6ugvjGaQbLe7/sZytN4Cf/ebliaFYuFSea/js2JFJeVkgD32xlPRfeL48ypNGxujN5UDXjS+fKLvpuXrUp/p5jHJ3V/1asL7Pqvgc27TQ37WoqVVaG272lt17kVx06fXr/qdrRtsUaW/rksVP5sfhTJd9jj1UdhiuX5vecKi889hjZJfReunf5Rh555vGqXyc7H7s8fLOmdNdnVWI7zhCZr71wzL7+Nn63Uu/h+l3tOnbadsTPyzHl77Xlf8Lf+mTS6V33ETZIW5OSxjk52gD3tzOyHbKo3eUrk9yq9zXoR/aTa+XacVSoBdnP7CxYTD3XtV7qne+m/Na76lGJbGd96WVNSN2lgOO/5icMFvv09TebG2399h1U5HDdzhWZn1QrxXvVpvHq80PniwHbJuN5rjU9onvl7e/5QCZ3u/SnYkyfcoo6Zx3kzyo32mrWC7zfnWvPDViskzfXsm+KbIfKxOn1ifM2nabpf09QQ7cLjEUY/bWMThqX5+8K13TTniv9uf4E2W2XssO3zHH+RrHi/5+fZhM4zvMgnvky6WE3i8u1vsDLaftfqwz+sFeZx5tjy5d9NsL5NuJJ/d36D1Ru+z4zzNkr09O1Zg6ZckfZ8iZpx0u4xdeK/9x1sCvRgi8etHU2pjUekp+9z9fk1/cVX2cZtOkY/U68X67Xsz6+w/LB8vXn9pkmXHsR+V9f8f15Hg5braei0cfUJpcb8DU6TJpaIf87pZ+0kqLr5A587tk62np/M7XmYZHJ+xwSP0pC5NmHi8HvkH7MXyyHKj+j9jF+ZXr13F+nZu5jfd3oDb99eWDs4+VScU8/+5y8OxZst/M2XLCiSeYXcbjhLeWV0k2y+jdTrDr8Sx8vxf5LjJQqmBjA69dedc7Pi2XFI9D7gfjNrf929XdYe9NfetRMweYr9gAZp8oh05SO7+7XE6/I/HkWNlrUov909UN36zf3y368q3ysH4GjZ2m/hKvPyzq7NLvXIHXBDoW6/1Ss7TkW6vK+avn5gkf1WvRQaV/aqqfv7NPmCWHv2VP/YbSLrscUb0eFPdMDehYuFh6t2yXCaVr39aju+SJW/9XFsvWMqH4nrK1tG/dKp0d8/WTUrHBuBQjiC19L7Pr1cfkuL/ZeeDV1237yJHvfb8cueso6Y7XSBQ4dvNR0iIrZO6S1fXE3NoVcttT3SKjRslB68vHPv9nOeu+hfVHivaH5ztkvzvuk+Oe6Se30tuXfPbIgpW9stlmI+WwWrPssflI6eZVIq1j5ST9XnbPI0vkxy9HaibwF0Fj/uyVoGsyJGUtU/lqoF8OtO8wRh788Vfke9//inz7h7dLx8id5cA98oqeiXrztqeMXTJHLvn2V+Si76nedctlwuSGL6bbHytH7D5M/njF1+R739Pt29+VW5eMkb3fmiarll0vN97fJe17HirtXFS3OlQOmNIjD15/jTwVF8dXHy6bL4v0y1jrhJ3X+2VsQxj/yRn2vPtFv79c7vx2+oL3xsPlnUn+gtD7pJz13bulc8TO8vdf+Eg1STcY9NenhefL6b/gP9amyAnff69Ma+mWR688T75ceY/iBnDHpXLnI/rhNeloOe+6C+XrnzxpgMnA78u3rl8gXe0HydcvPUtO2LlVHr3s7Or7FQfChHbZnMe9dndL/6+kGCst5C+btpN/uFNj+NxZcu75l8odl58rJ5SSJSdM8AnOJX8sJVYUd/6+w74IjZ3gSd3B6r3iqE2ULfTOpLer9CyAtsnSPjweHbFR48Fb5Wp75EyiFXudcbTsykSYXltyYm/Rc3wzbJfJlcf/Hu2T9XpLO/ZAY6wH7bLXoYfJW993ulx4+Xtl1xGdcucVpZVAF/9Yrl/QLWP3+4j8/GufkFNPPUsuPP9ovTleWtULbPxouBYtu/9/pWPIZDn8PbNlJi/hH+wKmdePk9F6m7y0uNTeKzd+/1KZt0KvwA9dKhd9/7ty9zNq/67vykW3otQht37/a3LR9aX/OGmbKKMX/lC+9x39fva9a+SRvnaZeUi7zPtZ+l73i4ekc/SOsjsT+RlPLdVr+WYy+i/8+LLXFgb3OdqIG5bxqdgm46eXH1fcLuPbuPDodaeYeHhx9gMbJ9Z779W6r+yz+yhZcssFdk910XcukDmLR8vu++zZz8rEkTL1kENl6pCH5Cq9R7sIez++X8bswD8alDD6UDnqkInSect35ds8uutbX5OrHmqWqYe+TaaWZsDbdxglczWub39zgHeg1dpldFuXdCwY4L1eXY/Kks5mGbMVK5zmymN/6pFx2+zsMo110jajRPqapX3Cjonn/+Hf+acH6/9god/rJjx/jXzvW9of4pzXIxNmHiEDvArrNYUX/f06rejpXMLqwBLuSP9YOHbSAPdr75UPHqwjt3Ku/KL8jvkrz5WLfrtEtpt9nlzACsPrfyRzjjhNjpywQC457ez0rsPAawdPyP08unaHI2TW2/Scft36Vq3oNWOHLrkxXy/4jrD5zrJPenx5y077y26jl8mtP0D+NfneD+bI4i12l72n9Z8q23qsntNPL5LHBpjP6VjMqthxeqYPDo9c/zW58iH9ErTiD3Kl+vek5xSZMXOyiH4vsuvX986Ty/SeYId9DrB5pv7baGx7HSq7jVwsN+a+fPsKmdc0Wfbes7wCc6RsP2G5XM94MM912Xzp2nZf2S9/Z9rqCDl8nzF6Pa5fO69/fqJsb/cWGz9uvmYD74gHbXy56ZatDvyNXHn+OXLO586Vi++8Ti7+5EyXDwoz5My8qvqC8j3VVBnLauilTza8Qkbv/3jU0Oixkj9NDE1t8taj9F6O7X1nyc+P31lauxfInIuvSwqBVy22GqP7v0e67daqWSa9+RjZreXR+nebH86RJWP3lMNn9nP+fueL+r2Fdzo/IXdfWr0eVO6ZynjscVncN0ba8/d0HkfKP/U/PlcWPl16jGnrdGnfMn/vGUxcW8uMtx0qE5aX5s8ve0iaph4qBxeLaEoYsY8cedwB0vaHS+WSmwdc17vRYkpTkxzWXN32SHmONwxnvFZJR0Py7/IVz+vfkTJmncVMJfT2ynWeyxkU9iCO4ZvJ+W/YTnZqWSH3LMaH4+uLHpP5LePlzD13lH2HdMilT/fJ17Z/vXQtWCAfjf9MePUi5c1ezvzbYOjaWj3wLKO4Tml/++H/5eUvBzofmiMPdqYX2XfOkUcW8xm8rdPb7C47tC2Ve391e/Gi2t6Oa+Tux8svvh8pO+8yUXrnXS+35rO6b6k8yH+dtk2UHbZ01tLbr5C5a6bIATN3lp3331ma598oty6OF+i/OtEpXaygaWmxG9UXh3Y5YfcpWnbIfZdxs/p9mTO/W2TMVHnzi3wEan68aOvU417EO8X679OiL58vN+sxb7Mxy+6WS/69n1VH68XdctZpn5eLblkg3aOnyP7Hn2KTgb+74cfy9X8uf2Ful/H2fiOF+lpy4+flXQP+R2+rjC2+9J7uyQkSsPdeKlcnjSpapHPpUuns7ZT7LvqSfPoz58svfqffpttnyj+de/qG3yuZVku1jhjrlYEwWL2XCf6ovvQYiLE7yoyjDpbtmzpk7v31l1W3bD9RRq9zwzpSph/7Sfngh8rbbL31CGwM4D0/575zkrQuvVW+XZoIu+Taufb4313/7sdy9vs4f06Ss3/yEdl/4OdENuAg+eAZZ8k5px4tu7br+XbLpfKLG8uTe7fKJT+9VR5d2SaT9ztWPqg+dh2n5/K9NzXoBV5LaNtpVsO14pNyZGUWYhDXopW3y1U/uES/07TKdgccY/9Z+r4T3i8H7zSx/0cQZiBc0yUrX8o/UK3pkAcfYPaE+lzp4L1ni+fXv9ctvl8WdjZ70iqj83lZqdfJ0en7WQC8yM/RC2+Vh/WrzfhDPisXfPJYve4cK58+/wJ5xzovo3yJn9OBjQrrvfdqaZWWWq+sWpn/SWq5zLv6a3LRtXetu7i9dU+Zuk2vzJtzhXTkx7F33i63Prg8EY723abL6Kfulut/n64V0iUdc26Ueb3tMim5Bcse+FU9rv4whkdc9kjvhiZK7H8neuSRJ56SpolTPOlX21kmbLVCHrz3CWkav73/Y2mekHu0lIjs65C758xPfVXZg09I59AxMm5jvl691O/XA9yv9bva0NAhF33sWNl7r31lt73+Rt515VT5hyPa5bGffvqF/fNk4FWDVQ/9UH74s9vlqWGTZebbWVH8MZl93LEyfey6Cb+F95SuF4tvlAefFhm+uZ2R0sqTFHpXyMos1+831170Nbn+4f5P+i1GjdTvHqtFPwYHRi1dEl40RkrrUJHulfm61iNP3XyBXPSzayqvqWjEU7frcX/RJfJIXh3d9wdZ+qx+7xtd/Qff8nj0dtxr35n8nx/02vnGydK2+N7qtfOW22RBvP6iwFv1e82iZV3y3MJr5eufOVPO+d5Ndq807Xj9XjQ7KW0I/a42XB86fF6nqUU/k0qYcJCc8zm9l2M79TCZ3LpUHv7Vz+SSQdkMvJJo2izdV+k2ZuKhcuTBk6XpT/fL/fwzTOv+ssv2+t3mN9XvNtffu1TaJuj3mcSy1WB3lnReCPo8QZj/kckeR/r0IlkoK2TBn5bXH2O67XjZes1iWfgnrQ8mrm32lemjFzfMn7P6ulfaJzWsfiRpOOsAafvjL+Vnm2DSELxrwk5y5h7lbTs5sXzP2g+eXMvANvm7VV8WtMiJ09T3LtvLTlvW5MnHF8kV5Y88/Ux834MPyH53zJX95j0tS8dOlD16/yQXLIlcxqsZ/eXPvLS/fzF5LWcStfCyoNPPX0H+cqBzeT//NdqUzsK2zaRlxVOyuPJdsUeWrSgzxti724bvcISccNJH69t7dpet+U+A4p9en5A7fv2QyE5HyN5t8+XG38ajBV/1GHCF2yAw4STZk0xNx3y5a6wnwRY9zONKx8iuR+X3/r1Q6I3uKd+39xVOPuo0OXODK4j6QUOfxn/oJNmfY5Qvn6NnyDs/3t9qwQ1g4XXy5Y++Rw7QG/DjP3a+XHLLfFkyYpLsf8I5cnGyt//nz5NPH6r1hbfKzaxaOvgTcgHva5x9nsy55zb5+Rmm5mjbWU4ovvQebcmJRXf/SM751ECJxu/Lace+TQ5483vktK9fKldf+X056wMny//M0+832++x4fdKptO9a+VADwBPGKzey4Th046QWXojYdtxb/N36vziEplXXH6aZbttxsiyPz3YcMNaeuF2sV0hf0zSwGsX4484S877xxnStmyuXPTvp8kvEt9w2Wny2YvnS6eee0eeyvlzihw5ep5cdS93IN3SPeDzIjN+JCcfxDl8pnz9yg7ZfL+T5JzzzpL9k5Rz9VufPEjGd94tl5x1ouz2jo/Il1Wvdcax8tmY+H/NYtXD1zRcKy6UGxsuFhu+FinWPCEPXv9d+SGrZP77l3Lr4/oxOHOWHLf/5KQwAFavsJUmLxovtX0g4UV+ji48T077r1tlkX632ev4T+h15xMya3qn3PDbBSbuLnbOS/ycDmxUWO+9V+dN8tvfrZbtD/+ovO99J8vbWRU4rp//UgebbybDK6uWHcueW5FqjrbNWkW2miHHl+/TTjpCdmjRr75b1/97f+Xz9X/M6hdLl+j1ppknMw8Ojz4hTzWNkwnbaJ3/5l/xhMy753FZPLJdtmNGbvJ42Xr14/JIOf4Vy/t9vHMeno0SL/X7db/3ayfJPzET37jacB3MlLM/frSMn/cjOe3uY+WCy6+TO+b8RubEaujXHHqXzJEbf8bKum/IDy+7WZ5YO15mvusDMnNcOW2n3xmeTVXDCukuTbp33nO9zF09WQ5938fkhONPkIP331O2Xs9TFJ5drteaocNkA/O8LxH3yi23dkjbHu+XD37gw/LOtx0ju03cOp8260GrtE08SA546wlyHNe8D3xMZq7zyKLG8UhIXebauWrJE9X7zL6lUvxfR0Cu/veT5ag3HyZHfeBs+faV18klX/+0vOvLvCKmTXZ9yylJa32YIWf/bX+rDdeHdmnlAOjtrn4HXnC5vX6C7fiPfUkumdci0476hHzr/73YuafAXwYjZerh6b5Kt3cesbOMWDxHfnHV7X6u2XebVtnhsPJ3lo/K8XuMERk1RurPVOiSlc+l6guGJwhbXr+tjJaJMuH1rcWcUueCDunccqI91ridVxIsflzsW/1g4mL+XO8Jdn9PVefQN6ixLcf5P02BYXqdffcB0t47X+bckv9ZatPDfyy4zx4XWt/+uMFVfK8fwpL6Xul+2QatWz76+/vkfXc/IBfMXyZt206RMyePkn2TtIzXD9tKTprQLb/547PSOrpdrt11R7lx1+3le20b85fU1yZeTH7N6fTzIuU1SRlEYOWrgH5FoHdqg/kvsWWP3yt3313e7pZbb75d5pZuBltGjZJW/kFg6Ch/aW3g1Ym37yGT9Ya+q2P+ACvcNoy9PqQ2qLQfJGfmJBiPi1BW2/SDpPI0wReE9L7Clkly5D/vK5sn7gbRX58mvFfOJKbeDrnqy9fJol79cvnOF/EOxRIe/u335ZyPniiHfuomW/00bT/eqXiK/MOB7SJLb5X/eMdpcur/OV/uXNYme/3juXLu3u36RZnHFnl7Q+dcuegzZ8qnbTtNv4z8jRx1Svl9KINBhyzq5Kt0m7SllQ83LHa6/ug0x/gdiEHkuaX+GI/B6v2l0fnAJfLtb/LoCd++d/El8uAz5f/s2VkmjCu/H6yO+gu387Z8k/1CttHgwNPlvDMPk8ld8+WSs06uvOcn4+YvnigHHPsROY1z52Mnym6HfUSW8MjA3qXy6Hpe0F/Gw7+9Tr79mffIJXP11mHCvnLC8c4/9S276PG/VO765kfknMvmC+9dvUjPz6ti4v81jZ6e5Q3XiqdkVcN/rm74WlRGj3SvmC/zfvNduWhOh37e7Svlp4Sug5H6fShVX2n0xkVxA1j3c7Q/LLroNDlq3xPlVK47n/qIHHXAe2ROE5+WS2WJXh8GxuDsBzY19NhKme9d9Eu58Xcd0tk2UWYe82GZNeA/ITRL09BUXQ+6//zQOvdpd9x6u9z9h/Wt2WlA3zPSubJVxo0f4MGDrZNlbFuPLH0yJUa7/lcee7pV2idNtP/m7130iCy1//IfJe3b8+jSraV7wXw9EzYNvOjv1799Rpgbbdui4YGtE6bKeBouW7rO/dpenz9adh3R32rDKvb/wmly5Oi75f/96/ky6x+Ok72a5sq3/uNH8mjbTPmnz77Ud90H/iroWyGr/nyXzLn0GzKnY6RMf9PuSTAI9D0qd1z8NfnhZTfJ/X9aIW0T9pe3n3hyQ/KxjmXLn7fJ8OI9YQ1oHzdG5JnFL/kcZ0XlRRf+UK7ln3NljLzxiBNl9tvK7yJsRLNMOvQUmXXEdGnrfEIenHON/OLib8itrBp6gWga9H9KBApcttSuWa1tRZpkYHzwZHnzBP246He14QJZwmVz9OtlljMSDvJHmHY+N+CjVB/+7aVyzknflzu1fdsb9X4u8QOvBqyQBy+t31d9+4KvyM+uvl2WVZ7AslwW/G/5O4tud9wut978vy/bdwZLEI5qlwmjJsu4USukY0GaU3r6EelYPUrGbTNRJo1vlaf+NNf5hkHEtWapzCvL2W5TnbserCe6hzbJqvtul0dkihx65PquZZsuHl+9Sv8Ol/aG/0w5aBijtVo6qysHXjLm643xhc8ukks71PDYreQ9jf8RM2SYfHbKOOn8wyI5fcgWcuIb2vSYeUS+/kS3TJk2Xs6M3OGrC/3kz14JunjH4aup/ItDvwyuGjZO2iuzWs36QV3+z9el0rlCZIQskwcfmFPfHtSbxT/cJgvzUyVqu8uB+7VL1/3XyK1PjZEZh8QF8lWJCcfKuf8wU8bqx9p9vzpfGZ+QC+f8Ru740en19wqmd20MjBnyjjey0q5DrioSYL59+3f6cTliqhzw4jOHvrLo+g5pnTRDpnHDvCGs0yfHCf/fSf4InxvPldMvPlPO4XGDI3aWWWe8d/DvUDzjx/K7e26TK7/Q8OjULvtNaJFW7jm6uv3L7cIfyclnXS6PyiR5s54TsnSuXH0xgowuWXLldfZet6uvvFUeTtwB8c5z5ErdR9d/rfzfdPkdS0tlUUqwLLpDv3xrOXn6J0r9mykf39331cO/cs5g9f7q0C9z7ZIeHRHYuHHg6fLzLxwtk/UG8hefOVHO6Sdp+ObP/1jumHOFXHBUh9zAufPb+SJ7ny77MyH/x7lyiautg1lfudTbVa5J7enxF93FiqGWyrMeG9HKO7IDmyTGyM5v+6jMPii/x6sB63tEV+fz0l1rlRGv9JzUlqOlbaD/st9UMcjP0XVw6gUyR9v9/PNj5WauO9ffrZ/z75V37j5Gm83Ta1HSe7H2A5sgmqVlxEjpXTlfFtx7hdz4i2/IxXctlbape677nr/nlsuqvlEybkL1KjNmzKhUc3R2duln2Gp5rHyf9sCd8tijd8oji6urE9eP+fLgoytk9PS3yFTevV1Bs7Tvu4ts3dUhfyzeO50f+bWvTB/fJB0LedqM87be5lDZTr9kOm/TwIv+fr3wFnmM/O6kqfLp0j837n/qTmZn0R8aE44nyT/xD4sbWm144Dny6YPb5M7vniMXLTxMJo9rkc6F98i3rzxfbpjXaf9NH3gNYOQBcuRJH5YDSo8druCFLNetjZThrb2y6s/3yu9uvlQu+/F35e6lI2XqLv1/x+meR+J/or+DsBEjDpIZU1pl2WP3V1aFtY0pv6NsojRcrvpF04hR0qTXloUPXy9zrviu/PDaR/U+cBd544DzAO3SPq5VnrrzQrnq5pvkwUfmSydPzHqB82d27XwdK5JK4F2vAywC3xTx6e//Ru+jLpQzy/94/fYx9s/dvJd1/ZghZ7+NfywfaLXhj+RhsjGjt5MDSq+6Gf+hg+xd910L7hnw/i7wGoZ9txkmsvy20ncW3f5wv/zxwYcq15OXBEsQjpEJB0yUrVcvkgXF0v2HZOEivYrssK+MbVsuHY+k70mDiYv589Zm6Xq0JNdt3qP3y7z5j9ZXL3f+QW65d47ceO1D0tV+gLx9Q0+o2QTx4+f9XYaTRpW+4w4ZJgdtPVxk1XK55yUmDo/dapKtFvxaQ1KixT4neqW74VUiJ7dvK1OeWyDnLusVGTZcxtSel3nLu+XSZcvlyVqLjBnMaqvAK4dS3uyVLNfzjsO/XvkXR8dtMu+ZUbLbW98m7fbfrK32PqAZlfuIFTJ37hN6F3SwHDotPTaiNkYmHXiizP67Weml+3ozeeABMqn7Ibnxzrny4A33yjK9iTxwSnzr+qujbZKc/bmzbPv6d34s1//kE/Jm3b9Lbv++nPVDFG6SRUtbpHXqQXLel06RWcd/Qi6Yzcqbbnn0rh+ZiXVw1HtkL748zrtN/l+RAPPt679M7yE75COuK0fLqer70ye8sHcW3vypc+Wqgd7DscE+KWafJ/+wj37j5D1p6RGgN3/q+3Kz3pi3zThJziyeyb+B+PL7jQ49W37+tdPl1OOPlVPPOFd+/oWD9GZex+hebuYvlTv/qErtM+Xs8z8hs446TD544CRbfQm6Ope++EfCgl/cKo+tapGx+50kP2cfHaXxf+cCecdUtT1P+5fH6Uods3kax9Sj5cLvnC4fRO+/P2tj0zX3Ovl/+b/8Bqv3V8aYSeOlJT86ogHl5+bnbfh6HrUTeBVj75Q0bOmUR2+fL62H+rnt2ynyzqR2w2VzZVHrGNnrxAvkwi+cLmfaeajtmjrlziu/lP4j9Wg596rb5He3/VjOTCsEL7m7Q7pHaLsPXCoXqr1Zx58iZ+v5M2t6i34GzpWL08T/Jb+da49a3v/jP5ZzT+VdZvXzrKwXeG2h8v7CvI18Id9NlsrCxatl+JSD5fCdJkuL/dc9j8c6VN6+T7t0Pz5fijn0RjzNI/k2k9GV/8RZKp0rRUZssa2MaRuT7ClIMsoo2XqixvdSM41jx0hb33JZ/JI+eDYyDPJz9J1fukJ+d89v5Of5Pctfv0ke6m2RyUd81r4DnHnGOXLhVafIXm36+f/bH9cfpzzYz+lAYNtj5PgTTpSDt0srNYZuLTtsM0pk2WK9OjSg6za5Xy8wkw6YJdPb+I7TLC3bvE0O3rF6Deu470FZNmZ3OWLvHYtr1JjdZ8nfnvABmfkCX2a+9NZr5MHV7XLAu0+QGRMn6nerkTJ87I56r/hhOXJakyy85QpZUJps6Xz4UVnGI79GPiUL08XQ/st/myn2rtjHBrxAboQY5Pfr8R+/UO645zaZUzxe7zo555r50tU0Rd5x/gVy5vv0PuKMC+UcXoGwcq5c/c1qcnBwqw2Plq+fcZBsfq/eG13EzPx18vQykRb9PjRe2mXaOGblX7bp2cBfEivmyVMrR8rUA2fL9PxYY71uTNj7vbL3Nj2ycH55tcz6MeGQk2X2ccfIJLue6P3UqF3sH8iXLRlgXVfX7XLjrR3SutOxctyhe8rWbaOkRb+Lbz3tGHnnLKU758qNd+UnwzwhHU/1SNsbDpLdXsf3rSky/a3+yOQyOp9fLTJsS2kfm+7d2g6St//d++WoPdJ7o2sjpX3SOGnpWiq2iFexThtZbY9gHb3NztKWv5dNO1Z2r2fsBwW7dm6+sxx+wBT3reM6/ci99AwJZFx0v96Jj5giR6Zr06xTz5Gff5x/2F4q912Z5oomfEQuvk3vv244r7ryb72rDR1fvpjHntbvv2adeq5ccKInG2++sCHZWJoDOvtz58rF1/F9TO0/co9clFQCrwHYd5sm2f7AY2XqqHTP07azHPAuvT4duc/L+GhkEoQ90r4NT0TQ61PiggV/ekpatpuo1zD9npI/CgcTl82fj5Fd9NrWnuaemsYeJEfNOlmO27/8TxMJi6+Qy+ZwDT1GDo+58Sqef0puW9YnYyZNlh+OGS7Htg6XL03eXnYa3idP/ukZudCUmuXsKTvLLXpx//9ewP/IgEuf03vrls1kj6mT5Pwt3P6Zr58kx47XPbn0Gbm09HCh12/WLu/Z+nm5duHzchuM7m55XobK5vhs1c+Xl/XRqYGXA4PJp/0lyqbRW271WTKIQzQIK1NG8a9Jj3vdBHn6qfIlbgPYahd50yT92nb3XP0oHyUTdtlJhj15q/yh9EqFsVP2k231i93/zmcZzwrpeGyVjJq+t+y9z37yphl7y06bL5Cr7+6Vqa/rkofnzhcWEMuz8+Tx1RNl5wP+RvbeU/X22F0mb9YpD/76l/K7pV0a6JFy5AFbyIJf/VgeWq53k2sWyJKhb5K937SdrNAvs0sbHgsWeCVwgMw6ZapsMWKcvGHK9rZNfN1oaepcILdf+hU57V//J020d8gNHVvIQfvsJm/YcTc5YL/pMn54rzz666/JJ/4z/8fPznL0SXvrjWaH3Pb9q2XyRz4qR04cIQ9f/6/yvVsbbjrntcpexx0gE9tbZYtr/kduHjVbzvzMYfKG7jvkomsfSUplpDiXzZdv/mRO4oGFGtdEOfot28vma9zvfYPuk94snztL3jCiU+785t/LF4v7qflyVd9uMnvf7WTylOmy+L+vk4cnbCC+5+6U25ZPlH13nq5tpsqb9pspb9pxgmzR3CmPXv0N+chZN+gYdcptd3bKG/bR82e6frk4+GDZa8dx0rpsrlx3xyqZvPvecvAevXLbFb2yb2kc70suNgyN+/ER8qZddpGddtlD7c+QHV83QlY9eKn826f/r/xv8ex3j2PinrvJrhrHXuht1Sqd6J1x3ovQ+0vBr02jlv9efv9EXrLciJGywx77ScsTV8q8P5cuICOn6Bi3S/sOu+lYVLfthj6xHnuBVy0Oerecun+73iDqNWNbP6/r22h59oJL5TfoLZojN3dNl4N2nypvmDpVduQ8HNIhd/7wHDn5W3lWfqq8/US9/oxYKY9d/RO5gQvC3KvlD8P1WJ+m7d7INU6vdZw/j1wnX/7nM+TqdLx33n2PLNpse9lx+nTZda+Zcmg+z9A7Q/UiCfMag19n2sfvsM61YqfJm8nj9v1mMNcikdUdf5Snh0+SHd+0p8yYkb4rveH10qfH5FXX3ikr9Itkv+hdKW2T95Btm/5Usr9Gnnp2c72+7SG777qzjHrmdnmUlYHP/VlWb/UmedOee8hOE1rkD79/VLr5Tvf60ncxRfU7HFj3u177zgfLG7oekBsKncBgP0d3fOt75aBt22Tlo1fLj3hKgcyVyx9N35H0O8COO06S1w1fWfr8zxjs53RgY0P1nBzEvdfyP8iTQ94oe+y3n+zJPdWbdpNthiyQG6/6lfyZf3+unPd9smzBU1KbvJvsuc/+eu3ZV3aduEbuuuFPsuUbhsmf7X5PsfpReWzJWNlB7e27t1+jdmwfIh03/4/ctICjtP+4+sXaZ2XhvD/J6nE72f3ernrd22X6FGlvWSoPXn+x3PRow/f+7h4ZPXUn2Wr5w/Kbhxb4Y+NXrpZR8JbeLzeorQL9XNP8e90oee6hu2ThysR7zWJw36833/edMmuXMdL759/J9674nfE6b7tTOrfZW/bYZarsug/3EWOktXO+XHLOv8r/n713AWjqyvb/vxJMFIxQg1CDIAIFoWJlxBeK1UqV+mottGiZAW0dnNtR51bb3/zwzq3aO6Mz/4q9P7VzR2urMtcqHamtiq9ifaAoikXFglBBlBILgoIRMCnY/97nnEASAgRERFyfdnuyH+fkhGSvs9Zee6+95jujv7nbfKxcHIKn72VgU/SnTdgSakRvWIVIpyx8vPj/wwnpfa8wXWjm9MmYO5fZSA7lOPHPf8c+631OxCODj9do0cPNn+kIo1n/FuWGtwvv40k4ePmW1K4/ngnqh3tmfYnLn6fviXrOHS5PnglCsCBPxiAwoD9w9SgOnv4B+iZ0mdqyHBSUO8J98HAmE4bhucBA+Lo7oE5zEnu+PorbRudV/KSDgw97Dj7H9a1BUN44ipxabzhJ78+pK61Ed+9Adq1f4dneVTifcxrXKl0xeEyINM40HM8otTh/KAmXteJIbaNzCvKhKbOD53MjMVySeYMdr+OHchf0rZfHlv4eZnofl52V/eA7YrT43uzvqiz4Gt/V+cPF6J67Pk2NxzSWTSGBHniqToMTm/4PFmyXprs4jETEawFwuq/BuS378Z1QGIz4Fb/BM3aF2PPn/8SxJnzTyD2EAm6nDWX2V1Awu74bevPrb4zDv+8yTKdpPAb0jI8bnGyrUZyZhP/87Ub2rROdAque6Vy3uY576l9h7NgQUaYN8UZvbQ6+/eZb3BaGfizLM46d+3D4OVaa6hJNUKHwwq88lPgp62um/xjPelKhf6Arul9Nx+lCg2JkzX2J8tiey9Exkhz1dxVswoNHv8c9Lg/NdB0uQ2/0GIoRQwfiXn4ObpovdXtiuY9DFVoM7dkH/q7OGP20Cm49anHjaj6Wlv8sTaazwUtOfVm5Dtd+uoNjFp5TYx2fhm+vauQVa023fmJ2eH5lHQKeUsHraSfh+l7K7qgpuYb1hXdQH8tB1gsb/J+GtqAQi2ukN6jToX93NSZ5OeM3zkrISoux5rYeN8Ra4hHT11mN0pIfG/nPOiQ/YKDfL9yDyDOd5TgkcDSyLzW34Xn7IbNzhl23KmirmgtpYwu5fR8ofqmEtrqFXU2Jxw7XoPEY4qLHVWvCZ1pL1DqkLh6Cgk+eR8w/pLLORGvuzz8YLw3sBehu4aIQrswCbkGYOKQPdFcP4US2VNaeCPcgR/nFozjT3AoG6V61Ld2Hte06GptRmDJvCEq3b0SG2RgVQQwaNwkDUSiGK20FooxDi/3nochCogugQE+lA9OE6qCrKm8U4sQS8iHRiB5aiX0JX5vMdBX0KYUMep2ZLtXdHvK6KquubRk/hMwJg+LEOqRcaWqfxicca5+jZghywfFu089/A228PvGEwUMG2tvDts5Km0qhglJei+oW9nS2zp6zFlHmQX8LNTqSJ62izfq1D8ZO9YBS23odxyo6q95PWEd3Byh7KIR9Dh+ojwvyRIbae433fW4WK+UQFPaQ6apa2UbSsZr7bI3Oaa+xKZJ1LaPGiNDBUOkfkmwyXB/NjLMQXQ9JF0JrZdHDxpr7EuSxrdU2IdE0/WxkCLAByuvqcK6JSSwPQluvP0wmYzLpPrLqfiGnYSfCf3AQLmaeauQ/65DjAE8/fuRuRL4GsVMchwztOMchQTwMXD9IQnLYXSSMiMEaqawz0dnv74nFKQQTBv+MzKOnUSEVEQRBPH64IzgqHHbpHePIExyVgzTY+UUKyU6CIAiCIAiCIAiCILoEguPw/Cmr/WrtebTh/3DPoSF2aWfIE8TjzljcxeVvDnZap1xnv78nlrJUHCGnIUEQjz3XkbYzAemaVm7M0CZsgfwD2LaLnIYEQRAEQRAEQRAEQXQxLPjPOiJPKw4JgiAIgiAIgiAIgiAIgiAIgiAIopPQCVYcipmGo5hpyJsfxUxD3vwoZhry5kcx05A3PRIEQRAEQRAEQRAEQRAEQRAEQRDEE4sF/1lH+O9suAeROxGFI38h5MXChnzH1hMEQRAEQRAEQRAEQRAEQRAEQRDEE4sF/1lH+O/q9zgU/hcDmQp54aVRXvi/g+oJgiAIgiAIgiAIgiAIgiAIgiAI4onFgv+sJf9ae9Q/VnscqlTO0iuCIAiCIAiCIAiCIAiCIAiCIAiCeLwpLy+VXjXwKPc47DZgoB/3I1rbvkOOQwItOw4JgiAIgiAIgiAIgiAIgiAIgiAIoisjOA4zT1ntV2vPYxN7HD7aPEEQBEEQBEEQBEEQBEEQBEEQBEE8sVjwn3VE3myPQ1bSCfIEQRAEQRAEQRAEQRAEQRAEQRAE8cRiwX/WEXlpxaHoRuSexM6QJwiCIAiCIAiCIAiCIAiCIAiCIIgnFgv+s47ISysOGcI/4vFR5wmCIAiCIAiCIAiCIAiCIAiCIAjiicWC/6wj8uKKQ+5KNEqPOk8QBEEQBEEQBEEQBEEQBEEQBEEQTywW/GcdkRdXHHIXosmR/2Oc79h6giAI4slF6R4CDyeFlCMIgiAIoktjY4+e9vZShiAeDq5B4zExSC3lCIIgCOIxQuEJj8Eh8B/kg55SEUE8CKNtu8FHek08Bljwn3WE/67bAE8/Ye9DwZtowJA3Pxp4yPVDho5G9qUMKWcFflGY97wapWl/x+6LVVKhKfIh0YgOdoHm2IfYlyMVtgX+Xr+qxK5te1EuFbWa7g5Q9gCqtZWok4qapLs7/EPDMNLNATIblr9fC60mB+nHUlCorRXbEGao8VLcKiyd4QOlXCzRaTKQ+OFCrDku5oE3sPHoQoxQSlkzCnaPxqsrpIwxUeuQujgISmhxZs0kxG6Tys2xtp0Rg+bFI/6tYLjKmz+nuXbRGw5hcZDph9JVa1GcuQeffLgO+4ukQuIR4I7gqEj4W/rN/ZiKTXtPS5nHDfFzuV1LROKJ61KZKb7T3kNIfynD+VmHmspiZB7di+wynVRowA8hc8KgSP0IKfld9W8m4T8H6//2BsaqpQ9Yp0XBgQ1Y+H4SisUSiWAs3rAEkYFqKGQsW6dHWdYexC9f3WyfXvz5KUT7ShkjtBnrEDL/cylnQJKbM5nclBVi17DZsCQCic6ONX2mcZs6nQ7am3nIMNct+ozC5Emj4eZoK+brqqC5mIoj6VmoEUseEbaQ2/eBrPYWanRN6EJ2ozBldgiU3zPZdNpcNol/A987qdix5/Qj/iwPGzUiP4jHgjAP1rfFEm3hUWz9zzhsyhbzlnjpo71YNU4l5Ywo3IOh4SulDEOQY3OZHJMULibHik9/jiWLtuCyWEJ0QYTnOtrvOewW+g4me+uQ9cXfkX5LKjRHsPeA1H9sQ65U1C5IdmSTaHMezO4jGmiDfSTC7LbDzG5ztKTDWCPjghH3+XJE+ooPPm0Wk1Fz1uGMkFNjwZbt+I3yIJYw2XZCKCM6B7ZwfDYcoaPc4dhdLKmr1CArbS8yrlWKBWDP+t/9ChVJf0faTanoQek7DZHhfux32pj6saT2GBNqhAI9lQ7AvVLU/CwVEQ8Ht0mIW/kuIrkybK7XCCzEjjNvYJAkUxqwQnaNW4iN70VghEEvqi7HhX1rsXTVIRP7ThjT+XUwXA0/tIpC7PufJVi6UyMVLMWX56bDU8oJ6PXQ3i5EasJfsHRHnlRIPHLMZcb9WvZVVaEs5xRSz2ZBe18qfxAcx2Pm68OhqtNBX34Ru786igqpqh7pPmxzvsa2Y038PtQvI2qGD2ovNT120zYs22aqsW9jpuN3j/+4TXsi64m1A90x7KkefCkXUFuFwsIfsaL8Hqzt1cN6u2K1nxPkKMOe9GL8VSrn9LPthZU+HvAxKEU/30XelUIsvVOHG2IJ+vV4Chv83KHiYkpXiWM5rN4wLCdzwM7AvtBcuoJF96Qy4pHjPzgIF8+farV/rT3qTfc4lFJ9XjrW56VUn5eO9Xkp1eelY31eSvV56VifN6Q24uwfAmZPWMAZQ/xdpNedAG8m0KOmwVvKNondKEyOikSwUxWyDn+NxG1bsetAJiocAhAaEQlfO6kdYYLr4lVYHuED+e0sHE4+hH0nC6F3CUL0snWIltqACdji/EIUmKViw9PXokeXGa1vcmO3JaxtJ+EWjpVfHMKOf2OKYyPl1Ahr20GPgpPsc/PPnpKB4hoFPMe8geV/WwhXqQXx6Ki5fEDoyybp20yptgvz09n6z7vrm1PIrXJF8KtvYWRfqd5AXy+o5aUouirlGV3zbzYd6/97PsaqIfXXo7hQwvrq1EVY96cgqY1I9MfLER2khr4wTejXJwp1cBoajuX/Nb/ZPq3kizb5IL65rCsqExsY4Abunu1YxeSm1XKL6NRY02eM2yQfv4gShZ+gW3gZFvs6hiIiIgROlRnYLbXbfaoSTz0Xhhmj3KVGjwo1gl6JwYzhzQz2V5/GkXPlUA4JRYCZvuQ4PAz+9uXIONzVnYbAiD/FY/FUD8hLRJ3o8PlyyD3GY8HfVmGs1MYSfe24JalHmbn8uGoY0OIwfWedKMeKzx/Frl17mHxietiY+fjk4zekNgTRMkXpyUg9moKLTTkNHyZX9jbIyW0HmH5iJkO/OkJOw3ahlfaREdEfzxGchpawSsbNmo0pvnqcWDEaUz/JgjxgMqKnilXcbvyNrwb7/h85DTsbjsPfRMQYF2jTxXGQxG1fI71ChaGToxrbD+1OFXIPGuRCQzpyRap+KARiQlQMJrQ4SEQ8CGP/sA7JX6yon0hgGSXkfLylQmOqA7FUP15kESbnlr2BES46yb5LQ0GdCs9F/AdW/s5IZ50Rj/V8TAeFOCGM2WSh2M4DU5bEY9lIqY2B8ixxXIfbgNnMhnPywZT31mD9DKme6CQYyYztyTh+oQQK/zDMnDwckgv5gXAc5A+VPg/7Pl2LBEtOQyN6egfCizukGmELrwDPh7Ra0QrbjAC6ybHW1xvDHH9BYeFVHMq7jkt3usPD+xmsfMrYW9MMsl5Y7MWdhhZgdasDvOBjp0dhQT725LDr3+0BH79BWN274foxLv2hunUFEemXcOyuEs+7GKJ+2GK1tzuUP17HKnIadj4s+M/q89KxPi+l+rx0rM9LqT4vHevzUuKHrrPHIZ/F4eiDAEtySj0avtzYsDTTQ6GCUunMkgNMfTF8xoQzevLZbayNs1cAHC0KX4ZwDRXkxvV8VaGl6/K2PXiJDD15vV1T4fhs4TFmNNx+zsHubduQkZ8HrbYU5deP4uD2JGTfUyM4JFBqK8HD/AjvKd13PUafpb6N+eftOswb5QNFXR6+mh+LJe8vw9JFsxF3nJn8jr4YW+85PIQVb83Gq68bpz0o5n+Uaqac/VlsZczMj5gS6KhFcZFWKrGMte3qGTceIR56XNi2DGsymznH2nbQoSydfW7+2f+4EK9OWo0T7OMrvIMQKbUgHh21tZVCXzZJ1car7sT+KvRjhbTKpx4+E1WUNTI7d7h58TAVvMysz0v9vHGZmZxqUmYwuKzi8om3eToQHn2M7sUg31oTVqz2Xv3nLb9+Fhn7d+D8HXv4DzWVY0oPNZQ3i3HVSF63/Dd7DJk1Cc+pgLKT6/DqIt5f4xDz9k5crpbDM2h6g0NwJDNsRymhy/0cs15fIvTrBa8vx2EN+4oCxmOem9SuEW/AlS8W0pxCrImcm42YPx8SmxiYEIwRTmU4/GEMdtGq5C6BNX3GuE1p/lGk7jqKQhs1Aoc4C/WOg3zgWJODb/anotTQ7tI2JJ9lhrArqxNamWOkbzSlB9XTlKyTZJqZ/JPZGWSOOCOfR2GwteXvYSbXjKg5n4IsrQpBL4xqMK7sRiF4iAMqMvciq1oq67LMwe8ne0BRnoa/Thd1oiVvxeKfWXqmGw9DdJTUzAIDnZSA9iISzOTHq+9ukVowFk8WBvPLTq7G1LfisOLPK+vlk3L4ZCyWmhFdnVb0+/p6s357rwSaomIzR76RjDDXUYyp12XMZYHRfTVny/1sLC8rUcf0DxMZWsWj2VjSvxoQ5BO/h0Z6UcN5or1oqY1I09foGrTaPjIwIx7RTA/SFmnQ+EwrZdxAJ/BVjjd3A8X/KEQxeyLI+UNs5FKse80DxQfWYUV9VBqic+AOX28H1OTsxcFL4jiIVpuHbGY/ZJTaQu1hYQJTC/ZJa/tY3V2DXGhILa0ErH+PJsd4RB2HtzHRcwQ51oNJLSa5evD6rjtW86iZOC4ITiVHsWrOHhRIZY2I6gfumy4+udBUB3o9FiuSxSaWGPGXcCbn9Li8Y45k3y3Bq+8fFWTOcy/OqbfvIicHwAnlOLFmNhYIYzaxiN2RB53cAyOmmg1oagvFcR1uA74Vjln/4muSVBg0YZJYT3QaGmRGHgozv8au1OuQDQjEEDMfddNywpKuIeoyjj1YdR0gb1a+SMjc8exgC3JOMRrPDmBSxuIKyKbsMk5Lugyvb8k2s1Kn6+rYO2GY0gY3Cn5A1M07WHH7Nub/cBWX7tmg31NK9JOaNccC1wHwsLmFG7elAiMmPdUXHvI65OXmsevfxV/v8Ovn41KNLTz6OUKUGrZw6mmDu7qfcYP9qLLuMu3bRnTEzHbxwGjZDWwp0devTiQ6Eexram//mzX5JvY4fLTHNlGVh9yfFPAOMHOmsU4hzKr4idWbRDF1gFfo25g3901EhM/CzFmxmDvnTQytn70mzpiYMGoaImPexIwXQ+BvIWITlKMw5Y03MeU5B+gFAWwL5+FvInpuLCIiZiFiNr9uNAKkQXfHIS9j5q/46kcXBPL3DfYXyhthEwT/gbbQfHcApeaC/X4BMs5kQVPXi6kMIj29wxE5721Evc6uGRGFqLmLMDPQoFBLn2Uwu9eYtzHLwn11HdTYv3EZ4pauQ4LRAPhVK5wMI5ZNF0KXFh/fiE1SWT3jVmHeOBV0WUlILJHKLGFtO2Ou7MHKOdMQs8ZsMN8ca9s14gZ0j7mP5YnBjs80fQfRUVFSP34HkaGBRoNTvD4SY4JZXXQkJr84nJnVDnj2pRjMGGlkQA+chllRMZg6VHQACPi+wuRDKAx+puZlBjNHhkcicuKLCI5kbV4JxUh/bsTYwnFotCDfIvl5b7yN6JeGMFWxLZSipKwWMoXx2bZwe9oBFT9mQy+VdFkubsdKZgAu/8ceqYBRVI47ZqudXcN8mJGpxYUD65jRqcaI0EkY65+GJdNHYygPJ9qko0+F3nyVlV6HYrcgTJzKzxNrGnFkM+JeD8cSCnnzZMN0i7IKZmsquGUqIVNAYWb4VWQmICEppYmZrgbdKQwRXA8Kj0JkFNM3ZoXB2fg6FmRdxPMBkqyrg8soVhYRVq/jwG48pv46CiEeXGfxx6jwUHizxj2fCcXM8JcxpImVKMB1pH+bg+r+ozHOi58rTspSV2fhyNlSsUlXJmoYPJkcKD4dj10sO2jcJEwMAtbPeZ7Jj+ZCbU1CXz7IweSRDj4Yy+SHpX3BJqr5N6RFQbqRHEMaLmi07LfTD4MawjwQXRpr+r2pfTTzdfY6mtkhDlI1j8byygSjPh+AkFmSjGDXi2LnjXRqPIxuosvMYtecF4uQAYaLWmnLWYUl/Yth44mg8EWYy+TTTGbXRUQx2zIqHB71qk3DedEx0YK8i/wN151GNeh2Fq4RPT2ka0UAaIt9JBCM+N8Gw4nJ7MQvjVc7S1gr4y5qUMZ+D35/CMKI93wFvarsShCWLZkM16KD+OuKNKkh0dmQKcwHv0tx/qu12HXWNMSezCOcyYk3BXnB+9g8Y/nTEX3M5D3YPUQvQjTTVUx0Hxems8xZhKhZBrnG7LwXAsWJTY6jERYeCG65Of+KyTN2rgcvJ9qdw58sw6uvxCGxmXDtcOkt/D50eo2wN+pLU4MxSKxpBjVeGsR0Je1F7FvD5JVgf7Hzjsdh6jBmt4WvrA9VeiFxNeLeX4n1u6UCRvHtO1bZv8VaHdPNiMcCTQmzl2whN5hWluTE9PFGk5os6RpqDAmbhXHPMFnY0xPjmhtDFtAgN1dnMRqf41A/ON/LQ67547QVY1CWdZmWbDMn9vtfiOhZXFeLYddfhMl+Bl3tCeOuBmPSLyDilgXHR939Fp11/Xq6ILyfDW5c1SDDgsDw6cEHgG4j13im1S/3cPUOOzr2wmjuDEItCqvr0KuXPSbZ2GJYb3voeXhZhRPmuAHn8suwva1+GeLhYuQ368ijyYrDznJsG3XIvcQUyAEBCDAehxZmVQCFl7L4+Ec9skFhGOdWi/O7PsLmLWuR8MlGpFeqEDRylNRCRO3tgKztH2HTPyzEzef750QwpfMHZgSdkOYreYUjLLAHruxdi82bWdr0GdLKVBj5kjgAVnH2MySkcUmtQRp/35Qmwu31dcJTNuUoKrC8d48+/wAOpqSKoXO6D8e4591RdyEJm/jS9c0fYduZu1AND4GvkbKqHj4EFQct31fXQYMzKYewn4folEr4yptlY5gSV12IMwlSUSPewLwJTD1nhumu/zDfXzMYKxePh6s+D4n/uUEqs4S17cxIZ/fbnOJqwNp2DIXTJKbg8hSOuA3LhTBiZacPYo1UT3RG3DHy5VC4VaYicdNHQj/e9MVZ1AwIxdThRg5A2MPLrRIpn37I5BLf56cUV65VQqluCDOpdnOB7D7TDfr716+y8ejPrlFyDfl8IoKVMgOuz8Dx4mfsfT4UY+D3DcPkUSqUnWRl/LxP1iLlrju82mR5O0DlYCvsrdZAANTOVdAUPgED+tlp2C+EnJHyjBF/mo7n2N+y+Ps99fJLHJgvh/apjUg5k4SNf1uB9f88hfQ98YhucrUhRwyxo1MFI/2rdYj/QDwv9Z/vNg5PeJzJFlppSNi44yn2+6vTiXFJKi5+B003T0yeHYVgvgl/o9mnTaP2ViGb6U6btzA5tu00NPYBGDfMIMecETTNVNZt3p0DmW8oJvjxAUJmzBw/gSK5H8YM5UYlk3nPB0J14xSOfM/3NMrEkS1JwmQwbU4SErZ8hozmwhuWHEDq5Tp4jAqDesBUjPFi+mJqypMRetBbXGVTXLMQX6aewo6PViB+QxLOH96KuHFSG4s4Qc4fHrKB+O2ZrVjP5Ac/z1zuHK7gVqkSrv7G4ZXVcFXyh4ISTgPFEuLJoNl+z+yxUYEOTH/YKNghCZ9uRGqJIwJHDbewqsYevi+EwrdbDvYx+ZDAr7f9IlTeZttOODL96AV3aI10kn05tvANnQZfI1uwWVuuVZjrX0yajQjFUPsSHPlffp/cvtqLXJknRg43Xg0lncc/iyDv8qAbMJrJIrFWPngshjpWIM1wjf9NRclTgRg5qG3TsjoacVDdYHeIyXSiUhvtI8bYD5YwPUiPy7uWY72lbSSslXHJ8Ug4XoaBUeuwka8wTPkcqWFLMMWtEIlLVkp7HRKdi+u4eF7DvuMwRE5jffppSytYDDCZ4a3DEYO82JUDbe8AjJJW3Dz8Psb6+OSXMVRe0CCzEg6gqEcgwiYaJrUzuTAhEHY3UrDtE6nN3jzY+oxGEJ+4fisFu7acgjBKlMbkGdNz8oXziPbmxAHTvQYtouRKkB59xx1D8oZVWPVBPHacOYQd7wWL9RZhck4w2+7C6dO9OC/YX/w8do2P3miIJsO4zG2v5DSjvaCDsGzaECbPNLiQbObVkSkb5OvcFfhyVgAU+kKk7mjtZHKiw+mrYt9pLfSCaWULj4lmcmJbKsqchmNysAWdoV7XuI6MpLVIzmGGT9UPSG5uDFmi9EIeKhpF42N5XwdU5J6C6UhLK8eg+L2zZKrLtGCb9X8G6ssJkq7G9D+NDG7DxzOLoWviI5Nhkq1pGmbBzzGMt+vZCxueGYjB8iqcK7kr1TRBNzniPJ+GvOJHbLllSSkCbvzMx9Z6YWCD15dhCyfBea0Q9zRkrC++ijy5K5YN98Pobhok3byPtV79oCssxCKamdB5MfKbdeRRWHHY6VIbqbuSiSv3XOBrtMpGnFVRgOwrpg64usuJzHDdiIwSQ3klSsqYpHNwMnGkVVz6BtlaC8477jSMDIHyytfYaXAaMmEaMMQddbkpSNNIve1+ObK/yUSp0h3efcQiq+jjgJ7Q8cUiLfPzWRz89CPsTG8ItlBzoxQ1Ng5QGX2YuqtnTe/rRA4qlJ7w7y8WdU2CsSxpvhgyghmdjVYSSjS32nDEnxZiopseBcnrsKaZwXVr2z18lHguegVTcHl6F5FBKuiLMrBv31GpnniUKAdHYt7v3jNKbyOYG4z9A+HrUMn65emGDbRvHcXxS5Vw9BlhJJdqUXhmLzRGoXIqCjTQ9vGEuFWDOzxcFdBkZqGirysGCka2H9xcbVF6PYtnrJYZuJWF1O8bhtfVz3pCWZKJlPoyHTQnT6HQmg38bXuIYS2E5APf0EhmKFch97yR4tvfHeq6YhSaDew1/pu9hyl+UmUXwTWaGZczxXBbm4wmLwzknhx4YGKUB+4c2IC491cjMYP9/dXB+H38UowQmzVmKlPcNVroqzXYt34Z4j7cgsP5Wij9w7GK9h7r8ljTZ8RQMlKfdPJD0NQJ8JJpkHVRMierT2Pf/yYirUSBgSEvC7NP50a/iQmD3VsMn6XNSW3QnbSpyC9h+pjTADHffzT8HUuQ+U2DrKvT7EVqXh3UHtJos+4sjpzUwHHYNPh7hWIUM1Tbvh9hLTTHU1Eo98OUyT6Q5aci9UfLk7K6GpHOXKArMSIiGL2zk7Dq/WVYn1wIraMPIk32fTZHDm15ObR1WlxI4LPiN2DXeQtyZ2saLuuZ/HphOTa+Fw5xstJGvEL7Mz2RNNvv5QrIbepQU23YMKUSufvXIuHgWZOJnQKK4fDtzx38RrqO9jTSsvnEgQbUQ/3hWJphqpOkHkFunRoe0ttymrTlWk1j/av0NLMbEhKRbwh7fP8HlN9mvc7RdDis6FzDeXWaTBRpbaHqKw4UKvgq77oqVBuuy2TvwYS1SLn8eIzcTPztUsnmaEiLX5MqGW22j0YuxeIX1dDlH8QavnrHAtbLOA0S3gnHyBGjMXTE83g12Re/DVPj6r/iHrHNRjRHTc42bNt5GqU9PBE8g68ofgdREeHwd2rs8DPuYyg5gmxmS/TsLRo1betj9vAPN9Wj5kVNszzhmsksYaL62QMN98AjG6Rfh2ygvzQpswDpOz7EtoOZDbqMpgS32fs4Okl5otPwEt8jvkKHO0UHsZ7JlVWbj6KgWolBs5i+02SYdw/wKO/wGI9oL61kfyXhTBnTk8bNb7SHfQNqRG9YiZlecpQd34Kl6VKxAbfxDfJ1wSR4Kspx+ZudSDRvRzxyZL0MYx3OULmHYsoET8h+vIiLfJ6dYiyG8MmLx0x1m5TMcijdmD4jFVnSNVpNRWrjaHzegfDuUYLc82YTtK0eg2pel2mWyhyk1etqTP87XwC9XS/29O6avOo2GMuGGaeBiDHM5q9HjphBrG6IFwb3scGNa8XY24LaN9vZHcPsqnCu8Db2SmXmJN0qR/n9Hhjs7YplPbnTsgeWDfDE6F6GL1eCPRPnZl/CmPQsjMm9iXIndu26H7Gx7MmwkR9bLPnPOiDZCO5DyZMopk6QbzN5yMplAs53tDR7oWFWRWNzwxZyl+EIDo3GzN8sQvTcdzDjWfNQGEznu2th5QtTXkNfD4G6Lg+pJ/OMDF6+JxgPmxOG6DnsmoY0m4edsIfKbKJss9yqZEolM7KtnQin8ITv2HBMiXibvec7mPuyn9HScpHym2Zh6CquoeSegj3YpHyXwwfzNizHTA+gOGUtljRhdAr7Y4Q2sdqQGa3/d6oHFEVHsebP5isRjbC2XYegxZk1PIwhS68sxJL1R3HHJQjRyyxstk10ODWXD5httJ8I7geCshfkVRpcN4v/V3G7itU5oMGm1KGahxowhvVtTbUD1F5Mhil9oLbXIP9cNjRVznDjKz76ekHdoxxXjeM1WyEzmABkv6YGlL0UqCm7bhpG5X456scBm+Pp4YiMipHSywhW30P2/m0ms/9VHq6QFV9vJK8b/8224sgVqbIL4Bq2Auv+LQjKiiwk/HmJEG7LgGGss/jIcrz6/hbsT07Cqvmx+CqXfYVewxDZVJ9OXomY6ZMQMj0WKzYfwv4dG7Dk9XXCfqfKIeOxQGpGdE2s6TM9B4U19MmIaQiwL0HarkTkGhstP19Hdspn4uz4f36NtGuAW3AkIsZ6Sg0so600DSEmIJPcjVzWMX0pcLaRnsRS6DNM4enjUm+g6vP2IqPUGcEv+kB7JunB9iO8n4mT3PFlU47M483P0u1K3NGL0lqX9Tli5q9GYvIhbHp/NtacZH8LxyGY+Duh2gJbsCR8GkImzmY6RBKTO1uw4i0LcqdoHZb8TxqK2bc2Yta7ECYr+Wtx+HihUK03foAQXZ5m+732KI6fvwevyYswd24sZvBVgS6N7S6B3r2YPlKBcjNloOKOkQ7D4DoJ+gZhlpEciZ4TBm85+3k7NwxkWbTl2oQF/YvZakr38Qh5KRoR/P3fegfBxstKBKqgtbAPDTNFBbTnUpB1j9mWzBaNnhWNCWOHw7kVK7wfNQnzJ4k2h1F6dYVU2Wb7SAwj6inT4PD6plcEtk3G8RWQ0+Ga+zmWZIRj455DSE89htQWIzkQj4K6slQc2clX8/4d23afwPVfXBH86lsIdjHuI+Z9rAp6o0H3tvWxKuQeNNWjEr86YjlagSCzyqExjxR1qxLVxpMyuzO7LPBlTJ4ZK8irufNCuuyKm8ed/X+OxdSJkzD1rZXYxORK4vo4vLomDWV8gvaL86VW5mihFwYGmdxicmipYH+tRuz8PbhcJ4fnyHALEz7VeOmDePw+SAktk2PL3zEO/S5RuKdets56h8m5XDkGTX0Xn9BE0E6GPXwnG8Y6YjAzLAB2JanYte+0OHYiyAkFvCcZ6yyLMGsYExAOKjQMFVvSNVpLFbJMovHZI2Aw04uuZSHL3Dll9RhU87pMs2grTLe40NWxT9l1+WvhBSEcaUO6YmEVnx6Lvr+AuRmXsDGvAsoBPljm6YDRUm0jeBhRd3vcLbqOVc398X6+jVWXS3CXtZ80hDstn8GkHrdw6Ec+ZaVOklGm9OvRF3Pc9Dh25TYUjmocfM4PR57zwmZlS1OFiQ6nPfxtbcjb8IClpjFMH33+Qag4nyPMSvP3ZhKsqVkVDMfAaES/zB2MGuSe/QbJOz/DvkumBmmTdJeh5sJp5MMHoVOM9qiQqLiWiYwM45SBtBOnkdWU38oSFZXQ3neAi1sTkrhPAPz9/MRZGo7jMTMmHCOZ5ll6+SyO7N2GHXtzTAb8OfLu5gZ6Dyi6rCzgM7fWY0GQAmXHNyD2j0lNhqQY8ZfpeI7vj2FhteHiBcxolbNnncwHi7/Yji9ZivTmf3Ul/F7bjq1/EreXtbZdh1OUgcOb4xB7oJD9ADzwXJhUTjwyamtZ3zbZaL9c2h+VIZNZpXs1Jg/513Vw7h+Anl7ucLxZjKv3r6OwuA5qNyYnPNRQlhQ0OASslBmWkMmsnc1gxo+pQshTQ9qckIC0a8arB5wxUG3feIIDo/HfrBQ1DzILrzMxbinWLZsET10eElfEYs1xqVyi+Db/VrQovmi8/44GxVperoSyVSt79uAmP81OaTJ7kOh6WNNntJcSTfvkjkRk32pqlmEt9Hwv6WOfISFVA6X/aEhR9trGz+XINdGTWDp1Gmlns43kkAOzZZlEZPKRb8j/oNTc4wLQykgOXYT95eJfs/jqBhMdaJdQLoeyNRPampA7xQlLMHV0DBa8vwxxf1yIqSGzkSrj+k85yngsR4IQqBVW521O+BpHzmugVboj+OW3EdnkJARbyLpLL5tB/1OOqRxhNld62mlk/GBxeL+dsYVH6HxEhvlDqb2O7NQD2LXj70j7Uaq2lvt8JdJabNt9FBd/rILSbSxmxMSaOUYeT9psH/1hIaZ4sROrgUELxPO+fM2XncXO9A7Hl58uxUvsdVtk3Ni/LcEUxwx8/J8bEPnbCIyQZeGTv36OAmUwfr98jtSK6HTcr0LNT2eRmvR3pGrs4f8ro5U0LdHGPlZ311SP0lY1N1bUgsyy4XuExWCyfy9oC3Nw/MAO7Nia2miyJNGJ2V0O7s9RNKmTanCHix6tBheM7bkiVs4nvyl7NdonceyyeCyf6gF9bhLi5qzDCam8KS4fT8KqOVtwhr2P8tnRzUSOIDqeKmQnNdhVmzZ+hJ37T6PCZKFXJQq/M9ZZWEpn9s+J79pfFhhH43MMge/TOlzJamLyZJvHoIgHJa+uDltvFyNJowec+mI2U30aI8PKAf3Qy0YPXY++WD3AFdtYCu7N63ohmL1eaeSUOKX9CZPPXcTSc5ewIoOvKCxDOd9os1aHQnNTv1sPLPdxgfaHYizt9hRinlFCU5iP9df18BnkimXkO+xcWPCfdUS+C+1xKKE7he+vAR6Dx2NoU7MqGC6uKujzvsHOlBRkX85BubYStda+t/YHnMxMxZGDOdCpQzCj3ugtZwolYIcKZF9KbUjZ3+HqD6dQZBphp3l03wmb1noMN9rYux4HBDwfhmBfJ3GmRj9XqPR5SPkiCRmXzqKorBQ1dY0nfyj7mE2B7cvO616FijIp32XgTsMtWMxnbmVsQMw7nzcTx34Ofj9ObXm1IYO7SHTVesgd1XDtJyYhBAVD6cJeq8SMte0IoknKKqHt4QK12S7W6n7MOLlV0qIyqSkqQZ3LAIzpr0LFj9nCzDZeJnP1wdD+DvVlAlbKDHO0Wh3kTw8w3WjbRg3HJhYNtAqFP9R9KqHJt3ICR1dg3FJ8+bfp8EQhdr0fg1VmTkNOYmYhk/NKeAYa76kRhIGCgClHsYVzBN7bKMyg3/En47nM09GXn6Ytw1WxgCCaQIWAaYsQNT5AypvB9JI2G5iVd1GjsIWuwEhPYim34CJy8wrq5ZQj038CemiQynQt+DGdpwsMonc43+QJ+o+r90KTvXWihb1TtShrauX2zFVIZvIjZa3xbHbD3oVGcmfBRqSydl/+xQknkg9J+0u/gZmB7PrluTicLLUjCCYx5Hb2qKvOQ2HmXhzZ9XfsOFsOpe9weEgt6rlTiRoLkydVKr7naQOCTiK/h6tGciT70hlcLTiD/JKO0CXUULsoUHpmK/adOIrs/DxmBzLLrLW2rI09eirqUPNTJs6fSMLu7Z8ho9wevkOakL+PEW22j+xYYufpZE7157m6GE5kZc4qCONlrZVx41YhboISZz5bhYSiSfB0kUNbdA6bkjfgcK5WmGlPdBLsQzBlztsIMQo7bIJhNbM1POw+Vl5mccK3vL8zlD+XQ8Ojq6hc4dyjHOk7tyEtMxWFP3WhSZBdkLgtx5gdtRXLjFchzxDljrZMjKrQmCScKWRarHIgnjPeY3WkB5y4TCu/gcNiicDYZdsRP4M9AQv3IO6N1S06DYnHHEG36cHsoFNGOgtLP1zElWzrJnC3joZofEOf84FjBctbGlB6wDEoonWE9/UQVvOtNVt9JBd0x7qGBQUmdIP8F3GvTKVDb/ZdiUnYipVPkmKv+0mPn+efchOv3+MXHKutwyG+wlDWC6P7smcm+66TxGb1xKoHwOdOIeIrWMMePaGyuYvcSj2SKipxw0YOFZnfnQv2O7HWr9aexy61x6FILfKzClDzdCCCnJueVaHT1ULezwtqYWYYM2b7h2GcTytHv0v2YneqBorBL2OycG4VsrKuA54TEDrIWdwDyEYFj3ExiPp1ZMNG/dq70MMBzu5MmbRravVOFXK/PQVNDz/MeD0cvk87M4WXKb1OgQgOj8HIvuy9TqaKA2z6WtTJXeGhlq6l8MPI559ptBJSNoAp4M9yQ4rB2gSH+kF5K0/YA6ArEb12o+A0REkWUkt88fsPVmCllOKiTWPLN7fakLPqN89jZIhp+jhTmEqGM+ufx9R3RNFrbbuZq/fi/Llj+LLJGPftgQJOIxs+c/yG7dgxlQ/LaHD5gNiC6ITcZIpjiQOGvjQNaiF8ji2zO15GiK8MRedPtaxM5uehiO9v2L8KmkJplfXVayix94GvSyUKfzBaeW2lzDBHcyEbFb0DMDnER5Rv3Z3hP2UE2mWYxZMZ1FoNrlr4oCZ7sRmSfXt4Kx8hIyWnoVyLgtN5UIQ29NmVH8zHTKkZNu3B2XLAacJyfLl6PiKnzsGyf4ohmHW5adgk7M0zHfH7TuH8qe0N4Yh3ZOGqLQ9lsxFb/zQHL82aj/gvFmIsewSUZR5CgtSM6Jo8eJ8pR1HJPfT0mYDJgz0hFyYw8ZB8oZgxSg39tby2O581p5B7S4UhL4VJso7pJ07jMTUyFhFjpfCCduMxLtAemjN7kXvtAFLzbOH/QqjRStlyaKtZs6cGQKVUSfdHNCKdD4brofCPwNZPl2Le1HAsWJskhMRCeRb2bxObNdJNdqXhao0cTmPmNMidTzfiFV9jucNYfxQ5PPxWGJNPa5di2Z9WYeu++Rih1KPg+HaTsMvEE86AlzErOgYTBkq9mOkP3v0dgIoS1pvN0J3CRSZgPEIi4a8U9SF5/2mY4GcqwwSdRBWIsJF+9TJKFRiJ16LfEveOfujcE8IhOvYPgNIgIweFI7BRqNLmcXshFlERL8ND+KxMHjoMEQbwKsqanvb4uGCtfeS6eCvSz51CqiH03ipm65qdN3J9hqALazM3YOT0JUjk7ayUcSLTsf5P49E7cwtWJPCh0EO4WQHI7VRwZZrsIO6Y1LWobRMdRVUuSqvt4TsuCv6GsMY81OfINzCyfy2K8qR9263gofex+xk4n1cnyiwH0bbiek3YMBdovz8Fwc107x7q4AA37wYZ6PuiuQ1VCS0fGHb2Y3qbQ4v7SRMPj4SL7Fuz88GUDRuxbO4kRC5YhS8XB8OJPbEuJH8uNnJbiB2nmP11uGE/1U1fZ6CMaasTP9iO+AXheGnuUuz4L2bvyfS4fHJL/WT2EX8SnYYKbSHOfq/AlHobkKUF06VWEkoPIxsxHjsOcT2Liav8c2TPPU4Iuo0MXuPC4SvJCSgDEPIqk09TRsHiQrMHRIzG54MgXwVKs1NNw4UaeNAxqHrINrOGpDt3oZf3wjBfD2x4qifCFT2xrJ8Hwl3ZL6D8FpKEFYG2WOkTgJNMofy/woOgFu/+kIMJF0zTQWEB0C0cZK/nSl/UsTu3obFl1x/Erq/qhf/buw+2+Q+Eh00Vzv1UhRtiM4F+vdSY7XwXB4vu4hQv0OtxF93Rm7+ngum0TYQ2JR4hlvxnHZCM9jjsRMcHhQ9Kcal4p4lZFYzCk0eRb+OHKW/xza7fQXSoCpprrZ+dWpOTiAOXdHAb84po3OYnYffJEqjGxWAu30Q79k2EetxDdsrehjCBPx5F+jVb+E6JQeS0ECHsikWqT2PfzgPIvueKkFdiEDX3bab0hsJXXoK0nRuRbnD45R/A8QLAf8YicePumBfhqLneSMhrznyDioA3xTZzp8G3Lg8H96ZYfoA8xgx0lRRylwBMmTrJNI3xEes4bvPF1YbaDCRaWG34UBAEvxyKh6EZ1COH55iGzzwxyANyppTuW7Ww8WbbRCeiEll7v8Z5vSemzH1HkEuRLw5ATebXOJhnjWzKQlEJO9wrRqFBNjBDNp/LQO6QM+7oVsqMRlSkIPlbdqLfy6J8eysG/mV7kdYOU9HULiroi/MbDyAyTPZiM6RXJjze4Ta9+6GvIAeU8BxnJKOENB5DhEacPVjw7xtwQqOA54Q5iONORX8VtNlJWP7HdfUGqKDny5hsEbPi3mPxh1BQrcJzM+dj1XtzMNFDgeKTG7DA0v4ZRJeiPfpMxdlEHMyugFNwOKJjWX//3SJETglEz59Ssfvg2YYVzK2mFBl7D+AKfCRZ9x7mRgwXrnswje+R5gD/iYFwvpmJI9/zUA21TK07haIeAQitj/BQhay0LGifHoWZUdEYx/dyJSygwZo//gWJ2To4DZ2OBR+8i3ljmN6jScP6fzfaT7WRbsLkzp8/xxljuTOUyWgzuQN8jtj3k3C5gsmxMdMxc+Z4POekQ0HyWix85Ps9E52Ka1/jwLl7cHtRskOY/jCy93UcOXTCgu5Ri8LDTB+6o0JwlKgPRYc6IOuQ2Yx8rpMc/IHpJNPqZdTM4b1QkvqVyf7JDw8my45lQusUgkiDjBxaiaut9EUUfcs+K7P1QoXPyuTh7FFQXjuKlAvttTfjY4Rtaw0kK2UceDSahRgry8AnTLYZvqJNezOg938DyaeSMEVdjhPJ66Qa4tEj6grZWiYHZr5dLzcmP8f7ONNPrLKNRB5+H2N6yvFtOFLkgODZom0191WmLxWlYPdpae9Xvs/ruUo4jWmQgQGVBWareXKQkX4dtr7TmN4WicAmB4mIh03xmjisSS6E3ikAMxesQNzc8cKeqyf+ZzEW7JYaGWA6VL3k2r0EC/jezzIPTJz7LlYtmI5Bjlpc3vkXLFnT8G0PclOJNpvSA2NNbECWJpithFUZj2kFY5BSh+KMz7HkrS1SA+LxgOs2iUgrUyFEkhPzosIwUJ+DlG+lfRDbGyEaXy1Qdx3fN7kt14OOQRkg28wqdGVYnl2MG/eVGOzjg8VDfTCpfy/of7qKNfmVogOPIaxAlNk0jO1YS91dvPv9ddyoY9f39sJ0Pzd4yLQ4l33VdJ9FWS+sfuYpaAp+wl8NzkH9bRwpscfzgc/iyOCnIf/pJrY3tYsJ8Wiwxp/2EI7dBgz04z5EE3gBb9MUD7t+SOBoZF/qmAEHmZ0z7LpVtRCzvi3YQm7fB4pfKqGtthArldPdHvK6qiaWI5vBQ2zw1QL3mglr0d0Byh620FUZ7Zkm4M4M70g4fvch9uVYcV8EQTxaFCoo5bWo1lbioU7yaVJmtIQCPZUOTLm4hRpde2gTXEaFw+70R0jJl4qIxrgFYeKQXtBePIozhhU/VuAaNB5DXPS4mpyGy1IZQViP2N9tmTRqvaxogTbLIANMp1HIoNeRPtMyPhjLow9cPYQT2VKRNfgH46WBcpS3IHcEOeN4FxeFcKUE0QSSPWNbZ6UdYqU+9PDsOWtoJ9tK+Kwy1DZn6xHN8CAyjulWrT2P6DgEXUEh7HP4QH28I/pYS3qNNWM6TO+SK+qYbkMjto8eNUaEDoZKX4j9xxvvw98cpBcRTWKVHHgEtMsYFNlm1tLPRoYAG6C8rg7nGnllHhwfmQwe7JsUwpW2gmHsPBXuI6vuF5MVisSjxX9wEC5mGlzLDXSI/26Ap7njkJ9iVmTCw68fMnRUhzkOnwyMHYdSEUEQRGehewBGhrpAczAFRe3plCAIgiAIgiAIgiAIgiAIgngMERyH580dhx3jvxMjDxvaCUf2j0ne/NgB9QRBEMSTw89ZSN9PTkOCIAiCIAiCIAiCIAiCIAgTzP1nJnnzY/vU2wgeRO5E7ExHop25jrRttNqQIAiCIAiCIAiCIAiCIAiCIAji8cCC/6wDjjb4RfQgdqojQRAEQRAEQRAEQRAEQRAEQRAEQTypWONPewhHG3STPIn1qRPkCYIgCIIgCIIgCIIgCIIgCIIgCOJJpT38bW3I2wjuQ+5J5AjHTpAnCIIgCIIgCIIgCIIgCIIgCIIgiCcWC/6zDsh3G+DpL9Vwd+Iv7N9u7N+GvPmxI+oDho5C9qUMljdFpXKWXhEEQRAEQRAEQRAEQRAEQRAEQRDE4015ean0qgH/wUG4eP40e9U6/1p71Hcb4OkntjNgaGfgEeSHDB1t0XFIEARBEARBEARBEARBEARBEARBEF0Z0XF4qt39b9bkbYRXPGOIZdoZ8gRBEARBEARBEARBEARBEARBEATxxGLBf9YBeaM9DjvRkSAIgiAIgiAIgiAIgiAIgiAIgiCeWCz4zzrgaMNjlor/83/4v2JeLGzId2g9QRAEQRAEQRAEQRAEQRAEQRAEQTyhWPSfCS4003x719sIGxzy/38R/mEvxTx/bZzv0HqCIAiCIAiCIAiCIAiCIAiCIAiCeEKx6D/jLjSzfHvX0x6HBEEQBEEQBEEQBEEQBEEQBEEQBNGpsOA/64A87XFIEARBEARBEARBEMQTgWvQeEwMUks5gnhCcPCDv5c7ZFK247CF3F4FuY2UJRg+GDs1GIOkXNtQI/IPK7BywXQpT3RpFJ7wGBwC/0E+6CkVEcSDMNq2G5NExOODBf9ZBxy7eXj6CwsQeexSXs6dio86HzB0FLIvZbBXVuIXhXnPA6n/2IZcqYh4kvHBvLWr8NtRaigkrVirScPWPy7Bpmwx35g3sPHwQoxwZG0z1iFk/udSuTms3VHWTillzSjYPRqvrpAyDNeIFVj3b5Pgya4rUFGIw9uXYcmmPDG/bDvOz/AQX0voqrXQFp7CJ6uWIbHJ+yUeP9wRHBUJf6PfTp1OB+3NPGQcS0GhtlYsFOSZpYGMKmQn/R1pN6WsjRr+L4Qh0FOFnpIRVlNWgMxvv0b2LelaxGPDsN6uWO3nBDnKsCe9GH+Vypsi3FGNWC8VetmyL/9+He6WFePzwtvYyh+kBrr1wGqvARj9VA9hmhBqq1CYX4h3K2pxQ2xBdDkay5l6fkzFpr2n2QsrZRGnzyhMnjQabo62Yr6uCpqLqTiSnoUaseQRwQeg+kBWews1upbknS2UA8MwIeQZONtJn6O6HPnnDuDI9xox/wQwaF484t8KhqtcizNrJiF2m1TRFG7hWBk/HxM9lKIuVadHWdYexC9fjf1FYhMB/zlY/7e5GKuWi/k6LYpPf44li7bgslhCdEF8p72HEBhkSntAffrxRo3ID+KxIMwDSoPtVXgUW/8zzsz2CsbiDUsQGSjZaEyuFJ/ebL28MJI3lu01a64fjLjPlyPSV3wIarOYvJqzDmeEnBoLtmzHb5QHsSR8JU4IZcSjwxaOz4YjdJQ7HLuLJXWVGmSl7UXGtUqxAKMw5Xe/QoWxjdSuWCmbWrTfRN3L8bsPsS9HqmoPujtAydT8am0l6qSi5lCPX4TJ3VOx+ZtMqcQI889wvxb6mkoUZabg+KXrVl1fRIGeSgfgXilqfpaKBoQj+iVP6M4nIvH0danw0dB4fCYPiR/GYdWBlp4fjeVLY71oIXaceQODJDnYgKnu5Rodj63/FgwnrjrpNTi8PhxLDHrZuFVIXj0MxevnIDahpXsS38/17GqE/D5JKrNAi7LTlGVJpzDTdIiqHuPzrW3X5ek7DZHhfqg3rXjf0VehLOcUUs9mQXtfKn8QHMdj5uvDoarTQV9+Ebu/OooKqcocmVMIQkODHrH9ZkEOEBIyLHjaFeH9n4JckCX3UK4pxvobd3HIeCzHHFlPrB3ojmHGYzuFP2JF+T1Io8uAgytODnKSMmbcZe/xfRm2s5f9ejyFDX7uUHEZpKvEsZxCLNUJrdj7OGBnYF9oLl3BontSGfHI8R8chKzzpxv5zzoi37DHofAP/7cT5AniAYj+eD0WjGFKb0kWDu/ag10nC5mWHIwF69YhWmpjTvTHcwSnYcuUoTi/EAVmqdjw1DbWqEcuxbolTCm10+BCyiHsS8lCmZ0HJv7bKsSPk9pIlGWx+mSe0nCZXcvJfxLi/jseM6V6outQc/kAErdtFVLy8YsoUfghNCISXgqpgUAJMqQ2DSkRGeVStY0ngiOjEOwGXD/+tVjPlMfrv7giOCIWwS6Skkg8Hsh6YbEXdxpaB3cyLvBVQX7nJxzLu4pjP96F3NkdsV4OGC214QMdq32eweinfmEK5VUcyruOS3e6w8PXF6t7cxWA6MoYy5n69K3pIFGLssgxFBERIXCqzMBuqd3uU5V46rkwzBjlLjV6VKgR9EoMZgxvabWILZxHvYnIyc9Adi0DB3fyz/E1Uq8BbmOiEDnWU2rXheEOwC8OYce/BcO10UBWUwRj2X8vwhT2YyjLOiroJycKdXAaGo7ly+dIbThvYOO6+RjLvobi80exi+lcJ5jK5TpmPj75+A2pDUFYA/Xpx5kRf4rH4qkekHPbi8mLw+fLIfcYjwV/W4WxUhv+HUdvWI7oIDX0hWlMrhzFhRJr5QV3TG5H6hYmb1ya0pasvP6s2Zjiq8eJFaMx9ZMsyAMmI3qqWOW6eBV+46vBvv9HTsPOgOPwNxExxgXadMnWYX09vUKFoZOjMLKv1OihY61s4rRgvz0MvKchMmoavKVs87jDw1WBkh+zpLwljD7DlweQnqeDOjgSEa3S+wIxISoGE4xvqugoUo4exZGLj9ZpiHGG8ZlycXzmZCG0Sh9ELovHspFSmyaI/thYvhjpRf81H65SG0ApOgIqNE2PFzHmTQuG09UkTB22BIfL1Jg4daFUMx3r/zQevTO3YEWLTkPG7wIwUKZHQVZTTkNrZGdjiq+a3ruQSvRiZa3Bu2B9uyeDKuQelPrO9mQcZw8ghX8YZk4ebrWN3xyOg/yh0udh36drkdCM07CnXxSiXh3F7LcspHwlyqCDTAgpmf322rRRHbhS0YIcIARmuwzE7AEO0N8swqG8qzh18xeo3LwQp+6BflKbRnSTY62vN4Y5mo3teD+DlU8Zje3oq1H4U5lZugOhV/7CqoVGQIxLf6huXUFE+iUcu6vE8y72Uo0tVnu7Q/njdawip2Gnw6L/rAPyNtyTKLgRpWOnyD8QfFaYM3ryWWl8BpbSmSWHJsIxiG15m56KJgbam7uGQgWlHR9h47MpzNoYzrM3dEAzWrw3om0sxJThSqA8DX+dHoslf16JFYtmIy6FKV6OQZiyWGpmzIx4RI9SQlukgVYqappDWPHWbLz6unHag2L+JVZnYd+fxVacebGT4Skvx4lV4Yj54zIs/WMsYrZmganfGBFlaiDfucrq3+dpCWKmz0EiXzqr8mVKpFhPdB1qayuh1ZYKqTT/KFJ3HUWhjRqBQ5ylFpw61EhtGlI59NJsNcdhofC3K0Fa4mdIvZwn1v90FqlJW5F2QwH/0DCoxKbEY8AC1wHwsLmFG7elgmbpgVgPJ8grfkT8Dzex9PYdLL1RiO0/Ms1O1RezDU4fuSMCHG1QXliAqJt3sOL2bcy/Uoi8e7bwcFI2rZQSXQJjOVOfqk0N+JZkkeMgHzjW5OCb/akoNbS7tA3JZ5kh7MrqhFbmtIcOJupU5nqZzM6gU4kzWGU27Aq2/D2aCX3lOB7jhthDk/oZdh1LRVEZ/xx5yD32Gf6VqoFi8DSEWDMW+DgzbjxCPPS4sG0Z1mS2rOUITA1n58ihy/ocU9+KE/STBa8vxWGmSim8hjVMwlo8WZh0VXZytdBuBdO5Fry+XGinHD4ZllQuoivSin5fX2/cbx9Gn5bkiLRKScDGvokyw/vxc6TX3Mbj99mUHUcYMQe/n+wBhcH2YvJiyVux+GeWHlAzeRElNRs5H5FBzEbTHEXc60uYXIljNs9qnCgX5UWcm9TOIuMxcZyHIJPi1mdYttesvf5AJzCrDzd3A8X/KEQx5FxlEid8vuaB4gPrsOK42JR4lLjD19sBNTl7cfCSZOuwvp69fwcySm2h9rDgyGpp/EWSARZlDD/XoGM4+cHjaQfxtbWySaB5+80izd2TAYM8MpervLwHL5GJ1xDGpZpB6QO1shxFBc2t6jb6DGU5yE3fhi/PlkP57GiYLCyrv29LMrUHeyqwv1kPo3u+fxe3iwtQYT4Q3aKu2L7Mi+HjM0wn2horjs8smo1ZO/Kgk3sgJKqZcJ8jVyBylBK63M8xS5AvXC8S9R1FwHjMM8iXqH7gPu3ikwvNxotisSJZbMKdg32ZzNFqNUz+pOGChkk0hbhWLfrjhRgry8Anf/6c1bVMdCCTvXWFuPAPqaARVshOC2x61/jeeYrHhRru/tIgNaHBSWltuyeFuruGfp+HwsyvsSv1OmQDAjGkfimiiGDTWOyzDXqIzM4dbl48JKmoYzn2YNV1zMRvrq/bBGLMKDV0OUnYtj8FhT/xe7mOosxEJH6dA506BC8yHUrESHczgt9bo7HxpmSQ8TVYG2evADhyOdaUHDDQnNzj78U/H2/zdCA8+pjdy+OOzAHh7vbQ3yjAnGu3sOL2Hbx7LR/Hyu9DrlYhpil3iL0ThiltcKPgh4axnR+u4tI9G/R7ymhsp+Y2oq4Vm6Q1FXqm6dzHjRvlEHulLZx62uCu7mfcYD+qrLs17O8tvvFsFw+Mlt3AlhI9RajqhFjlT3sI+foVh9I/7N9OkH8gxFlhE0aFIWJuLCLCoxAZFYu5s8LgbCyU7PgMiHeYMROFmRFRiJr7DiKeDzCagWEL5+FvIppfI2IWImaza8x5E0FGK3lUwyMROfFFjJz1Nmaxaxjex8Mnkl3vTeG6kb95G9EvGc8ysXTdaAR0NYH4qJighhN7KmmvnsMuqYhz4qLoFHT1NZ/RGoz43wbDqToLiV9aMavLAiOWTRdClxYf34hNUhmfhT/Ci33rReewihmm8A/GS6FBwD9iMXLY6BbCNrB71RvmghBdnvsFKKtgOoSCa4PW4A5/Hwdoc48iu1oqqqcS2aczkH8LcKSxrseCfj1dEN6PKYFXNciwptsresGDPahulNzGXpb1kcnwPHu2bSzOxZj0K1hk8A39XI74c5ewqsxocOCXuvYJlUJ0TSzJIpkCCjODriIzAQlJKU3MdG0PHawOLqNYWYTRBAi78Zj66yiEeHBdyR+jwkPhzRr3fCYUM8NfxpAmIgaoBvvAseoHpH9vCGnWQE3OV8gsUcD72UCppItyZQ9WzpmGmDWHpAIrSF6CUKarjJyzQSowog4wiJmJzMDl4bcK0veIBQLSIJisHwY1FeaB6GJY0+9N7Z+Zr7PX0cz+4WPzD6VPO+DZl2IwY6SRc2HgNMyKisHUoUYTtXxfQdTroRDHfLlcisSY4ChEx0Qb2XEdOUP/MSRqGDztmB10Ol6wvQaNm4SJzORZP+d5DB1mFBb5RR9hVU5Bxjqj1Xx7kJDJ7C+ZD557TSqySB52/TUGoW+tw/6m4iVae31mE5ax36zfH4Iw4j1fdo4WZVeCsGzJZLgWHcRfV6RJDYnOgExhbtCU4vxXa7HrrOnKNZlHuDj+wuUP67fzzPSOnt7hiJz3NuvvTP7MYvKHvZ7gLQggEb5y75UwBE9jbSKmITTIjxVaL5vaQov3xOSYVyj7LOxzRYTzNuJ41FBptaXjkJcx81cu7JULAnl9sL9Y0RTuajjeuo7CVi4Eq7lVCX13WxhcFSb3LehwizAzUJK1jqMRFh4ILmWdf8Xq2d9PdDiK8jWoXrFreayt/QnHCA85U1su4vA/GsZ9itek4TKzqZ0GjcdLUpk5rmFcvmhx4cA6FPNJ4KGTMNY/DUumj2ZybjZWGEKVuvQWwlXq9BphH9WXLO5huAcFZYBSHYCXgqZjhJsSugp2P1Hr8NvhwJnPFiLBOCR8k0zCiIHs3YpykSiVNMYK2WkN7NkZyr5I3fk9WJoulVnC2nZPCpoSZi/ZQm4wrWw8ERS+CHOZTSPIquhFiJ4+XnS2CTToIVHRkZj84nC4s9/bkLBZGPcMk4U9PTGuub7u6w+P7hqcP1kgFRhRshepeTo4DxothVSVdDezFYHeLxivsG5eBjXof0x+xryJGS+GwJ/38SblgCW5F4uQAQ1yzzDGHhzJ2rwSipH+XWuGZ79evdDPpgZZpVWCY26YTIbR3eqw9EoWxpwtxl+bcofc1WBM+gVE3LLQoO5+M04+OWL6OzFB/hP23DacW4vC6jr06mWPSTa2GNbbHnoeilvhhDlMIT6XX4btD+qWIR4K7eJva0NeWnHI/2VH4d9OkG8H1N4qZG//CJu3fIRN205DYx+AccMMhqIzgqYxI7HqLHZu+ggJm1m73TmQ+YZijLeorMh9IhEW2ANX9q7F5s0sbdyIgz/2wNAp4fAwHvxydYf8+N9ZG/4+Z1HaOwChw+/hCMvz625LLTGdZeIVbnrdTZ8hrUyFkS/RCqF24YgWd9hB6eKLEWKJgKtaVOKUTiZz5TD2gyWYqNbj8q7lWN8mZeoNzJvArlmdhV3/Ybwvpwec2BtqS7RYnHQM5/8Zj1V/W4fkM4ew471gqU0DCrtJTLEU07wPtiMyQA5dfhoS6memEV0WG3c8xX4rdTorYwHYMKNPqYOmsIlQLzdTcWT/XuRXSXmi89JNjjjPp4XVg1tuWSmAeijQC1XQ3HfAtiEB2Bw0GCuHB+Ck/9NYbDyV75dfcKi2DqfEZ77AsN59EWDHFMvbWppBRjTGTBZVXPwOmm6emDw7CsF8E/6mIjNYwCodrDIViWY62AQ/PkDIjJnjJ1Ak98OYodyQtIfX84FQ3TiFI4KzIBNHtiQhl8k4bU4SErZ8hoxb/Lrm2MLlKWYIFefDcpQw1o9uVkHm5NLE6skuQvoh7H+A/ZK5E+ClWfMR/8VKQV8qOL69foDqcAWfkqWEq3+QWCCghqtS0LjgNFAsIZ4Mmu33itEYFeiAspMbBfsn4dONSC1xROCo4ZA9lD5diivXKqFU+0gDZOz+3Fwguw849vevn9Dp0Z/dX8k15NdPqmHyxq0SKZIdt3l3HnQDRmOMl1RNNMbbif2NtSiuWYgvU09hx0crEL8hCecPb0Wc0dYM0W7iRIOyK6YTNc98L07udHKbJBZYJAP7D9Tv4GMRq6+fHI+E42UYGLUOG/kKw5TPkRq2BFPcCpG4ZKW01yHx6LmOi+fZd+kdhshp0+D7dHOr/ezh660Tx1+4/NmVA23vAIwaLDkd+4Zhxgvu0J78DJt4mL9PPsLOs/fg8UIkgowVAKUn002SsfkfH0r7t1orm9qAFfckGxSGcW61OL+Ly1XeZiPSK1UIGjlKqK84+xkS0vjvXYM0Xp9iYd9CIzzUKmg1eUJ/aA2O/G9/7654XvfhGPe8O+ouJIn3zce7ztyFangIfPn3cysFu7acYnfE7iqN1bO/Xz4/zwyrx9raFV848b9t+Q0kiAUSe1DMHyqOTuDuYkuIE6XKoX1qI1LOJGHj31Zg/T9PIX1PPJM9YhsBJX+66NF33DEkb1iFVR/EY4eF8Z81/0jCZbvxWLVhKcbaZiHxX3psfDMIupPrWt6D2oDbGAxkt1V85VAzqxNblp0tE4RlrwYxOa/B4Y1bpDJLWNvuCaKviv09aqEXTCtbeEx8GUPlBdhnkFXbUlHmNByTg41XUEt6yKdMDv1jG3KZLMxIWovkHCaIqn5AcjN93dmJ2U03i3G1iYnCmhL2Q3d0ERx61tCSDDKg9nZAFtP/Nv1D2mu2KTngGIqpJnJvLfbl2MI3lMl440WUrs/A8SJrw2Rx4olHHN64DfCJ3ZNsTdMwyc0xviefilaFu7K+2D0sAGuDBmP1iAAc8X4Ks610hXBn46SevbDhmYEYLK/CuZK7Uk1jhjn0xbBe93GjqAxbpTLO+uKryJO7YtlwP4zupkHSzftY69UPusLChonoRKfDov+sA/LSikP+byc6tgPanFRka6WVFtpU5JdwXWCAmO8/Gv59KpF99CgqJKFapzmAXdu24aQwu4cpn8+qIbt2CmkaQ6+pRNG3p1Bo4w5/X6PBs1t5OG9ooy1AGVcsr2VCI20AW/N9HkrqZ5nYI2AIU7RyUxque78c2d9kolTpDu8+YhHxIGzBiVw9U6TGY+WGdxE5dRIi31uHra/6SPVGjFyKxS+qocs/iDVrTI1Ma7G82pAxSwxToQwKx9ieF5H44TLErT+EgmolBs1ajo2GsD0SrqErmGIppgV8j5DyPBz+cicZr10QMdQND83AkpMfgqZOgJdMg6yLpVILjhohv3sP84xT1DRxcoGKD9DUos7kge4Mt8Eh8K9Pw+HcRAQLovMw29kdw+yYslcorh60hvAeXNnsiWG+/aEsLcCac5ewMe8W7tq7INzXCbPFZo3o18MJK1m94KSsn21GdFWUgyNN5QdLU8xGQ1qURdWnse9/E5FWosDAkJeFVYFzo9/EhMHuLYaTalEHcyxB5jen61fA1mn4LNg6qD2kGbS6szhyUgPHYdPg7xWKUcyAzjh8upUb+qvh2JtdqpYpZs1hY9sh4bEeVyL/wHST9+ZgopdSWOme+C+j1Thb03CZqVyuLzC95r1wvDQ1HHEbNuIV2s/kiaTZfi9XQG5Th5pqwySpSuTuX4uEg2f5IlYraV2frijQQNvHE76C51Dc20uTmYWKvq4YKAxM+8HN1Ral1033+yo6t7fejqvTZKJIawtV39bs7/VkEenMtVMlRkQEo3d2Ela9vwzrkwuhdeT7hjW9v3w90g9AYeckvmhvGl1fg4R3wjFyxGgMHfE8Xk32xW/D1Lj6rzissWqVD9FR1ORsw7adp1HawxPBM/jKlHcQFREOf6fGRo5xv0XJEWTfZNpyb8FygvpZHyjv5CDte8OUg1pUZO5F1h0HeDGdpp6fryM9Na8VMskcC/bbNNMBdgPW3FPd5URs3rwRGSWG6CGVKOGDTQ5ObZhwzuVdXdMTT+uxh7rengxFyMy3ERHogPILohMAP5/FwU8/ws70hhVNNTdKUWPjAJXVN9WKsbYOQQMd/9JlcibJLDOQz6yDByZGeeDOgQ2Ie381Evnmlepg/D5+af2E9ZfqtCiu0OFO0UGsZ7Jw1eajlsd/jq/GrIl8tSJLk5ajbOYcjKhLw8fvGEdwaIHXPOCKclw9bjx5/SFAqw2tRtZLsqtYUrmHYsoET8h+vIiL3OuuGIshXnXIPWYkq7SnkZJZDqWbv9EkxloUnjFq0wqecrBnffRe/T52FmH6j7U9zFoZVHHpmwb9rxnUQ9nnLM1ASr3c00GTegS5dWp4SOqiwK0spNa3efx41W0wlg0zTgMRI81YG6DgYzl98LzfU9AW/IAV53KQdI39QFTuiHXvhWFis2aQI2YQu+YQLwzuY4Mb14qx12Rc0BhLqw0l6qowN/sSxqRnYUzuTZQ7uWNY3Y/YaBytiuh0WPSfdcDRbI9Dg0fRkOf/G+c7qL4d0FZaUIpk0tCQshfkVRpcN4mzVQt9FVN6+BJdJgaVdkznNN84+n45tNXsdJXRculqafaVVYjX7ekdhug5ixrSbL6M2x4qHmmCeEA0WPPHDTjBNFunoHDEfbACca8NwZ1vmNLGq3WGb0sMSeMp0+Dw+rbOLp2D33PtqNFqQ4ZWL4byYnX/nL8Qq3Ycwv7Ny/DqmjSUMZX0uRfnC80MFOyWFMdhMVjwYRIuy3ww5b31jRyMxONPz0FhiGSKtZAipiHAvgRpuxKRa/LAt7C5/ldHxBn25WVM5tjyCIJGuMI7KBBBPA0PQvDY4fDuLVURnRMeCsLdHneLrmNVk8peY7R13LK1gV6Tj/k/VSGptg5bbxdjXeFd9nDqi/FcFzWjn21vrPZzRa+qn7D9ivVOSuLxpebyAVP5wdKRK1KlhFWy6OfryE75DNs++QgJ//waadcAt+BIRIz1lBpYpkUdjOlDgbON9CCWQp9hQq2PS70hqs/bi4xSZwS/6APtmSRkNQrN3BIaVNxhXc3WPMwZ0RpWhI/G1PlxTI/JgG7gJMT9fSMWGGbXF63Dkv9JQzH71kbMeherPngXkf5aHD5eKFTrrVeQiS5As/1eexTHz9+D1+RFmDs3FjP47HKX1vbNVvbpm3nQVDtA7cXa87297DXIP5cNTZUz3Phq2L5eUPcox1W+nKieKmgt7Tfc0ePYjxF3pO0V+B5aMfNXIzH5EDa9PxtrTjKt1XEIJv5OqG4a6Seiqy4TX7Q3zV4/GCsXT4dr7udYkhGOjXsOIT31GFLNVxERj4y6slQc2cmjNP0d23afwPVfXBH86lsINglpad5vq6A3GnRX9lKgpjjPLMR6KW5XsjpHo3Gde+w60su2YcF++9byyiDr7skWcpfhCA6NxszfMF1p7juY8WwbdRou72QlKPpRyjeJAzwMNuXIQCangfxvPsOuTKMJrgpP+I4Nx5SIt5n+9g7mvuzXynDOrRhr6xDUUHA5Uadv8vs3+ESKjyzHq+9vwf7kJKyaH4uvctmfw2sYIkeK9fv/HIupEydh6lsrsYnJwsT1cU2O/xhwjY7Db4OY7vTneMg/2I5UJoPSUy1HqTJmwRAPdmNXcSZZKngoBGHla9atNrSuXVfGHr6TJbuKpZlhAbArScWufadFR17vXqyfKOA9ydT+mTWMWT4OKjQMBetQzUOotYHblUyf6d6jPqrCg2OdDKq+azwBvmm43EPfIMwy+vzRc8LgzW7Y0dloEkerxtg7H38tvCCEFW1IDdvJ3P3lF+F4oyAfUbfv4VCtHmt+KsSen+ogf7oPwiWdpWn0WPT9BczN4JPHK6Ac4INlng4YLdUaM+yppy2uNjSnX4++mOOmx7Ert6Fgz5+Dz/nhyHNe2Kxs8WaIDsai/6w+z/83zrdfvdkehwaPoiEvljTkO6i+I2CGbEs2oG33h7Nkp+JaJjIyjFMG0k6cRlbbFr0R5hR9jgXTn8esd5Yh7v04xIY/j1fT5eB+lLISpt1x/rAQU/gehEw5HbRgO778gqXXfIVZZkrvcHz56dImY9wbGPGX6XiO7+lhvtqQk1wuhExFaSHWG89e3S2WK5RNTcnLw4kdqxHzGd+8Wgm/ceZ7MhKPO9pLiULYBUPavCMR2bfMZ/ZY2Fy/ShrYul8J7T0FXFyNg0zwUDo8DARL+34QVuUI/iWikyLDygH90MtGDx1T1FYPcMU2loIFZ28vBLPXK5uwwA9JA3Sau/dMwo3uFWKgyNHL3FKQ9cLqgIHwqL2JpNySNoZkJh43amuZnDCTITVmM1etk0UG+OSqPOQe+wwJqRoo/UfjgSL3/VyOXBM9iKVTp5F2NtvIUHRgBibT1O4DPZt8ZjZHLSru6JgRNqBhFq/SD758RTZ7dguz6vvao660uImwh4SB4oyjSPxwIZYeZ4qqMgAvxEgVjOKEJZg6OgYL3mc61x8XYmrIbKTKuDZVjjJJ5SII3h9LT2/E5oSvceS8BlqlO4JffhuRLUxCMMVCnzbBvE/nIf+6Ds79A9DTyx2OQviu6ygsroPazQ9KDzWUJQVmE7eI1rK/XJTaxVc3mITL2yWUy6GURkMPl/B84xDGrt7se2DHO+Wt2IfVAm25/ti/LcEUxwx8/J8bEPnbCIyQZeGTv36OAmUwfr98jtSK6BTcr0LNT2eRmvR3pGrs4f+r1u1PLDOdcfmQsGC/VTctYFq6J8fAaES/PBpqaJB79hsk7/wM+y4ZT3SwHkHe3SphV2oJKewpT5tTUKhjctXNyOZ0HI+ZMeEYqQZKL5/Fkb3bsGNvTpsG+R/WWFvTFKKM36hjP0SKBRLjxRCm2jtNhvwsvs1P1KL4ovEeqBoUa0W5o2wu0kJz4z9u87Hyt0G4kxyPJcqF+O1UNYoPrsWa41oMmrUEKyWHZGPewBC+X6MmzyzsajszLxYT3dDyKkJr23VpqpCd1GBXbdr4EXbuPw1DhDuRShR+Z2b/pDP758R3VvTNlqmovCtMwnQzhPvt7g6PwSHw6COOfKtd2G/QKjkg0p4yyID+pxzTz5+RgfS008j44cmwxm4IW4LUQFNlOigjlsvBTV9ryKsTJ48nafSAU1/MbuQt7oFYt6csrzY0plsPLPdxgfaHYizt9hRinlFCU5iP9df18BnkimXkO+xUWPSf1efFkoZ8+9V32T0Om6WsEtoeLlCbWJ32cPYJgZcw+1WD8kpA5WIW3lIxAC7KWpTfaGuc5XJomZy1QwWyL6U2pOzvcPWHUyhqvM8/0WrmY+vhY0hPWgGn44ewP/kozhQB0TMC4MT+/pePSEYjHzSs1kMnc4JrP7WYXLhZyVCyMmeV4Ghsmjn4/TimMVtabShwCJe5w9DZF4uNZ6xGiSFMtWXibHyCaD05yL5SBUf/F+ErDH4bYwu1nyd6VhejqL324CAeAt0g/0Xc70Dp0Js9i8QkbIvBB9nY635NKY1Vd3GDGSBqZU/0k4o4s6V4+eWGKHAcWS9sG+IFD5RhT7YGa8hpSFiNCgHTFiFqfICUN6MVYW4awYzaGoUtdAVGehBLuQUXkZtXUB9ex3F4GAJ6aJB6MAfwCzNbXWAdmuwCaB39EOwnbbqvZaayx1jMmBYKx/6hGOJSi6ICsxnvBBC3VVh18+UHxnsXMukkDXLqDas/F2wUZsZ/+RcnnEhmOldKBorxBmYGqpjKm4vDyVI7guCz1u3sUVedh8LMvTiy6+/YcbYcSt/h7BllPY36tDEW+rSmqAR1LgMwpr8KFT9mC/KFl8lcfTC0v0N9GfEAfJMnDLa7ei+Eq1giEC3sCcb3HBTzxemFTBsBPP3fNWoXjMWBfHWRBpe/EUvaSquvP24V4iYoceazVUgomgRPFzm0ReewKXkDDudqhVn3xCPEPgRT5ryNEOPwdcYYVjNbQVlFlYUJBz5QM6O8oqQh5GZHYs09ubiqoM/7BjtTUpB9OQfl2krUtmmozB4ebZF39zNxMrMcPX1CGvaC7OcKlT4PKV8kIePSWRSVlaKG2Ret09Ae1lhbS3yOy9xj4jgQITPEEo7r78bjOSWgKzxXv4ezOYmZhdBBCc9A41WAQRjoJE6UKj4ulsRt4asFt2KZ8fjPDHFcqfH4jxoL/usNDCrdg1XvpwG+ajixv03On5OQ+I9LTK4q4dSUQ3LqMHiyty7ITZIKHgZBWDktAAp2Ty2uNrSq3RPOnUrU3O/B7KBTJvZP9g8XcSW7bc53c/S5eexbcEdQsDQp62cNqh0DEPpyODyU4xHko0DF1Ysm76VUGYdid4fKSL1qPxkkotXqIJffw1Xjz3/pDK4WnEF+yYM5JB8XktjvQM9lci/jZ1g3DOjBfhv3a8D9gJYI7+shrAJcaza5XC58H3XQmzio+WpDZwzu2fJqw1j1APjcKUR8BRPkPXpCZXMXuZV6JFVU4oaNHKo2G/zEw8Ci/6wD8l12j8NmuckE0y0HDH1pGtQK3hNsoRwYhgkvBEIt4wKrFrnn86AfOB5TBjuLEU66u7P2QXDW5iDT0g7PVlGFrCymCHlOQOgg6bo2KniMi0HUryNNN4Ql2ggz9q7ooPCYhFVfxGPZn5Yi/tO9+H2QErr8NCTslpqtisHIkOdN03q+yo890DI3YOT0JYLi6Lp4K9LPnULqx6Yr/5pdbSiQgY+P50Fn54PIDRuxbO4kRC6IR/ICHsKhHBeSP5faifQeuAIrP5DS2q1IEdrpUXDWtB3xpCBDT8PeY0apZ3extjztALLvqRHy+psI9nJHT4U9a+8D39A3MWWQDJqzR5nSSHReavHuDzmYcME0HRSiaN3CQfZ6rqTRT1N54OTIZ7GtN394M+oqcbSkFnJXT2zo1wsxtnLE9nVDrJs9UFGOQ4aJzdxpyFcaMuW8sEgLRe/eWPaUIfXENKkZ0TUx2b/QkOxbE96qHEUl99DTZwImD/aEXJi5qoDSPRQzRqmhv5aHq0K7NqA5hdxbKgx5KUzSwdjP1Wk8pkbGImKsZLzajce4QHtozuxF7rUDSM2zhf8LofVhTIWJWNWs2VMDoFKqpPuzwM0DOHJJB3VIDKaM9IPKvhZXj2RA4xCIiGk+kF07geP5tJfDzNV7cf7cMXz5J8lR+G0uipls8QxbiS/Xvot5U+cgbu12rJrAvoHqLJz4l9gM648ip463W87aLWU61yps3TcfI5RMfzm+HbukZgSBAS9jVnQMJgyUenF3Z3j3d+Aj5Kw3Q7G95wAA//RJREFUc9rap+0ht3OHW2AUoqZY6NP5eSji+xv2r4KmUAqldfUaSuyZzuRSicIfrAuvRTRDOne06aHwj8DWT5cyeRGOBWuTBNsL5VnYv01qlxyPfXwfet/pUrs5WPbP5ZioBnRZh/CxtEqlKdurRay8vsh0rP/TePTO3IIVCVxjPoSbFWC/JRVcocYgPpm0fnsL4pFQlYvSanv4jouCvyGsMZMbbiPfwMj+tSjKs37ST/l32SjtHYDJIX6ibOHjL+ND4SvTINNkj3lLWCmbWok196TTMX2/nxfUgv1nC3n/MIzzMdPltHehhwOc3ZmeZ9fEYJJNANz6GsnAVlBz/gRy7zkgYOwoMfyhvhZ1cld4qKX3Uvhh5PPPmIUq5dFxAKWzH9M/HQzRgo14WGNtLbNmBw8bqsLYxdsRvyBcGJ/ZGCM6vU5sNTi9piN+3ymcP7Udywwr/jbtwVn2sHKawPSd1fMRKcmXmXxPv9w0bJIiTCVcLGQ/Fh9MqR//WYUvFwcLE9jNx39cF6/Cb3w12Pf/VuIEL9DcAY841Xscez2hD3qzb1ZvGsu2nhHjPAQn49UD7WDxuy3EjlPs8x4225OWVhu2L7pTuHhVBq9x4fB1kPqPMgAhr8Yy/UXqXw+K7jSOpGmgGByOiNDhcFbao+JsCuvD7giNYnltFo6cNciB69CU1kL5zHgMfZrbij7wZ7YZDxtqwCoZ1CSN5YDmQjYqVIEIY/qbKEsVUAVG4rXotxDMV1c8CdTcxrmK+1B5emGbqifCbXvg//b3xHQXGfQlFdgquENssdInACcDXfF/JQGadIfJenkvDPP1wIan2HmKnljWzwPhruwLK7+FJBNz1rrVhv16qTHb+S4OFt3FKV6g1+MuuqM3f08Fs/u5Q5ImnncqLPrPOuBouuKwsxwfOqXI2HsA2XpPTJn7Dub97h1EvugK/bm9SDU8e39Mxu5vr0MZHIO5fGPrtyIR2PM6jnx9QDJw20h+EnafLIFqnHTd2DcR6nEP2Sl7KVROO5EwfzkSs5na5RWMmTOnY+JQFfT5h7BmSVv3MmTYGj1B3eaLqw21GUi0uNpQpHhNHJbvZEqxUwBmLliBuLnBcK1lSun/LMYCgwNTwilgEqZMldIYHyh1GpxJiEOMZa8k0eVxQZBh7zGjNMEw6/B+AdJ2JiKtpAd8J0Yiau7biIp6GSFqJksOJmBfDi1f7jKw5yJf3iXsvSGxvugykop1UPX3QuwwP8R4OgK3i7Axz2j/QqaEOim4Rt4DHl4DMcnHOPXBYLEV0UUx2b/QkF6ZYOR4a5mKs4k4mF0Bp+BwRMcyfeV3ixA5JRA9f0rF7oNnWzdr3QRRB7sCH0kHew9zI4YL1z2YxmeZO8B/YiCcb2biyPdcltVCc+oUinoEILQ+rGEVstKyoH16FGZGRWOcWWi6BmpReuJT7EorgXLINMz8zduI/s0oqLvVou5+LUryabWRgCBf5FAYVJ30lVgYfwgFWiU8x4RjwQfzETnGA3JNBhL+I9YoBPvniH0/CZcreLvpTOcaj+ecdChIXouFf25aPyKeQK59jQPn7sHtxTeFPj/vrRiM7M3sqkMnpJnvD9CnoyMxebgK2uwD+Nd+c9mUhaISdrhXjMKbYgnuZyCf23taDa42MShLtAa+v/xfmO2lg9PQ6UxevIt5Y5idpEnD+n9fYjSBgLdbi335hnbzMdNfyb63JCz/T9MwpwLGtpdVWHt9NaI3LMRYWQY++fPn9eWb9mZA7/8Gkk8lYYq6HCeS10k1xKNBGq/RqhA88+16uTH5uV4oSWX6SV4rVqdUH0Xy3izovaaJ+gwff3G/i/P7EsF+Li1grWxqJVbcU+HJo8i38cOUt7gO9g6iQ1XQXDP73D8eRfo1W/hOYXretBDw9W+NULvASW8kA1tFHtLPMoHZfwRG9rcF8g/geAHgP2OR+J3EvAhHzXWz1VI5yEi/DlvfaUz/jESgpZt6WGNtLbF7CZYnZKBY4YGJc98Vx2e40/B/4rBEWjXIEea1yZheJGYZe7Dg3zfghEYBzwlzECfIF/7cYfLlj+vq5Qgf/1mTXGg0/jMenjIL4z/jlmLdax4oPrAOKwzvu2M7UgqVmLj6GNIXBEHOJ70nS3UmqPGSN5Ox5YVIaU9HHdMFG6RuMOJfDoCirhD7ml1FaG07gusvhYcTkVamQshsqf9EhWGgPgcp30r7ILYDNTmJ2HUwB3r1eMyIikX03Jfhq+R2D1N7rmab9C9BxuhdEPQKtxVfhn/1KVw0khNWyaAmsSAHKlKQfPAHwE+Se8y2nDmcy/SvkNYm+fQ4Uot3837Aqdvd4OHtg8XDfDG9X0/cLc7HqqKq+q1ohJWEMpsGGaQrw/LsYty4r8RgH3beUB9M6t8L+p+uYk1+pej4kxjdh682rEPhtWZWG/LtbJ55CpqCn/BXg3NQfxtHSuzxfOCzODL4ach/uontNL+2U2HRf9YRxwGefr9I99BpGDJ0NLIvddCAg0IlhIfTVZU3Wt4rokBPpQPrRLdQo2vPXmMLuX0fKH6pbDb2PfEAuAVh4pBe0F4Uw5U+SgaNm4SBKMT+43lSCUG0Fw9LRhGPA6NtmZVXV4dTne5JTnQdRBlji7pmdKU20t0Byh62D3BdpkspZNDrrNOjZHbOsOtWJewZ6zg8FhGDq5CauA25htCbRGP8g/HSQKZLXT2EE9lSmQVcg8ZjiONdXBTClRJEE9jYo6e9PWzrmrJ/2t6nic6AD8ZO9QBakBfWypU209brP+z7ItqGoCsohH0OH6yvP8j4S+tkk/W0fE9Wybnu9pDXVVnUpVRj38aMnqew+ZtMqaQdsEp/U7C/WR37mzVnnz4qO1aNEaGDocKt1ustVo0xSdfXt3b8x5r7mo+tqXPgmb0OIfMpOtVjiaQL4V7jPejbFWGsuxbV2krUeUUieqIKV77eiLQSs76msIdMV8UsPcs8mK5lWQ6Q/sbo1g3Py2xwt64O51oxltPPRoYAG6C8ledZyzCZjMmg+8iq+6XekUk8evwHB+HieWMXccfRzcPT/xf+W+sm5gUMefOjgYddHzB0VMc5DgmCIAiCIAiCIAiCIAiiy6CAx6hX4KRJQsZ1mmDaJZjwLjb+WwDKvo7BUkMoaIIgCKJLwx2HWedPt9q/1i71worDplo+omOHrjgkCIIgCIIgCIIgCIIgCIIgCIIgiE5C/YpDK/1q7Xl8Qvc4JAiCIAiCIAiCIAiCIAiCIAiCIIjOiUX/WQccbcTlhvxfw5FjnH8U9QRBEARBEARBEARBEARBEARBEATxZGLZf2acfzj14opDwY9o+I9jnH8U9QRBEARBEARBEARBEARBEARBEATxZCJ6zBq8Z9b514zzbas3WXFo+O/R5wmCIAiCIAiCIAiCIAiCIAiCIAjiyUT0lzX4zvh/HZHv5uHp/wt/yT2JneUYMHQUsi9lsFemqFTO0iuCIAiCIAiCIAiCIAiCIAiCIAiCeLwpLy+VXjXgPzgIWedPW+1Xa9fjAE9/dmy2SYcfhzThOCQIgiAIgiAIgiAIgiAIgiAIgiCIrgx3HF48f5q9ss6v1p5HG34wxC7tLEeCIAiCIAiCIAiCIAiCIAiCIAiCeFKxxp/2MI7CHoed7T+CIAiCIAiCIAiCIAiCIAiCIAiCeFIx9pt15H82jX2JneFIEARBEARBEARBEARBEARBEARBEE8mlv1nD/9oI67v4z7EznQkCIIgCIIgCIIgCIIgCIIgCIIgiCcT6/xp7X9svMche2GSfwT1BEEQBEEQBEEQBEEQBEEQBEEQBPGkYsl/ZpJ/SPXCikPuR6z/jxUY5dh/HV9PEARB2MPZZxTUSilLEATRlbGxR097eylDdEUGjZuEsf5ShiAIooNxDRqPiUFqKUcQBEEQjxEKT3gMDoH/IB/0lIo6FlvIXQLhz+7B92kHqYzo9DjaoFsP6TXxWNMW/5pRjv3XtvpuHp7+gq+OexQNPOp8wNBRyL6UIeWspM8oTJ40Gm6OtmK+rgqai6k4kp6FGrGkRVRj38ZMx++wae9pqYR4PFEj8oN4LHjRA0q5WKIrycJXa5dj1QGNWCAgtQtj7WRiiU6TgcQPF2LNcTEv4BaOlfHzMdFDCQVvV6dHWdYexC9fjf1FYhPL+GDe2lX47Si1eB5Dq0nD1j8uwaZsMS9gzfWXbcf5GR5SRkRXrYW28BQ+WbUMicbXIzop7giOioS/kSOwTqeD9mYeMo6loFBbK5VKKMZjxlwfaLZtRIaW5e0CEDxpAnydFZDZsPx9HcoLzuDIt6dRcV84g3icsNCn69FmYM34hUiQsk0xaF484t8KhqtcizNrJiF2m1QhsfjzU4j2lTJGaDPWIWT+51KO6Fo0ljP1/Jgq6TetkEVt0a26O0DJjJNqbSXqpCJgFKb87leoSPo70m5KRWa4hb6Dyd46ZH3xd6TfkgqtxY5df3YIlN8nIvH0danQgPh5fe+kYsee01brhF0GSceY4iV94UzHKM7ciVXz1+GEWGIZ/zlY/7e5GKuWFKk6LYpPf44li7bgslgiEYzFG5YgMlDSdfj1T282bef2BtZvmI+xLvxarP7IBkx91yCDghG/Jx4jNOswi8mlYqmU6Nz4TnsPITDIlPbAFnL7PpDV3kKNzkwfqofLkRCmvTdFFbKbkTHEo8IKGdEib2Dj4YUY4Wimw0StQ+riIFieY1eIXcNmY4XwOhhxny9HpK/YUpvFZNmcdTgj5NRYsGU7fqM8iCXhK5uXi0QHYwvHZ8MROsodjt3FkrpKDbLS9iLjWqVYYIV+8WBYI5sYflGY9zyQ+o9tyJWKWsSivvQI6Wz38zBxm4S4le8ikivDhXswlPV9c1wjVmDdv02CJ5M7AhV5SPwwrtF40ktxq7B0hk/DuJOl8SQLWHd9a8aTluLLc9PhyfSrC//zPGI2ScXGjFyB5L9Pgiss24zEA9J3GiLD/RqeRfdroddXoSznFFLPZkHbHmM1juMx8/XhUNXpoC+/iN1fHUWFVFWPcB/uKLIoD0UdCsc+xL4cqahZRPvJ8buG9o6BbyJipAp193Qov7ADuzNLxQoDZI810NcOjrP7oU9vG/YUAX7WV+P2sRuoSG/hx2DteX0UUIY/DSdmW/HHY23tPdw+qcHtVCPpbdsd9vP6w9VJuBJupxfj5jc/i3Wwgd18Tzj8dA03vjaUEZ0Z/8FByDp/ut39b9bkTfY4FH2KnSHfShxDERERAqfKDOzethWJLO0+VYmnngvDDKZoEk8WY5fFY/FUD8jLsnA4+RD2nSyE3ikAkf+xHPOkNpwRfzJqt2sPdvF26iBEL1uHaKkNNzSX/fciTPFSoCzrKPax650o1MFpaDiWL58jtbFM9MfrsWCMGihpuD7UwViwru3XL8tin4d/puQ0XGaagpM/U3r/Ox4zpXqi81Nz+YAgo3hKPn4RJQo/hEZEgv0ETPF0hbNWg6vcaWgTiNDIMHjLCnDkS/HcXYcLmNETghmTh0OyU4jHieJCFOSbp3LoeB3T94RjU3BHwBeHsOPfguEqGZGWUPLfFB/sN3+fojKxAdFlMZYz9enbTKlWpEVZ1FbdypsZrVHT4C1lraUoPRmpR1NwsbVOQ071aRw5Vw7lkFAE2EllEo7Dw+BvX46Mw0+g0xBBWBYv6Rjnj2IX00W4juEa9AZWffyG1MYSb2DjuvkYy1SY4vrzANcx8/GJyXlqRG9YjuggNfSFaUw3OYoLJRbaxUzHWKdCJL4yGgtSyuA6bjIWS1UzP1qKiXYZ+OTP5DR8slEj6JUYzBje3GqwTByRZBFPKZergKo8pNSXJSKjXGpKdBKslBEtEP3xHMFp2IiKG6b6jZA00Jp7PWbNxhRfPU6sGI2pn2RBHjAZ0VPFKtfFq/AbXw32/T9yGnY2HIe/iYgxLtCmfy318a+RXqHC0MlRGNlXavTQsUY2tZE26ksPjc52Pw+JsX9Yh+QvVtRPJLDIuKVYt2QSPO3KcSFFHE/SKn0QuSwey0ZKbRhcfiyP8IH8ttG4k4v5eJIFrLy+deNJBuR47oV34SrljJkZNcxiOdGeVCH3oKSPbE/GcfawU/iHYWY7jdU4DvKHSp+HfZ+uRYIlp+FDxx2+g1TQX96LzVvWNnYacsgeE+lthz5zXeHc62fcPleM64d/wq07cji/OAB9Rhq7ZMyw+rzu6PVrN/Rz+QWVUrvyClv0fd7dtN0wR7g4anHtrz/gh1P3oBzmAIOZbzP5abgoylCWTE7Dxwnr/Gntn7epj2naiY6txXGQDxxrcvDN/lSUakuhZan00jYkn2XC2pXVSe0EeCgspTOULPWUZq41D59lJrVXSDPuzZDZifVKCrHVCZiEWWM8oKjOwj+nx2LJ+8uwdNFsLDmiAew8MMJIw3opkLWry8NX81m7P6/ECtZuzcly9oPyxdgoqdHUcIR4yKHL+hxT34rDUna9Ba8vxWF2OYXXsGYUwoWYMpwpo+Vp+Cu/D+n6cSnsRMcgTDGMmLXy+neuss/DP9P7SxAzfQ4S+ZRGlS8mSsYv0fmpra0UZJQgp/KPInXXURTaqBE4xFlqIeLR3xn64nwIY2De/vBQlCBj114Ulonnlufvxa7jBahzcYebcAbxWLEpDq++Ptsk/fV7raDMFZ9mBofYyjLjxjO5oceFbcuwJpN7li3xBlxV7KA5hViz94n58yGxCdFlMZYz9ana1B3dkixqlW5lQKGCsgf3ZstEXcvOfEYEg89ot6Qz3SuBpqjY1Jhshc5Wcz4FWVoVgl4Y1WCg241C8BAHVGTuRVa1VPZEMQnPebG/Ru4exDAdYwXTRRa8vg4n2INF+ezopnWYxZOFQfqyk6sF3UQ8b7mgmyiHNzj9MHI+IoOYrqM5irjXlzDdJI7pJqvF67N2cdLDaaYza1N9B8VFwImLGmhlcnFWdtQ6LB4jx5mtq5DQbAQHonMj2kpCHzX0b6UDkwIWqK9XQc6jJwgoWD9n7Vne1pbXG9cZo0ONJIuExBf/3K9ryGvLob9vdC9MHjl7BfAITQ1wGWXx/h70MxAWsVJGNMuMeESPUkJbxGSHVFRP8krEmOk4r37NBBX74nTnD0qrDRkDnZjM0eLmbqZj/aMQxewpIecPsZFLse41DxQfWIcVx8WmRGfBHb7eDqjJ2YuDl/KkPp6H7P07kFFqC7WHhQlMTekXBup1Cgt9l58rnMfkkZMfPIQwfNbKJgtwWSPoQPwa/D3N9JiW9KUm5VALMq65zyjQMLZl8p4t3U8XYuK4IDiVHMWqOXtQIJWZMy9mMjzlzNbaGouYP4rjSbN25EEn90BI1HSpFWs3yqdhPEkad4o7Lo0nNT1QZOX1rRxPMsZ3NH5v5HgUmYNXArlRSDxs6u4a9JE8FGZ+jV2p1yEbEIghgtLbQP34caN+xuWF2Hdldu5w8+IhScU+68hDTdYB8vbun03qRUYIcsUBclt+C7ZCexN5ZgTZY+zPNdoRTvL7uPnNddzeX417p7So3FSMkmpbOA3rhaYeI1af52mP3r27oTKzGLfq293AzVrWzr8hiK2Nkxy292pRx/TlX67ewz1b7nFheDrCZZgMZfsr8HMzC+mJzoc1/rSHcbSpj2na6Cj8a6H84de3CZkCCrMeWJGZgISklPrZGD29wxE5721EvT4LMyOiEDV3EWYGNjNr3i4QE6LeQXRUlNT+HUQ8H9AQT9rGE0HhizD316w+fBYiot5G9PSQJsKlEB3DISyYNBpDQ2KxXioxQS8dOc3F4DDUJS9B6LDRGDlng1RgRHOrgiao4cSevNqr57BLKuIIA2bs6OorzbJt6/UF2LX0xh+IeCy5X4AyJqRkCuPA455QP82+4SLjOBJMaTRuwslPwrYtSciXssTjzBuYN8EDqM7Crv9oIVT3lT1YOWcaYtY05wBU8UlrTObpUOwWhIlTaW8xogUsySIrdCtjHIe8jJm/cmGvXBDI9KKZwaY/OplHONOl3mQ6UxQif/M25s0Kg7Ph+nym+ysT2C9XpLHOFovg/s1N0LqO9G9zUN1/NMZ58YletvAYMxpq1qeOnLUwK/ZJpxkdY6KafwtaFKTvEQsE0nBBwzQYWT8MMgyGvegjzGAvyDAOe7oHCZl84N4Hz70mluwq5F4CNZ4LC8LMoIFQVmtRzFc1vhkEnN2C2ATWnniMEVfkTBgVhgjWTyN4/46KxVzj/s36o/PwNxHN6yNYn36dvY6ORoCwRY4/RoWHwpsZWD2fCWXy4WUMsTgzwRoM98LkScybmPFiCPwFoeIAr1Amc5j8ieCyaRa7vzlvYmj9qqUH/QyERayUEU0TjPjfBsOJyfHEL62RE0FY9ioPXarB4Y1bpDIGs7/K2Hfs94cgjHjPVwjXV3aFtV0yGa5FB/HXFWlSQ6KzIVOYP/dLcf6rtdh11jQMXrP6BcNEp5jF+i57PcHbqPMKOkgYgqexNhHTEBrkxwrbLptUwyMROfFFjJy1SHjPiNkxgh4z0kWciN60vmQqZyJmc1nF5EwfwwT2pmScpc8Yi5ABRp/ReGyL/Z0ifr0IESF+wuB+S/pbV+LwJ8vw6itxzWz1Eo4RHuyvor2Iw/9okDvFa9JwuRpwGjQeLwklauzfuAxxS9eZTH66ajZRrzFWXt/a8SQD5eWCnBth5NjkuL43Ac8xm7CsvKnJpsRDQ1PC7CWjMRyT8WMmq6IXIXr6eCPnP++jkRgTzOye6EhMfnE43Nl3OiRsFsY9w2RhT0+Ma7f+2ZJeZITjaISZyMJZGDVAqmsE2WO2fbhj9w5qzop5gVo9dLfZsY+d4IC1hNXn3ee+E8vUGkU0vf+TDrpePaDo2w02vj3Rq7qWmX/d0WuaE5D1E7Q/SA2JxwZL/jPxKPz70Optuglvz32IkkexPm/4z5DvyPrWUXHxO2i6eWLy7CgE841iLa0M7D4c4553R92FJGziy7s3f4RtZ+4ypS4EvkZKZQPOCJoWCrfKVCRu+khov3l3DmS+oZjgJyqw8sFjMdSxAmn/y+q3rMXm/01FyVOBGDmo687QeqzwD8ZLU8OxYPV2xDPFS1d4FAk7pDrGpr0Z0DKj9ZUNG7FywXzErd2OxWNU0OWbtjMwaNwkvDRrPuK/WImJaj0Kjm9velXQES0T+YDSxRcjxBIBV3VvwbGsdGq8t5k111fYsTZTxTTvg+2IDJCz+01DQrLUgHj8sHHHU+xHUae7JxUwlJ5Q9yxF0VUpf+UUsitVCHo9FhMC/aDqwrNAn1RGLJuOEex3UHx8IyxtTWFC+iHsb3FfUyXkzNjUqYKR/tU6xH+wAuv/eQqp/3wXY6UWBGGCmSyySrcyo+LsZ0hI44MgGqQxvSghxTg8qj18vXU4wvSphC0fYdOuHGh7B2DUYEvOQB8EBXsCOQadbR12s9+896iQeseiRUoOIPVyHTxGhUE9YCrGeNUhNzVFXLn9RLIFX/FNcn2nY+unK7BgwbtY/8VCjFU1r8McruCDS0q4+geJBQJquCoFDQZOA8WSaDfRwVh2xXRA/8z34qCWk9sksWDNBiRmKzHxL+uwbAxwYedO6DfMwYi6NKz5Pe232lVQe6uQvZ3ZS7x/bzsNjX0Axg2ToikoRmNUoAPKTm7E5s2sT3+6EakljggcNRwyHoJ0SxJyq9ivifX5hC2fIaMtIYuNUHs7IIvdy6Z/iPv8yAaFYZxbLc7v4vfH3v+TjUjnetXIUdIZIm3/DE8urkHj620TQzJMVLJaRjTB2A+WCDbR5V3Lsb65CZ8GomIQykws3fk9WJoulXGS45FwvAwDo9ZhI19hmPI5UsOWYIpbIRKXrJT2OiQ6F9dx8Tz73XiHIXLaNPg+3dxqvxb0i75hmPGCO7QnPxN1ik8+ws6z9+DxQiSCjB2BzP5yq0zG5n98KO3f+oCyyfUZqLLE99y86TOk3bBHwPPjhbGAJvUlr3CEBfbAlb3sHCZnhPPKVBj5UpiJ/mMu43h4+akmn3Et9uXYwjeU/e0ks1E9PAReyMFuPrbF/k6bv85hf9/RGNK3Jf2ta3HiwKEWQqP7won/LspvmO03vwfFXKF0dAJ3K/O/1ZkUZpOlZBhd7w2m56iB6kKcaXKzeiuv39rxJG0WzhQxuRo43Wh7niD8foyPMDH1jGFcgeg4+qrYd1ULvWBa2cJj4ssYKi/APoOs2paKMqfhmBxsvJjFHl5ulUj5lMkhYc/U68hIWovkHB6e/Qckt1P/tFYvEriVgl0msnAtjlyR6izxhNtj9+/yZXx2UIiCQkIGW+GRJEf3JtYuWX1e4R3cLq6FQ6Ar+rzUA/IAezjM64e+NtUoTTNa0nnuFn7K746+873h8Vw3lByuBF5+Gn1rS1Cyh0KUPo5Y9p+Jr0zz7VvfNfY4rD6Nff+biLQSBQaGvCysDJwb/SYmDHZvMOR+PouDnzIlMb0hIEHNjVLU2DhAZWkUqv9o+DuWIPOb0/Wb2dZp9iI1rw5qD9EaUvBZ+XVVqDb0OXYfBxPWIuVyS7OMiA7htYVY9cG7wioepTYPh/+102TviuIje7CPb4biEoApc+cgcgxrx5S8E1+atjMQ+YcVWPXeHEz0UkKbexSJ/2puduoWnMjVA27jsXLDu4hkRnTke+uw9VWmuDWBNdd3DWVtPhDTAr4/Yzn7XOx+yeB9fBBD3UjhKZz8EDR1ArxkGmRdbJiBJfdyh+PNYlw1zBi6X4C0xM+QwhRG1a+mYWb0Isx7KxZTRgZA2aQRTTw+tGK1obVMZYq9Rgt9tQb71i9D3IdbcDhfC6V/eAt7mxFdAeXgSMz73XsmaYqJEWKFLLJGt2olRef2QmPQmUqOIPsm0LO3JSXMHoruYL9fZuAI1KL0xEYk7DzQgtFZC83xVBTK/TBlsg9k+alI/fFJjsGiweFdh3CmBHAaOgnz5oZjLNMxdIVpzeswW9Nwmakwri8sx8b3wsEnYcVt2IhXrN34SBrgV9g5iS+QhlW/mYShw0Zj6IhpWHp7On4bqMeJ9UtMZtETjzfanFRkC/FDeSYV+ex35+gkTUmXKyC3qUNNtWGSVCVy969FwsGzhp9Lu1Jx6ZuGe2HUXU7E5s0bkVFiKKtESVkV4OBkMhjfmT7D48LE3y6tt00MaXFLKwkbyQgLjFyKxS+qocs/iDVrTB2PlmlitaGABgnvhGPkCC6Dnseryb74bZgaV/8VhzUUJrnTUpOzDdt2nkZpD08Ez+Ar6N5BVEQ4/J0aT6BsTr9QP+sD5Z0cpH1v0CBqxZB5dxzgxXSaen6+jvTUvPbrz5VG73m/HNlXmH7l6ALTzSmMsUfAEHfU5aYgTSONJ/HzvslEqdId3n3EIo65jFMP9YdjaQZS6j+jDprUI8itU8PDIML4jMJ79xpCwpfsxc7NnyGDOx4JK9BAx38chnDrjQjGsqT5GOEoTnZocSJoI8yv39rxJC0+PpkH2PkixOA5nDEbI9yAssw9uCwVEQ8PWS/JrmJJ5R6KKRM8IfvxIi7ymTKKsRjCHWjHjGSV9jRSMsuhdGP9Vyri8qnwjFGbVmMP/3BTG1BMITDeqdVavahtPNn2WG1GBSogh+qlvqw72sDGRQ67GFc49W7e22H9efdx70gZyqq7w2mYGzxeVsOFqVMVOeWoNpkgcB+67UUo/PMPKPirBpXVveH0bB1Kd2n5okXiMcSy/+zh57vEHocCTNHLTvkM2z75CAn//Bpp19gzNjgSEWM9pQYMhSd8x4ZjSsTbiJ7zDua+7NcQdtQcZS/eZRE4exFr25BCn2GKah8XQZhqz6Ug654nQue+g+hZ0ZgwdjicrZiRT3QQK2Zj6CsLseTDJJzReWDKe+ux9XeGxyUzLuP/A5FBchQnr0PsK6MxawVrp1VjImu30bDHoRErwkdj6vw4rNqRAd3ASYj7+0YsaHJvDg3W/HEDTjA71ykoHHHMiI57bQjufHNUjKWv49qDKdZcv2A3M3j5wNuwGCxgn+uyzEf4XJbul+ic9BwUhsioGDFFTEOAfQnSdiUit36+gS0G9leh4sdsk8i63HAsTN+GnZ9+iM0JiTj4XSWUz4Vh5pRRTcsx4rFgxF/CrV9taC1835/pkxAyPRYrNh/C/h0bsMSwt9mQ8VggNSO6JjWXD4ib8xsl85mhLcsihjW6ldVUQctDrdRTBX2TRnEmTqZpoBz2Jua99TZmTnsZQ92drXNY3mfnnmc/dJtyZB7vujPmrYLv37WMyRc7Dfb9v4WYynSHFUzH0KrHI27duqb3OCxahyX/k4Zipu2OmPUu+CSsSH8tDh8vFKr1jVUYU6QvSlddJr4wxu0NLHszCHeOrMQq+Qp8efgY0lOP0WroLoC20jR0oIBM+jFoj+L4+XvwmrwIc+fGYgZfBeNiabVx+1B91zwcli3kLsMRHBqNmb9hNh2z3WY82/j9O9NneFxImC9NCjBKr9ZvLtgEzckIATGMqKdMg8PrrVwROC8WUyytNmxEMFYung7X3M+xJCMcG/ccEmXQnnhEW7PnItGh1JWl4shOvvLu79i2+wSu/+KK4FffQrAU8lOkef1C2UuBmuI8sxDrpbhdyeocjYbS77HrSC/bBS0fBDbDhkujpuD7IjL9zDvMZPwpenYgnGEPFY8kKmEu4/hnRN8gzDI+b04YvOWAo7PoHC08eQpFykBECg7YaIQE+kHZxD5lhCXUUHDZVae38DvxwbwNyzGTyaDilLVYYtVkB3PMr9/68aTiDzNwuU6O5154VwgTPe/lIDix65zZZhx6nng42MN3smRXsTQzLAB2JanYte+0OKbTuxd6QgHvScZ9dBFmDVMBDio0dG8d3xb8AahC7kFTG1BMZ5nUM8Y6vajNPMn22A0tbh68hXs9HNH/NS94/9YdzvZ38FMON7LrcL9KbNYIa8/zdES/Xz8N++pyXPv0B+T99QoKUu+i+7NucI2yg0WXim13KKc6oTb9J1TZ2OOpBR7o/64HXGb3sNye6JRY4097GMdm9jh8dMcHoxb6qjzkHvsMCakaKP1Hw4sXO47HzJhwjGS6Yenlsziydxt27M1pXjn8uRy5GZnIME6nTiPtbLZ43v0CpO9Yy5TYo7j4YxWUbmMxIybWTJElHilFGTi8YzViV/ABMCVTouaI5SPDMcKLadK5h7Dw/c+FsA6Xd7N2/8hAGW/34nyxnRnFGUeR+OFCLD3ONDhlAF6IkSosUfQ5Fkx/HrPeWYa49+MQG/48Xk2XozerKivJFduYYf3183CCfa6YzzLYb1EJv3G0guhxQXspEZt4CBwpbd6RiOxbxjOwAuDmokPJDfNBrwbqqq+jKDMRibtyoOv/KwwxmoFKPG7Mwe/H8ZA27bjasEn24CZ/eNkp22EmIdGZqa2tlDbnb0g1Zk66lmWRMU3oVg8RvtIgYes2HDyZx57LKjwbFoOoadZNlKi5xw0sHd/i84lmxKvD4MlUncvJS7A0gYfSysMupmN8fJYZ8o5DMPF3UkMLFCcswdTRMVjwPtNh/rgQU0NmI1XG58CXo0xSYQ6XcIHSELrUgKu3Wpgtf6fcfB9WNRb813yMqDiEVX/shcVvToJryUGs+fgo7viGI+4vxqFRia5FLUpPb8TmhK9x5LwGWqU7gl9+G5FtmoTQehwDoxH98mj2C9Qg9+w3SN75GfZdamrkpike7Wd4HGm9jJD4w0JM4XZaNTBowXZ8+QVLr/kK5yi9w/Hlp0ulPcYMBGHltAAo2PfbeLWhKWP/tgRTHDPw8X9uQORvIzBCloVP/vo5CpTB+P1yyU4kOh/3q1Dz01mkJv0dqRp7+P8qUKqwDpns8dnmoeKa2fhTRgbSTpxGVgu+KP1POY3OS087jYwf2DOfI0TH+jt2HjiB3JuAU8A0RP46Cr58T3TCiEKUcdHl2A+RYoHEeDHEqPaOWahTNaI3rMeCIAXKjm9A7B+TzOrNacX1Wz2etA4pWXrAdzSzL99FaAAf7zqFj5udTEG0D1XITmqwqzZt/Ag7959GhcnSrkoUfmfcR1lKP83693fs6dV+1N01tQHFdI9pMQ20j17UPE+yPfYLs7U0/98VXPkkH1fWX0Hh3yvwS0/WH2v1qC2RGlnAmvO6D3Nk+lA1bn9dAd0NVlD7C2qP3URZ4X30dOuNnlxAmNF9php9tDdQdhiwn94PdrdK8dPOMtQN6A/VhG5SK6KzY40/7WEcG1Ycspsw9ig+ynzrUCFg2iJEjQ+Q8mYYZnX1c4VKn4eUL5KQceksispKUVPXzIyvyruoUdhCV5CK7EsNKbfgInLzCsRZIzb26KmoY0psJs6fSMLu7Z8ho9wevkOauBeiA3gXO1KPIf2LFSax4Jklyf9nQpVraQwnuZhvAoWcCWdO3FZhFuqXH5gOZskl40NvFELalPnYymfRJ62A0/FD2J98VHBORs8IgBPKcfmIZCi3+fpEl6U/3wK7BEU/SnmG2/NvCxtn8wETSxgmwxOPHyP+Ml3YsL5dVxty3tsoyJYdfzIOSjIdffmPSFsG2uaCaB4rdauHiMzOATKdBkWXU5C69zNsO1jA5OMQPNuUICQaoZI3p+kwPaipwcIFG5HKdZO/OOFEsmH/njcwM1AFlOficLLYrDi9EHy9kKe/OLNdJBiLA7nc0eDyN2KJAdffLcdvfDXYtWYZTsAXrk7sGrkrkbhjAy5ogN5OTYdzJx53bCG3s0dddR4KM/fiyK6/Y8fZcih9h8Nsl6aHgourCvq8b7AzJQXZl3NQrq1Ebattzkf7GR5HWisj6uGyqVoPncwJrv3UYnKRhL+SlTmrhIHzeubFYqKbFasNx61C3AQlzny2CglFk+DpIoe26Bw2JW/A4VwtFMarz4hHi30Ipsx5GyFSmM1GtML4KauogvzpAUahADk+UPO9/UoatrF59JRDW8V//hUm40/Z2d/h6g+nUGSI3m4BrVYHufwerhqfd+kMrhacQX6J5Azo7oCesipUXD+LjGMJ2PW/B5D/ixoBzzYdPPXJ5HNc5l4cx4EImSGWcFx/Nx7PMTGkKzxntEc0dxpuweIgJbQZGxDzzuctOA051l7fyvEkMzZ9zSfCqxGybBIGyfS48O1qK+6JeOjcqUTN/R5A5SmjPsrSDxdxJbuFBS0PgfbRiwhLdJvggv7vujL98BfcL7mP+3zpeW872LvbQPfjXTTlR7X2PJvuzT3/bNDNfJbts33gPLAaJbuq8Auz/+SO3VBzrRq1hXdx92Y3yHvTwqfHhfbwt7Ulb8N+Ofz/+iTm+X/G+YYk5h9ufesoR1HJPfT0mYDJgz2lTbMVULqHYsYoNfTX8sQBUn0t6uSu8FBLgygKP4x8/pmmZ65rTiH3lgpDXgqDWgo/KnMaj6mRsYgYK4Z7cHshFlERL8NDKdU7DIGaaaQVZfRofnQcRc4N9vV6TUL8F/GImzsJ896Lx5cfjGcKFlOcjieJzZKThEEq+E7H1k+XYh6PGb9gFb5cHGza7ttcFNvK4Rm2El+ufZe1m4O4tduxaoJKWCF04l9iM9fFW5F+7hRS6/cOYwboFR0UHpOwit3Hsj8tRfyne/F7plTq8tOQsFtqZuX1DfQeuAIrP5DS2q1IWcD38tCj4OznUgvicUfl4Qp5yTWIAeFEin4sZz+yQISODZRCyoihJUJD/aCsLBBmjRKPIy2vNpy5ei/OnzuGL//UypU4O7JwlcmWQVM3Yuuf5uClWfOZTFyIsUy0lGUeMtuMn+hqmOxfaEj2rQk/Y6VuZQntXfZUcoCzO3tPu+YcV82gHI8Zv34TU4dJ+yna2EPt4QK5rhzCAhbCKvbvyhIGiwa9KsmBqeFYsHo7Fo8x1TEayZn1TJeq47rJcqabLGU6zCps3TcfI5RM3zi+vWFfwuR47OP779TrUnOw7J/LMZGJNV3WIdMZ7m4LER/ji+ID67DiOC/Q4A77Lnsrg9lrcZZ902ELiceeAS9jVnQMJgxkvz1Od2d493fgo/ZM2nDKoa0G7J4aAJVSJcmc9kOnq4W8nxfUBh2qfxjG+bQyJFeLn4FohJUyopEdtSoGI0OeN03reZQV9ojJ3ICR05cYDdxbu9pwOtb/aTx6Z27BigRuBB7CzQpAbqeCK9QYxB2TFkL/EY+IqlyUVtvDd1wU/A0hgVmfcxv5Bkb2r0VRXpZYZgXl32WjtHcAJof4ibLFRgWP8aHwlWmQabTHvGUeomxqpC9VISvrOuA5AaGDpPDs/F7HxSDq15HwbUal0lzIRoUqEGEjpc/IeoQqMBKvRb+F4L4874yhM2Ixa1ooVAY5qPaEc49alJdKf4P20N+6CGt2pAnRLsYu3o74BeGIXBCPjTGinDmxtUHORK/dKDgNUZKF1BJf/N4wTsPDikZLOhXTf3acOoXzhxtCxFt3fSvHk8zZvV1wMCod2X2VZ+Crdp2ZSrQZ3SlcvCqD17hw+DpI/UsZgJBXYxE1ZRSkZQsdRrvoRYRFfjmnRbWtHfpN7QeHF+3QY3Rv9JmnhpPtPZSnGfbJlsH+d97w+T99oZBmQll3HvvuLtxmTws7OM/uC/uA7sJeiD3C+8HZwwa1N++g2nhFo20PPDXVATUny3HvFi/4GT+zZ5qtHX9QdEd3JiZq77Xbzr7Ew8aC/+xB/W/W1NtwV6LoTRSTmDd4GA35hiTmH259a6k4m4iD2RVwCg5HdCzf+HURIqcEoudPqdh98CxTgBj5B3C8APCfsUjcHDbmRThqrjczs6MUGXsP4Ap8MGXuO8I5cyOGC9c8mCbuf1H07dc4f88VoVFS/exRUF47ipQLLSmgxMMjAyuWrMW+fC2UXsFMCVuBBbOChT0yziTEIeYf3FDkpGHJH1ezdjo4DZ2OBVy5mztebLftL1hqaJe+EgvjD6FAq4TnmHDWbj4ix3hArslAwn/EYr35hvq2DY/8hPnLkZgt3sfMmdMxcagK+vxDWLPEaK+OVl7fKWASpkyV0hgfKHXS5yKFsItgD3Vfe5T+aGYM5ydhd6oGcr9QRL7FZdw7iJ45Hmp9Dg5+fYAGrB5Txv5NXG1YkNLMakNh1EAORWutCb5HGZct1So8N3M+Vr03BxM9FCg+uQEL3qF9Lro6JvsXGtIrEyANd1uFVbqVJX48ivRrtvCdwt5zWkiTK6WbRXsUB769jp7DIjGX62yxb2PKwHs4f3AvzB+7RDMcj8OSD43kwAfvYt4EScf4y/IGHaORnPkcse8n4XIF102mMx1mPJ5z0qEgeS0W/tl4kgPff4frXAZdaj5m+iuhzU7C8v/cYDTDPRjL/jsCAzUHsWZFmlSWhITjhVBOiEf6qYUYoShE6o4mwhYSjz/XvsaBc/fg9uKboh32VgxG9r6OI4dOSLZYFbLSsqB9ehRmRkVjnFloywel8ORR5Nv4YYpBhwpVQXOtlSG5WvwMRGOslRESRnaUtbj+TlxtqM1Iama1IV8VtBBjZRn45M8NK4I27c2A3v8NJJ9KwhR1OU4kr5NqiEePOBaTrVUheObb9X1u8nO9UJLK9JO8VvTf6qNI3psFvdc0UZ+JfROh7ndxfl8i2E+zBR6ibLKkL3Gb72QJVONiJP2H3avHPWSn7DXdg9qcihQkH/wB8JM+I9PZZg7nf6uvkCZMMC3F+f0pKLQLxEyDHJwyAPrMZBy/JlyhffS3rsLuJVjOQ7wrPDBx7ruImxsMV+7U+x+mVwmTn0QGukqatUtAwxiN0ViNCUzXqpdwVl7fqvGkRmTg45N5wquyy0cbJnsRj5haFB5ORFqZCiGzpTHpqDAM1Ocg5VtpH8QOpF30IsIyd6pxK+kn3L5vD5eRrnCf6AJHmyrc2FOMu8aL3LnvzlZwyYhYe973t3Aj+Sa0Ng5wfdkD3r8dAHc/O9QWanB9613R4SNggx6/6YdeN0tw+6QhZm4dqs5VQDHSE27/ZwD62t5G5SmTeLpEZ4b9WAy+M+F3I+QfzP9mVf0AT/+G3xWDV4r+RqFZIzqiPmDoKGRfasteTwr0VDrAlnUGXVU59JZ+/90doOxh23S9JVo6R6GCUi5D7b3GewgRjxIfjJ3qAaW2EPuPi8qTZcR2ipJLOJxhcCxawD8YLw3sBe3VQziRLZVZg1sQJg5h510Uw0s0SVuvT3QdbEZhyrwhKN2+ERkWR6FsIbfvAwVTMkjeENbiGjQeQ1z0uJqchstSGUFYjxW6lSW620NeV2V9e4tI732/CtoqMmYfCEHHkKO8JV3EDEF+ON7FRSFcaTO0UYcR5RNafV/EYwrf5sHeHrZ1ldBWWxoFZ3qOQga9rsXR/DYhs3OGXbcHlCctfgbCIp3VziH7q/MjjMUohH0OH0wXkOyoX9rSdx+ibLKoL7X9XluSc0K9rLnxsvbQ37oKaowIHQwVbrWsB7UJK69v7XgS8Xgg6RHoBOM57aIXEU3jaAMbSGFHW4O15/Vi7ex5aFMTt07LCOcBv5Tfxy/Gm18SnRb/wUG4eP60lBNpD/+bNfXdPLz8G9p1kmPAc211HBIEQTzGOIVgwuCfkXn0NFqrWxAEQRAEQRAEQRAEQRAEQRBdA+44zLpw2mq/WnsebX5h/3DPYWc6EgRBPJGUpeIIOQ0JgiAIgiAIgiAIgiAIgiCeeKzxpz2Mo023btyJyP7rREeCIAiCIAiCIAiCIAiCIAiCIAiCeFKxxp/2MI42EDyIjE50JAiCIAiCIAiCIAiCIAiCIAiCIIgnFgv+s4442kDwIDL4kb/oBHmCIAiCIAiCIAiCIAiCIAiCIAiCeGKx4D/riLzpHoeG9IjzBEEQBEEQBEEQBEEQBEEQBEEQBPGkYsl/1hH5bh5e/vwouhE7yTHguVHIvpTBMqaoVM7SK4IgCIIgCIIgCIIgCIIgCIIgCIJ4vCkvL5VeNeA/OAhZF05b7Vdrz2M3D09/7kS0tn2HHAOGWnYcEgRBEARBEARBEARBEARBEARBEERXRnAcnj9ttV+tPY+0xyFBEARBEARBEARBEARB/P/svQlAU2e6//8lCQkEAgHCFhYREAQBRVkUxWql7kstTtEyRe042l9He29r+5uf3vnXOndG596p7b3VmanW1uqMVdpap617dVxQ3LCoKAgqIkg0QNgCgYTF/3uWQBICROuC+n5mTk/e97zn5EiS53yf53kXCoVCoVAolL6ElfzZoygLmPQhk0E0zl/aF8oUCoVCoVAoFAqFQqFQKBQKhUKhUCgUyjOLlfzZoyh3jDhksonMvi+UKRQKhUKhUCgUCoVCoVAoFAqFQqFQKJRnFiv5s0dR7hhx2Jf2FAqFQqFQKBQKhUKhUCgUCoVCoVAoFMozi5X82aPYC5hUIpNNZDOJ7P7xlykUCoVCoVAoFAqFQqFQKBQKhUKhUCiUZxYr+bNHURYwE5ca5y/l5jB9/OWnBkkwQiIiIOOLFAqFYjtO8AobDiU1IBQKhUJ5Chg4ejxGRfIFCoVCeZw4CyBw5l9TKH0UodQLjvZ8gUKhPNtIghEUlYzIgWFw5KsolAeFnTeTKaL0aazkzx5F2S4oJJK8IhXMd6SP7KMHD0f+pRxSsJGIdCx4TskXCO2tMBgaoc7Zh4OXStHGVz8YhmPy60NRu+OvyK7kq7pBPOQ1ZISVIvOrg9Dydd3hMeoNzJT/hI27TvE1lPtHibTfr8HiF4IgE3M1enUe/vnx+1i9T8VVdMOof1uLZbPi4CflK2pLsOdvS7H8m+7OewUbDi1BghzQ5qxF8qIv+XoKxZJAJKWnIdIkEdim10NbWYScowdRom3la3kkYzB9fhhUWzcgx2Eq0lLNOyG0NTdCcy0Lh7PzoG3nKylPLMNc/PBBhAJiVOGH0+X4E1/PsDgwCnN8hXypk4abBZhwx8CXumLzeXYO+CCkH0a4OTDdiYDWRpRcL8E7ta24zbWgPDF0tTMd3MriNcY92CL34ZgwfgQC5CKu3NYI1UVid07noYmreUyIIHZyh7C1Gk16C9tpREr02pxkyC5nIvNUKV9phPsbhNdnYfsPpx7zv+UhE5CKVWsWYXII/4G3GVCe+w1WL1qL41xNN/BaaiLRUrwZ0ZYcweb/bxk25nNlFv7644JkkDDtyPWr8n7Amvc/wN4yrgkCXsG69YswypsRZeT9D6/HlHeMeikJa35YgwTVWswmGqqcr6X0bcKnvotkf77A0KJHU105co/sQn6Vnq/kECqSkZISZ7sdCUnD/BcCoTn1V3x/vpGvpPRpRAJIfuELr/5SODI6ot2Amst3UPWdnnXvWYLlUL7iCeu5ulqU/qESzXzJHHvI/j0Ivt0k+aoOX0X1Cb5ARIx4hhc8B8ngZLyPC7dRudtUK5F7fcUffsES8iS5i4art3A7s7njPu1/0Q8+zpW4tUnXee+UR49lfMcSbQF2bt0FDV98PEjgKHMFmivQ1MJXWeFe7KUZTmMw89V4eNw8go17z/KVlJ9NuAs8p3hCJhWwNsBQX4s7O6rQbClA/JzgluoDNxdjuxrc3qaB3iIGaDdYDsULCrg5cAHNRnUFKv5ejxbrBs0c1nb6QxkigX15OYqI3bGKgxjOc5Xw8rRHc14JVN/18IWjPHo8LWI1fDy6quAkss4+oFiNnNiDl4k9aNPDoLmI7/95hDw5TRAEI2lOKkKrj2A7sRfmEQInYocWItn1Kr7ftgsVNHb0yBAkesBnnDucBdZ1Dms/xnmY2CMtKver0VjIN7DGSE+EjZXzBQsaKlH8P7Ww9I57vI8BMnjN9IGcuGmtzQ1Qf3sbjcX8MXdneL7uhuavy6C9ytdRHguRUXHIu3Cq13zaw9gL5W6e79vQ7pHuvX38UVnRc4LHDM8YDA3SIWfrDmTlXcDlS2WotPPEwPgRGCC4hnzVg3Q6/TEgzhfNBWdR1s1znUOE0Ljn4V55DD+V1vF13SMNjEeEw238VHSLr6HcL6NWbMD704IgVOfh6LELuFIphH9YOIYmRaJ10w/4iW/XhfS12Pp6HBTNJTi+Jwvnyg3wDA3H4KREeF/agaNWolkZf1mDWaES9rVBdQabduWxrymUrrgiICYKzjf24dv9J3CZ2KobVe1w8I9GQmx/1BXkoca0l0PYSCR7VOFkThGanMIQFSlFyf5tOHSa2Li8Qqh0TvCPTsRgRRMuFN/hT6I8kQid8UGEPzzY4LwOReVas4D+826+CHdoxO2KemgadKjltwqtFrv0zJPTOradJ8IH4eEYIW9FScktnKnUoknoirAATyRoq/BtD/EMSl+kq53p2IpLYGhhjIyNtkieglm/SIRLxRns3X0I50m7Yq0fBsXHYoD9LVy+1bu2eXj4I/HldCQ4leJydxqr5RZu3R2IuKHBaCnIRYVJjEUen4bnAhtx9rsfUP5Ux17isGLje5geIkLV+SzsP5kHjSQAUcTxSB7chE17utcsCb/bgP+cTrTUHU5L3dDJ0X9gJJKGh+LStkPgUrFJWLHpPzA9WAT1xSwcP1cEtcgXAyOHIHlgGzZ+f55thTeXY1WsBpkvTcUnimmYPSYQ0k//iZPk0MyP/ob5/vn4y9v/jeP1XHNK30dBNEo/3VlkfneQtSFXVVq0ySMRP3wI7EvPopz3kRwj0jF7YgQcKy7g6JEDOHuuEOXNHggdOgwxvu0oIn6PeXBDhJCEFAS7CuDkJMLVy8UWwS9KX0QyOwj9QoRovFKBqiv1aIAj3MLd4eCqRUMRH6EUCyDwaEdTbTN0HZsB7c4SSATNqD2m67azr8BPAEOj6XnN0AvEcCQumO5aNZp4H81+hj8CoqVou1WBiosNRD9LIQ9xM7+PIFd4PSdCzWcluH0TcBkpQ1uhFi1MuGCYAn5DW1G5rQ6tT3WPkieAulJcLbjEa5g7sA8JhVOxibYpKEJty+N+gMdj/GvT0V+bjatVfJUVbLWXXWi5jcqauyi/dha1TTTS/0DwlcHrlz6QtdSh4lQ16piOlH7u8BksREMesUFGv8ddCvd5fvAUNaIypwq16jbY93OHl2W7AXL4vuQJJ0Md7pDr1esEcAxyh3tUO7Snm9HTp8YkDDzT/eCjEKLdzg5C4p9pznf9TguSFfCd7QNXqYCcZIfWilpoC+n3oU9hGath4tEtjlysxqcFBddUP3swi3zIZMS5lWDPpi04fqWka0ebuzUoq/FEVEIUZHfOobTe5DsS8hKmxEpx7cdtKKij351HgrsEsowA+EU7QXiX/L7tmlFHdI6Z5uXth1Rfi8rTNbw9khM7I0bT+Qamj4l1nInNkLaaaSJdLfmGycUQN+tQY2p7bLgPybRAuNXfQvG6KuijveHppUNdHtNCCKf5AXC8Xg5NNv3ePG48vZSouHPL5rzag9w/RWsctqFJWwEtuxWh5PRW/FjQCHn/mC5ThTJTPshkZJNyCZ+uMD3ZuTaOEr53bE8InODYpW00Arz1UJWY9nLvvK5N702npbgPxmP2yCBIdHn4+7SFWPreCix/cw6WHlYB0iAkZPDNrJAxOpx8VzQ4/uEcLP7DKqz87ULM/baIOLpBGDyRb2TK9DXIGC6DtkzV64hSCsVIa2sdb6cqUHH9CLJ2HkGJQInYGC++BUeQvxcM5dfNetK2NRhtXCnKLn2HnWfUEAeGIYg/TnkyWezXD0GCatyu4SvMEEPpRHY1FVhysxzpJtui+p5cEBvPE8sRLRdAU1KM9Mp6rKypwaJrJShqFiFIIYMv34zyZGFqZzo2nbn30Zstkg8Mg7ypAD/uzUKFsd2lrdh9Vg2JHznGtrKE0zCsfrF35fSOzJW4HdboTmsxPfi76i9WuzkxX2quh79QQK4gYt7Dg4lHW6Xp/EHkaT0Q9/xw8ovgkQ5HUowranN3Ia/HDmBPA+MxOIT8ywt/wNxfLcNKom0Wv7wWx8mDRTZoBLqXRPPwmwlES2my8SdeSy391UL8PY84tMphyEjnm01JRXKQGPq8LzGFXH85abf45eU4RCSXJIS045vN9CJKXFeP8jLg+EWimYRiTpunr8XbI8U4s3k1thhHJ1KeHFqbO2yIpvQscvZuRo7GCZFDYrnjgliMHK6EvmAHtu49iJI7TFuiX3IzkfldAfTKZLwQw/ymTRDEIbwfUHI2D7XuwQjvpkM1pS8hhVOwCPqS26jYoYXuaCMa/nELFZV2kIU4o8OdVetQ949K1Jhu2XrYEVPfWFCH7vsptaN5h8V5/6iFXkAMv04D7Wm+mYszXKMdgMo7UG2uJ/ehRd36MqirGXvnio5HiqcIDjCglZlS4XIzmsgTirjy5Hwp3MfJ0HhCg2ZyDuUx02KqY+rQ1m6hbRpNOoZLPLrRGyaahLTxCokGkbydGHUKqy04ndEl9sPHebpoDbbegbwDeRcHa+9tQRd7uR3n603sJXMvRo2jiECQjyt53QbtnUKoLWel6e6eTOg93vVsIoqTE/2qQ8W2SjQQW6X7sQaVZNMRf0g2mG9EsB/rCYXYAPXu26j7kbTbWwXV/ho0kXbyZOMnbQfpGAXRM1rc+YK7XuOO21CdJd9NF/KdjOebdYNkqAKSGjWKP1Sh+6549nAaJkdbYSlKvq7qZlQ2pa/QGaspQknud9iZVQphv1jEWASku/99Mj4O97sWSgMREMJMScrZMTl5vDHZR3FPv+tbB3HqphDhz02EB1/FjkQcHghcz0LWLRNb0qufxvljTJsudtGqvaKYEeECT1kT1P+4htvdTOEkiSd2gtgP9edVnfZobzWxUDJITexRFwq0FpqoErU3Wsg35S6q8+rMk5O93ocQ9jI7tGiZ+FA7DHf0kEi4B4tomhJeoipU7aYjnPsMVvJnj6LcscYhk0Y0ncP0cZYfGsRoxqW+ifm/TMfM1HSkZbyJjNQUeJkKLmksxqa/hYx00mZWOtLnv4W0lNju55AWeCBy8kKkT02ArMXkJ+rtB2+oUWYcQGh6XfLes375JmYlR3QGslgUGJK6BBmzZ2Pm7Lnkvd/EhAhqhO+NA1g8fgSGJC/EOr7GjB66LXc32xlLl/h8Etb8OgkKXR4yv72H0bEUiiXtxaiqJY9sCaMGjQRD6QOoygr4MuVpxdfRG6m+Aty+oUKOVftkDxnrKLTjNnlqPycSYgTzEO8VG89r0WDNuUtYXWViAO+20elvn0Ws2SIhMxKEf81Tm7sFW3YcNJ8epwMl4l6ci7HDJ2LW/IWYxWit9IWYP3tir1pr1nPRvNZqg/dwUjfLxOmVjsEUot2SgxjHNRLDiXYLJY0dB6QQTTUDMd0mF0px+l8F0PmPwOgQNryHoJEjoCTP7sNnK7gmzypE13QbqE8fhmApUH5qDXaSIrM24bg4YN285zBk2Hgs3Mo1w+6lSBk2Aonz1vMVJphcf2cJk6lUYvDEOMyM6w+ZTotyZqr318hFz36BhVuojno6qIOmrpWYDT6gFR6JIHsVzp8wzndkgnoXsor08Bo4gksi84ijwqBsU+Fa7k8oqXVFSFQgf4TSZxE1ofbT6yj7p2lIux1tPflVLHZweM4DztCi5sceHDQr2I2Uw935Lqpza9ERzopwhAvuovZSAxNW4GmDrrCB3KNrZxCuVI9GSOEw2A52wxzJqxa0VdlBMtMbTmo1ak5QAfTkQGxEyhtYMP81ojeY+AnRG/NewxBP/nCHJpmKtLmvYfoLyYhkhYUIXvGvIYPolLSXyXmvvIGMScMR/fxcTI/vnB7VMTQVaQveQDrTZjZpv2AhkvvxsRn5CExMjQXT1cprKDlOdMm9deSsgJpo7w57GUru8cWJSJpK3m/WVKTERZBK/v5DuSYMHfc0m+gny3tisBbvmjbGPGH6DNOaVY5rn6rQYBpA17VbjAwUQuInBhrq0HiZr2I4V496YuZc+0nZlR3IpwEHbzu0ltdDZ9LZoP1kPbFqArgMMPXtu6LfVYxbn2mZnHIPtKJx6zWod+jR3iUeRenzqNTEXxJBbPwq9Pr7ZPyjNIxMIn5QRhomvBCPQGIHYibOxugBTuQrF4zRjK1L6m7B8EZcP3oSKocIjI3nO4IOS0GkWIUTx3LZsqn9mzVrNmbNYexmBqLdTZKD3sS/mvcmZ2fIfbIx8edjO2PXVu0VxYwCDUr+R43GEr5sBf2X11H0hztM30oL7jIzrd8D9nCOl0Oi06DusEU+pdf7aENLdTscfBwgcBay+8Z6IuCC5fCMBip3EZ3Vq56jPDKs5M8eRVnQmUk02ZOd1Xrj/iEfvz+EHT0imM1rYCrGRohQlneWHw3mhJAJMzBEXIw9mz7Cli8+wsYt+1DmEIuJ4/ieXsQsJ85IQUBdFjI3kjak3cavzqKpXwqm8IbXHFeET85Akuwqvs80nytaFqiEo/omjL9PZXwyQlCA75nrkvfe9F0BMbgjENMhbAn+A6C8sgUbP/sYWz7dgCyVEAHxY8ijgnJfRCZh0pRULP5gG9aMVUJfcgRbtvPHrJCZeQTFBg+Mensb1r27CIt/vwGbXwoDNDn452a+Ec+o3y/FOKUBV3a+j3VUxFF+DoJAuMnII1tv4jXIgqF0rEDZDb7MI3TutHEegSmYnuCN2stnO+wM5QnDToxlwT4Q197CF9XdGRI7iImONzh543BcDFYNi8IHCdHY7++EEXwL69h4HlECB1rbcJIRBjzDXDwRLW3H7RotXePwWcLCFtVe/Akqu2BMmJOOJGYRfsvepj2gDPVA/jaidRittfUUVE7RGD3MqKO8EDfVXGtt+r4AwvAUotuY3qutKDl2HGXiCIwcwgTDiH57LhYet0/i8GWmT3YuDn+xA4WNzBJHO4im+hw5PY0OUe9D1pU2BA2fCGW/KRgZ0obCrIOPeV2kR8UX+GcOUcHh07D5s5VYvPgdrPtqCUZ5GFB8bBsy+VZdCOV60Jc3LcG3WSex/aOVWLN+B84f2oxlo/k2FjDJxUmzF2HNV6tYfWR2/Q/XIzNfhnF/XIsVI4EL33wDw/p5SGjLxoe/oWtDPz14wVshgqGBGzvhpSC/38py3OgmD6NSk1+h3JsNvHM4ITzYG4brF4muqUDh9Toih2KpH9TXab2LdnU72hv4MkOwHG6+QGNZY2diz5JgV7j7CdBYUG0laNYT1gNkIh9m9Jeemd3RjLulejRAAHsFH5lVa1FzVg+nKaEYMMEZupOVaI5WwMtbi4qtdF3DJwnhwIkYHdCK8zsZvcHFT07XeSAucTjfgkMZ6oo8okk2fvJXZDPr0ymn4IVhrqg68Tkfd/kYBxtiEGdqbOQpmPJ8ILQmbfYUiBCeMhXhTK6v+iB2fnESTLcXVTY5TnTJdfZEW3GFh6uIXWO6A+L/BdTtxqZP/syvSW0Bf09NZ7Zi46dEP3Xc00SEsF9vEYLGWcS7tmahShGPCUm0EwZLLbFVatNfuR0kSXK2A4PuAl8FCcQuZFdnMB+5AwP0zOwwLhJihQjBYjD5oOZqCytXr0czsYcSuT2fYLTO3UpbOikQ+2qxpiLlCcKTGVHWCgPrWtn6+yR+T0AdDn5G7MAnW1GIUuTs+Bi7C4jj03gVuxlbd9CYBLSC7hQOn9NAHjMRkYoxGB3riorcXbhuNDUhqZgY64Bruz7Gpk1k2/g5sqs8kDjJ2GEzGIljYyG9fRBbGTvD3OeuIojCRiDONHbdm7161qkmtsbWhJvIDgJvolNGuMFzkjvE9VXQnuOP2YDVzlRGbLgP/b5yVEu8EPTv/aEQVqHy2F3IpirQdk6FBit9/yiPESv5M2Zntd64fwDHBZ2ZxM6N2ZmVTV6zZbIzK5u8ZstkZ1Y2ec2Wyc6sbPKa3e4Lb8Slz0Uav00fQ4zvjVzkXOMH/kviMYid+mYfVMZfE9Pj/HQphP0jEc481f1jEe5ah/zjpzpHW1QfwbFLdZCHJXT2fGdxRfjU15Asu4o931guMOuEIH9ioG91rh0jFguJqmCmQ+FR78I3mz5HjqkQqCtA9mVjKKsOheeLYZA6m/XEpdwDv1iC1b9/BwvGBkGmLcKhr78xWzesC8e+QeaxEuilQRg1ex4WTImGAhqc+fEHHDKdQitxOd5+QQn99f348EPaS55yb3BT6/EJQEUE4qaMRYhQhbyLnaNfxCGBkHcJtjkhfEKnjZs5ORaymgLkXDadDpnyJDHHKxDDpI04V1KDXXxdF0RAg6YBBkM99l+6hJXni3D0jh7OfsF439t8zLoZ93mer4MCq8IVXDKz5r4fyJTHjCwqDQtef9dsm2zRGbRXW0Qczz3/yES2WoL+yTPY3qbzM17D2KjAnqfjImgLspBvnFpLm4XrakCuICKMwX8EIuVq5P7YqbXaVMzoozYog/getPqzOHxCBfmwqYgMScFw4kDnHDrVqaHuiVaojmWhRByByRPCILScquepRoVDOw/gDPn7K4aMx4L5qRgVIoO+JBuZX2fzbbqS5sUoXhkSZiXBJX8HVr+3Aut2l0ArD0PairVWpzhN+7eVWP3uPIwj19cWHrG4fjZWvzoeQ4aNwJCEqVheMw2/jjXg+Lql7IhGyhOK1A+RUcncljgD04k2GeKiwcXz3GwJbq5OQEtzz2sUEv+ro0uCbATCffS4UcSdr71YhAppP4T4s0XKkwKzNtgsT8gMNaj6rrtP/wGPNuyJNk7LiBw6n1wt+++gfNVVFK26Sa4jgXykMxoOVfU8+wylz9F2JRObNm1Ajtr4wdVBXdUIuCrM4ja1l37s1CQEZVg/OKpzcbAj7qKH6sRZlJj04VMOiYS8Ise8TdZhFLYpEcTLmXtC5NCpuWRhCE9JQ5xnIwrPmyQAWkpxOquIGbBvFfae6gtw7Lwx/sDc92Zs/eog2FCFZBRimM5RR3d1xru0p3AwVwNZADmXr6J0wqyL6hcgRO3ZSts6MDC6VWTHBlJ7RSzsMXFIefqw7OQ9eWwwhLcu4iIzksXm32crSs6YtLkPms7vwnmtN5JeiodXbS6xGcbJcJ0QHROItsKDyFbxmcR2DfJ/zEWFLBCh7kxFMU5v/zO27s/t9LtUatSQc+UKvszQi72i3AOBrvD5dQj6j1PATdCAisP19zDKr4fRhrZS3Yzaj6+j+A/XUPLXGtxN8oGiVY2q/fTT7XOQj/hx5O9M1jjkU4l9oHx/qJDF9Hbgt03bjkClGI6ZxqmuXJzhCA1UxRa/wOo66ASu8GBjJM4QN6pQajH/Vm0NEaAyV3TaSQn6j5+LZH+m17pJItKIIBoBnnVQXSfn8ZScOIkyWSzSFryF9FkZSI6NgMxyDUNtrfnUX/q2jmmeKPfByjkY8uISLP3zDpzRB2Hyu+uw+fXu+y1n/GUdlqUooc3dgZWvjsCURWuxp0yMhNn/gbW/i+NbxWHF0gkIFqpwaN0qnOFrKRRbcRw4sSP5lzZrKqKd1MjemYnCjh+7CP39PVB7K98i2NaI/B2dNm7jph24jAFImZWGkG6muaf0YSQKzAt0QkNZKVb3ZOhbG7Do2nVMuFaJPzW14YC+CctvFuNknQDOPm5YyDfrwn2c5ytywQcRfnBuvINt13pIZlL6PE1X9iFz62az7fA1/iBP77aIQJzC/IOfcz1O//4dsm8CAUlpmDUqmG9gHW2dlQ4NQj5oy2gtosxi57yJjHmdW8oAYsjcvTuCfYaiXcip8ELSC2HQntnx89YjbM/FifMaos80yO2YqucZIHE51q5IRYJUhT3/uwRThs3Fyu050CrHYNla6wlAhnoD9/Rh1i6cu+gDZO4+gI3vzcGHJ5gRYjEY9zp72IyVqYxuWobV5Pr6/uOx7K8bsDiAP2hKwCtY8Voc6g+vwmrxSnx76ChOZx1F1t/fwSi+CeUJQR6IuLhYdkscHAYvQTEObtuC87wzU1NH/CB7B4tlGbpHHhkMuV6NCi0feBOXQlUlQegg48wwlD6PgxiyXyqJz6zFra09JOIi5PC4r9GGYrgk3mOATMjFFlqbrQXABHCY6QvHG+WouSGB7NeB8H8nCMpfy2Bv+yB7ymNDBLF3PJJSMjDzVaIl5r+F6YOYmQvM0TWYT00uc5agqarU3M9q10BnOvkLaQPPOMw20SkZ8yYilBg0udd9jN7zie/UXOkzkKRsRv7erdwISCPNjfxMWdZh77u8yDxe1N6IJq0GBiahxca7iM0cb3rPb2L2MKKsXD3gzZ1B4REke8InmvxNC8tQaWuAnMkEtt5lA6m9YmizmAKV8nRj0cl7YjSk6izs3HOKszU2/z719/hctEYFck4XwyDQozDbdHkJD8ikzJTHE83uIWMOM+2yEzyMN2HvhYDYGZgwcyF7fP6C5K6zP/Riryj3QHEtVH+4iquf3sQttRheM4KhGGtbtwO7sR7wvJfOVL0xwA2e0S1QbyefbrIC3kQT+b/jB3k87QbRJ7CSP3sUZZM1DvvO/kHQVpeLrL15qHUNRnjHkGoRhJbJOkuEws6er91CrtN4EdnXgPAX0hBOjK8Z/fvB26CGytSS6k5h/5a/4pt9x1FIBKIieirSfpne9VzKg6UsB4e2f4CFK7NRDhkGPz+PP2DJIoxjVi3W5OAviz7AznygPOdLLF96AFfaxAhOTEUC0+zflmByCPEYdMDAxdvw7Vdk+0U4OypUFpqKbz9bjklMOwqlG7SXMjuTf0wnh+2ZyK82jaxEI8BbD/XtXtbf0hfj/PdHUCJQIrznGD6lzyHEqn6+cBYYoHfwxAf9/LCVbEnMtDhwRhJ5varbhXUZWlHFBDccRGA7BtpMD+cJnfFBdH8EtVZiR6GaTsH8hNPaWscvzt+5NVl4E73bIlNaYWgsQuHRz7ElSwVZ5AiE8EfuixYNCnNykWO6nTyF7LP5Jk6oK2TORJG1EwdXZkwn3j9NzUxGVA/DM9QjK+GlYcxMWriyeymWb8khOqgIO/+8BH85230CkGGvhvsUym+sJ+d0spOtF0PWTfSxPOcIMsn1lx9TEVEUjefn8gc6UGLxfy5CQu0BrP6tM95+bTz81Pvx4V+OoD48Fcv+aOykRXkiUJ3EFmbKLLJtOlQKg5MfAkyW2qqta2A7AwR0E2tQepPfdTXxl9hSICJDycmSQCR3BNdTMURBHk/+Yfw0fJQ+jcgesoWB8HVoRPnOO9CZGg8z7CAd5QGn+xltONYdHlLrAbLWauZaEtibTqXG4CMmyuouWmu7hvDtxnlBKatGxU4DxBOU8LSvhfrvt9Ho5AOvGbamvCmPC3lsBjJmjCBPFhUKz/6I3d98jj2XOjtu94RQ2HuvS8OdAnOdkpOD09mnkHPVOArxHriVZa65tmxB9k3jKCDb6f2+61Dyk+k9k+000VfHf+JtLYXBbqQn/J5zRXvxLdz5Wm+RCGxBCzP1skxsERe0hz0T9NG1cqOsSlvYhJCD3CLAKBJD4kxsUiNNHD5bWHTy3vARvtl7CuaPnkf4+9TpiddDvqtW/J7amxb3QGxb9vFTyGNuQsCsszgXEyKdoS0pwLF927F9cxa1H4+Au2oDdJvvQNNsB/doFxvyEmK4xMog+jmjDU0htst1mjsMRyugI8ZO8ZwTDCfKcedcK1wneEHKxqoojxUr+bNHsbeyxqExw2hZb9w//OMPjCaT6XE0VdC2u8I7wPznJ/b3gqxFAxXT26uqDloHbygt5nFQ+po6tgyNuHbiCPL/tQv5zUokz5gKLxOHVhngDZSXmhtXe1c4ChtRW3oWOUe3YOc/9uH6XSWiB1lbO5Fy/7yD7VlHcfqrlVyizwjR2KzMbjXN5ppCBF5POlzCjI8gMIlenQF6oQJ+vkpu8+Ynk5WROi8PUHtK+Vn4M0tgq1F2iy/3RHszMzCZ8sRhB/Fdbr0DmasLeeZwG/FPCWLIyGtf46PK2RuHB0dgk5lhEUHBLKrRoMdNrqIr93Ke0BlbY0IQhCr8kK/Ch/Q7RSFPvOipbyJ9TDRftoBont6dmW6oa0CTRAR9cRbyL3VuhcUXUVhU3KHb5PETEe2gQtb+AiBiIpK87/sdn1k8xD0JG6J7uuu89mMRmzD0C10CP66GJUPJKCEtqoyjV5dtZkcLfvt784SfmA9sGixGifq9/j5eDVdh54crcBzh8FMQuVy4Cpnb1+MCEc0uijC+JeWJ4/o+5KolCE8a0zHdlqGwiPhCgYhLstK7SToGcWES1N64yHUWUMaiv6wO57ebBN2YbdMpVAgDMSiq6ygiSh+CSRq+0Q++Lnrc3nmbWYapeyLkcPO2u7/Rhj0FyIp0qCX6SjaAETpGBJBGMn5aA5q5GXA7cXeGItEelbtr0NIqgL2bCM3lTWhR66G7qYeTC33m9HW8/TxgKPoR3xw8iPwrBdBo69BqQyipqrYR4sAwKE07JEiDoTAxM1qtHmJxM26Y6JT8S2dwo/gMrqttS04+aNj79ulnPuWoJBghUfHwYh679XVoaiff/7qTJvdMtqsXcS2/gI4O4mGShv5jyV+xXAXVl81WRg+2wMCsQ+TiBAdfvophkIwZNIbGch3YbnatTWiqJubPVwrTZcDtniPtyFXrS+9vgn3KU0qf+H1qoCXmS0qelmb3kP8Tblw9iTKmL4OHH7wcNDj9zVZk52ah5E7XzqeUB4EQTouC4L9Yzq2ZasQ4FXJr7x0PeupMdT/Yz/SFS81taLLIO/tL4Agdmk62oDWrAY3kLoWmU9VSHg8deTPj/tHk76yscWjMLHZuj/r4/SGEY8e88WTziUfy1Fh46cpRwiQF23NwvqgNQclpiHTlAhpCxRhMHOYN7eWTKGEqKonRVLtiyKSpULJPfxFk/WcgOVyIsvMnuxrz9mJkf5cFlUMEJk6IJ+4MQyCC/CRQm6xvCHhhyPSFmD01BR6sVRBBrAwmBrkVmopeRhVR7pEjKLhNNHTIeKz5ag2WzR+PBe+uwbe/HwMFDLhwbAfXLGAJtp88ifOHjFN17cDxfAN5UCbh7a9WY/Hs8Zg0fzk2r5+GgUKiK3N3YC/TbPVcJCY/Z76ty2G/G9rc9UicthSZTDsK5T7xCPKDWH2Ts0kWmM6bz6xJNmTSCwgXq1FGFy1+wmjFO1cLMPaC+ba/ijlWjf3k9XzjA6exASUCMcJCgrDe1QHjJY5Y1S8YI1zboVHXYhvbSIRVYdE4EeuH/2dcwsem8whM0pAZaShuRkmZFhIXF6xwM26OmMo3ozxZmK1faNyc7iXwrkGZuhmOYWMxISoYYja4JoEsMAXThythuFmEG2y7+0B1EoXVHoiZNJHXWpwem5K2ELNG8dN/SZnF/J2gOrMLhTf3IatIhMjniYbijhKI46sjzdz6wUPmwd8fxZK9O/PYBODAlzZg8+/mYdKUVCz+YBveHkn+kro8HP+aazfzg104f+4ovjVOy356PQ4VGiCJnIXNny3HAua8j3fgN3HMzAx52LuVa4Z/FaJcJEbwxFX49uN3SLt5WPbxNqwea359FqK71swNR/m+tVh5jKlQoZ7YORdZEnlNNJoc0OtYI0h5IqlD3ukiNLlHIymCtzX6UzicrYIkKhWzUuLhJXOFWOIBr4EzMDONlLV5OHyW84OUA/rBsbYU1yyWi4Ce2AsV8aSCh/J+FqXvYQ/n15mk4V3UFtSgTekE6XPGTQqRWQcmG0YbDvOA/+9C4TvNfBRPrwEytRZ1xa2QBPnCK1UKe28xHOb4wcfTDo2FlklKIZxm+0B0+Q60bJKzHa2NdyFw4B4mQncJ9Ho6Vqivo9e3QuwbAqUxvuI/EaPDetc6mrNnUSYMQ8rMGQj3YdYiG4MJM2MgN+k4p7qQj1qPWExMjOjQQB6xafhFxq+Q1DGqtQ5aphOgVwTRWa69rv/8c9FcKkKtSzQmJPP3JPBAUPJEjB2qhIidVOEkLt4QImR0KsL5eBcz+j/5pYVInzyc2lCCXaICfmPlcNTVorrYDo4dtops0Z2foP5wBWohhdccTzhF20MU7QLFFN52HTbarnY0nq5Bk8gNXgvc4BAugP0ID/iMYDo4VKMui49rihwgfycUwW/K77/THeXJp0/8PhuRl1cKBI9FykAvzmYxdmT0XKT/Mg3hzG01N6MNrggI5b0uey+Ev5DQdapSys+kDXpVG8RyBbwXuRH7w9gZJ7guUMLL4S5qChv5xCHRK6+HIuz/ekJipqce8GjDYQr49Neh8jsdm5aBphUGYrGEzDRV/cXk3dqYmbEpjxvy4dxrfu1BHBfK3b3eN2YSmayiMaP4OMvePv6orLiHwdCeMRhKnARlzBBEGbcwfzg1XMXRPXtRxk763g5t6TXUeQzD6OeSMTRuJGIHeqP95r/w/bFCrtcQ9Ki4XgVBaDySR44ibUYgKtgZdbk/YE+eMcHnjwFxvmguIIKT6UndcgtXb7tjYEIs/Juv4mr9QMQmOuDm4XOo6BCfjbhzswluMSORNHwke93Boc5oOL8XBy5r2M9DGhiPCIfb+KnIZJiRUxiiIh1wJycP9zEhxjOKCkdPaREYH42okFBEJYxFQlQA3NpUOLPtP/Grv+RzzVwTMesX0VC0q3Dui734iYjAM+dUkIaGY3BENBJGkYdpQjh8HHUo3rsWv/2PA+g2nBUzGa+NII9S1Rls2mWaMKZQTCECLCYKrnWXcbm0u6lpnBA6bCTEpbtReMckLMLaAiWUoSY2LjIM3uT7fmr3DlzW0iFiTwOj5D4Id9ahqFyL43wd0+v1THUTElw9EebniTE+RNw7tuF2STF+W2Xgnw0CTFJ4IsBBj5t36nGUeajYdB5B7IJF/q5EDIogd3dDiIfpdhe1ZvdC6ftwdkbpR55/ppqI2YieuZlXhCabbBHxG1XXUOkYhIih8YgjmmloXCKiBviivTwLe/afQSP7PbOEu7bD7WxcNXloKsJGoh9KeY3TCNUNLZwGxCGJ1VpEj0X6sdfdf+Qymu+6InLiZAxszuX1GdFvt9vhGZuISOc75J5ryDVaUFHjQuzlMMQOjoZr9SkUM9U9wWpFoPRZ0lQ3D+Gn+kAMjYlGRGwcUsYmYWh/OdErOfhyzR/wvz9xPRQiJr2CMf1k0BXvxZeHGf2txckzKqJbE5EQTTQRc16gDG2qbHzyzlJ8aVyTiXxmx+sCMSImEsFhkaRdHKIC+ev/5xv43w5JlIQVm95EgnY/Vr7xJfkmMBSgpn8Kpk1Mw6/nJ6KfqAT7P/hvHO12ekNKX8L8N82jvQWDzzBEhbrhTl4htMRGtFYVoFgjR2BUPIaS3+vg2FiEB7qS79IJ/PDdEdQwdkQQi8RxYUDRPvxUbhmVaIemPQCDY3zQlp8LU2lE6Ss4wHm8C6TEkXfwlMGF2JLOTYzm6/UwGO3zIHd4xUlhyLuN6ovdJOaUTnAd4IC7mnpor/D6lpk+60UvuOircHt7Mx9M60pbgRaN/s5wH+AGj2FyuLoLobuuwp0dzbhrcpL9DH/4utfizpc6tPP1bbp2OI32hWK4G1xcmlC1r6bzvimPGeu6pfaOHq6RiUg0xlcC21BcJoCncx2umOgdS01CDBCuX9fC3n8gYok+CguU4E7WSVQrQzvfo7kYN6oUCI0fiRGJnAaKUNpBdfyfOFJi7N1XhUp9AAYRnTRkcCjsCs9BZSUfbtVeWsJoFF89f99GLO6fvSd39B/K39OwWARLtTi/7xsUNnLxrtqSUjQrh2LUKC7eNTQmFC7aAvzrx3+hhtpPiOI84MXMYGHvYGGryCbTQXOe/yM1GKCra4colNisKDe4DXSGfUsD7uy8g0bTj/G2Dg13BXAa6AHPKHe4BTtC0FCNW/+ohoGZ7pRBIIJjkisc25tQf8qa/bKH42hiQ7Xazve3hpsDZNFOQEUttIXdWUHKY4GN1bii3hgjtootv0+LWLMJbLxYbrRtNtDdPdUU4mZzIKKZARDEvrF2xFmL/H99h/MaPWAoRZXdQMQkjEQ8c3zoELjevIpqH0/iV/C2yKq9onSHKNYDri7NqDvGj1bmaS9qQKObPaT93KBgZmMYKIOD2ABNVhk0R4y/cQHECUSXSFtQf6YRrfzUs3bjPKEMtkf18dtoLOPqeqO7+4C7FO6z3NFy4ja0RbyDX2tAa4gCAWPdIB3kBLublag+SR8ijxNPLyUq1OVd8mePomwXFBzJJhSZur6yjx4yHPmXcsirh4S9K2QOIugb+YWkrSHxgEzcCp22jpvD3FYi0rEgWo3Mrw6yo9AsEUq9IBW29fzelAdEGEZNCYJMW4K9x4r4OltQIiElCh6Gez2PQvmZCIZj8oIYVGzbgBxrBoTyTOMrECJa0I6S1ru4F8t0v+dRKBwSOMpcIWJ6Rj5o7WKLHusREcQSIQz6Z2jhwvslMgmT+ouhuXgEZ2x0MDk4LYUbB3Cc73tlFfb6ztD21s4Cv7gxiPHGfdwX5Ynjfn0rCuVecbCDwNUOd+vacZdZ29lW7vc8ymOFja/YNULbeA/DIQQioN00dBqIpPQ0BNzMROZxrnuLkd6vLyFapI1oEbNQ7EOEaB8nd/KuPdyTwAmOzEwTzXSawZ+LnQezutNdtGuYaGX32HmTdvp2tFuOnKdQLOkTv0/ejtytg1ZnxY+iNuSRYqudedT01ft6FomMikPe+VNd8mePZB8UMojse2zyyPfRgxMfbuLwIeIRlYrItixkFdApSCkUyj2iSMbYqBbkHjkF6nNQKBQKhUKhUCgUygPEZyLSpgWjbPdnyFYxAXNueZrJEwJRsfcjHO52AXEKhUKhUCiURw+bOLxwmryyLa/2IPd2QSGRd9myEeNxI4+hHD34IY84pFAoFAqFQqFQKBQKhUKhPEO4IiQlHaODnSC824o2OxGE0EOTuws7z9KF4ykUCoVCofQtuMThqQeef7OlTEccUigUCoVCoVAoFAqFQqFQng3Y6dIl5AVdRoZCoVAoFErf5XGOOBTg7l3m/+R139lTKBQKhUKhUCgUCoVCoVAoD5yWOmi1FWSjSUMKhUKhUCh9HCv5s0exF8DOjvk/+tKeQqFQKBQKhUKhUCgUCoVCoVAoFAqFQnlmsZI/exR7AZjhh0wm0XLPpBVNy5b7h3mcQqFQKBQKhUKhUCgUCoVCoVAoFAqFQnlmsZI/Y/YPOX9nscahEWPZcm/k4R7vbo1DDw8v/hWFQqFQKBQKhUKhUCgUCoVCoVAoFAqF8mSj0VTwrzrpusahkZ7zaw/iuF1QcCSTW+ysJi+YCvNmj/Z49ODhVhOHFAqFQqFQKBQKhUKhUCgUCoVCoVAoFMrTDJs4PH/qkefnmONmaxxyRy3Kj+E4hUKhUCgUCoVCoVAoFAqFQqFQKBQKhfLMYiV/ZlZ+SMe7X+Pwce4pFAqFQqFQKBQKhUKhUCgUCoVCoVAolGcWK/mzR7AXsGlELqXYd/YUCoVCoVAoFAqFQqFQKBQKhUKhUCgUyjOLlfzZI9jzIw5NNlK+a1HueM2XH/ZxCoVCoVAoFAqFQqFQKBQKhUKhUCgUCuXZpWv+7FHk7/gRh6TMZBOZPfkPl1jsLD/q4xQKhUKhUCgUCoVCoVAoFAqFQqFQKBTKs0vX/Flv+bUHcZyucfhQcYJX2HAoZXyRQqFQbIbaDwqFQqE8PQwcPR6jIvkChUKhPAnIBbBz4F9TKBQKhfK4kAQjKCoZkQPD4MhXUSgPCjtvNlNE6dNYyZ89gr1dUMggttiXiB6ciPxLOXzJVkSQ9Z+IsckD4CUVcVU6Da7/dBDHLpWijav52XiMegMz5T9h465TfE0PSMZg+vwwqLZuQI6Wr+uOiHQsGFqHnVt3QcNXUe4XJdJ+vwaLXwiCTMzV6NV5+OfH72P1PhVXYRUlJi1bjeUzwyATcjX62iL888/LLM7jrz+RXN/YTpWDzD8vwYfHuDKF0pVAJKWnIdIkEdim10NbWYScowdRom3la3ms2A+hIhkpKXEIkPM2rq0RqotZyDqbB207V0V5Mkn43TasnRkECUqwc9gcrOTrWUYvwYZ3pyHBmEVu06L42JdY/s4XuMLVWMVv4jtY824qBsr5CoMWV77/AEtXH0A5X8USOQ/r/usVjDK9/r71WPLeDvN2lCeArnamg1tZvHa5B1vkPhwTxo/oYnMOn85DE1fzmBBB7OQOYWs1mvQWttMMJ0TPfAOJ3nyxAxWyPtmKQulwTJ6TDNnlTGSeKuWPGeH+TuH1Wdj+w6nH/O/9OXTVLNqSI9j8/y3DxnyubJWAVKxaswjjgmSQMOe1GVCV9wPWvP8B9pZxTZC+Fllvx8Ha1w2mtizgFaxbvwijvBlRZkD54fWY8s6XzBFCEtb8sAYJqrWYvehLanOeEMKnvotkf77A0KJHU105co/sQn6Vnq/k6E67WNqRLtc0oi2g/tGTQrgLPKd5wc1Bj9tflkFbzNebIEhWwHukHDIRE6Bqh7a8AlXbtGhp5o53IVgO31c8iZ1p7vaaHTiI4fyqLzyJrbEnxdZWA7R5t1G528Ad70AA8QwveA6SwUlAiu0G1FywaCeyh9MCf/gpmO9tC2pOl6PyxxbuGDlfuigYrndu4vZ3xjrKA4f1heLhxRc76NAzHELlRExJiYaXlCs33SnAsQO7UKYjBf8ZyJjqjXyLeIx4yGvIGO6Kkh8/wsHrfCWD91Skz1Si0Gr85h59OUrfJWA8lq16B2nMh1nyA4akruIPdDJwwRqs+WUS/Iyfd20J9vxtKZZ/01086RVsOLQECcTv0uasRTLRNL3S432Q6x0h17MuslD8/Qi8ZOYw/kxYf3A+8QfF1u/f5DgL8RfLT32JpW9a+KO8fpwcwt840Y/lud9g9aK1OM7VWIf/W7wY3qk7rZ5niz591HhORVpqRKcebm+FwdCIqoKTDy5OIx+DmS/Hw6NND4PmIr7/5xHU8odYBMFImpOK0Ooj2L73LFHbpjgRjbUQya5X8f22XagIT8eC55T8MSt06C4rNq+Z2LyqYuSd+hGFFnqPYoK7BLJUH3gQPcL8Ylpbm1F7To3qHy31iBE7SOYGoV8A0Rzl5SjaxDzAukfySgj6BTMCxpyGvBKoTHWJLfcxQAavmT6QkwatzQ1Qf3sbjUat5e4Mz9fd0Pw10V9X+TrKYyEyKg55F07zpUeLUO7u+T6bSWS0ex/Ze/v4o7KipwSPJSJ4DX8NqaN80HwtB1lHD+Fc7k3USAMRGRuPcMc7uFxaw7f9eUgD4xHhcBs/Fd3ia3ogbCSSPapwMqeo94CTZwyG+upxJc+GtpQeGbViA96fFgShOg9Hj13AlUoh/MPCMTQpEq2bfsBPfDtLEn63Af+dGgJpYwmO78nCuXIDfEIjkTAmEd6XduAoH81i2v3ndHL9SnL9H8/gQrUE/QaRdsOHQLdlLy5wzSgUC1wREBMF5xv78O3+E7icdwE3qtrh4B+NhNj+qCvIQ41pDwcL++EYkY7ZEyPgWHEBR48cwNlzhShv9kDo0GGI8mlHEbFJ1F19QklcjrVvJsKTDerX4soGYm/YA4QA4jT+zwIkuBtQfPIoTuaVQSfrj4iYRIzodwFf/qubZyW55uY/vYgBDlpy3gEcOXcbBs/+iEoYjRFel5B5zHjeNKzb+hZGeZPrnzC5/jByfbN2lCeDrnamYysugaGFMTI22iJ5Cmb9IhEuFWewd/chnCftirV+GBQfiwH2t3D5Vh37jo8HfyS+nI4Ep1Ki73q6D1+EDouC4FImfjh8zuTvUQC1QY+7Lbdw6+5AxA0NRktBLipM/Cx5fBqeC2zE2e9+QPkTHBfu0Cx3OE10QydH/4GRSBoeikvbDsEyXcqRhBWb/gPTg0VQX8zC8XNFUIt8MTByCJIHtmHj9+e5ZoGxGBMoga6mFjUdmw4iVxkkAhNb9uZyrIrVIPOlqfhEMQ2zxwRC+uk/cZIcmvnR3zDfPx9/efu/cbyeaUx5ElAQjdJPdxaZ3x1kf1NXVVq0ySMRT7SwfelZlPPxjp60S4yvuXaxvGbHVlCE2haanOnTiIRweCUAASNdIBYAQrs2NOTVw2DhftslesL/eTnsNBpU/FQLrU4Ap2B3uA0woPactWCaPZxfVUIhYQIFrVav2Qlp+0Y/KD3uor6gEpUX69AkkcI93B0Orlo0FHVGbu1n+CMgWoq2WxWouNiAJicp5CFu5u3iPRAQoUfZf99CpdAB3nFi6I7r2M7Iggm+8POuw50vdWinHfceHu5RGBIpQME3X+NorolN6NAzBOkYTJsVC8fig9iz5yB+uloDh/7DMGKgM4ovF6O5XgrPwZFwqTuDq0TrcIgQGvc8+rkIIG2pwYWSKr4ekEWOwRCZqpv4zT36cpQ+yah/W4u/rUzHCE8J0weAuF5F+OSrLO6gkelrsP2dJPgYSnD84BlcKtVBGhqOYUnmcSFTMv6yBrNCyTUJBtUZbNqVx77ujt7vwxdDk/tD0miqsWqhE8jh4gDU5H9G/DS+6c+C6WC2AZ+8k4IBzsQZJffS9f6JP7r9DXKvbSg/n4VDJ/OgkQQhanASJgxuwqY9xrZxWLHxPUwPEaGKtNvPtgtAVFQcks3aWaLE25/8L9IjRKgluvMIrzu7nmejPn3UOIUhKlKKkv3bcOg0sVGXylDZ4gj/6EQM9mlBwTXVzx7IIh8yGXFuJdizaQuOXylBl742d2tQVuNJfP0oyO6cQ2m9ycMp5CVMiZXi2o/bUFBH6utKcbXgEm9T78A+JBROxSa+Y4fusrR5hVDVG2DvOxBD4xPh01hA7CpNHnZBZA/ZrwLh69aG6p8qUHO9EXpnJ7iHuUEorIGuhG9nAqOPfMlnxHR6glYLzfmeda99nAKu0mZUlzagobYZOn4z3CLvdYtJrBBsvA/JtEC41d9C8boq6KO94emlQ10eo86FcJofAMfr5dBkU7HzuPH0UqJCfavXfNrD2JPHAnnFFNg986IPlO8V+RiMjnGCKutz7DyahbKqCvJbK0Lh0c/xdZYKkqgUxBlHXLBI4CjzgoxsjhK+96sFQil3XObkxNdYwvR256/B/rq7EuTvBUP5dbMesr1ft7NNd/dG6YnxmD0yCBJdHv4+bSGWvrcCy9+cg6WHVcSxCEJCBt+sC+ORMZqc11aEzFfnYPEfVmHlbxdi7uY86MVBSJ49nm8HTIrl2v1zEbk+045c/8MT5FOWh2NUOt+IQumG1tY6Yp8YG1WBiutHkLXzCEoESsTGmPenNbMfgliMHK6EvmAHtu49iJI7zPmlKMvNROZ3BdArR2BkKLUXTybEUfq3CQgWqlCu5qtM+cUEtudq+eHleOlNYs/eW4a5077EBR3gN2ga/PhmlkyanYRgMXDl63nkPGKn/kDOW8ScJ0bw6DmYxLcDsW2DPYCqE2s7r//GN7jCtIvr/vqUvo2pnenYdOaOXW+2SD4wDPKmAvy4NwsVxnaXtmL3WTUkfuQY28oSThuxusjeldM7MlfidljDREeZ6R1Oo1lqIFYbsdqJOU6uSRSsSMS8hwcbqLaOEnIZoCMOcsffgd3qOhz4pvMHkaf1QNzzw9memCzS4UiKcUVt7i7k9dzhs48zD7+ZQDSLJht/4jXR0l8txN/zDORPMwwZ3WmWKalIDhJDn/clpvxqGbELK7D45eU4RKSUJIScxzfD7lWY+/IcvGS6fUcakQ9cf35/x8jpmV7Mh1CP8jLg+EUVtEIx1ys7fS3eHinGmc2rseVx9RKn3D+tzR2/KU3pWeTs3YwcjRMih8Ryx3vVLsl4gfhvZphcs2NrbOQPUvosgTK4B7ahencxbl3uLogohstIOeyr1VCtr0Hj0UY07riNO4UGiDzd4BzMNzNBMMETXi56VN+2ITA5zBUeLnaoyy1D5Q4tmk/q0LD5Fu5UArJBruTJwePiDNdoB6DyDlSb66E7qkXd+jKoq/l2/KNHoBBD1NyKtlbg7o1mNIvsuChFsBzew4So2luLFtpj7+GiIM/4dj1q2NiOyWaiZ2SDwuBFtMrhI7nQ6OrQVJWL7ONX0eQejFD2QVPEfrbe/tFse45oBHgD2rpGiP1CQGQwjxPxv1zRVlHe4wjnrvrpIK7f7erLdR/3YXQMr10kHt204TFqKf44c82uMaLu9BTFGuNGx0GhPoLV835AdwOY0yZEQ0G+Bcc/nIPFTDzptwuxcHsRGxdKmGJlpNb0NcgYLoO2jGgcvqo3er+PA1j5KwuN9fIPKGdEtS4Pe/7Atfr5jCH3EsRqvmXrcqzf/9ucP1p14gNWF678wyqiC99ndaEsfgLe5psxMbXBIURNF/6AuR3t1uI4+UHJBo3o1I9dmIdR4Z3ncbqTXJ/4xmbn2apPHxNtDUY7VYSS3O+wM6sUwn6xiDEZscfQYRukHU8mnk7bIJQGIiCEmZKU+33LmSmzifMitnoez62DOHVTiPDnJnbaNWYk4vBA4HoWsm7xD60WUz+R+ETtFr6jhe7qPEY03BVi83b8Fd9f0kOZnIpofqQ3xYTBrnAneqTmdBlq9jbyOkMFTbMd3IOt/MFEDpA/J4fgdr35KNJusWceDUTHVKPqH5WoMdnqTpok+Gy6DyHsZXZo0TKecTsMd/SQSDjHWjRNCS9RFap20857fQcmb2bcMy8eTZl8I+5ymUT2P/xmLN+1KBs3Y/lhHb9HPKLCIG+8itOXu/Y6byrIQu61OgjdeOPqnYKZ895E+ux0zExNR/r8t5D2fGxnsIgY1rjUNzH/l8zx2ZiV/gYypiVbTMOkwJDUJciYPRszZ88l13gTEyKYX64pwVD6AKqyAq5o03WF6J9C2qSTNi8z130Ls4Zb8aIoPXAAi8ePwJDkhVjH15jR3chwhEPBfBhlhVhtErwq/6SEnTZL0X9kZwC9p+5CP7crEeXZo70YVUQhCCWmC6hY2I/wSATZq3D+hBW3Qn0Ypy+p0ObQw3QTlD6L3+vvI404SuWH1+CMteHmH87FkGEjMOW3VqbvNui7ndYvgjVoJSj4M/GkjJStR3EF2XsEITmAq8LFbVhFnK73P/mBryCUaVBPbdmzhzVbJJSA9x06qM3dgi07Dnbj2CgR9+JcjB0+EbPmL8QsorPS0hdi/uyJ8DK9jjQWY9PfQgajd2ZxWmzWc9H8eh1t8B5O6maZOL3SMZhC9FNyEBMQi8Tw1BSEksaOA4imS52BGOtZTEDmDCkaoWVGqEg8ugmoleL0vwqg8x+B0SHMcRGCRo6AUpeHw2eZH8wTTPowMH5h+ak12EmKzBqD4+KAdfOeI3ZlPBZu5Zp1YfdSpBC7kzhvPV9hArEN3Yfw47DiJWbqUhUObfiCrwN2ljARIyUGT4zDzLj+kOm0xHa9gg2vkZs5+wUWbjGxU5QnmDpo6lqJ2eB9rh61yy5kFenhNXCEhS9EeSKpqsedD8tRl9vevSdPjJETsUf1eVqwYS25AAJnoOXrmyj6g5UpSN2d4RHvBH2hGnVVvccH7NztIUEzdAWmAoYLgkEkhXgAXxXhCBdyl7WXGkzutQ26wgbSzhXSwVxNOzlP7+wAiacdBOGOcNa1klb2cJ6qAPLu0Cm7HgEyZyegsY7oDSZwbr2TkPbiDmR+exjdP60bUXKrDkIfv84pTz394GGvQX5WKbTk2dS/wwiFwdudmKdbPY8U60J7KWq0JvrJStxnQXoqgjpi/YwGSsPIpHRkzM1gdVDaq28gY9Jwk3XLRPCKfw0ZREulvTwbM1/hjkc/PxfT4018vh71FMUahz5dgZdeXIbMHqZrv5D5AZa9twrrvucrCOU19d2EkpKw5tdJUBDdmPmt7XrGlvuwJGHFNHbq0vJjG7CRr/v5FGHnn+Yi5Vdrsbcb/2+cklHkWhSfNvEXkY0LKuaL74uBtmTsetKPAQfwF+KPLv3QdMr6Eugt/+D3rU8fEyo1Z7+MrpWZbSC/+4w3kTFtDPM45Om0DekZaZjwQjwCiW8VM3E2Rg8g9tAxGKOJTZmZ1N2C4Y24fvQkVA4RGBvPdwQdloJIsQonjuWy5QdDKyqOH0ahwQPhg8w7TFAI56pw8w9XUXmoq3Zpbe1aZz/TG55iLSp3am2cQUzI5Bq5a4mIRvHuZi1mm+6jDS3V7XDwcSCaTMjuG+vJXQTL4RkNVO6inaT6FuRzYz865j/8Ziw/xPydgO07Z8wkks2sTPaP5fg9IYK3m1OXkX2dlCLvYCZO32AeI8FIHBsL6e2D2PrpR9jyxUfYuKsIorARiPPkWoujRmGIvBbZ/2COf4xN/8iC2i0WiQNNenX4D4DyyhZs/OxjbPl0A7JUQgTEjyEm3QRZMJSOFSi7wRVtuq4sDCH6fdjE3NtnH+H7S42Qx4xCtEkTyj0QmYRJU1Kx+INtWDNWCX3JEWzZzh/rggr1zKgCryAs4Co4pnsQ55Igd8c4tgLkO5MDrTAML67fgFWLF2HZx9vw9kgP6K/3dH0KpRsEgXAjDkCb3mTCCQv74aVwJU/tctywOkMAcYizM3H4kvUJ5yh9mIBXsGJ2NDsaaONvs/nK7lAiIWU8Js1fjs0/vILBUi3O7OoMzFtSXs8885QINjNo0+DJBkdkUIxmK4D8bOzdfQDHTZzWhN9Nw2DGKb38A11v7FnCwhbVXvwJKrtgTJiTjiRmEf576MWuDPVA/raPsInRWVtPQeUUjdHDjI6lF+KmpiCgLguZG4ne2UTafV8AYXgKxkYwPepbUXLsOMrEERg5hOmU5YSQ52LhcfskDrMdxHJx+IsdKGxkluDYQTTV58ipZq5rBakDJEQnBqS8hQXzX2MDaguYtTrcLf4t6n3IutKGoOEToew3BSND2lCYdbDHEQdPBKEK8mvXorxpCb7NOontH63EmvU7cP7QZiwz2oBeYJKNk2YvwpqvVmGc0oDiY9uQyR/rQvpcpAQxow1/wHLTJRg+XI/MfBnG/XEtVowELnzzDQzr5yGhLRsf/saGNYAoTwhe8FaIYGjgOnL2rF2YeBr5hcm9u65fRnnyqG9He3drFBrxtYczmqE3OMP9nVCELQ5B6L+HIuhND0jc+TYdCOAw0xtuhhpU7TRwMYxeuFvfSp4eEkj6mccShOyC9xLY8180kY8DeSro0XKbKxu5W6pHA3lfewUfwT1XjTvX7eG5iNzjYDuoD5Hv9QwfeLaqof6B9r5/FDg6kGe1MBApv34LGa++hoyF7yJt0nCTIDtBr7EYHSNCUMwAOFYX4xo/dEpbooLWSckMjGWRBSkhq1Oh7NZ1qJpd4eXPawL/QCjtNSgrvscoqSAYCjnQ1MCpBq+EFAxxUuOwMe6zcRcKhcFIjA9kj3MQbRNQh4NEA3E6qAj6fiOI/uAPK6fghWGuqDrxOR9z+hgHG2IQZxZw6k1PUaxxfJ/FWu9WuHLsAPGPsk3W7ovDiqkxbMeoC7vNk4Ojfr+U1UdXdr6Pdd0k3qxhy32Y8woWjCUiS5eHnf9hpUOpkYA4jJtCtJvpNjqMP2iNHOzdV8S/ts6hWubHJINfZBxXwaKEn4z5URG/sj9XA3yBfzKLg4ZPw+bPVmLx4new7qslGOXRi34sy8Eh4o8eyjH526YvYzu66q+fwxa+ypR70qePC08P8tdphYF9PhLbNG4GhoiLsYf53bM+UhaqFPGYkGTFNnz2Z2xk1mNHKXJ2fIzdBcTONV7FbmJTthzsIQmoO4XD5zSQx0xEpGIMRse6oiJ3F64/8KxqASqqGBlHB7r0hJ2HAIJwKVwXKeHh0IzKbIupbAa4wTPcHrVnK6Hrzp/tggB25LFlcHWD//8LReivQzCA6CrlHIdusyk93Yd+XzmqJV4I+vf+UAirUHnsLmRTFWg7p0JDd8OyKY8Fq/mz3vJrD+C44C6bQTRmEplSHyjfE0rIXciXvdWWaWyKcXr7n7F1f27nnPUqNWqIcZYruKKE6SnW1gid0R8ghnf/FiLUrphY2roCZF82hpPqUHi+GAapM3kodCIOCYTcxFm26brtKuRkFTGdZQitqDibjwoBuS6buaLcM79YgtW/f4cVWDJtEQ59/U0PCzLvwN6L5DOVRmPuVyuxgBFY81fi27eToLAQgOWHf8CeHNLWOxqT589D2khyfV0Jjn/b0/UpFA5uaj1+egpFBOKmjEWIUIW8i519ZS3th5srcf5amrsfMEt5Isn4f/OQINPizOal7GignhmDBb9bidWLp2GwktihEzuwk5mCuRsy9+ehCmIM/uU2rJrPOI3zsIpx3LobmcXjl7EWa2ZyUxtu7MkppfRpZFFpWPD6u2bb5Aj+IE+vtojolD3/yES2WoL+yTPYpNv8jNcwNiqwm6lHO9EWZCFfywfetFm4riaOpaIfV/YfgUi5Grk/noKWt3FtKmb0URuUQXwPWv1ZHD6hgnzYVESGpGA4caBzDp269zWgm6tQevMmCk9kYssG4qRvP4j8ZiWSZqQiyGzkQitUx7JQIo7A5AlhEJpO5/MEk+bF9BCXIWFWElzyd2D1eyuwbncJtPIwpK1Ya9OUTmn/RuzOu/MwLkQGbeERZH7dXScH66MNObKx+tXx7OjpIQlTsbxmGn4da8DxdbbYPkqfReqHyKhkbkucgenpczHERYOL57nZEmzSLuR3aJbG90/uYrvSRpkG1ChPKiJ3pju8BJ4veEJ09RaKP72OG1l1aHFxh98v5WbfA7tED3j6tqPqqIb4+Hxlb5zTosZgB/d4H8iG2UPgbQ/JDF94BtoRC28DbVwMQuRgfMK1Q7+tDCV/uIriP6lQp3OBYlAbKnbyIyYpD52mqnKU3cxH9td/xcYNf8U3PxbA4JOM6eP46ZC7IIJsUBpG99cj/+iRzpkRKrkEoTKESaZx05Eabt8kxwtQVt7aMY2p3N8P4upSlPQSYJfIIzts35BRaZiVkYKgtmJcvMjFoypObcDGLZm4bozLtl+FpoY8jeXms8OUndsFFR8balPlokwrgocnZ++UYf3gqM7FwY6Ykx6qE2dRYhqXsEVPUR4ASmSsX4WZIWJUHfvCvGNU4nK8/YIS+uv78eGHD3f2BJtHG46ei/d/T7Sb6fZvs/iD98nmbFwhD3O/59/HhndT2c75y9ZvwIuh/PEOiAbceQBniO5XDBmPBfNTMYroR31Jdg/60Qqjl+PbxURTGoqQ+b71jrK269NHh9CZ96vI5hGYgsljgyG8dREXmbyrZBRimI6JRzt/99CewsFcDWQBkSZLQLSi5IxJm/ug6fwunNd6I+mleHjV5uLY+Z7Wg79/qmpticE/yzDrNIcg9Bd+8Pa0gza3Ao38wAAOcnySBxzqq1C9/x56HXgTW6/Wob1Jh6qvr+PaP0pRXmaAQ4g/fKZZW0etl/uobkbtx9dR/IdrKPlrDe4m+UDRqkbVvdwT5ZFgUz7tIZSJu2aSUewr+3tChdp6YodFNvaqsvdCQOwMTJi5EBnz3sT8BclECnSiPXcQec3BSJn/FjJmZ2DsKGJsLXvZa2vNp+jSt1kMixehv78Ham/ldzjLNl2XnYrDBH2zbY4OxTor52DIi0uw9M87cEYfhMnvrsPm180Fuyk731qFzHwtZCHjsZgRWIvHw6WQCB/mQW8woJJtFYcVa/4DaXFilO9ei4UvjsDsleT6WiXGketvoGscUnrBceBEpKXP5bZZUxHtpEb2zkwUdhiRrvajpo6IMnuHzimVKU8+6Wvxa2YtjJwvsLK76QLN+BILxxB78xYT+FfBZeQ8rF67EqP4o134fine314ErZTYvsWM07gIk+WF2JPLGjQYrMwz6TdxJdb+H+Kk1eZhyx9oQP9JpunKPmRu3Wy2Hb7GH+Tp3RYRWkqRf/BzbpaGv3+H7JtAQFIaZo3quXepts7KCGghH4yVORNb5oHYOW+yOsy4pQyQAO7eHdOTGop2IafCC0kvhEF7Zsf9rTVYdwpZe7/D+VIVDO2t5Hufi+xdOaiwD0RkuIUGa8/FifMaQKBB7gOdzufxUU+0CwOzFszcRR8gc/cBbHzPuC5zDMa9zh7ukZWpIzBl0TKs3p4Dff/xWPbXDVhsnOrYlAULMdnaaENLmJHWr8Wh/vAqrBavxLeHjuJ01lFk/f2d7u0ZpW8iD0RcXCy7JQ4Og5egGAe3bcF5/vlyX9rlztkutuv7sw83GEt5NLQbmACUHfSF5aj4jvi46na0HK3E7VwdRC5yOA3i2sFFCjd2rZ8K1Jxmghc20tqMmp13UNPuBN9JQQj9dRCUA1pQdZYJmLbjbm8jIoVcDKK12UqgTGQP2RQFWk/fQaPACW6Lg+D/ThC8e+jdT/n5aAu+w/6jR1DGBKfbG1F7fRd2n1ND3D8S4WadfzgcI9IwM9kLVVlbka02jaJwCUIvXyaZFgmlZ2vHchAltyog9GMmA3RCgK8TtCqindkj3SP2jeBtXxxiIwMh0+Zi59YdKOnIKEsgCxyD5EkZmMVonF+9haQui4bz06hbwksTmbMETVWl5h0v2jXQmX6PbdRTlJ+DEpN+vwa/iSM+G9FS779lOlVnHFYs5dapP7RuFc7wtQ+HefgNM6VDb6MNGbYuQTLTUct0S13FH7xPytZi6d+yUU6+VQmz32E756dFanHoWAl72GD80SQux9oVqUiQqrDnf5dgyrC5WEn0o1Y5BsvW2tZhDZHzsGHFNAQzScg1y/BhN2tg26xPHxlOCJ/A+1VkmzkxGlJ1FnbuOcX9jl2c4UhsQ+h489/r7GHkl+rqweSCePTMsuA/kwrknC6GQaBHYXZ3y0v8fOQyOrK5Z1qg/Z+rKFrHdJRqgDg2EP3mO3foBtE0H3Yd58q9tfcW91frUPdpOVSf1qC5sB3tJXo0bibaqtYOsnAZuqYOe74PM5gRkNEtUG8nP+pkBbyJ1vF/xw/yeCsPXcpjgHxqtubVHuCefPomGUXj9rjL90Qrauv1EPv0M+mlYYorvAYmI0hBBJSAmTN6LiZEOkNbUoBj+7Zj++Ys8kgyoZ0Zlfgxtn5/BBdvNUIWMArT5y5EkrdFgKlHmAW39VATh6eDB3Jdyj3DTHuw/QMsXMkIHRkGPz+PP2ANrkc8I0CWMQstvzoCKYuq4MIMJa0qwV6mSSIRQuyCzwew5L0vcYYImSvfk+t/koMq5vovLGJaUSjdor2UiY2fMFNPcNum7ZnIrzaVCl3tR21dA+sABlh9Xosg75+McH/qHj45jMeadGZkjgF6xTSs/WobviVbMjuNlhLJ5PUasylGO2GmzmEC/5l5xAUJGIGM2fwBKxz/81wkpy7BUmLPlr01F0PGL0EVM6VMmwbFu/lGRkYzjt54BOuLkLlyIT48xtdTnkjMFrjntyaLnqu92yJTWmFoLELh0c+xJUsFWeQIGGfTui9aNCjMyUWO6XbyFLLP5psE7FwhcyYaqR1wlD1A+6a/iapGQObRtSNRUzOTNdUzy4c+FezVcH/N8hvrzabD2snWiyHrjFL0SHnOEWT+eQmWHyOKWRaN5+fyBzqIw6qp0ZBYHW1oihKL/3MREmoPYPVvnfH2a+Php96PD/9yBPXhqVj2R9MpsCh9HtVJdho+diq+Q6UwOPkhwGTJ9561C/k2eJPfdbXa3A9rbe5qu2weckbpy7TXtrCBsSaVWSqE1DNlewh5R148xRsKcTtaBFLIf+kJN7LJ+zHpZzGcx3rCdUQPwaurWlR+cA1XP72Oa3+7hhsfVMEgsCdKuQmGW1yT1mrm/SSw55cp6cCHXB930VrbdTyh/Uwl3LW3UXUIcJrmC2l1Be58U4W2fv7wGMsEViiPCsPtamgFrvCwlAXeUzGdSRoSnbKnoOvoGiZBCG8llP5KeKNzOQgUl6PCwRtKOfG/PPVQlfS+9AM3TTpj+z7Cztw6CD2YKU75g+TbFpSyCGkTIyHTliI/ax92bv8rsvnv370gFNqwXo1Neopyv4xasQbvTwmCoXAHls1baz671L8twWQmLqQDBi7mfLlvfxFO/DsilUJT8e1nyzGJa/mzSfjjNAxm1qx+oGsb3hvlW5Ziyoi5WMz4lb9dginJc5AlZP61GlQVcm0SXhqGYPInubJ7KZZvySHaswg7iX78y1kbO6wFvIINa4lOlGpw/G/Eh/2m545DvevTR0kj8nd0+lUbN3yEb/aegvkjpQ4lP1n8Xk+T3+vxn8y10INApyceTSvaHppPEwYleY5qqx74nT99kC8B01GqorAF9t5ucAoidd4yuA92gKi5DfaJnNZx+6WcW5/WTU5eW0sA9kQb2EkYHYTdzwxk7T5MEYnhOs0dhqMV0NnLoHjOCYYT5bhzrhWuE7wgpTMh9gHuds2fPYJyxxqH7J79L1dmM4smZXZvUn6ox+8RVX4xtPIIJEWYeKtG/MfghTGxCBATi+nhBy8HDU5/sxXZuVkoudM1kAaBExwlbWi6k4vzx3fg+22fI0fjhPAYbgoLm2Dmx4caZaYC8UFcl2ID72B71lGc/molEvgaFqK7Wend2p2EHoNVO8h5B9ZipvpIx5pfCSuSMJBY3iu5O7hmCjF3nW6QiO+pXzWF0hUr9sNQWETEZCDikqyM8pGOwugXhiPcvbeu1JS+gwySNgP0xNGUeSnh58ttMta4iCFjynxAK+2jHTidtQsbzBKJSohZRWjo7OFpwbg/buPOm6Ji14zYe6yI7QU6iplS5lqe+RoQzHQw/8X07CzBzvfmYjVNGlLggeipbyJ9TDcaRcCExu6TugY0SUTQF2ch/1LnVlh8EYVFxR296+XxExHtoELW/gIgYuJ9dbSSx7+GjFkTzXvdCzyYpQ+h1TwDju6PRWzC0C90CUwHO2Qomb+IFlUWo1A7WLaZHQX47e/NE3liPohpsBz9uWAhxjHr0PQy2tDv9ffxargKOz9cgeMIh58CKC9chczt63GBfBwuip7W4KH0aa7vQ65agvCkMR0dOXvWLmMQFyZB7Y2LNLj9rFDQBGYQhdTf3JMSKZgpTJs71hy0w13omtsgcHWCkw+3OUi5OIHEwwlieTexgmg3+L4TBPexAtxVt6NdwwQ87OHErPVWS547aq4ZinSoJdeSDWDe14gA0kgmAN6AZm4gWieD3OHVXwf1zkZyZ2L2/Ztu6tBa0oCGSjuIXWgn4IcDsR2pb2JmosVUxeR7IW2vg8Y4gyeD91SkzYhA28XvrCYNWdgEoR+GDPGD2HTtVX0+VNWuUCb2g6LNIn5jA7XniH5p9kDsSOP0qUoovSWoOLMZe44fQf71Imgb9czX955gpgAUB4ZBaZonlwZDYTrAx0Y9Rbk/Rq3YhjXTg4CSH7DslQ+6LkkjJZuO+HNCRYcv5+fN2BGCjNR5eeDBxNnn4TejlbaNNnxYLN6ALEYX/lGB44xfeZBJCr6CmbFET2oKia/JNfMQ9xQpE0PC/M26g0kafrEECXItzvxtIRZvsaLT71Wf9iXq69DUTp47dSfNfq/5Vy/iWn7BE6aFRJDFjkK4Qx2uX+m9s8WzhmiSLztKT2axTIgda8/bcJdZe8ORqJ3mFujI70LKax0nHwkpERwk5LWYcbetM8wdfkTvuCXyZRYh2EkYG7hOWgw23YcJ9jN94VJzG5os8oAkWs2R3F3TSXK9rAY0Mh28+OXdKI8Pq/mzn5t/s+F4xxqHlntjZtGy3rh/qMfvlcp9OHxJD2XyXExOjICHE3EqpF7wikpD2uQwCG+exGnmudPcTH4erggI5UNI9l4IfyGByLtOAp5fiPRZMxAk45wAoWsMlMQDrq2yfelijyAiSNU3wQ3c53gQ16XYwhEUEMdTEjIea75ag2Xzx2PBu2uIuBgDBZHPF47xCcCAJdh+8iTOHzJOmXAE/7yoIg5pHF5dvwFrfrccKz7mxWJtDvb8mRcuu3ewwS1uwefl7FqIaYtXc2shml6fQrlPrNkP6E/hcDb5fkalYlZKPLxkrhBLPOARMhUzXyZlbR5O8OtqUJ4EdmDxtOeQmGy+7WGnYinBHvJ69mq2ITJzVDBIPZDwqx3Y/PtFSJu9CKs+24C0SCIrVXnYzjpq07BmD7FnJ7dhBS8gD32fh3LyHUmYuwGb/4vYs98RO8gkB4XEGdv9Qefoo0Q+aSjWovhUESQpK7Hq98ZtEWbyzShPFmbrFxo3oo1sR4MydTMcw8ZiQlQwxKyDwUy9lYLpw5Uw3CyC2RIN94LqJAqrPRAzaSKU/JTtQsUYTElbiFnGtcykzGL+TlCd2YXCm/uQVSRC5PMpJglADbQ60sytHzxkHvz9daW2pAJ6RQRGE23ItpEEY8j0MQhqL0V+4TMwiun0ehwqNEASOYvXLKlY/PEOdsotaPKwl58meeYHu3D+3FF8+zs+EPOvQpSLxAieuArffvwOOW8elhFNtHos+QR0eTj+NdeMw8bRhkR3rZkbjvJ9a7GS7ZygQr0WcJElkddEoxFNrNdVMQcoTyR1yDtdhCb3aCQxiRqGbrSL18AZmJnGaZfDZ01mZ2EQOXS1XeS8bntPU54c6hugLW6FdIASXqlS2HvbQzzJGz7RDmitrkVjMddMv60Etz4w3+4UcKPBNd+UoHIvN5Wo4AVf9P9df7gnMsENQl4DGlrtoRjpD/dJUjiMkMH1dX/4Orei6qzJuoRqLerIfUiCfPn7EMNhjh98PO3QWFhtPkUc+T66TXFF0wkNmquZiha0kGePSMo8UOxhT0yp1alNKQ+AUtxQt8IjMgVx/oxNEUHsPQbTkwPRdiMfhcYPVDockydHQFR8EAcvN5jZDkfT4RpsgtAJSnIt0+UgmCn9bqga4dU/sKv/ZQvtBTh9Xg1xyAgksZ3+mmFoAeT+0ZAZtdPAVMR2maq0ZzRnz6JMGIaUmTMQ7sOslzYGE2bGQG76dbNFT1Hui4TfcXEgibYEZy9LMLnDNyLb4mlco9Vzu/hyiety2ASQNnc9Eqct5Tpqdok73Rt9YbQh1h1BQRujC98nupDxK1dj855FSJAZUHxsW8fyFnt3Ev+T7Ae+RPzP381j10Jc/ME2vD3SXD920Z14Bes+Y5KGQNX5k6gKJf5ux9/8HWQYEyT3pE/7GPqTuHhDiJDRqQh35ROssmgkv7QQ6ZOHcwmjPoqZX+kTi7hJC5GW6ApVViZyHtY8qE8wrYVNaHOQwnOKL1yfk0AUJIE01RfeA+zRWlkPHdORqaQelRZa59YHaqKmCbfV5LWGXw5NCKfXQxH2fz0hMfZEuKCDTmAPz+fI9UeIISDXd5rrBy/5XdQWaDsShzbdh5FhCvj016HyOx2XkdG0kuekCEJ38rq/mHw/25gZwymPGav5M7JnjlirN+5/7nGh3N3r/Y4MYx/Ze/v4o7LCSg+TbmlHY+lF3NQHICIuHoOHkG3wEIT7O6Au/yB++Fcu96MzlKLKbiBiEkYiPn4khg4dAtebV1HtQ1TezWxcrSI+TUkFBAPikDR8FIbGjURstD9w4wj2n7oKA/mbSQPjEeFwGz8VmXRHcwpDVKQD7uTkQQMnhA4bCXHpbhTe6RzO2Nt14RmDob56XMkjTjd3CsEfA+J80VxAhGNf7j3Tp1Dh6CktAuOjERUSiqiEsUiICoBbmwpntv0nfvWXfK6ZayJm/SIainYVzn2xFz+RqvKjJ6GLSEbCwFAMiAxHRCBRLqocfLlqCT65yZ0GlOHAhVoEku/X4MhoJIwdi+TYIO76X32E99aepz2nKd3gioCYKLjWXcbl0u4WqLZuPxhaqwpQrJEjMCoeQ4cNw+DYWET0d0Ob6gR++O4Iahg7QnmiGZO2ABHyWlzZsANH+Trk7cVVR2JvBoZjwKAhSB45BAN8pGi6fgAf/tvvsJcNcIVj+txkBEp1uLH3KxxiPLbyLBzXR2JMLDkvnNizCGIH7Yid2roaCz81WSxizMtYPEoJCfmfW78QDAgz3eSoMb0XyhMAZ2eUfuT5FzPEfAt2xk1WY9hii4Bm1TVUOgYhYmg84ohuGRqXiKgBvmgn3609+8+g0arN4a7tcJvTVEYUYSPRD6W8dmqE6oYWTowmGslrokg/9rr7j1xG811XRE6cjIHNufj+WCFxftqhvd0Oz9hERDrfIffMLArUgooaF2IvhyF2cDRcq0+h2NpaQboiFNf6IXJ4IhIY3RcbCeXdW8jetQNXdWZzB3EwWiwIKGX13NOAFifPqOAWQ/790YxmScLQQBl5bmTjk3eW4ktu8WZETHoFY/rJoCveiy8PE/3N2I+6QIyIiURwWCQ5Lw5RRk30n2/gf/O48xiYUYTLxnqjKecL/PITkwNmJGHFpjeRoN2PlW98Sb4JDAWo6Z+CaRPT8Ov5iegnKsH+D/4bR2l/uicC8980j/YWDD7DEBXqhjt5hdASG2FNu4QHulrVLuw1lX5dbVeMLxqemt/k049goCvcvIGGvHoYLOxyW0E9Gnyd4R7mDsUwOeRKMQzqCtzerEVbD305rF3TboAL3PwkMNyqgY41Ku0wFOnQFi6HW3/SnjzznB1aUHnsFmqyze19W4EWjf7kPga4wYPch6u7ELrrKtzZ0Yy7HU0FcJjrDzedGhXfG9NMd9EiEsJ9lC9ch8shs6tF5XeND3EquGebptIi1CmGIiFhJOLiR2BwBKcV9vyYQ7QC18YjcToSyPfI3j0YkRa2Q6E11SKN0LsNQYRXC4pPHjGLrTS1KxEV5gFNflf/yxzr+qlNXQOH8FhE+opRcOUySqukCB6ciPhEXjvJS3FV4w3PDptpLcZjce02Fa5f18LefyBiyb8lLFCCO1knUa0MNXn/3vQUd2VKdyQjbVE43GqL8MlXWXwdx7j0RUhWSgAJeX6Z+UZkc6vt0r6DmMl4bYSS6KUz2LSL10RW4k7mdH8fCFiEVW8nw6c5BxszPsMFvvqhYe3+WfLwQ7EbxgwnfmgY41cGwcdRh+K9f8WSlYc64183D+Gn+kAMjYlGRGwcUhjd2Z/Xj2v+gP/9iWvZRXdiGhb8O/kbkFdSH4u/d1gAhIV/xw/M7dyDPn2ksPFgV9T3GLdtR21JKZqVQzFqVDL7ex0aEwoXbQH+9eO/UMOanu7jv2wcWl5nES/uAZvuiaEnv5A7ZuZXhgXCldinCwd2IKukez/ymaamGY117RCFyKEgm1uMK1w8RWguuY3yvzea6AxL7OE42gVSrRaa88ZnkQDiBDe4SFtQf6YRrYzeaG8l19KjPcwN7hFuUDDXl7Wj7nw5KveaiClb78NdCvdZ7mg5cRvaIv7BUWtAa4gCAWPdIB3kBLublag+2dPzkfKw8fRSokJNHGUb82oPcm8XFDKIfDNMVQVz8PGWo4nQyr90/8PwhVIvSO0aoW3sJiXOTBvK9LxvtjJVqRGJB2RiIVp7amMNwXBMXhCDim0bkGMtg3S/16XcB2EYNSUIMm0JN02fzXDn4QY3XWn3cO0k6ks4lHMviW4KpRt6sx9GWDvSCp22DrSf87ODX9wYxHgDmotH2PVVbWXg6PHoj3u1gxSKEQkcZa4QEWujb9TA0K2zcx/Yu0LmIPoZ1xVBLBHCoO8takvaOblD2Fr9DK+XZqu2sSAyCZP6O0N7r+fZyP3aNcoTCNUuFBPsvAVAXTvuPoyZ9p0FEEju8tOV9oCDHQSudrh7r/fBXN8JuKsh5z2rj5RHCRu7cUDbg9YgDxVOd0ju1kGru8/MskDEBog7CURSehoCbmYi87jF9IA/W09RKLbB6jZ5Ay6y05X2AKsfxQ9P3z1kffpQsSUeTXk6eNh6gb0+0TvqXvTOfd6HnYcAzBTyveopykMnMioOeReYNUF6zqc9jLJd/5BB7MBE4+G+sI/6mYnDx4oiGWOjWpB75BToqG0KhXJPUPtBoVAoFAqFQqFQKM8uPhORNi0YZbs/Q7aKSTyKIOs/A5MnBKJi70c43DEbEoVCoVAolKcdJnF46cJpm/NqD3QfFBLJTltq+xkPfx89ePiTmzikUCgUCoVCoVAoFAqFQqFQ7hlXhKSkY3SwE4R3W9FmJ4KQWeczdxd2nuUXBKVQKBQKhfJMwI04PGVzXu1B7vmpSjsxHu+OR3H8iR5xSKFQKBQKhUKhUCgUCoVCodwv7BSkEvLiIUwXT6FQKBQK5Ymgc6rSTh5V/k7AljqacoMPTcuW+0dznEKhUCgUCoVCoVAoFAqFQnkGaamDVltBNpo0pFAoFAqFYpk/65pXM+4f1HEBk0Fk8oh9a0+hUCgUCoVCoVAoFAqFQqFQKBQKhUKhPJvYlk978HsBm0G8y2QSmVd8RvFxlykUCoVCoVAoFAqFQqFQKBQKhUKhUCiUZxSb8mkPoWzXP2QQ2TE5RKa6b+y7W+PQw8OLf0WhUCgUCoVCoVAoFAqFQqFQKBQKhUKhPNloNBX8q06YNQ4vXThtc17tge6DQgaRfY9NHvk+upvEIYVCoVAoFAqFQqFQKBQKhUKhUCgUCoXyNMMkDvMunCavbMurPcg9XeOQQqFQKBQKhUKhUCgUCoVCoVAoFAqFQulD2JZPe/B7bo1DdJ3D1KzM7h/hcQqFQqFQKBQKhUKhUCgUCoVCoVAoFArlGcVq/uwR5O9MRhwyr/iMop1Fmd0/wuMUCoVCoVAoFAqFQqFQKBQKhUKhUCgUyjOK1fzZI8jfmYw47Et7CoVCoVAoFAqFQqFQKBQKhUKhUCgUCuXZxLZ82oPfm61xaMwrdmQWLfaP7jiFQqFQKBQKhUKhUCgUCoVCoVAoFAqF8mxiPX9mff8gj5uNOGT+212G8dEef3gIpV5wtOcLvSKC2MkDYgFfpFAolEeGE7zChkMp44sUCoVCoTwDDBw9HqMi+QKFQqE8DJwFEDjzrymUBw6NI1EeAXZ2eE5oB1++SKFQKJSnF+v5M+v7B3ncrn/IoLtMgckk9pV91OBE5F/KIa9sJCIdC55T8gVCWysMzXUou3QcOReKoG3n653GYOar8fC4eQQb957lK3ugXyoyJgVDfz4TmadK+UpLhmPy68nA0T9jTwFf9dB4lO/1ZDPq39Zi2aw4+Em5sl6VjU9/uxQb87mydZSYtGw1ls8Mg0zI1ehri/DPPy/D6n0qroLHb9ZKrP0/4xEs5ytqS3Bo2wos3VjEV1AolgQiKT0NkSaJwDa9HtrKIuQcPYgSbStfyyMZg+nzw6DaugE5DlORlhoBazlElZk9EEHWfyLGJg+Al1TEVek0uP7TQRy7VIo2rqarzeygEfk7/orsSr5IebhEzsO6/3oFo4zZ4TYtivetx5L3dqCcqwFWbMP56UF8wQJtDj4cswRb+KJ1TO1aCXYOm4OV/BGWn319St+iq53p4FYWNu46RV7cgy1yH44J40cgQM7bk7ZGqC5m4fDpPDRxNY8JJiDnDmFrNZr0FrbTDCdEz3wDid58sQMVsj7ZikIp0VVzkiG7bE3ncX+n8PosbP/h1GP+9/4MAsZj2ap38GK4DBJG27QZUJ77DVYvWovjXAsTerEXVlEi7fdrsHhiUId20pYcweb/b5m55gpIxao1izA5pNPeXdn5AZauPtBp7wJewbr1izDKW0wK5D4Pr8eUd77kjiEJa35YgwTVWsxe9GXnOZTHQvjUd5HszxcYWvRoqitH7pFdyK/S85UcQkUyUlLierUj7DVhtFOUJwnBBCVC4534kgnl5SjapOMLBJEQDrOV8AlyAPMrR7sBNZfvoOo7PRsH6AlBsgKeI+RwFXNRg8aqalTtqIbeTLMKIJ7hBc9BMjgxCRvm+hduo3K3gTvMIoDkFX/4BUvIk+QuGq7ewu3M5o73t/9FP/g4V+IWue/e7onykGF9oXh48cUOOvQMh1A5EVNSoonvw5Wb7hTg2IFdKGO+ev4zkDHVG/mMP6XljjOIh7yGjOGuKPnxIxy8zlcyeE9F+kwlCi3ac3C6IOAm0QzHu8aGzGyYTXEkCxj/bGgddm7dBQ1fRXkM2Anxtl8IUv0cAfV1jCxp4A9YYGs7E0Y4KbA0xBe+jqyBIoJJgwPXVFhpaqIIYY7uWDVASdoxwsp6uxEyJd4f6Mn0gSAu/B1sK1BjHe/s+zp648uBIuy/WI4/dQQAKA8Nz66xmrbmRmiuEa2TndcZj7YFe1fIHACdtq4zdkN5QrkPv8qW+BDD6CXY8O4sJChZNdV9O8pTQ2RUHC5dOM1q057yaQ9jL5S7e73fWWXk8Za9ffxRWWGeqOkRzxgMDdIhZ+sOZOVdwOUb1Whsc0Hw0EQMHeCOW/lFaGTeooU4DjV3UX7tLGqbbLDe2gpUEoNdXFSAxha+rgv+GBDXD7iZjatVfNVD41G+15OLX8ZafLIoDormEhw/eAZXdY4IHBCJpOeHQLdlLy7w7SxJ+N0G/HdqCKSN5Lw9WThXboBPaCQSxiTC+9IOHDVa4MTl2Pz7yQi2V+HC4ZP4qVgHt9BwRA1PxIArX+HATb4dhWKGKwJiouB8Yx++3X8Cl4mtulHVDgf/aCTE9kddQR5qTNVh2Egke1ThZE4RmpzCEBUpRcn+bTh0mtg4xs7xW3FFI1pZcyaC1/DXkDrKB83XcpB19BDO5d5EjTQQkbHxCHe8g8ulNeylu9jMji0PZXVNaGPsJeUhMw3rtr6FUd4GFJ84ipN5ZdDJ+iNiWCJGeF1C5jH+GTggDuPdgZqaWpOtDVJ3KURNKhwhNu0y17IrjKBc9x7mJnpBwnymglpc2UBsGXeU4+dcn9IH6WpnOrbiEhhaGCNjoy2Sp2DWLxLhUnEGe3cfwnnSrljrh0HxsRhgfwuXb9Wx7/h48Efiy+lIcColdq2n+/BF6LAoCC5l4ofD50z+HgVQG/S423ILt+4ORNzQYLQU5KLCROvJ49PwXGAjzn73A8q71YB9HSXe/uR/kR4hQu3FLBw5VwS1yBdRxPFIHtyETXvy+HYEW+yFFRjt9J/TgyC8k4ejx8h3SSdH/4FEcw0PxaVth8CFS5OwYtN/YHqwCFXnmftQQagMxYDYkeb27s3lWBWrQeZLU/GJYhpmjwmE9NN/4iQ5NPOjv2G+fz7+8vZ/43g915zy+FAQjdJPdxaZ3x1kf1NXVVq0ySMRP3wI7EvPopzPFTlGpGP2xAg4VlzA0SMHcPZcIcqbPRA6dBhifNtRVHQLxtQ/e03yjfmJ1FGeLIRRcrh5t6O2RAttbTN0xk3dhObrRnFrB8mr/dCvnwDaggpUXKxDo1gKd+KrO7hq0VDUvW9uN9IT/mPkEFRrUPFTLeqr2uAQ7A6vQXdRf7KZCauz2M/wR0C0FG23mOs3EP0shTzEzfz6Qa7wek6Ems9KcJv4bC4jZWgr1KKlkRwbpoDf0FZUbqtD6xPbW+Qpwj0KQyIFKPjmaxzNtaZnCNIxmDYrFo7FB7Fnz0H8dLUGDv2HYcRAZxRfLkZzvRSegyPhUncGV4nW4RAhNO559HMRQNpSgwslnYEVWeQYDJGpOP+Lr+uE00+udZetag8zG2ZTHMkCxj/z1eNKnrX3pjwKmMTe/0QGI8FFRHSQHdBYg89rLbJ6BFvbmSFR4LMoP3i0anDy2m2cr9ND4eGDaC/iw1dqcdzof9u7YVNMILxaq3HyhhoFNc3EL/PCEC97k3Yi/N/QIMhUl/EC+c4n+gRhSGsVtunIQTsnrI1SQkd+J283GS9Keah0idUUQqVzgn90IgYrmnCh+A7f0AbCZyFjWhgacvJoB4Inmfvyq2yMD+EVbPh8ARI8daTdAeJX3YbBg7SLtWxHeZrw9FJCrWaSEswXyvb82oMoC+xImZ27lN2TjT1unNOUKz/64/dDG5qIQNMy251c5J/OROY/sqByiMALoyM62mjvFELN9qaXwFFmbdpSk/r2BtSUF4P4PeZIPCAjbWRSCV9hDaY3PGnDXEvC97A1wvQicWJ6ZfbQxohN70XpJA6/eSkOMqhw6L05WPzeCiz9VSr+dIw8duVxmPyutVFWDOORMToIkrYiZL5KzvvDKqz87ULM3ZwHvTgIybPH8+2ABQsnIFiswfHVqZj72xVYbmwHJRLSX+FbUSjWaW2t4+wU2SquH0HWziMoESgRG2PenzbI3wuG8utmgrGtgbdxJluT0RmVj8HoGCeosj7HzqNZKKtijheh8Ojn+DpLBUlUCuKMI2RZTGxmx6aBofu4DeVBQmzKYA+g6sRavPQmsSPvLcPcN77BFZ0YwXHT4Mc3w8ZleOnlOWbbny5ryZMKKD+1GZlcK+uMTUKCogqH/jwXO8v4Okt+zvUpfRZTO9Ox6cxHAfVmi+QDwyBvKsCPe7NQYWx3aSt2n1VD4keOsa0s4XQNq6EETqyekslcwQ9E6wIzfTyrcVhNZAVGL7HXMJ3ui9Fp5JqkLBIxx3uaCkwJuQzQ1ZV2/h3YrbMXb9P5g8jTeiDu+eHcCBgG6XAkxbiiNncX8kwGyzx5zMOocPKvKvwBc3+1jNiZFVj88vs4pAZkg0Ygg2/FYou96MI8/GYC0U6abPxp2kIsZTXXQvw9z0D+9MOQkc43WzAPk4PE0Od9yd/HUrz06pe4YiD2bvQczOSbzfRiPqx6lJP3P35RBa1QzPXeTl+Lt0eKcWbzamyx+d4oD53W5o7flKb0LHL2bkaOxgmRQ2K544JYjByuhL5gB7buPYiSO0zbUpTlEh/tuwLolcl4gegWypOPyN0BaKhHzT8qzbf9poF0RzgFiKAvuY2KHVo0n9ShYXM5KmrtIAtxIk+P7hBAOlgOx+ZqqNfXoPFoI3R7q3D7tJbYahkcBvDNXJzhGk3uo/IOVJvroTuqRd36MqirGXvnig5X21MEBxjQepu8vtyMJvKEIo8rcr4U7uNkaDyhAXkrSl9AQZ7x7XrUsD6NyWaiZ2SDwuBFtMrhI7nQ6OrQVJWL7ONX0eQejFD2AVLEfge8/aPZ9hzRCPAGtHWNEPuFgMhxHifif7miraL85wfsu4sjGXUNr3vYZXSsxIGM+qjbGBHlofCcpy886m/hw3M3UMLXWcPWdqbMcZPDWdCAk1fK8U59A/6kqcSia5WAWIFok2mTU9094GFsV1OPlaTdkquVMJB2cfwgJEYLe0jJd9jQCtxtxo16UiNi1LYd/l9gEIJqbmJdnVHpUh4VnbEaonUufYedZ9QQB4ahy9w+Hf6NhY/ExH4dmBoh50NZxoCNseEefCtKH+F+/Cpb40PpIxBBHHGu3Sqs/ANpt+gHXGkj7WI749aUpw/r+TOmprP8MI4LmHlK2blLTfbcq671xv3DP/6A0J3CwVwNHENieGOtRNyLczE2lHktQmjKXMx+nndujYS8iNnpL2IQ8TuAWIxNT0Nch5p0RcBzC7Fg/muYNWs2Zv3yTcwaruCPmSBlznsLGenpmDkrHenz38Ks56KJu8QTOhVpL05E0qQ3kPEKaTN7LtLnvoEJEa58AwYb34tiwXgMDCC7knP48BhXw7Bzex47ZHtgbCpX0YVwKBghVlaI1SaGvfyTEvY8Rf+RvKF+BQkhYtLuHFZ/T4qRSZiUEgd8shCJw0YgeZFxSi0KxUbai1FVS+ShhDU6PMFQ+gCqMtvnJPaICoO88SpOX+7aA7apIAu51+ogdKMdEPoMF7dh1Xsr8P4nP/AVhDIN6nv18V7BgrHkiabLw87/6GVK78ObsOzlVCzdfi9TKN/D9SlPF9ZskVACiUVSrjZ3C7bsOAjS1Aq8zooajslE18xm9MuchZg/LwPR7ibBL0Ew4lLfxPxfEg2UStqkv4EF6akI6jBRInjFv4aM+QtZDTTzZfI6g1yDlUmRGJ6aglAiqhwHpJDzZyDGehYTkDlDikZomcHWxNm2HoArxel/FUDnPwKjQ5jjIgSNHAEl+Q0cPlvBNXlSCTiAvzDJvA9Np/Ysgd5ap/j7sRfpwxAsZToZrMFOUmTWJhxHJNG6ec9hyLDxWLiVa5YWGwQJtLjw4/rO+yhbi+OF5EY8wjFuCle1s0RDPjMlBk+Mw8y4/pDptKT9K9jwGrno2S+wcAvtQdu3qYOmrpWYDf6HHB6JIHsVzp8o5sqmqHchq0gPr4EjrE7DTnmSEEDIOLntjCcP2Hnfx9qBPXZaa0fjX6+i6INqdB24Rd7TWBnhCBdSrr3UwN4HRxt0hQ3ErLtCOpivKtWTp4IUDoPtYDfMkbxqQVuVHSQzveGkVqPmBO1B11eQOTsBjXVEb3S/XqD24g5kfnsY3T+tG1Fyi/hAPn6dU556+sHDXoP8rFJoyTOnf4cRCoO3OzFPt0xG4983lnGkTl2T9jLRNa+8gYxJwxH9/FxMjzft2CxE/xSij5g40stzuTjS8GD+GOVhc/RWPl4prsGOXmKStrYzxdBtW2JzTI7lVd3AynPF2GBi8G63tcFcujXjtpaobpkjhgmcEO7aDq2+BcNclJjgXov9ZQ3sbA2Uvoa5f2PpI8ljZmDmUGZ9BW/EEv9oZpJxwW9XhKQQX4mJDTP1s5nzXsMQT/4wpe9xP36VrfGhnuJFtL/AU431/Bnzqmu9cf8gjjMD6wlchrHv7B8chvIKaO09oOxiVBtReF0NoX8YQkxEaFCwEsI7BbjYZU57QBwxFSnhIuR//zE2bSLbxs+RrxgA8zFsXoibmoKAuixkbvwIWzZ9hE3fF0AYnoKxESa9amXBCGjYh02fkjaffow9ha0ISJrY0RvFtveidCHdF8xHra3iEn4dnM5DOfOZKoIwiauxQIV6ZlSBVxAWcBUc0z2IE0qQu2McWxHEJhi1ai3e3nEU5/++Bqv/ay12nzmA7e8msS0olHtCEAg38p1q05t0SSX2QelYgbIbfLlXRPB2c+oyQrGTUuQdzMTpG+YjjiiPkfxs7N19AMdN1gBL+N00DCbfhfLLP5jbLxMSVkxDAtPm2AZs5Ou65dgB7L3H0Tn3dH3K04WFLaq9+BNUdsGYMCcdSQPD7qnXuzI+BrX7O/VLdpUHEidN7OjV75WQgiFOahz+B9FAXzBtdqFQGIzE+ECugWQEhse6ourEBvYaWz7bgCy1HLHD4yFELg5/sQOFjeRZXLCDnP85crobHSJ1ALOKVUDKW6yzzQTgFjDrO5omMRnU+5B1pQ1BwydC2W8KRoa0oTDr4JM/RVBZDg4RO3MoxyThlr4MyQGA/vo58/VL78NeIFQBGbQob1qCb7NOYvtHK7Fm/Q6cP7QZy0bzbQgDfcgXi/w1y/lEopGdpcz0cB5QhHNlfLgemfkyjPvjWqwYCVz45hsY1s9DQls2PvwN7ZjV9/GCt0IEQwPXgclL4QpUluNGN3kYlZr8wuTeXdcvozxhCCFghmsLnOCxfAAG/DoEof8eCv9FMtibmVodtHnNEAb5wivVCeJoBzjP9YOXvAVV5+o7pqztEQc7CLztIX5BAd9EGZrKNWjkh/uIfByItdczK5OYcbdUjwYIYK/gHX7iw9Wc1cNpSigGTHCG7mQlmqMV8PLWomIrXdewL+HoQL5AwkCk/PotZLz6GjIWvou0ScMhN00g6jXQNjLzzBoRIShmAByri3GNj+doS1TQOikRyDyKCLIgJWR1KpTdug5Vsyu8/Pkvqn8glPYalBXb9G28N5RT8MIwRtd8jo2fEV3z6cc42BCDOMvgjiwMIXo+RvTZR/j+UiPkMaMQTft+PhBGiIQYb7oJ7eDLH2M42doGCxNiFVvbmbKj6g5KDM4YMdAPHzg7YqGbJ9aHegJ1t7HLJPZY1NaGA6130ZlusMP/8/aCc3sN8jratWHNzVJo3EPxcXwwgupLsU3rhLdD5Ci5Stc1fFwInbmRwszmEZiC6QneqL18tnNUakgqJsY64Nou6z5S7dnPsSWb0ewqZBP/aMvBXPY04cCJGB3QivM7P8Impv7TDThd54G4xOHscUof5H78KlvjQ9u34WCJAYqRxP/6+B0sXrwSm9dPw0Dia53Z9QXfiPI0Yls+7cHvBZw4ZnKJHH2j/ACprIKVHCCL4VIRVEIl+gfzYlEQi9BAESqKf7Lo0cPghPCBSrQVHUa2ig++t2uQf7zAvNe9/whEytXI/fFUxyK4bSqmV20blEHGHiOEdhVysor4DgF6qPJL2QQn08vN5vei3DtiMZtY7MoO7L2oAaTRmPvVSiyYMh6T5q/Et28nQWEqvGZziUlZXCpGOV5E5p9XYNm6AyjWyTBw9vvYYJyWi0LpBm5qPV5UKiIQN2UsQoQq5F3s7CsrDgmEvEuwzQmRqe9iwesmW/pUPhCvhNyFWJJWU8e5N5RINr0Ws02l4vNxwazNumYmN+Xfxm5H+j3s0YB0tOHTgiwqzfy3TbbJxlnbeXq1RbpT2POPTGSrJeifPINNus3PeA1jowJ7nR6n7cbZrvpFFoxIf66q4tQGbNySievGaUDbr0JTQ+5bzkfQxBKIBW1o0hk7VNShcC9xlPefvbeOlM1VKL15E4UnMrFlw0fYsv0g8puVSJqRiiCzkQutUB3LQok4ApMnhEF4PQtZtx5C4PBxM3o5vl0cB5mhCJnv/3zHMs2LeQLJkDArCS75O7D6vRVYt7sEWnkY0lasNZ8K1QrlbZzaFvPBXCAbq18djyHDRmBIwlQsr5mGX8cacHzdUnZEI6WPIfVDZFQytyXOwPT0uRjiosHF89xsCW6uTkBLsxWfygTyO7RI41OeOOzQrm1EQ6seDT+U4NqnN1Fa0Ag7Tx/4pEv5oANHS3YlKqsBeYQSQTMCoAywh75cg/pzNo7yG6ZA6K+DEJToBnFDDTSHbUj08Qt3i9jp3zha9t9B+aqrKFp1E9W5EshHOqPhUBXR0XwDSp+gqaocZTfzkf31X7Fxw1/xzY8FMPgkY/o4ixmjOhBBNigNo/vrkX/0SGfcpJJLECpDmE7c3HSkhts3yfEClJW3dkxjKvf3g7i6FCW99LO0prGYLZnXONZQhvWDozoXBy8buyTpoTpxFiWWosYsRtSKirP5qBA4Q8b2ZKb8PJyxeFgUVphuAz0whj/60GlrwLelVTBIFBgxKAxzw5TEj6/HuVs1ONKDIZvjE4JpPgJobqiw0uT7cru5BrMu5mHk6TyMvdGAAf79oNSUYHkD34DyiHFC+IS5SCNaiNlmTo6FrKYAOZe51b6Z49ExgWgrPGjuI/2YiwpZIELZOLB12q5kYtOmDchRGx9SdVBXNQKuCj4WRHka6T4+lI3Mr7PZGHTwyFQsmD8eg72Bqtwj2HmYzs7yNMM9Kh50/q33stU1Dh93+YHiLu9+Cpz2HBTeBIIGxnHl4DAEoBSXL1kLvntAJiU/xsqrfJmnthZmy9/InCEmbWPnvImMeZ1bygAJuRfvTsPOTrvRFSHr09j4XpR7x2BAJf/Skp1vrUJmvhaykPFY/PuVWL14PFwKD+AMk3k2nqc1EJlP0OXh74uWYPX2A9i7aQVe+jAbVeSbNviFRcxRCqVbHAdO7BCUabOmItpJjeydmSjscFJF6O/vgdpb+RbBtkYU7t+MzK0m2z8P8yNiVKhl1zYwGdXcK2rkmF6L2f7F9WqjPFr8Jq7E2v8TB1ltHrb8ofsAecIfUx/qaMCHfX3Ko6Ppyj7z3zbZDl/jD/L0bosILaXIP/g5tjI93//+HbKJZgpISsOsUT1Pm6WptJiWpfYm1M0SyDoEGXkdOAbJkzIwi9FJv3oLSR0LNxC0R3DsfDNCJryJ+fMXYnrKVIR734t946k7hay93+F8qQqG9lYYanORvSsHFfaBiAy3SFe05+LEeWJRBRrkHnsKbWHkPGxYMQ3BzBrQa5bhw3vtBWuFeqKNGNi1Cxd9gMzdB7DxvTn48AQzkiwG415nD3eLn5BbVdJgrYdfwCtY8Voc6g+vwmrxSnx76ChOZx1F1t/fwSi+CeUxIw9EXFwsuyUODoOXoBgHt23Bed7Bqakj/pS9Q+faoZSnFAMaP1NBta4KjXktaFcb0LzjNipK2uEY4AJHY8KDWUNwfgA8HRpwa9s1FP3hKq7t1aDF0weBC+W2JZBPVKLoT9dw7R9l0Bhk8P9lIFwH8ce6Q8gFF1qbrXU7EcBhpi8cb5Sj5gZ5Lv06EP7vBEH5a8vRkpTHgbbgO+w/egRltcSWtDei9vou7D6nhrh/JMLNOv9wOEakYWayF6qytiK7I8DOwCUIvXyZTtyRUHq2diwHUXKrAkK/QCjhhABfJ2hVRd12OjdiTWMxW84dvoEVZM4SNFWVmvt27Rp09I8yYhkj0jfbNhqXYgMNSD99ASNNt8tV2MYffdjM8Q7F26FyaG9dw+ozFzDrbAEOVNtj2KCB+MDFehB0vNwPC/s5ooE5p6r7b8IIuRLTXMi/pawZqT6B2D84AoejAvGB6UoolIdMI/J3/BkbP+G3TTtwGQOQMisNIeyIYS7G6xg60SxOnDEnFl7E/ngwM5R2iwhi73gkpWRg5qvknPlvYfqg+/CLKE8MPcaH0tfi03fHwE+bg8yVczHkxSX4cLcKkrhUvL9mORL4ZpSnD1vyaQ+jbHWNw8e9f5CI/b0ga6+D2mq2qBXXr6nQpgwh4lOEkBAlcKsI13vo9Ciyt2GeiBYNCnNykWO6nTyF7LP5vQpRU2x6L4o5x6pRT3YyN+OkrzwB4fBjApa1GuzlaqzA9XSfsmgZlr23AotfHYGURVVwYc6rKuHO261hr0+8YawzDbp9z9VLZLTPD6VntJcyOwUl2TZtz0R+takjwCzYr4f6dtfVOjoX3Oa3jql5WlFbr4fYpx+sL/XlCq+ByQhSmNqUNjSZXovZdL10saU8eEYvx9oV4xGsLyLCb6HZ2qzmzMNvRpNn1EMbDfiwr095lLS21pn/tsnWZLE4VO+2yJRWGBqLUHj0c2zJUkEWOQIh/BFriO0tnVkHSDoGe4gQlLIIaRMjIdOWIj9rH3Zu/yuyb/GHWVrZUYmbtnyHw+dV0MoCkTTjDaT1krC0Cf1NMJ10ZR6W84MBTc2MDdTD8LSZwoBXsGHtIiRINTj+tyVY+s2D6Y26V8Op2vIbJmsXEnay9WLI+CDIjSqm7AG/2VzZyDhvRmBpUd/ldpRY/J/kfmsPYPVvnfH2a+Php96PD/9yBPXhqVj2R77DH+XxojrJTjXMTjd8qBQGJz8EmCzXXlvXwHaaDLAS4GdQehPNXK0G7Rv9dNKmZVIk9hDyS/TbxbtAIW5HTVYldNc5h7/9XC2qLusgcpHDqbcEoJHWu2gvaYb2y0rUQAKPOClXXc28nwT2llPL+IjhjLtore3q4NuN84JSVo2KnQaIJyjhaV8L9d9vo9HJB14zaMq7L2K4XQ2twBUeli6391RMZ5KGRKfsKei63juTIIS3Ekp/JbxhshxEcTkqHLyhlBP/y1MPVYlxdFD3WNNYrM7qJcMnFNLYzrOLA8b4EG1cdxsb7jRiFzGBt9sNWFlajqJWoou9XDCMb2lkhKsfloW7k+98Md4vb+p+zUKhK5YOkOBckRobpJ5IDRAir6gI2zRijAjzxFy+GeURoy/G+e+PoESgRLiJ+1J70yJOnJOD7OOnkNeDGJLHZiBjxgiijlUoPPsjdn9D7JzVwS6Up4Je4kOLX4iBDBqc/WQJVn9fxC5NseW9pdhTSFRQyDCkJfINKU8dtuTTHsaeHXHI5RC5//aN8gPCPhojh3jDcCMf1/mqLlzPxbVmYsxjRiG8XxuuXe6ulzkzfz7g4R3Gl3k8mfVdTCBOcpNERJ4TWci/1LkVFl9EYVFxz9P1dGDje1G6UnYCN5ghWEHhWBbAVTGMWhwFZjBD+dUDXEUXxmDVjqM4fWAtZqqPdMwtnbAiCQOFwJXcHXy7A7jCJAy9wvG2yfVN11akUH4WzPoaUKPMLIjeO6r8YmjlEUiKMInaGfEfgxfGxCJATBODfQpm2sD/YkYAlWDne3OxutukITMacBoGSx/maMOHe33Kk4YHoqe+ifQx3PRdXehlekGZu+nwQYKnHzzsG1HLLGlHLJzSW4KKM5ux5/gR5F8vIpqH2CYz/SeCWOqENl0RSnJ34fDOv2L7WQ1k4fEda0Hbgjz+NWTM6lxbkUXgwSx9CK3mGUlXMEnDL5YgQa7Fmb8txOItD/Df/WMRmzD0C13CaiwjGUrmL65FFT/KdUshsxKQDMFJ07gKhoBFGBdJVK2uBGe283U8fq+/j1fDVdj54QocRzj8FMQ2Fa5C5vb1uEBu30VhoY8pj5/r+5CrliA8aUxHByZDYRFUCERckpWEv3QM4sIkqL1x8Z46VVL6IH4yeL4TBK8p9nwFh1DGJN6amYHrLHaibjLILEIIuh0Z4wA5ub7/XCeLxwQXP2hr4ROCRTrUkhrZANMLCSBl7Awa0MwNMOvE3RmKRHtU7q5BS6sA9m4iNJc3oUWth+6mHk4udMjh44XYjtQ3MTORX/vYiKsTpO110Bhn/GTwnoq0GRFou/id1aQhC5sg9MOQIX4Qmy4Hoc+HqtoVysR+ULTdu/9lK1W1jRAHhkFp+jOQBkNBBw09Iwgh7smkCAVmWpVJGq4aSMSP+gbeL23sPmlIrruqfyBkZaVY3QyMd3SEWKfFuaY2bKipQ4Oj2GwNR8ojpr0Z+o7B7lyMV0qeVKZx4vz8n3Dj6kmUdWO6GLz9PGAo+hHfHDyI/CsF0Gjr0Pog4+aUvoMN8SGxuKeOTRJI+A5blKePB5Nvu/cyO+KQgdmxWx8p3ztCOBrX6pEFIiBqBmamT0RISwH2HeppyqkiXCfOgVdCPJTNN3G9W7HYiLy8UrT1H4PJg/jHuiQCSeMGQGbagVF1EoXVHoiZNBFKCacOhIoxmJK2ELNGWQjfbrHxvShWOIDV+4qgF4bhxfUbsGL+eCz43WasTuFG0uz9hB9JE7AE20+exPlDxjV4juCfF1WQeMThVXLemt8tx4qPt2HN9CCgNgd7/mwMtOXgL8fI9aVhSOOvn7Z4DXYzawYRMXBh95d8Owrl/vAIIg6t+mbnItq2UrkPhy/poUyei8mJEfBwcoJY6gWvqDSkTQ6D8OZJnH5G4uRPBIm8KBRrUXyqCJKUlVj1e+O2CDP5Zhy9jQachjV7iD07uQ0r7quHGR1t+LRhtn6hcSM2wXY0KFM3wzFsLCZEBUPMBrqY6UVTMH24EoabRTB21reGsF+yuX5JiYCsugj57OwPzTC0MGsJRUNmvO7AVMSaZp76zcDsjLkY25+/hr0XQv1dyfNYTe6MgTjfOuJ8u/WDh8yDv7+u1JZUQK+IwGhiE9k2kmAMmT4GQe2lyC98Fib/egXrPmOShkDV+ZOoCl1kYmfeQcY92ouZH+zC+XNH8e3v+BF/p9fjUKEBkshZ2PzZciyYkorFH+/Ab+Jk5CMimmsr1wwffoPj5INjF/H/YBHSZi/CurWvcJ0Vsr8w76xA9NmaueEo37cWK1lnWYV6LeAiSyKvx0BB/i16HZuBpvQp6pB3ughN7tFIiuBtjf4UDmcTbR2Vilkp8fCSuUIs8YDXQOKjpZGyNg+Hz3adXYHyhFGug04ngjzWF+4vSCDyFsMh1RdeQQI0FWvRzJva9rP1qIEAnmN94TpCDIG3PcQveMI3lhgCXQ0aLnDtMMwD/r8Lhe80YyJSj6ZKO0gDfOH7SxdIwgWwH+YC93nekMOA2gv8XI9qLeqKWyEJIu+dKoU9cx9z/ODjaYfGwmro2CljjAjhNNsHost3oGVXBmlHa+NdCBy4h4nQXQK9njrdj5dS3FC3wiMyBXH+jE1hpuobg+nJgWi7kY9C48cjHY7JkyMgKj6Ig5cbzHSPo2kum00QOkFJrmW+HEQFbqga4dU/8P78LxvRnD2LMmEYUmbOQLiPFzwCx2DCzBjIrc2gS3nysXPCpiHROBGpwBy2ohEn7xBb5eqHJf3csFAixHhHZ6wfEIQwUTtuV9bD2L19mIsSq8IUEDdV4VydAOPdXLDCuEnNs49TFYF4TnwbX6gNYLpoHWCmkBeJ4GEH+Do4wLn1LuiSh48OobOJ30X8jyGTXkC4WI2yYuYoF+NF8FikDPQiTyGCwANBo+ci/ZdpCDcOSNY2EPvkCq9Acg0pV6nXt0LsGwIla9OILfSfiNFhtNfBk42V+I2N8aHMY3lEGXlg1NvbsGZxKiZNmYcVn23Ai+HkoCoP23dz7ShPHw8q33avZX6NQ7L1of394Y0441o96WlIifeG/toRfJO5CxW96H7VhSLUEj9BW5zb83Q513dg37k6KEa+xi2CPfcFyC4cRL7ZKPEK5Ozah2sIw+T5b7Ht5s+Kh+OdLOzP7n3qiw5sei+KNco/XIYPd5fAoIjGzMUrsXhmGGTaImT+8X3z6UUZyBPb2F/jzMql+PAY+QaQ88bNnIaZI4MgVuVgy8ol2MK3YWCu//43RR3XXzY/CX6tKhz/29tY/D3fiEK5L4hD6+mEilt5fPleaEXF8c+wM1sNWcxUzHz1DWRkzMX0JG805e/D13vP2jjimfJICPWFJ2t8ZAgePR6Tp5huYxDDNuIYRQQkE2AvPtj9aEC2n4pQjPuZBMmW61OeLMzWLzRuL441H3nXC7VnM7E/vxaKpFRkLCQ65PU3/3/23gWuqSvd+/9JQsLFCBoEDYLcBEFRqQiKYrVSr1hLscWWKai1OqejPafa/ufo2zPWOTM6551qz1vtnNHaWp2xSo/Wab1bHC8o3rCoWBAURJAoSBSMXBIB/2tfAkkIEBAV8Pl+3O6sy97ZIdnPfi5rPQtxU0N4febHg83LE/XZn1AWLOovc6IRUJuDg3uSxXV7mJ50LB1al0jEGc47rBzXjXNd3viB6UDV8HhZPMc7iQjvUYAjh06Is5OY8Z2aAW2fkYiJT8BYb76yMXf24MfkAsiYTOQ/w5xYhDqqkfrDTuQ/Fz5hL/CT/xguw8zlzESM8RParIb3cjA5Uz/QVY01v/0jkjJ17PzTsfD3H2LeaBWrTsW6fzNej2M3Fv7hW5xVy+EzfjaWfjQbYzyYPnVyPZb8NlXswxGB5f89E97qg1izwlC/E1uO50MxfjXOnFqEMHk+UrY3lT2CeKaok5F2E1CNiKqfVVOVlYRdB7OgV43DK/HzkTBnLl4Z6wMZkyM7kg6IAwGIzk0tKrYX4lZxNziFe8Ln3f7wDHRATW4Rir4zWsDt7gPc+bsad6odoJzQH37vesEr3AnceiL5f7uLh/VjOcSRzlKDU+ARdFsLUJCvg8zLDf1f94X3FDc42TzArd2FKP9F7MbQfcf1q4VjoDu8uevwlaOaXcetXaZPLNsZKrhKS1G6tyGHty61FLUDPOD1//lC5VYJzWnzxeeIp43mxFYcKbRD8NT3mC7wARJiBJ/Kj0aDwpUvvAAVU37t/aIw00zvGW/yjBMChJz+oM43HbCgyS/idZq22V9WojuHgzsOIFPnhvDJszDtRU9oTxzBNfqZdV26sQehpFu9r2mD+hq23SiHrLcnEocNxvIhvhis0CE/JxvL7jZEkP0dHITBbvYuGOXvjYnGm2vDjOq+di5Y5CXB+bxSbBOdu9DewfmHvfHmC4OwY4AzNIWlWCc2EU8aRwRMMpJBM6MR4lSM1O+TkGFI+pS7Ez+eLIZybCLmcPbN/LmI8qpGZvKehjXmbx7FmRtSBExl54iO5DPO5Z88ilybQEx9h7ObmCyMUkJ9gxzDnZ1G/hsr/UNFf/0En2xNQ5HECxPmfIhVXFBxmBL6XG6Jh6U4IfYjuh7WxNOeyN7LdxB7zHBPGq5owFA23xt4su3BQ8ORebkDz3qwcYQ9N3K/uvGaQSbYOkFhJ4WuQgN9Wx1U1r4XYQF/jJnmBYU2H/uP54h11iAch+tCutLmGMgEujdae36CaAKbkZg6bwhKtm1A2mPm7pI4uMKhW4XROogEQRBtQQ57hROkqLVCn/FERHwcnH/+M/ZlSSFz7AX5o/Im1k9tqZ0h6kDS2mbOIZdAr2vi+HqE95LU3EWV7nmYafgssE53cg9lhq8boLl0FGfNB3M1Q1uPIzoQciUUshpUasuZNCG6JHbdYOPUDY80dXjUnKi1tp8FurnZoJuuDnXCSBTLGM5fzs7fmsBMW48jniy8LmCH2sfxqXQEbKRAnfEPXtCZPG4kIelEKwaYE52e4RIJlOxJeOgJPQxHSSVQPHpy5yceFytsIFtHyGorTGQe+XcIcwT7SI/re1NxRawjuiZBg0ORcfEMe9W6+Fp7tHfz9hv0iJt+WF/NXjzr8uAhHTxwSBAE8SRwicT4wQ+RfvS0ODOHIAiiM2EcOBSrCIIgCIIgnmf6TEbcdB8U7v0KqWouUCCFwnsGpk7yRMn+z3DkhtCNIAiCIAjCHC5wePnSmXaPv1lT7kJrHBIEQXRySlNwhIKGBEEQBEEQBEEQXYPbp5B2HQiIfh/z3v0Ac+Z/gLiX3aE//wMFDQmCIAiCaJH2ire1tszPOORruJBiB9nTjEOCIAiCIAiCIAiCIAiiS8AvZcOtaGVN+neCIAiCIIiGGYfWxtXac8/POOTKHWlPEARBEARBEARBEARBEF2Ch+XQakvYRkFDgiAIgiCsx5p42pPY23TrJgQRO9KeIAiCIAiCIAiCIAiCIAiCIAiCIJ5XrImnPYl9oxmH3H/G5WfRThAEQRAEQRAEQRAEQRAEQRAEQRDPK22JrxmX29puusYhD3vB9aovM55y++AhYRbXOFQqXcVXBEEQBEEQBEEQBEEQBEEQBEEQBNG50WhKxFcNNFrjkKfl+Fp7tHfz8h3EVXcogoeGWwwcEgRBEARBEARBEARBEARBEARBEERXhgscZlw8I5aeLrTGIUEQBEEQBEEQBEEQBEEQBEEQBEF0IKyJpz2JvQ03DZGbcsjNTuSnHnaAMkEQBEEQBEEQBEEQBEEQBEEQBEE8t1iInz2Nsg0XQqyPJIovnnWZIAiCIAiCIAiCIAiCIAiCIAiCIJ5bLMTPnkbZ5tGjRw0RRX579mWCIAiCIAiCIAiCIAiCIAiCIAiCeF5pj3hbW8q0xiFBEARBEARBEARBEARBEARBEARBdCCsiac9iX39Gocdaf8kkTi4wt5WLLSIFDJHJWQ2YpEgWotHKCZEhcJdLBJE+9HJ5ZONI+wdHcUCQRAEQQgMHDsRY4LEAkF0VUgPeqa4h47DhFCVWCIIguigSLvBRsm5bgmCIIjnGgvxs6ex7+btN9jwUqjtAPvBQ8KQeTmNvbaSwHjMe9FI8a+tgb66HIWXTyDtYg60dWK94zjEvD0CyhtHsXH/ObGyGfrHImGKD3QXkpB0ukCsNGckpv46Ejj2Z+zLEqueGC2/l71fLF4Z7wkHSFF7MwX/u/80qsQ2mX88Zo2uwfHNScg3/E26KGP+dS2WzgyFu4NQ1qlT8eVvl2BjplC2zCJsP/sWBkrEYj1anF0zEfO3isVpq5H8+wi4iMUG8rFr+JtYIZbGfLQZq2b5Q8EVtBnY8tv5WHOGb4L7rzfg+0QF9v2W9T8u1BHPCbaeCIqajHAPJ0i4oF9dDbTqLKT+8wAKK4UuVmGVfDKGkx8voGznX5B6R6xqgYDojxDZTyxwPNShqrwI6Uf3ILNUJ1Zaga0TFHZApbYctWKVR9QHmOSnQ8Z3f8GZu2Ll84ZHLFauXoCpvryUYM8uLa7s+hRLVh1CkVBjmaDZWPdfczBGJRPK7Lii099iyfvf4IpQI9DW8xOdHCd4jJmBsYFusBefZ1WleUj/5w/IvFsjVLRI6+VFx4QbYNELkpq7qNI199kdERzzHsLdxGI9aqT8dSuybXwQ8WYs/O4exXamP+rFVgFHJivnI9LpKn7ctgclHVS/GjhvNVa/EwF3mZlOY4IKU5auwrIYprtITHWappjy2R6sGqsUS0bk78aw2JVigWGNPPJ4C+vWL8AYN0626VF0ZD2mffit0IYIrN69GmHqtZi14FuSYR0BGxWCXpqMEB8l7MVBTK2XNU8R0V4sSf0LfrxUIVaaIhuSgIQIN6ifgl3XZfWg+LVIWRzK7B8LskaUAxO8FJBzz6daPUozdmP1J59if6HQpWXewobDixDmzMyrtLWIZPKggQgsXr8EcSGq+vMXnd5kph9FYOm3nyAuQJBF2gymP81ei7N8SYWF32zD24qDWMLk1wm+jnhmyMfhlTkj4CoW67mZgo17TosFQKKajGlRwXAV7f6q21k4fmiPYFf1m4GEaDdkbt2ANK3QziEbNhcJI52Q/9NnSM4VKzncohEfo0K2WX8BT0TEx8HjBrO9TlhjexEdm26QJ3qhv4cUKCpCziYzQ9zdET1j+6BnDxumTT6C/v493Nqmga4ZvdhuzgB4NjFi/EFGPtQ/PORfW9uv2wgXqCb1ZJomM8MfaKD++i509/kmYFAvuE+TQLPxDqqfV1u6I+Ibhzkve0JzmukaFwy6hiA7gkQV2BIGvaPd/C/Es2XsImz4aDrCVA12T97xb7HsQzN/jRmLvz2FhACxYERjfaeBsI+3YW2MF+Rm/miiaxE0OBSXL3HaqnVxtfbcC2scsnJH2reNYqRt3Ywkbtt9FGk5FXAdMQNxcdFwNczIqTiF4z+dRvKZdLGiBQqPIvnoURy51FkUQ08MGcEeUkfWYtNXB1DoNgqjfcUmh5GIGq3E9Z92dvmgoXvCWqxKCIV7bT5O7D2EwxfUzA6MwMK1a5Eg9rGMAjLOyCxTIy8332QrKhN68DjLmFAGdMWmffh+Qg9GLBIm+0N3ciWGvfoNLkqCMXXWRKHJYxFWJwag6MBaCho+b7D7cBJTGiNcKpBx+AdeXu06kI4yp2BMiotHgGjwWsXTkk+3zwlylbvWn04hu8IdEa+9g/DeYrs1+EUjLj4afmKRo/DMXqQcTcal59bQicDy/34fU33lKL1wFPv2piKvUoGBM/8P1n4cKvaxxFvYsHYBxqiYjcuO27VrN07kM7k3egG+/OItsQ9HW89PdG6k8Hp5LiYNkOL6P5OEe3dHMq4/YgbrjDiwn8NzhgqhrybilREtzSpRQsHkr+a8+Der3/bgGtdcl4fUYzmo7T8K4f2k/BH1+EazulpkHzvQMYOGnKP+u0PY/i8RcG80MMoIzsDdvQ2rZooDnqykt4MQ5Cs104fyrjPdqx4r5VHidIxxyUfSq6OwMLkU7mMnYbHYFPPZMkxwSMOXf6CgYYeAC6YzvSXCAyg4LugzSf84ioJHTEeYOR8Rbmb3SQfCNSgSzuJrU1wxJKjR6IEnRtfUg5iOMpcLGlrCSA5kcHLgENNfdHAZFotPPpkt9mmZhC9m80HDxqiQsP4TJISqoM9PZec/iovFFvSjWW9iaoAeJ1aMwrQvMyALnoSEaUKT++JVeDtAjX3/j4KGHYIe3WEPDS7sMH4us+2fRr4ch3GYFh0M+4Jk7NqyAVs5nUcyAJOio4T7/GYB1A+d4Gry7JbCux834EUKlUegUCWi8FTBXqvG9UZBQ6Kr0S3cBa5c0NASvRzQK16F3naV0JxR4+b5Mui790L/Ob0h7yH2sUCtugx38s22UmG42aO6BiXRun4SOI7qiZr0POT86Qbu2ijhNEp0bErt0HOaE6pOaiho2KGQwtdPBQn7Cl39Rxk9C9VI+4eRDDvDHk7G/mu2HeENDpH28L8Qzw4PpgstfwthTKXMO3lI1Efk8Bm/AKv/2LwfRsHZ6tygcHO7qrBU6GBO+DL8+zQuaEg8D1gTT3sS+y60xmEtqrQl0HLb7XRknklC0t9ToLYLxMtjDQphLWvLRrGWGwUrh73CUtpSo/q6B7hXlIeyaqGlHrkSCtZH4dDc7cmNcmd9uHPJzRQSbvYNn5qmmT4GrHovA0o4K3SoLGefr64cuofs/PyEFCcEvMQeXNf2IOVmBxwB3K6E4jevcQarGod/9yYW/m45lrwTiz8d1wDOoZj6UTPOw/i+4J7FRScX4bU33jTa5mPFXqELj58LO78WF7cb9+G2pdgodgG84cI0hfua3UDheuSVsK/SgZujGIrlq2fCW30Qa1akCl2J5wQpvEaPgsfDLPy4dSvScnN4eaUpOIqD23Yis1qFyImREOaQCbLBXD7xqZYNsqIp+cTJF05mKJyYudECXJqs5uQPR021IFf5az2HtP2bkaZxRNCwELGDiHguXp4ZXzcnw+y4K5EI7QZZVl0MdWFR/Yzoelpz/Z2ZebMx1UsGXca3SHxnKZb9bglee/tbXNHL4DP2TcSI3RqxeBLvMCs9+SmmseNW/GElFr7xCQ6rmaI5osHJ3ubzE52cEAR4S6E+uwWpuQXCvVuajtRdR5Fbo4Snh9hNhJMp/P1mbbq8lu7PpuSAJTjZwMsDI12oiWNavM766zJO38zpc8LMbqmUa28utbOK6U9g+pP4N6vfGmZJ42YyTt+QIODFyUzbEuGCJyM9gdyUjqtfjR2HSC89Lm5djjXpzXhCx0cgzKUUh/+ciF1Wz/xh2g6n7GgvYYuJPsS2D78RezCslEcxrtyXcB9F7P1PXFJDK5EJTpf4tVg8Woazm1dhSyuujXhyOA+PQpBDMVKTvkbKFUGf0d4+h5Sdm5F6S85nVhDuEyN9ht3zrr7BcDa+D+tlRlP3Z4N8sGwLtdRuBuePdfZHsCVzQDUKAVykwdIAAIM91kj2tfD5DLJJlF0mepyJHmR0nk6sB8V89hbTUbTsHrYga6bFMlkkyAFOf1nGbLSFbyzj9Re57/AWBneKvLIaCSOZFVbI5INYVU/4AsSFMomhPoqlbyxh51+KxOmf4gQzATn9aKnh+eftwttxd35kNt9fuUGfMsi47z18Gda+7kUDOzsSLuxeqNPhXqnxc5ltlQ2zbhSD/OFalYUjR9OhqSxHFafznLiKql4+8OMfIDkovgu49Qvm+wsEw8ONPbrKKyBz9214psMRXv2cUFtSBPazeTyauI95fcZEVokyzEJds/YZ8XhI7eD8ojNsbt2H8fhwA7bje8NFpkfx3lso/6kClftLoT54D1VMWDhHNi2ZHx68g3t/N95KUaXjvkctyo/Va5RW9rOFbXfWt4yVa/TQ3eMum3vvbpDH90X3O8W4d9LSA4t4ZtiEIqA/kH8uA2VMBvE6BU8N9BVGMqya+46N/NdsqxImmQpY638hOiavC/6aoiPL8Nr7y0V95FtcrATcB01vZhmrt+DOPZDUpzDfzK5K/MMhoYsJKiz+10nwkahRxMWiiS6PNfG0J7Hv2mscVp5GcroG9r5D4MVXCCPPx/PTXqTwi0rErJfMhK/vq5gV/yoG2XGFEIyPj0NovTbpBI8X52PenLmYOXMWZv7qfcwc2ThhJRy44z5AQnw8YmbGI37OB5j5YjDsxWZ+9s2rkxEx5T0kvMX6zEpEfOJ7mBToJHbgsPK9TGBKbpkjXLgRdLZuUNjpmEIM2AdGI9zpKo6czBP7dWUmYiBnGOafxxojo2/X9gx+hPrAkFihwhJuPXgHlU6v5te9mDItAgOFFhOmcN5FDr2wDs8Ui2sYXoKaaaHufosQFvohAl2B+6U5CPt4CaZ6qLHv/9JI1ucOpkgGcQ79ny3MSuFms6TkQN8nEEP4n5exrGrA7yXjmTPm8kkK1xFzkTBnPuLeYDLjzfmYMzsBwb2aMDptlAiaOh/x0WFQPGyNw7scmvIaSOQNBi6XIjlu3nuIZ+8ryLz3ERPiybc5D5mBmBe4EfxuCIll7RHiwlW8HBxvZKw3XD8v8/jrn4vQDjxr4XGIC+FGhmlx8af1DbNnCtfiRDYTLMoATBBHv5szQcX9xbTIO7NbqOBJxUW1FpD0xUDR89bW8xNdA7nMLMBWl44jf/u8YTSrjQ9CY9/HnF8xHYTdlzPj38O8+Fh4Nel3t3R/msqXxnJgPiL6NR2QVI6IQ9xLoxAQvUjQhd5guhCTHVOHGXn0W7xO0+uKeYO9TmDXxatTQRgZGwU/pnzZD4hix8/AkHoD3gxFdzigAtp77LVc2YSzrgK5x07xA9LGjxASp/HBE5kaJ49bmcniWXBtN1bOjkbiGksGpxFHNmHpG7FYsj1HrLCGiejNPbNqme4Ef4yZNtHimmHWyqNd+ZyHX4Whk0MRE+oNRaWW9RdmMOHcN5i/xXgWI/Hs8ESQvxO02UeR2SjFejkyT6ch9y67P/jbX9RnRrJnfuJcvPJyJILEB7+JzJjF7l32eryfkS1kbE/Fxgu2UGSgOMCK0VK7JSpykH1bDr9gc+ebFL7BPrC/zdpNspg6wTeKyR3OHuN0mFmCbjKsftR/U5/PVCeLeYvZfFNGIthYjzPRgwznmYyZnDxjnycunr3XrMkNmXM6OmNXYd5YJXQZO5FkyYG1dwmiho9C+Oz1YoURvAxpiQisfjcCLpUZSPregix42Z+3x/LSmGwRahi7sSWd9ZX4Y+jrYtUlNUrZ3zvwX0MR9lEAO0aL0muhWL5kEtwLD+JPNLCzw6DozoRIRTnK2P3U1Lru2kvs9/b9EZSI5cZUIP9mOSR93BtSnvZ2h9JWg8yUAmjZM8dbNO3BnmNuvYDimxliuS00b884DHoVcTEvG9k/wRg7KxFx0ZHCQBkOZjNGMbk22mywF9F+2Ma4obdMizu7tGhsBUsgd2dPkgflqPhFrOI4fx/3q9lTob8DrBbLPk7o5W6Diqy73LioprHYTw99GXtW9pOjW3c72Cm5dKk1wkxJtwco2VnZrq5T4vGRDfaHqlaNa+k/I7+M6Q+DBX/I49PY/0J0YNYkYhjTd6b91sLya3pdgy3UCCV6cBnIuD4eocw+an7Nd/dfc2nXZSg6shpnG43GJ7okRnGzp7m34UKIXBSxI+3bE31RCbS2SqgaTeuuQHZuMST9/OFr9OT38lFBcjsLlywMlJQFRiMqQIrMHz/Hpk1s2/g1Ml0GMNPDGFeERkfBozwFSRs/w5ZNn2HTj1mQBERhfKCRA03hA48HB7DpS9bny8+xL7sGHhGTxQCnte9lTgnSjqUDgxMwJ2EE5Jf2IKVsJDNCnXAtuYOm0GpvxFmD2lLjtKGMMxko4r5TFy9MEWoao+BcDXr0HnsMe9evwqrfr8b2s4ew/aMIoV1ESMvF9Lu5p7D9sxVY9V9rsffUTqxLMP52DmHV31NR6vUWNqyPhXfJUWxJmYh/n6bC9f9dghXiWofEc0RvF/S00aAwr4kg3c1ilMIJyr5iubX4xmJyiB2uH9yAjV8JMiO1VInwiWKqHhOcEDA1ARGKq/gxqbVrcrnCzUUKPTOmeGxHYOyLnqi9uJN/X07mbT37AMoRkQhgsrXs3NfYkso5eNRI/Ya1J1t2sMv84/jrv7ZHlHkbNuDgTTsMmxoLr87iNGsFA/tw7gENiszWGdtVwKWhUMLFQm57jsNlnCBTwD3IOM2FCu4K7nwKuHgLNW09P9HZSUd6ZgW7/xIxM2ocPFwsz1hxDYvCMMdiHPk700HYfblp4x5kS3wQPqIJA1eUL/X3p0G+TDHMKvJHaIQPkGWQA2vxYybgNzJSbG8C1QgEl+8VdKGvPkPSSQ1cRr6KCFFna/E65aMwMsQJpSc38Ne15asNSCl2RsjIEexzp+PINzv5IICWXdeWb75GWlPpnBzsIIeUX3OMCxBwA77mcWuRmA+8qDyNI+c1cB4yGUEu4zCWvXdJ+h7kduQlR84cwv5m13cWOc76tXo2n4uQ2ULijXfPbsa636/A6vU7cWb3aiQYOTytlkdr1iMpU4EJf1yL5aOBizt2QL9+NsJqU7HmN5bX9SCeATbcDF0d1PlNpEq/k4Ij+9l9YRSAU/k5IWPbZ9j4V3Hd1N6T8cpLntCe/FqQGUwG7DhXDa+X4hAqKi0qpkf4Igs/cvbUN8ye+iGLCZVRGCLKh5baLVOL7MvsuvsHI9jY/8ZkySBulsDljIZZxgzJwMkY61GDC7vY+Tkd5ssNOFOuRGj4SLGHQKPPp5qGl4dzssnw+T5H8oMhsBBXN0Hlp0QmO88m9nk2bj0NtWMwxg5vtMJbByQCKxePg7s+B0n/YSEwaAY/8HLWAqz+biUmqPTIO74NSWJbU4z5/RK+75Vdn2Cd8ZckkuDBPW24IKBpUPHsL8LsRBcPccmIvaux5XgpvOPXYgM3wzD5W6RM5gZ25iNpyUpxrUOiI2Bvx57BEk9EvfsBEt6ei4T5HyFuykjTWb06DbQVxtF+KbyGDID93TxcE/052nz2G3BUwVOMzCm8VFCUq1F4MxfqaqM0pv08obJtxlazgpbsGe3VApQZByu59+QUtV6eDYOivPvDDSWPdR1EMwzoid4BtsxGvYNKi3qhHDIuHWm53iyoKMz6Qw85WkqqIdANdi8q0Z1JoHs/CWlILdNUvzpU/HQbeg8PDPi3fnDU3Mbdy/bo+WJ3PDh8p2GtQ6KD4IgAHzfocy8hn92/2bnlUPiEtOC/tRYz/wvRSVAhLIrpO3OWYfPutzDUQYuze4wysjRCWDpLp4zAmX+sxWpmV6372ymk/O1DjBF71OPxFpbPCoZck4qNv6UBT88NFuJnT2NvwyUsNc5d2hHK7cqdUt5YsIT+cg7UEqa4+YjKok0I/DylKMn7mZtMZgZ7EAxUoTbnCFLVooeoToPME1mm6Q36jUKQczHSfzoNreiMr1XvQUpOLVReRsMF6tRIS8kRjVNmfGcW8AFObpSb1e9lieJk/Pg3ZnB+9Rf8eE6D4EmRUFw9gNRiUjx5ZDI+sGiJKVwu6TId7hcexLrfLceqTUeFNXhmfYIN8WInhkyrQSn7Ud2/9A1WsX7rdmXwI1fH/MtqLA8XOzGKtizBtMhR/GiT8NjdGPjuJLhf34Ela2jE/HNJLyfYs3td34KDWdJ09pNmcETwEE9IbjDF4oaoUHIy4+DXSNp7ykwGOiEgei4iFVexb4cVQUMHdwQNjhS28Bl4JT4Rw3pocOlCltD+8BwOfvUZdpxpmNFcdasEVTZOUDYbMTCGybxBKv7662UeylH4z1PIt/FEUICZ874LU1QrPH1kBoeCOZtTcYV1cX+JyaWPYjFlWiyWrt+AV81mpzZFi+cnOjk1KDmxAUk/5aDSJQSTZs7HnPkfYGb0ZHgpGu6jktMbsHFLEnINs4XqrkJzj5krzpbMW0G+1GYnm+okP6WjROEJP1FvkdsyvarSYNAK17Flx4Hm033VFhjpQjXQ/vITMssc4TdISDHf4nXK5JDZ1KKq0pCzuRzZ+z/HloPnTJz/LVJdioIbN5B9MglbNnyGLduT+fTRETMaD1yourAHF7RuiHhtBFzL0nH8wvNsxMug1WigZfrTxS2fYunv1mPXBfaNqyLwm9XLECb2aorG8igVq96eyOtNw8KisezedLwboseJdUuwS+xBdACUXKrHGtSa6DOu8DDoCvzG7g+jwFzZZXZv80tFCKgG+UNxPwupvxgkRA3K0vcg437DCH0Z5z2prm5IaV68Bzs2fY00LjDHaKm9KWqvpeNatRsChjUE5JyHBcK1Og+Z10ztpdorSdi0aQPS6u2ochSXVjBVysVkUESjz+ffH/bF6Uiu/3zM1jt5DvktCCZtVkrDebQpyC1m1+bSXyh3YMI+XoQJHnrk7V2LNVYMQIj71xVY9dFsTPBV8DNXk/63BadX+DIsflkFXe5BrGmtHSX+zYUlIzjU2PJBLMLDODnzIl7bG4B3J3MDO5dade3E06OqtAiFNzKR+r9/wcYNf8GOn7Kg7xOJVyY0la5PCsWgOIz11iHz2NEGv8kdIUCo8uUGcQvpSPW3brD2LBQW1dSnMXXu5w7Z3QLkt2CrNY0V9kxZJtRaJ3gNFOSP0ou9pzodF+4q4SH6pFQebpCUFOD68zDo+6lji+5TlLC7X4q7B1ulKQpw34m0G5+6rUUea7ahyFUt7nx6DTl/uIaiTZWQRbvB8eYt3DsvthMdB8UoBPTR4XqO4CPRXspBiUN/+Pbji62jJf8L0UkYh3kfM31n4XQMZaZr0cmd2HWkGR1mGvvdqLXMnlZj37rlWPrnb3A4VwtFUCxWGa/VzEj499kIU2hxdjPZSM8VFuJnT6NcP+Owm7jny/zOqPyU29uVXs4NaR/MqUtD9g0wxU2cueHjDw8U4JfLJjlqRLi1eIDSO1fFskhZGUyy9Ci6Q8b6hrz5PhJmN2xRA5j13Mutwcjk0240RggaWPleLWA/jBlFdhlIPqGBx5gExLPriH81Gh7c9OfnFb0eTfkT9v9hPqZNmIhp76zExr2HkLRuKV5bk4pS9gsa+vICsRew8cM3ETVuIl77cD2SWL+N7LjE73MAmRfCXrO82C03SjbGNRt/++15xK3fiZSUYzhz1HyWItGluVuOKm4E4xPJMCHIjEapdR6Ww2SNLvb+3hMTEdmvFtkpB6A2zqXfFM6eCA0N4bfwof5wtclD8rYtuGAswOQ+CBgTi6kz32Py7gPMmRHYkJrZKpq4/joNtEzoKZTPz33iLhFmNOubGvFSuBZL/icVRexvFjbrQ6z6/YeIC9Li8PF8vrnJ40RaPD/RBaiB9voB7Nv+GTZ+tQG7DqRD6xSMqJlxCKh//suh8ByHyCkJmMnpKe98gIgmF1wQ7k97v8kmek3CmyFwhSOUXCZipONkqhqK4XMx7533EBM9A8M8XVten+tuMUzNpxKob+sg625IV9jCdWqP4viFavhOeh9z5szHK1HRCHBrOj1qk5SfRsr+H3ChQA19XQ30ZelI3ZOGEltLAxdKkHYmD3obHbJTk1se0NWl+QZLYqMROeFNLFm3E/v3foMV78zHP7LZN+c7HHFGg6ks0aw84kbSzg3F/SMrsUq2At8fZnoT050sjrolni4ablCmFBITfcYdfqKuEDoiFBFjRsCPm7EhUvnANJGgorscVUU5ZvdPCe6VNwwMyD95CoWKEMTN+wDxMxMQGRIIhdE0j5bamyYHGdnlcA4YJc4E8EdwgBPKsk+ZySMOKWRuIxARlYCYt5kMmvMBXhnUWMZY/HylBaYDUZlOUz/GoQm05RZmcbZtRNnTI3wZ/n2aF+SFR7HmDxbScllgRewoTFuwFKu2p0HnPRFL/7IBC5tMyyikEeXW8Dm8rg0zAsU/n66Sm+FsDjdTcjrcs7/FkrRYbNh9SJAzZrOmiWeDNusHHDx2FIVlFez+qUBZ7h7sPV8MmXcQn9XEHPvAOMREuqI0ZavZoGkhQOjalxvEHQRV7xqoCwUHfP7NEkjcPZkscIRHX0do1TlNDjpvGWvsmQL2njo49wuCjGlR3ipHqHOP4rq6QgxgesLLXY6SfEsD2YnHRTq9D1x76HBnfxnTltsA97ureSSkcGuWbnCY4GLVbEPr+rGekb3h1rMct7/TQzajD1QfeqHfv/WB4wCxA/FMcQ7ygbOuGCVabm1TtskKoC6Vw29QG9YltMb/QnQCvsX8caMw64PlWLdXjR6jZ2PV2hVN2zF7VyJx+kRETp+PFZsOYf/29VjyxlphreYh47BQ7Mat/f4ut95zGrO7zLK5EF0cC/EzYWdUfgLt9TMOTfZsZ7H+KbW3J7J+TGjXlaPYYrSoBrnX1KhV+TLlUwpfX6bM3cxBbjOju6S2Vnj9H2qQnZaONOPt1GmknstslSJq1Xs1hXMUpoXZISP5ADR+kxHVvxxHvtuMkw98EDW6DQ+vzsLxu+AGail6GpK+ingEwJ2LIJdpsF+osY4fNfz55Irmp04Vqe/z320PZ3+hwpixq7B0mgJnv/wE617jFu6X4+LXf8TfchUY8+4nmCd2I7o4ZeXQ1jnBzcPghJZD6RuJIG8xKNbPDS4oR8lNodgWWpYZUkgqLiH1GhDwsnEQoRnUp/gUgXyawMMF0Du6w8N4OVbncYhJjEU4+xglV87hyJ6t2L4nq01G92PJvE7GdW7aMpRwnyWUDUxw4wSVFvebGYzGz2YelYiFv1uOpb9dhGmRbyJFwh2nQWm20Odxzk90IR6WQ1NwFAe3JiFTr8KwIdxMHim8otizaHIQFNoCZKYcwK7tf0FqC7Kn7IaZXpOWhtQTp5Eh/paqsrZiy+atOHgyB6XstzdociLio0c2P4jAVsokoSkyW4OT3JrrrOFnJW7a8gOOXFBDq/BExIz3EDfGR2x/DHQ3wE0ssjhwoVIHHXtv0xlXhIAaRVpO/iigEGdCt14eqbDwPxcgrOwQVv22OxbPnQj34oNY88VR3A+IxdI/Wh6kRTwlmF2lrZbDzd04hSaXGljQFbbsu8rPAqxtYTKHxDTy2JjK0zi45S/YceAEspkd5xIcjbhfxTfoLi21N0PZhSyU2PkgyI/pZH4h8LMrRvaFxqukOYckIGEGF2BUI/vcT9i742vsszjAtDEtfr4uwuKFk+AjY3eyxB+Lv9uG79kW58fd2woEvr4Nmz8WU4SaUZR2FEl/XoRlx5kAUATjpUSxwZx/XYSpvuwNKoGBC4Xzf/96AD8wWOEXi++/WsYvQ3G4WJA7hpTtBtz9VHzf+5rG67yO+a8lmOqchi/+Yz3i3p2JMEkGvvzTt8hTROA3n8wWexEdCf2tu9BaymriFo1XuKDhMXaPZjXOBMAFCOGmgqqfSkgDel1syCtissANKudgePRuJgVzK2jJnlHn3oC+tzu8HYKg6iWkRtXkF6GWC2Aq/NmmwfUs6+QM0QqYztFrqB2k1bWwDe+Nnr/iNmdBT+3pzF4rxBSkD/HwAdspZEwTNcYWtpwwqWT6n1DRNIHsfG7dWp5taG2/Xt3h8qIMd3ffxcNBPeEWbIP7uwtQUmgL9+k9rUydSjw5PJk+4QTIPREZn4g4fovFMBemC5gtjWUVLflfiE7FleOHsPF3byIpQw94jEKCmT3UPLtxh1NvHBTMkuKYiNXxoUyv0UPnMh1rRb2LPf4YKkSy16vJwdx1sRA/4yNolurbsb1rr3FoG4zRw9ygv56JXLGqEblcuhoVAoaMQUD/Wlz7xfL6W5xDVsv0N6WbWWCoN5eux4jyB6iSS6HLS0Hm5YYtO+8SsnPyrBw5ZuV7NYknwqeEMBt+B84wQ1rZRwlJeTHUleXIL9JA4uouCp0uSOFJXOeyAnkFYKnRSNExCwfzC+YXXW1sNBpY+g03mn0zlhuPMH1FCW7ANLdmosB0rN7N+u1bjQSxhsNd1YP/bu6ojwoV9URg9Ufj0IMbDbJFjSleSsi113F20yGsO5YNLXsANDnJg+ha6H5Gtpr9NEdMhiuvPOqgeeCE4JfjEOWrRPAIf8iM1uPgUCiN1xvzhLJJhVENDbORG8kMp0AEDQ40khsVuHbyKDL/uYdPwxc5I1q8FivJPYD0YjkCIsY1rJvYl8kTfQ6Sv9uJtMvnUFhagipmTZnP0WmeJq5f3p/ZeMyYvvX4RnxHY0v2Lfa/Aj4R04UKDo8FmBDEvq3KfJzdLtaZs3ADP2P5+z+64MTeQ9ifnIYivIWYECbVNdk4vFfo1ubzE50bzxmIm52A4KaUBf7GVEHlJkfJ2c3Yd4LJg9wcpnPomP7F97CAoJM4oMxEr8nM/BnXr55Coeifkzg4QaJTo/BKMlL2fI2tB/OAfkMwqKlr4VAozWSQJ1SuUmjLuEiSNdcphczBEbWVOchP34Mju/6C7ec0UASMqF8z2hqcR8xFwkzDeo0iNkpu6UNoNY2iWoSBmFXYy+RR8ufG6XMMa65qUHRcqGmtPOIW+387QI1da5bjBALg7sL0t+yVSNq+HhfZ19HDxcIgLeIpkoXMaxVwDnrZQpBOClWgD+wri1DY1JqijNKyCsj69Ddbg9mfX5O+rFhMfW7rBHtJBcoKziHt2Bbs+vsB5D5SIXiQGLBsqb05dKfwC5d1ZvA4DONSo97IQIaFgQBu7kroc37CjuRkZF7JgkZbjhorTFX+83myz2Ms3xx84NKGCdEdHS5EoqvUQ+bM7v2+wuYiyn2FG3utFAtLN/Oz+b7/vWngXyYGWPVNpdXhfmPs/DqJS/353flBBwwFq3MVbLWiM/ng5hT6BH1oZFtFYHEIN/hDjSs/CTX1cAM7xytw9utV2FI4ET5uMmgLz2Pj3vU4nK2F3GLqbuLp4YnQ2PcRE25sCzGcHOFQVw6NIQswh1s04mYEovbSDxaDhjx8gNAdw4a5Q3anqCENqC4T6rtOUIX3h0ttMQofYwCn1fbMzQKoa13hMdodrobUqFydxB2+wz3h/FjpUokmse+GR9UPUQkZHPo4wpHf5KzEsJOz1zJ+QiEXONRza3n0cIRdX75CgCm0Pboza7qosoXZit3gMEYJR1gx29CqfjZweL0PpBm3ob3KSuya7R9Uojq7DvpLD/DAQdpyhg/iyaIKgbeiHBe2/xkb/2q0bTqNEoknBg1+jIe/Jf8L0aGJ+2wn03f2YINJAE/Fr1/ItJ2mMz99tIHXk7Z/bKx/TEdvTuXRlkIY76KAvJbpRNwsdtcGvUvBq1IyKLhys2t9E50aC/Gzp7HvQmscSmDPTQnnN094DJ6BmPjJ8H2YhQOHmwoGcuQg94YOrmEjoKq+gdwmlcUKZGQUoNZ7HKYOEl1L8kBETBgAhfEMRfUpZN9VYsiUyVDJBde5xGUcpsXNx8wxZopvk1j5XhaRwnVMNIKrz2HvOWHkrF7HVBtbO14psmdKEe6XwljX7locwqoDOcy49Mer6zdg+ZyJmPfxZqyKYsK3MgP7/yqm0PFYhO2nTuHC4bX1AcAtl/KZceqPqeJxcQtX4fvFEXBhf62Le78Ve+3GiWvMmHSLwLvfrcLCWdz5N2Dza8xA0OfgxNemDsaYz5ZhgkMavvzDtyhi5f0a9pSQ9ICLhzgClgn9pp4bRFejAtn/PAW1XSBeeSMWAX1cYV92BCnZOni9PBfhvdl9f8SQ9o4ZjyU1UAwYh2Gsn0LhjyAmU/yErG4WqEF2ligzBovpAW09MeylyYjwc0Ej27MuD6k/pPDXMnnSCMFgsopyZJzJQVWvYEQEigqwvga1Mnd4qcTRtUxWhb84wHSWkfYBU5Gc4OrJPouD2M8Edv0XcqA3v/4poXDVZiG9yZEfnZg1O/i0Ey6jF+H7TxcgbtYCrFvLLZoNFKV+g41it5hP9+DC+WP4/mPR0bbuKLJqZfCZ/Am+/3wZln+8Cpv3LUCYQo+849sactxbeX6ii3GzAJpubgiZGA0vJ8M96YOAl6MR5FiB/GzOaVUN/UPAuV8wFLyHRA7FwFiENDmKRdBJ4DMeUQPF+9NGCa+xiYj/VRwCuLdRjMMrv5qLacM9xXZHqLzcINNpwE8CaQpmTI+cOlK4Du6YSO46y5F72crr7D8DsxISMd5b1JVsXeHXz4mLPIh6jpAezKFnfygVSsiMnfhGlOWXQOcSiLHhgUIf9jcb9so4eNUVIDO7TcmsuiSN5NGuVFyvkjE5M1uQM9NmY/lXG/BqAKDLTsVGw3phrZFHTD9bnRiAogNrsYIPPKpxn/2Geigi2OtxcHHmghSWUg4STxNN6gFhANIbcxHh6wl7uSOzw/wREDUXUwdKoD53lH1zTaP5ORMlPYIxKVK85ziZMi4KARI10i9x9osruwfnY1Z0FJT8VAopZCofuNrVQFNiTXtL1CA3Iw9VfUIQ6qrDtQzLtqKO2VCyvr5QGd6j32SM9W/ZAag5dw6FzBaJipnB63tKz3GYFDMEzm1YUqujs+rtFxEeabp9kc4Jfi3OrnsR0z7YKXT8ZzaKpJz+spLpLx9iHpMXSz/fhlXjmfxmNtqJ/xW6uS/ejDPnTyHFsJ7PqsRG5w9fl8bbT9r09QifvgRJXL+9q7EvWw8ETMfmr5bx51/+t08wgZmAuoxD+OIM18nAdKz7eBx6pAsDOzn78Q5TwGUOSrhDhYFcYFJHFtqzpQDXi2ugDIpCaD/unuPSBjNdI9ITtdczkW3wiTiMxNSpgZDmJSP5lweiL0jY7I2nYfEBQqZnsHOV3cw0GsxdwqcJdfX2hKz4BgxDhZtDKnUyeR/+vXi/j7X2TDquMTXHy1dllBo1A4XFjggYqETZjUvkH3gS5N/HnU/zcdNkK2bWLeNWMXutqbeZdUdKmE3uANc3e8Mx2BbS4B5wmSYG+Y6Ivx6pHZw/9IPP+87s12lEO882tJnUB27yUpTuFdYYqSt7iBqpBDbcm/aRobtVqVOJJ4lqQH/YlxXgmnkqUd0pfuC4q88LrfC3mGPB/0J0aJLS1NAzfSLsnZ3Y/HvB7lnJ7KO4IPYrUGdg+16u13Ss3ncKF05tw3LD0g7bM3Cd6UkDp23A5o9nYwo7bvV3izCGqUml6Yewhe+0Ewunm+lEbNvH21z52Mdez1rFdyS6IhbiZ0+jLOmpdPuEiyA2m9P0KZdd3dxxp6Q5c9OM3kPwgldfqIYMw2B+GwxvNynKr53GwQNHoakPtjnBg7XZ3UrFVSOfg7a8J3yC3fAwOxmnC4xHqfXDgNC+qM5ixh83CvJeNm51G4ghYaMxYsRovDC0P6rP/hNFLn5G56yA+roWjgNCETF6DF4IHY2QIHfUFaXg4NFfUM398bnr7avDlQz2AOAO4XD0x+AgJ9xv1XtZwG0qokdKcP6HH3BLXL9Mf7sSjqHjMW54OAb3q8Uv/9yLoooWI5CdFu2ps9D2C8fwIQEYOnI8wgK5WX45SFr1H1jzs6iGO4Vj5uvBcKlT4/w3+/GzheMiQ7zQs1aNExv/Pyzc1hBqvXIwHw7DgzE0MBhhY7jzu8GBO//Kpfiz4fwM94S1WD3TDRe//BB/SBHrr8vxwvSpmPp2AuIDnFF66lv8y36zdRCIrsvDm7iaq4Wd5xCEhg7HkJARGNBbxqfzsnmQjdQz1+plQtltHZz8h2DwUE6mDYTi1lFk1fjBpfoX/MLLqcby6UaVB4JGM+WBkxkvDIbqUT6O7D2AUl4WmPXnruVWLwwMC0G/6qu4eqdeGtXj4j8a/Znh/nOO0YgK7U3o+wzHYL+euJ2RDe3dm9D2HIKwUZG8vONklT7vJmxcuzfIs/u3Ud37Bbwwgh3nIcPVX/KgN5eD93OZPdcXgyPH11+/W20+jv2wG0WiLOta5GDfDQe8MIR9x0OGI3L0MHg61aLo5EYsWbKbHzXPETjlLYzrr0Bl3n58yy+mnYHdeT0xbuQwDPAPQGCgF/rYV3CrePcAAM/kSURBVCJv/1+waMVhI0eDdecnuhiPbiOvoA59AoYiJHSUcE+GBKG/gxaZyUk4reZcIkxPKXWAz9BwjAhn7aFMN3AuwFWNG3rX3+8W5Eu1J4I544S7P4eHwKc7O+c/f8AFDTunPh83yt0xeHSk2M5km0KLC4d24orWsqfcwXMEAh9exE/lQYiZ8pJwjLIK2YfYdRZbeZ3lV5muNAjDR4u60gvD0K8bk3v7fsJtPafnPETJvR7wGz4cIUOD4XT3NPLu8W9vSmUO8srcETQyHGHcedjfTPXoJlL37MTVSgv6krnO1kkYOv1tjFIBRaf+ht3NqB7j4uYh0LkMVzbsxDGxjqOxPDKTM+NDEdjHAVWZO/GfS/8bP9c7wqyVRxFYvul9hGkPYsV737JvmSML97yjMH1yHN6dE47+0nwc/PT/4hg3Got4djy6h8Lsm6h2C8LQYSEY+sIIDGG6Sn+7ciYXduCfVw03mmXbCw/zce0WuzdHRGIUd39zMsXhHi4c2I5fyrl7rgK3b1Sh55DRiBjJ3f+jMNSvOx5c2I9Dv2jwqMV2C5jrHdp7kPsNQx9dFo6eugZh+UHT6+V1saBwhBvew7MWeYU26N29XDxPE5+P2Q+5TN+z7TcQIcw29feU43bKKdxV+cGpXNTjTK7H8nks6mGdAIuyhtnCJ8o9MWpIEHz8gxDG5MVgT2dAnYZv//M9/D+xX49RMYgbokTt7QvYtOeCUGnOkKmYy72B+izrY3gDLU6d1cJzxDAMDWI2GiePesuh5eTRx2uN5JEKCetXIc4lA18s/r84IdZfsx+GmOmTMGdOHAY4aXDib/+GfWSiPVOqCnJQ7vICwsJGI3QEu/8CBZ/Kvp/SBJ8KQxn+CsJUMtj28kFQvS9I2Fy0xvdTBXQ9hyHQ9SHyTh01eXZX1akw2F8JTeZeZN9uzugQ7lOVu5/J+3Cbt22BcF9bac+UyX3xgpcM+WcPoYD/DdZBI/FmdTbISzW9PuJJYgv7sT3goNVCc8HoC3qgRyV7Fkn9esF1cE/0HNgdtg8f4Pau26gwiGMbKewjnGBfV4X7p6vZN8hXwiHWHS7yctxO0qKm0ehdA1b2G+CMPlF2KPuhBFWG33LxQ9S80Ad9X3SCk48dHlwsZupw1/XtdXhsQhA+wZ+pugfwc5F5imF2X9d5YOiQPqjNTEe9eOH910BBWkajCR1W+V8sKjlEhyFjP64ynWLowAAMGDSMt3sGcPZR7iGs+dePsZ+X+QF4JTESng6VuL7/Oxzm7Jr7Z3GK05OGBSMwJBRR7Dgfp25Ml9qIf/u375r13zRluxFdh96uKpSUqPm4WXvG36wqe/sO4gOJXF1H2Q8eGo7My9Ytrv5MsHGEvaMjUM0e4M3plrZOUNhJoavQgPdftQVr36tFpJA5OjHN+DGupdPhjzHTvKDQ5mP/8RyxzhpUCIsaDKW+peOE88uLL+NwWisC3W2+LqJLYXxv14YgKjEKyqs7kXRCTNFlQO4Iia6i5bUU6pHDXuEEaW05tJVNWivtjzXyztYRstqKFmSQcP3Q30UVN1v6OcA9dByGuAGaS0dx1jBDxwr445wf4BKfrrRp2np+opMjV0LB5URpUhZwekEvyB+1Rla0dIwof+oqoK1ofn0e5Zj3EOP8MzbuOS1eaw0qteUWZJ0V1ynK06blHjuHXAK9rqXPKbyXpOb5kT/tRlAEpnjLWpQzjyXvSI51UB7nud3y/S1xcIWDpLZJ/aKl9vaAf49uLcs1E7jpIHXGfw9PRMTHweNGEtP1hLD4cwsvL7pDe/0QTmSKde1JW8//pK+LaBv8M94OtU/wHm9/nj97pqvSTWmDbniEOg3nrew4dHNj16WrQ535LDeCIDoMj2f36HF9byquiHXE803Q4FBcvnimxXjaE9l7+w1me0OVAYtd2WbgybYPHhLWsQOHBEEQBEEQRJsxCRwSBEF0JfpMRtx0HxTu/Qqp/ExvKRTeMzB1kidK9n+GIzeEbgRBEARBEARBEM3BBw4vnWWvWhdfa4/2+jUOhT17YVI23z+ddoIgCIIgCIIgCILodNw+hbTrQED0+5j37geYM/8DxL3sDv35HyhoSBAEQRAEQRBE67AQP2soP7l2sxmHHWNPMw4JgiAIgiAIgiCITgufxl3OXjzZVKoEQRAEQRAEQXRNGs84fHp7G+4/PqLIVYp7vsxHF43KT7GdIAiCIAiCIAiCIDotD8uh1ZawjYKGBEEQBEEQBEG0lfaPv1nTbsNFELt146KIbBP3fNmwPYN2giAIgiAIgiAIgiAIgiAIgiAIgnh+af/4mzXt4hqHXDSx4+wJgiAIgiAIgiAIgiAIgiAIgiAI4rnFQvzsaew71RqHSqWr+IogCIIgCIIgCIIgCIIgCIIgCIIgOjcaTYn4qoFnucZhN2+/QXwgkZ+FKNbzZfaSx1B+iu2Dh4RbDBwSBEEQBEEQBEEQBEEQBEEQBEEQRFdGCByeaff4mzXttMYhQRAEQRAEQRAEQRAEQRAEQRAEQXQo2j/+Zk174zUOYTmnaf3+KbQTBEEQBEEQBEEQBEEQBEEQBEEQxHOLhfiZxbiaYd9O7TZcFFEIJDZEFk3K/P7pthMEQRAEQRAEQRAEQRAEQRAEQRDEc4uF+JlJmd+3f7sNF0Hk/gl7IaL4zMsEQRAEQRAEQRAEQRAEQRAEQRAE8dxiIX72FMr8GodiSLHj7AmCIAiCIAiCIAiCIAjiaWCjgtfgEChtxfJjIYez90h49ZKKZYIgCIIgiLZiIX72FPb8jENLOUyfZZkgCIIgGiOFzFEJGXtyEQTxHCL3gW9gIBRikeg6+EskGMXZJwTRlbFxhL2jo1ggnindbWDTXXxNECLOw6MR5dcd2odixWOhQ9lDN4yOngYV2S4EQTwtbJ2gcJCLBTNID3nuGDh2IsYEiYVOjHvoOEwIVYml55WW42lPotzN228wVzKDq2rOen+y7YOHhCHzcppYsoLAeMx70dIPqAKZO/+C1Dti8QmgHPMeYpx/xsY9p8UaosMQNBvr/msOxqhk0KatReSCb8WGBtxnrsDaf5kIH2exoiwfh7ctx5KNOWKFGfFrkbI4FApocXbNRMzfKtbzRGDx+iWIC1FBLmHFWj2KTm/Ckve/wRWhg4BHLFauXoCpvqLrs1aLK7s+xZJVh1Ak1AhY24/oXNh6IihqMsI9nCDhjMi6GmjVWThzLBn52hqhT0dFroRCWg1tRYVYYQFzecw+n76qHIXpyTh+uQC1YnXLcEHCXpDU3EWVTvy79I9FwhQf6C4kIel0gVDX6VFhytJVWBbjD4UkH7uGv4kVYkvTtLOsIboYTvAYMwNjA91gz/0+GFWleUj/5w/IvGutjBmJqb9+AWVPWIfi7nOF92SMjxwAVwdxRH6lBrnnD+DIL2qhbIRs2Fwk+Bcg6btk9hTmaN3xhGX87XthZYA7+sqrcP7CNbyvExusQe6Cg0Pc0d2mwsKxEizs447Yfj0h42VVNW7duIFld6pRr2V1k+HTAQMwqif7/ur0uJWXi5kavdgowUq/IAx/kI3Zt1mbWEt0EGyU8IqYhtGPJWueMKJOUpL6F/x4ybLuIhuSgIQIN6iP/Rn7ssTKJ4RH1AeY5KdDxnd/wZm7YmVXQGoD+et94ertAHtet9Xj3i+3UfqDjrf667GTofvbfdHbTQZuQldNjR7ajFu4s9dwzzeNTbgSvV/sCScZ50N4hIriUtzZWQa9yd/RBrIZrug9SAFHw3VcND8/u9a3+sHdR86eII/w4OpN3Eqqrr9O29f7o0/3O7i5qdL02omnTkD0R4jsJxY4HupQVV6E9KN7kFlq/LCxQu/hZQGQ8tetyBZqGmMTgqg544Bja5F8rUGG2fePxuTxgVA+zMKurXugEetNcUXoG4kY1svc/+SJiPg4uGQ0LYOIZ0Uoln+3GjG+MiB/N4bFrhTrjfCYiKUrP0RcELOlmupjxPKdpxDjJRbMMPVHLcL2s29hoPh7bcCSj4no0PByIwoO59k9fsHCPe4bhzkvOyFj+waklYl1TSLIC+efW6GPcEFCO2b+aMtFP4uS/U7nIlSpxpENW5Frds5Gekij44n2o5V+nuXbcOGVJgUI1oxbhC3ca2v7ebyFdesXYAzTuQA9io6sx7QPDTIoAqt3r0aYei1mMbnUkm9o4LzVWP1OBNxl1soof8z7fBXeHSn6qxhadSo2/3YJNmYKZWOaP38Eln77CeICBJ+WNuNbLJm9Fmf5kgoLv9mGtxUHsYTJ5xN8XdckaHAoLl8SPrUpjxd/s6adqdSskxhJbNgLjY3rDfsn3N4mipG2dTOSTLYkpFnW7IgujQpxv9+GlG8MQrIJwpdh7ZKJ8HFQ42LyIexLzkCpgxcm/MsqrB4r9jHhLWyYywUNLaFCwvpPkBCqgj4/Ffv2HsXFYsB99AJ8+cVbYh+OCCz/7/cx1VeO0gtHWb9U5FUqMHDm/8Haj0PFPhzW9iM6FQ4jMYkpbhEuFcg4/AMvp3YdSEeZUzCiZsYhwEHs10FRjohD3KvjmTraEkby+PsDOJOjgyoiDjNHeort1qBC6KuJeGWEURCy8CiSjx7FkUtdJGg4dhE27N6GVTOZMilWtUx7yxqiayGF18tzMWmAFNf/mSTcgzuScf0RMxpnxIH9HDoQUriOnIu4SQMguZGGgzs4mfEDUm4wO2d0POLG+Ij9DEjh3U/JjI6c+qBh644nGtFNiuX9/bFpiDv6timTmgyf+/blJu5Y5M0+3nizvxP0dwpxKKcAl8tt0NdnANYa62aK3hiluIedZy/iw9wK9PVywUKxKdrFEy/KbuGbYgoadjhsfBD+xlxEMVlTcGoPdnGy5h9HUfDIHREz5yPCrWOl5nMNioRhjKAprhgS5Ca+fvIUntmLlKPJuNSVgoYM+Rv90d9XBl32bdxMUUNd8Ajdgz3QZ7pxvkdbdJ/vCZVbNzzIuo2Cw0UoufUIihBP9DXpZ4HhLnB/uRdk9zUoYue/eb4Mj3r3Rr9fObMnQQO2M9zRL7g7UFTMruM2ijXdGp/fqwd6+dSi5KuryNl1F90G9IKD4SfA3qePdyXu/EBBww7D7XOCLsO2XT+dQnYFkzGvvYPw3mJ7e+o9AUHwghrXDEFDGxWCpryH+ElMn6hsfkSN/bBoDLMoZAqQfaMCrr4j2BOT6EiEfbyE2UlNfytj/nUt9n63ot5ZbQ1F1/ORl2u2MR2Gp8b4N6QQBlSVqRv1L2oxuER0KOrSca2gBq7+oyzY81L4+qkgKc7BpSf1vfpFIy4+Gn5iEdAg41gyUn86glyxxphGekij44l2oS1+niJTWSBsGvCSo5abwy5ibb/E6Rjjko+kV0dhYXIp3MdOwmKxKeazZZjgkIYv/9BC0JAbiP7dIWz/lwi4Nxro0DQJX6zDwtEqoDgDh3ftxq6T+YAqAgvXrkWC2IfHmvPPehNTA/Q4sWIUpn2ZAVnwJCRME5rcF6/C2wFq7Pt/XTto2IBR3Mza+Bq3e8x2Zup3Y/+46GIH2reJWlRpS6A12TTQ13Ft3MwVV9hzNgM3okLhajJ1W+LAyqzOXm5m5HKza/h+wvF8nxbsGgGj/ibnlMPe4jks1HNTyFmdQtFMWj7DZ1E4weI9Vn8Oa6+7qzAOE8Z6QZfxLZauSxMdjI2ZN38SfGQanFgVi8TfLsey385H4uYMJmhVCIs3dsALxHz2FsKctSgqtHDG8AWIC2WPBPVRLH1jCZb9bimT05/ihIaphSMmYamH2G/ebEz1YoY1u7bEd5ayfkvw2tvf4opeBp+xbyJG7GZ1P6ITwQzb0aPg8TALP27dirTcHF5OaQqO4uC2ncisViEiMkToyt3b5ikk+PvZ6F43yCeuvk+IuH4GJ0sEmSFx8ISHrz/shd4CTcoMCzLSrA8vJ7m3sJEIMsVcXppgJI9Ls5B9Ziu+P6eBYtAoZpAbI8i+xufj6oUZmVIpdz2iHKx7gHtFeSirFnrVY4287IiMj0CYSykO/zkRuwrFupZob1lDdDFCEOAthfrsFqTmFoj3YDpSdx1Fbo0Snobfh4hB/2kkb5qiPfUO53EYO8QR6pSvsetYCgpLOZmRg+xjX+N/U9SQD45GpEkyiWB4uOmgzhcHDrT6eKIRMmdE9K7F5cuZWHezSqy0nmgXdwxXVOHWHQvHSpwQ68F+V5oCfHLjLlbcu4cFV6/iVBnQvZ8LFovqfrSdHVCtxy1mlJyqqMQDaTfw2QPlLljkJcH5vFJs4+wWokPhPDwKwY7FSE36GimXs6DhZM3tc0jZuRkpajmCJk1j2rRIa+yp5p7nFvUeK+BsQWd/BFuSB6pRCOCc/by9aAb3fhblnZHOxPq4+gbD2fhaDccZfeb6z1tdDHVhEYQ7pmXdq3PgAEcfKXT5t1CyU4vKYxV48PebKLnTDQrf7vzMQp7hTlD26Iby9ELcYf2qT7H7ffNN3L7D9JdBTkzzaxr5YGfY19xDycZ7qGDnr9xfilvnHkDaowfsB4idenSHUzCTJ3duQ735PrsOLcrXF6L4rnh+w8+ltxR20KOGG43wSzX7LiTcT4od74BeExSoOKlBdRcL7HZqaqoFXYZtmoJzSNu/GWkaRwQNE22mVuo9zeHVzxW4y+5RsQzlCwhwKEDytr/guLqZWdQOIzGe/b4LLxkGNpmiuaVBrZsn/DqTjdLV8ViExdO8IC9Uo1SsMmfC2FC4FB/Fqtm7kSfWtcTGD9/Ea28Yb6txsYoLTqqRsmWn0Ikjvi+42HfRyUVm/edjxV6hC9F5yP8lD1W9fAR9whibYHj3k6Ik9xx76jRQb3/xeoIVNKWPcPV2XI1E0J3E89VqC1BY3MQMGmM9xOLxrfBZE03TFj/PxqVm8uBN/OkXLa8fFZ3ejCShl9X9YlwVQOV9FLH3P3FJDa1EJgQx49di8WgZzm5ehS0tXdvYcYj00uPi1uVYk96UZ92cRZg6gr2TJhV/mj4fS/6wEivefxNLk9nT1TkUUw3RSw5rzu/twq5bizs/ss/313wUQcaZsMJEoNe9UHRgLVYcF7p2fYziZk9xz9SXhtylhojisy63P8LMlfEjJ2Pm7LmIeSMRcQnvY+bIYPi+/D7mxMcjZlYi4hPfwyT/BucZP7vmJWZQRi9CwlusDzsufs77mDqsGU+UQwjGx3+ABO6cM+NZ/w8QFxUiOu+l8ItKxKyXDIquiO+rmBX/KgaJb23vF4u4ee8h/o1Z7LrmImHefET2dxIaeaRwHcHq58zHzJmzMPPN+ZgzOwHBRga0yTn465iPiH5WOgY7PTnY9adERL2zFvubnG//FsK4EWaF57GKCSAERWBKVCjw1/kIHz6qcVrTsaswb6wSuoydSCoW64x52R/ubJeXttZopMNubElnwlHij6GvCzVxIUxBZULv4k/rG0Z2FLJjspkqoQzABHHkhLX9iE6ETSiCOMP25wMoMXdQ1eUh7WwG1LXdhdl83Mgv85l9yvF4xWg0GC+fJryMiDh2n78ahfAgTi5x8icOoyPYPZ8Qh0kvj4Awx68lmWEkI7k+sfGIi2d9Zk2Gq2jkekXMwtgBTIbY+2Bs7CxMHtI6j3zV3XLobaW8QsPjFoWY2e8jfhaTlez9eFnJZKMw7jMII2Oj4McEp/0A1i92Bobwirjw+UKN/jCN5eV7GO9nLC87MEc2YekbsViyvYnUyJZoZ1lDdE3kMrPnfV06jvztcxy5JpZtfBAay/SfX3H3H5MJ8e9hXnwsvOpvUHPaX+9QDvaHc8VVnPmlXKxpoCrrH0gvlsNvkJG+5OYONxSj8KZQbPXxRGNq7mH1+VwsqGhDciKJE2Z794D+5k3srLQQdXHsjr42dci/U45TYhV7Q2xjZUh7IVj8aeyprGK6swOCpd0Q3aM7uldxswuFmYwoLMD75gNFiA6AJ4L8naDNPorMSrGqnnJk/5SOEgcfBPkKNdbaUy3ZP5b1HiuoyEH2bSYPgs3lgRS+wT6wv83aTbKLOcE3isnEOXOZPsRdCyfv5mJY/Qwng87EdLXEuXjl5UgE8XqJ0XGcnPwVZ2uGCn0NypuJftey7tUpkFah7MtcFP7D+GatQ61ZnKVbL1uml1SjMstY3tRBf1vHzuEAmSEAaAH9njxc+1IDQ+Z6jkfVZnIn0B498Ahllx8YeRNqUZn9gJ3fCQ5DxaoCHSrgALuh3dBtuD179RC1pd0gj3GDY3Ex7p20FEUmOg7l0JTXQCI3VVha1HtaxBNuLlJUlRY0OPg1B7Br554WlpJwhO+Lo+BSfArHc5t4lpZomEbeHc71MoR4tqiw8D9nYqBMjcNrzuO+WGvO4S+X47VXlyLJQlo9q4lPRJQXoLuwG8vOiHUcbj14B75Or+bX7ZoyLQIDhRaiM6LOQkGlE7wCXMUKEW4Ws6QY1w1Khon9xZ75Ce8jITaqmWd+8/qI85AZiHmBmzLvhhCuPUJYyE7Qu5qwgYz0EMvHW+ezJlqgLX6eRryFeeOZAKnMwK7/09xSbpb77crnRparMHRyKGJCvaGo1KJIzKKHc99g/hYrlvW4thsrZ0cjcc0hscIKxqvgIgG0189jl1jFwQcv2d49wGiSjjXnZ8eVMrkd+K+hCPsoAO7sLKXXQrF8ySS4Fx7En1akih2fB9o//mZNmYkopjSbRRSfdflJofKUI/Wbz7Dlq8+QdEYD52GTEao/gE1fsrovNyD1lgQew8ymmKtGILh8r9CHO+6kBi4jX0WERcXPE+EzouBRnoKkjaz/ps+w8btzqOofhWkjuIdIBbJziyHp5w9fo4eDl4/R9HVn1vclT2hPfo2NX33Orutz7MuSIiAqGgEG/dg3FpND7HBtz+fYtIltG79GaqkS4VMmi4aoP0IjfICsncI5Nq3Fj0zh8RsZaRqI6LKkYf+BlgS0F1zYF60t1mLxzmO48LfVWPVfa7H37CFs/yhC7GMgAisXj4O7PgdJ/7FerDMlwYP7y3ICzFT4nv1FEI4uHhP58sA+3K9LgyKznNC7Crixbkq4BAhla/sRnYjeLuhpo0FhnmXjU597AAeTU5pYN6MJ3AfA+RKTFX/9M5JOGNJ3MgPWoxzJX/2Z1YvreLQoMwRUfkpkbvsMm5ic3Lj1NNSOwRg7XFCAc5M/x94spvRWXMXebz7HrnOtSxfq3EcJWfUD/n4AfBA+PgQOt5KxlZOt3PvtyYHUfxRCednKjP1vdvKOPC2TY1u++RpplkZ/956MV0zk5WfYca4aXi/FIdRiuqAOxvFD2G/tCDSR9pY1RFcjHemZFcxgTMTMqHHwcLE8e8U1LArDHItx5O/c/cfJhD3IlrD7ckQT6YTbXe+Qwq2nI/RFuU3IvAqo71RA4uJWn15Q4amCffEN5POl1h//PNLXRoKJUtNtlLGaXVuLQ5xN0GokWN7fA31r7mCn2nJk700HbshcFTRmzecrq/CAHa/kRzgzHhRj5y0ZXgwZgqWe3XA59y70fTwxvPYm1hrSexEdCxsVnBVGs3/N0eWhVCuFsreRPGnJnrLG/uGwqPe0RC2yL7O+/YMRbHwu+SgM6g/kX87gMjvVIxk4GWM9anBhF6cPcdeyAWfKlQgNHyn2EFD5OSGD6Uwb/yqsZyYbMgPjmRjM/LFBTma6hCGoBSdbc7pXp6DmEeqK67ikEA34OKNnXyaJCyvwUKx6dL8GNZBD3t/U1pcouCFjctg285Efadj5NcbCyhbdQ5ieU6lF9VWhRtrHjj0ZdHholtf4UYGOyRwb2LqIxjez/e6d08Fxmh8GTOqOylN3UB3sAlc3LUq2UorSjo8rH+DTPzAMGrJO77EGLtOJjtkq9dQ1FzAU8Y3GaJUGaf88Lc4ktoD2ASqZfebcSywTzxT3hKWIC5ah9Pg3WNLMLJUTBx53TfhQLH+NW+ZGjcMbvhHrRHi5p0fvscewd/0qrPr9amy36IciOgc5yMyrgLP3C0Z2B9NhfFWovZGBDD53pCN8J83AMFke9m0S/R9bDqDQLgSTJ1gO8rWkj5Sd+xpbUjmfgBqpXHtyOl9vLZaPt8JnTbRMG/w85oQtn44wpuoUHd+AjWKdJZrst2Y9kjIVmPDHtVg+Gri4Ywf062cjrDYVa35jNlGmKc6wz9HawRNHtPyADIVbAMKEGh53lTBgQuFilIPMmvPvXY0tx0vhHb8WG7gZhsnfImXyEkz1yEfSkpXiWofPC48fb2tLWRAFhoiiQVU2iTAalZ9We5tQIfLXH2Ge8RYfbeKwKss5BTVvvdRAe7MEWiYUCzNzRGOxHJnXSpgdYmeaf762AGkphj7suF9+QmaZI/wGBfI1JvQLQYATO8+J09AaBivePYrjl8vh7B/GX4v+cg7UEhW8fcRR+jYh8PNsmL6uGhYE55I0JP9icIUxwzzlCLJrVfBixi33wAke4ona7GSkqsXsxXUaZHKjexWe8OMVUkfIbdl7VRoU6hqUnNiALTsOtC4o0ZWZJaSHUITGYoz9JST9eTmWrjskrAE26xNsiBe6cYR9vAgTPPTI27sWa1or/EVPhNzBRXjRBEW1gnNMxknSZrC2H9EB6eUEe3Y/6+uTjrcDdzOQUi8rDNQg/+weUdZxWCMzBLRZKcg0jKrVpoDpjHB24QVPK3GEanAkgvgtCpEx72FmiBM0F5kM5tvzcGb7n7H1YHqDka0uxj12nHPzt4oJqkH+UNzPQmr936AGZel7kHHfCb6DW7OeYhegnWUN0VkRnvdJP+Wg0iUEk2bOx5z5H2Bm9GR48bmGBUpOM8NiSxJyDbOF6q5Cc489E50tzeB5EnqHCs49mIZTYzLNpzE2UtEB6Aivfk4ouZnBl1p//PPJOFdvLB8+2GRbyP5uj8vwHn0wrvcj5OfewrrWqu6i7i+XGr6ZWqy5eQ2jz13E6PPX8UltT8zuV4tTefewR+xBdDCUXMqgGtS2pM80iJwW7amW7R8Ri3pPy9ReS8e1ajcEDGuITjkPC4RrdR6z/0yDA7VXkrBp0wakFRvqy1FcymSNk4upXXmZfYb6mUiOCPB1gz7niKmcPJGDMiPHmyXaT/fqIPRyQK+ZvaHQ30PpD0bB//Na3NN3Q68RfaAYbgsbN1vIZzB7zLMb+0W0BhvYzekHVY9a3Dl2rz4w2SS1gsyRGgYrMB4evI2ilVeRs/IG7qbL4Ty6Ox4cLjWZ0Uh0EBzcRXuCbeEz8Ep8Iob10ODShSyxg3V6j7VUPigRX1mBTQiixnqi7PwPFmZfEx2Tt7A8MRSKsjRs+WC3WPeEaGq2IWNKrRZFZTrcLzyIdb9bjlWbjlr0QxGdB83lPJQ5+yDIMCBKPgoBqhoU5oq2i3yEMFjp3IEGP01lBo6cKYDEOwgBFnQFa/WR9qYlnzXxNHi82YYCqVj19kQMGz4Kw8KisezedLwboseJdUtMZgK2P98IWa48xmHl+g8RN20i4j5ai82v+YvtrUXN5HUswsO4z/EiXtsbgHcnq3D9f5e23j/fFWhtfK0d2gXxZIgo8hu3E1/ze6Py02pvE8VIExfOrt/+ccTEYdUqRdCAcZ57nhKob+sg624hFZ6iO2QVahSYjcIou8eEu8IJvDu3Lg3ZNwCvgaF8G3z84SFRI/uy4PxSdJcDvUMxa/b7SKjfJsNPxoxIV84RroTCgUvnM9monW1vhsCVGa1KfnH3dJxMVTOjbC7mvfMeYqJnYJin63PtPGuEVg/erGcC9m8LFmHV9kPYv2k5XluTilIoMPTlBXw3Lm/yv/P5749izR+aE9hNIP7RdZVNZc8XcJcI4Wp9E2mdDVjbj+iA3C1HFeSQmWbWeTwqDTP4jNFxqcyNsEZmCGjLLYzel7RFcjjBKzQEodwWHoIA9h65P32NXelGMtjWFR4hMzApZj5/PXPmRaJ1yU8FeVlVlANTkVuCe+VNBUC6MO0sa4jOTA201w9g3/bPsPGrDdh1IB1ap2BEzYxDAJMFAnIoPMchckoCZnLy4J0PEMHlwLXIk9A71ChjckoutTLfjU0wPHqXQ51rCBS28vjnlG23r2H0mYsmW7whtttWJN2x2NcFsjuFWHdfNChag6j762rE0Q7GdJNhqW9faPMKsLpbD2wNDMSRoYE42M8Ro8QuRAdAU8p0DykkrdFnWrCnWrZ/RCzqPdaQg4zscjgHjBJ1DX8EBzihLNswoMkYKWRuIxARlYCYt9l1zPkAr1jIzWVqVwpysvSOOP3NQFkZWoontJ/u1QGwk0HxKxWzebW4udUsEFdTjXu7buNenSP6TvGC37teUA14iNJznFCqwyMr0xLbxrhDxZ5Xd08V4N55sbI5JILMqam2IHO4IGRMX9hfL8K96+y5+K4n+n3IrutdBWxbH3MingTOnoI9wbbwof5wtclD8rYtuGCi/Fuj91iHwsnagYdSqMZGwqsiHccvWPdgrbX0EySeKglfzEaYs1ZY20usezKEYuXrTcw2ZOz/w3xMmzAR095ZiY17DyFp3dLGfiiic1H2M/LvOsI7SAiOyAK84ao3GpzUozvsoYHaPPvU3XJU2jhBaTESaJ0+0u604LMmnjxhf4y1brahlf3g8RaWzw3F/SMrsUq2At8fPoYzKceQ8rcPMUbs0n6osea363GCKdguobFY+vsVWPr6ENz/6aiwXqzucRxRXDbA6XDP/hZL0mKxYfch4XPsXo2EVqxp3KlpbXytHdpt+CiiSYSxcU7Tp93eNmpRJS6cXb9VtINgM16TS0Rm24wxxwy95u2MGuReU6NW5YsAGyl8fZn5eiMT2UbLKehvZyEtLd1oS8OZ1NNIu9oQBi27Ydwu9Ek9cRoZovVblbUVWzZvxcGTOUwBUWLQ5ETER48U11oksFcj5LMvycc641EKPwr1coXw5F68cBJ8ZMyol/hj8Xfb8D3b4vy4qToKBL6+DZs/FtICHi7mhJ8CLt58sR53PxWrBe5rhJzN10u5fkq4z+KL9Uxw43ppcV/8/qztR3QiysqhrXOCm0cTEqJXMIICA/nfy5OgJZnRvojpLrhtUzLydY5QeRjloLLh1ipMxKSg7tDmZ+H4ge3YvjnFgvOuZSSt8lx2ftpb1hBdnIfl0BQcxcGtScjUqzBsCOcQk8IragHiJgdBoS1AZsoB7Nr+F6SKawc2RfvqHTUou6+DrE//hpQ+ikAEDB4BV97Jx2RGb0fUlhQJA8C8+8NNXww197PmaeXxRLuxsG9/eMlq8cBGgYX93bGVbbG97FiLHQLc3bG+h6AjH63mhmfZQ2kmovva2aE76qDVN/agzld5Y3jVDay+Cyzy6g9VRSHWXVFD6+aDJT1F44V49tTdhbZSDjf3JnJLyn3goqiB5pZRQMwKe8oa++dxKLuQhRI7HwT5MT3MLwR+dsXIvtB4UKlzSAISZnABRjWyz/2EvTu+xj4rnWVS2+dLJzFBagvFfE92j1egaNdtVFrK8XdVizufXsPVL3Nx7X+u4fqnpdDb2LKnUhX0LTyDOGxneMBjkBQPzt1E6WFTGVJzl5sHIYetYbaHgT4yJnMeoaas8dqF3Sa4QqW4i5JdesgmqdDbtgzFf7uFCsc+cJ0hDLQinjHqU4I9wbZNhwugd3SHR3NLmVvUe6xBw+Qa+wXZWemU7z0ZkQMlTM7pGrKs+PRiv0ApnH3Ya08j+djLmenoFdDeE8vEs2HaKiSMZHZQpR4u0at5v87330Xwa8fDNYK9XoV5fMd2YN58TPCAxdmGTWLmhyI6GyW4dKUY9v0Dmf4gZCGoup5l5t+QQmIrvrSCx9FHHo+WfdbEk2Q2fjOW/c1bnG1obT9uXdcFCCs7hFW/7Y7FcyfCvfgg1nxxFPcDYrH0j2KAuD0p/BYLp7+IWR8sx9LfLcX82Bfx2hkZuMQ3pcX8YkptYsx/LcFU5zR88R/rEffuTIRJMvDln75FniICv/lkttirK9M4fvY04nc2fBTRJMLYOKfp027vULAHt+litZ5QuUqhLbPgdS0th9bODSqzBXVUfdnD33ikbe4lXGOKbMCQMQjoz+6paw25qLVaHWSyaly/nILM+u0sruedRW4x95BgSi3bOaDMqJ1tmT/j+tVTKBQHvEkcnCDRqVF4JRkpe77G1oN5QL8hGPSkohKdjkO4wgUMXQOw2HhkQryQwlRbKqyixJn/OqZcypxVcO8rbNzaiBwKN/ZaKRSKzuSDm+fjE/ShoHzyRGBxCDeuWY0rPwk1W7K5hTcU8ImYLlRweCzAhCBOic3H2e1ClbX9iE6E7mdkMyHgNWKyhQWwnRD84mREBLgIM2E5HJ1gWI6Fx8WJDwy1HutkxhOjLh0n0zWw949sWHdQ6Q5XOw3O7NiK1PQU5N8uQVWLuaYaU1pWYRo44PGHit3EZcX8eKYuR3vLGqKL4TkDcbMTENyUsODHLaigcpOj5Oxm7DtxFJm5OUxGMMnTpPr1ZPQOdWYetM6BiAgUPYBaTkCOwSvRUXDuF4UhbjUozBPS+6g83NiPv6BBj2K05nii/ZB1q4O+uhYyxx5M3xU2pb2gv3fvwV7LhR/SrQcP2C/HBl49HdGXr+GQYJELk9h15cgx83v0tXfDm64PsPvGfZyCHfoqbKAuf4CdunJk3LOBgsuFS3QQxLV8gl62MJtHCtWoIXBlsuDadbGKowV7qmX7px3QncIv3Aj6weMwjEtnXr/ukClu7kroc37CjuRkZF7JgkZbjpoWzVM1NEwWunqPMB0s0c8NPcWXXRouaPhef/TtocOtXbe45bAbE9wTfT/0Qq/xNnjErYnIr1loC8dAR6a0PUBVsdCtKfigYbAcVRk3UXLQgtKYU8meUt2gGMANZDBgAwdO78EDVBsyWxro1R0u4ba4s/ceHtbYwLanFNVFVXhYrEPlDR0ce9CUww5H7gGkF8sREDGuQfe3Su+xhgpo7jE51NPNdNmapnCSQ86ehQpfMcMKtwUp2bFyuAWx1/5GaRxclFCw517xHbFMPBsUMt6vo2P2kcGv495XIQxqkQt15uMO2kYoVkYHs/Nanm3IsfQbbrbPZiw39kO9ouSd6gY/FNH50GdfR4ldf/gGjkKAWwWuZ+aILQwuW4OFQeSyfq5QPNRAbUE+tE0faSea8VkTT5awP07HUKZftzzb0Lp+7r/+BG8HqLFrzXKcQADcXdgx2SuRtH09LjI1vIdLW1OINsUCbOZmNO5cARdurce9R3G2EEh4JRguzDq8ckQY6N5qxq7C0vEKnP16FbYUToSPmwzawvPYuHc9DmdrIX8uMo4xAWAWP3sa8TvBhOMjifwLcSdEFk3L/Atx94Tb24QE9gomdM02+8f1M0g8MXLqSCi4v5SNI1SR0QhyLEcut8i+OXeYkVvshGFToqGScw8EKRTeMxAZIEHhhVNGqXWykHtdB9ewEVBxa2vkitUM9cVMlClDMDk8EDL+25FDGRKH1xPeQQSvyVQgI4O9t894RA0U04DZKOE1NhHxv4pDAKf5KMbhlV/NxbThnmI7u24vpgTrNNx68ARPGr44ngOdgz/i1m/A8jkTEbdwNfYu5FJKaHBxr7BY7Kq3X0R4pOn2RTr3R9Ti7LoXMe2DnXw/bsHWfVwe54Dp2PzVMsybNhvL//YJJjDZpcs4hC8MI83W7MAJDbMfRi/C958uQNysBVi39i1B4Kd+0yDwre1HdCIqkP3PU1DbBeKVN2IR0IfJJ7kj7F1CEBGbiPDe7N4+mSLkjb9ZjDIbFYaNDYGSyTGlbzRiXnA1LGPXSqyQGVaifVAN2PWCyoW7dusdKlUXTiC72gnBY0YKxnh1NfssTvDwE0dU2roi4OUwmD7qhZG/Dj37s78BM8RNHI4Cmp8zUdIjGJMiRXnJfa5xUQiQqJF+qQ2pqTsgMZ/uwYXzx/D9x+JIsPaWNUTX4mYBNN3cEDIxGl5O4s0t92H3F6e7VCA/m9NdqqF/CDj3CxZ0G6ZnKAbGIsTIx2XKE9I77hzAkcs6plclYirTeZSONbh+JA1qpxDMjPaH5MYJHM/l0vl4wstdjuL69Q1FrD6eeByilV44GT4IW3twxgMTLYVZGH/RdNtQxK1WW4XzWVmYeUf8m9fcw6Fb7HUfL6zv2x2JUjv8u4c3XlTaQK8uwQbjB1o3R6wc6AJ13m38ia/XQctOqeDXQZSx75bVWEptSjwzNKkHkFmtQuQbCQj19BT1mUBmA72HqQOZ3XNyD/KNR6a3YE+1bP9YwhFeL81H/KvjYN38jBrkZuShqk8IQl11uJZh2Qmm09VA1tcXKt6GlELWbzLG+rc0C6kG2WcyoO09Aq9NGQcPpie5DpyBmBd9BJnYpbFF919zQcNHKMu6h1qVIxxeNGwOkBrWVc14gAc1tkwv6YdeUxxgN0oBp1/3Q9/uNSg9p0X9z2W4Ev0+9kPf6Q1GvHSaO/oF26Gu9C7Ky2RG53eE3FeQTdzDpjyvBnKvvnCNdYCtmwx2b7qjT+9uqMi+a5bGXwLHWX0g/eU2tHyQsw41FY9gYycom5JecvY7oKkVHY9yZJzJQVWvYERwAWcOq/Qe61AXFqO2tzu8hZ9B81zbWT8Tsn7bcxVazt7bw14nN8gXlYpJKHUujFw+xLNg+xJMM/PrhEceFFLnFR5krxOxiu9oJR6LsP3UKVw4vBYJYhWPFbMNt1zKZ0auP6bW+6FW4fvFEbxT3eCHIjohulPIVssREBkC57I8ZBoHA+vScCGnFl6RcQgSZZXEZRwmD3eD9pdTsBQutkof0T6AHk5w9XSFwqEVjh0DTR7ftM+aaA+mY/U+Jj9ObcPycLGKp51nGzI5tToxAEUH1mLFca5CjfvMNu+hiGCvx4Ebz9nSUjct4b54M86cP4WUL94Sa9bj8DUd08cmYtV3q7H842VY/dUe/CZUAV1uKrb8KHZrFdOx7uNx6JH+DVZs4QYdHsKdMmYlOijhDhUGclm1HisFaieiveNvVrQLahEfSeRfiDshsmha5l+Iuyfc3ibcEBqfiDizbbyf2NxW1OdwpHwI4uZ/xHQAzhhmhuHBJKSZrWMowJTZPT/ggt4HU+d8gHm//gBxL/dHVfoPOGg2tJofKc/++tq8dJMR9ChLxt6DzIIJjEYC956/fh8xI7qjOOUfSDU8eHJ34seTxVCOTcScX3PXNRdRXtXITN6DbG7krPYoDvyzAPbD48R2dt3e1bhwcA+ex7VDm6JozVJ8siMHepdgxCxcgaVzIuBeo8aJ/1mMha0WZlwe58+xL1cHl2HTsfD3CxATpIA2cyc++Y/1aMjWsxsL//AtzjKFwmf8bCz9aDbGMMWy6OR6LPltqtiHw9p+RKei8jT27eCcbe6IfDUR8XPeQ/zMKATIipG6YwPOGO5xdg8fP6+B3D8KMUyOxUT2wrVzV1tcJ6dJWpIZVqK/dBQZWiXCZyZi1thgsdYacnDmHJN0/cIQ3k8qfr5yuIyey2Qcu553EhFcnmcqC7lgRWoGtH1Gsr9BAsaapebkqTyKvXsyoPcV5SX3uTwf4MK+JLBbsWvAexxlkNcPf25vWUN0KerSkfxDCoplAxD15vvC/TUnFpHu7H4/uFWUMSVIO5YOrUukoNswPSNuWDmuW0orZ+CJ6B01KDnxFXalFkMxJBoxb7+HhLdHQtWtBrV1NSjOzRQGUvBpDzUoNF8TxNrjiceD19FtIG9D9GNdYTYO3X4Ipacv5g8PwHSVPR4U5WKVuhrcnGgBCf69vxe87t3AunJDcLAG24pKofALwpEXAjBccgep9yhw2KGoy2N6SxJSi7sjeHKcqM9EI7R3GTL3f93I7mnRnrLG/mmEI5x7OsG+pxIOYk2LqE8hm3vP+zlNpmrPP3kUuTaBmPoOdx0fICFKCfUNK2Y93jmAHd+fhtoxCOOjZ2HyMDtk7z/FZwno2thC5izICefAvugXqTLalLDnF/nneAjtlkKU3LeF83B3eE7oA7detbhzrAB3zxicFBzdBC+BtMEvIHV1YO/CtCEXpdn5VVAObhjIpvuuAAX5tXAMdIf3u/3h6StHdW4Rbu0yfRrYzlDBVVqK0r0NMxd1qaWoHeABr//PFyq3SmhOW7noIvF0UScj7SagGhEFFefJskrvsZLcdFyrViFgcEsDBVpDIHy9JMi/0pwDmOjUMP2oYZZqBFbPCIa8Nh/7mphtyMH5odbszTfyQ42Dj6Stfiii48B0mysFqGWyqSz3Z5i6jGugPr4VRwqdECHKqjmvhcC+MBk/nrY8wMEqfeTmUZy5IUXA1ETERUe2PkNVM8c36bMm2gV+HL6Em6fewJj/EmYR5iU3P4vQun4RWP7fM+GtPog1Kwz+n53YcjwfivGrcebUIoTJ85GyvY0zAM2RNkjCLQs+QVKmFgrfCMTETMeEYUrocw9hzZKVOCv2sR4VEtYvwhhJGr78w7f1/q6Ne9KgD3oLe0/txFSVBif2rhVbujitja+1Q3s3b79Bj/hAIlfH79kLLsJYXzbfP/n2wUPCkHn52StXyjHvIcb5Z/aDPM3uaiUUshpUasutm/XTUn/nyZg5yxP52zc0EYRkMsTBFQ7dKppZq1EKmWMvyB+VQ1tpyUsuh73CCdK65s5BcAwcOxHeyMf+40bpBNpKUASmeHeH9vohnMgU6yzgHjoOQ9wAzSVh6nZTWNuP6GTYOMLekRmm1c2l6ZRDJq+FXtdes2ZakhlWIneERFfRxhmQRlj1N2DXLJewv0Fz19tOn6uz0c6yhuhi8HqIBKht6r5oy33z5PQOY53HecR8zBxcgZSkrcjuH495wcVI+i7ZKHNDY5o8vs0jLoh2g+n2EyU20NbW4hSn61tJXxsJgm2Y7GLHnW/FccTTRrjvob+LKgv6SmvtqZbtn6dDm67DRgrUGf8NRmLqryOBY3/GPvNUmc8z3W1gI38kpit9Ath1g41TNzwqr8Oj1sT/2noc0TFoUe9pGVlgPOKHarBr+wEzp3/bkA1JQMJANXYwHaY9zkd0NVQIixoMpb6d/FBE58DWCQo7KXQVGuitmNxulT5i6whZbYVV57OIpeOt8FkTnZOn5h/yCMWEId2hfVLvY6U/rCsQNDgUly+daRQ/exrxu27efoO5YoeiQwYO2wveUa6E94uxiJCmYcs/xNSEBEEQBEEQhAnKwbEIqk1BSlbXSD9MEM8bT8Se6oDYB8bj9XAgbWcSMrVc8FAO5fB4vDIcSN/2NS48JxmUCKJzww2E6I5aKx36zSMMtpLo27aWO0EQxDOBfNYE0eEQAoetn6/ZHnAJHhiG2GFH2XdhAl5FfHwcInqpkXKIBDBBEARBEERTaC7vpKAhQRAdnqrsU8gsUyIi/gPMe+cDzJn/PmKG2yH/nzspaEgQnQYdqrTtETTkqIG+goKGBEF0MshnTRAdGGvjau237+bjN5ibmFiPYUaigWdRHtRBZhwSBEEQBEEQBEEQhFUY0iVCZ/0SFwRBEARBEARBEBbgZhz+culsu8ffrCnb8JV86JBtbN8hygRBEARBEARBEATRmdBpoNWWsI2ChgRBEARBEARBPD4W42dPoSykKuUWPORiify+A5QJgiAIgiAIgiAIgiAIgiAIgiAI4nmmpXjaEyjTGocEQRAEQRAEQRAEQRAEQRAEQRAE0eGwNq7Wfvv6NQ65WKLx3oB5/dNob2qNQ6XSVXxFEARBEARBEARBEARBEARBEARBEJ0bjaZEfNWA8RqHrYmvtUd7N2+/wY/4HKb8NESx6RmXBzcROCQIgiAIgiAIgiAIgiAIgiAIgiCIrgwXOLx86WyL8bQnUTZa45B/wVWblIXdU24nCIIgCIIgCIIgCIIgCIIgCIIgiOeZ9o6/WdFutsah4VVDWeBptxMEQRAEQRAEQRAEQRAEQRAEQRDE80xr42uP324jxBIbZvp1jDJBEARBEARBEARBEARBEARBEARBPJ9YF09r/7KNIYJosn9kVjbfP+l2giAIgiAIgiAIgiAIgiAIgiAIgnhOsRg/ewrxu/oZhwJiZNE8p+nTbicIgiAIgiAIgiAIgiAIgiAIgiCI5xSL8bOnEL+rn3FooGOUOyi2TlA4yMUCQRBEJ0fuA9/AQCjEIkEQxDOBZNFzwcCxEzEmSCwQREswueA1OBJBA/1hz5W7hB0mhcxRCZmNWCSeHd1tYNNdfE0QBEEQBEEQHRjr4mntX+7m4zf4EVfgIokdZT9oSBgyL6exV61BCoX3ZIyPHABXB6lQValB7vkDOPKLWii3BrkSCmk1tBUVYoUSw2LnIlSpxpENW5Er1j4NAqI/wrCyJCSdKBBrGqMc8x5inH/Gxj2nxZrnERUWfrMN84KBK1vfxKw1pt/7mN/vxLppKmjT1iJywbdiLUE8LTwRER+HICPPeG21DtrSPGSc/gnZpTqx1koC4zHvhXLs2roHGrGqMZyDqhckNXdRpasR6xqQDZuLBP8CJH2XDC13vhdVYosxFcjc+Rek3hGLRLszsUcfLPF3Q3dJKXafKcKfxPom6SbFck8vTHR1BDjnY201bt0swOrbVTgl9DCh1ecnOjGN5Uw9N1NEHcGCLNIxWXQnB2nHkpGvNZIVvUZi0sRR8HAW9araCqgvpeDImQxUCTWWsVHCK2IaRge6wV4iVFUxWZf+zx+QebcFWcTXtLNO9xwz5bM9WDVWKZaMyN/N9NqVYqEF4tciZXEoFOzbObtmIuZvFet5IrB4/RLEhagg577rWj2KTm/Ckve/wRWhA+DxFtatX4AxbjJWYO1H1mPahwY9LAKrd69GmHotZjHdrEisJTo2nG0S2U8scDzUoaq8COlH9yCztfqMJZzHIeaNEVDW6qDXXMKP/8iAl7kd1shWs0DvaMTFBkKa9QO2HssRK81QzUD8K/6oudy8rdUu9I9FwhQf6C6w9zr9hN/raSK1gfz1vnD1doA9p5fU6XHvl9so/UHH2/cW8XFG37d6M7nCdJhvC6HNE+sbYQvFv3mhbxNBvtIjV3H3pFhgSpFshit6D1LA0XAdF2/hzl690MzDrvWtfnD3kbMnzSM8uHoTt5Kq66/T9vX+6NP9Dm5uqmz62omnQnvJmeb8JM7h8zEzsBj7vvkBjbULV4S+kYjg8mRsOpgu1jWDVbYZ8axxn7kCa/9lIieCBMpykPTnpVh1oHn90n3yh1j9USwGGo7Ta3Hlx0+xZNUhE91lzL+uxdKZoXB3ECvK8rHvf5Zg2Q7SX7ssoq5Rb1rV1UCvr0Bp1imknMuAtk6sf8pIXCIRFRXayI4zvibyIz9JVJiydBWWxfhDIcnHruFvYoXYwrF85ynEeIkFM8x91rxciWFyxfAjY3Ll8LblWLKxCd1WpFVyqw3nJ54eQYND8culs/Vxs6e5lzj3cv3Euq5Pb+/q5o47Ja15sErhOnIuYsf0QfW1NKQcO4zz6Tdwz8ETQSHhGGh/G78U3BP7Wody1BzMHNkLNzJyROdYFe7cqULVzcvIKRPcWk8LF//R6FP9C/sM5WJNYxw8RyDQ7hZ+zrkp1jyPaHH2lgoTXw7CgIAgSJN34+x9scljEf7vv0fARZeBv/3ryoZ6gnhqOMFjyGB0v34A3x88iV8ysqG+r4dt34F4YUQ4+lRk4WprnG29h+CFvjpcqZdRluiH8DfiEeZYYEF+SOEX+hJ63TmOn7k27nxelUjbuhMpGRfZ9Rm2DBSWV6GWE89E+yKxx+d+A/CmpwKyR+wZaFOJnCItTojNlumGf+8fiKl9pNAU3sRhdSnu1ikQ2M8VETVl+HtFrdiP0abzE50bczljdC/n5UP/kPt9NO5zvbQOdv2CERbijfKsDNzjujlHYebr4ehRchb79x7GBdYvT+uOQSNCMMD2Jn652YROYuPDy51RbjrknfknUlJO4VJeGew9ghASGgK7m+korDC2oM1k0RPQ6Z5nIl6bjVGqbijNLcTte2W4Z9huXEDSoQtir+Z4Cxv+OwY+dtxrPYpO/Q27M/gGhgoJ6/8bvw51QdX1VBw+lYtKhQcGDArHpKFV2LRP7Pj+MqwM0SDptWj81WU6Zo3zhMOX/+AHOsR89j+Y0y8TXyz+vzhBulmngbNN+leeQ9IPybwMuarWotY5CCNGDoNtwTkUVYod24jzsKkI7ZmPfZu24MSVfFRbsMMa22oWcPTH4KDecHR2QPnFX3CvkS4jhW/EZAzoaQN9SfO2VrugLcEdbTnycrJQ8VCs6wLIZ3mhv68EFVdKUHrlPh7AHj0DesHOSYsHOZY8prbo/rYKLnLO/q/Bg4z70Dcj1m3c2fdTUY3KsoZNZyODvRyovHYXVaL3y3ZGP3gEO6D2ZglKLj1AlaMDnH17ml6HlxNcX5Ti3lf5uHUD6DFagdpsLR5y8efhLnB/oQZ3tpWjptnRMcTToL3kTHN+kur7PeHzwkAo7p1Gnvlv0DkSESOcUXjyBxRY83yyyjYjniljl2Hz76bCx1aDi0dO4OdbEvTx9cULY8PhdnknjjU1eimcHfenVzHATou8U4dw9Pwt6Ht7Y3DYWIxyvYyk46LvMn4ttv46FC7V+TixLwXni/To7ReAoREtnJ/o3PC6hgPyD27D4TPM5rpciDsP7dEvOBxD+zxE1jU1jCz0p4J9YDxmTQ6EfclFHDt6COfOZ6OoWgm/F4ZjcJ865DB5yA3lJD/yE2LsImxY9zskhrtCzumeNmW4soHJAKGVZ0BYFFzqjGwzbnvogJ7dJdAXpDA7Kovv556wFn9dwOSKnsmV5LO4XFAJB06ujAyH58XvcPgx5Vabz088VXq7qlBSzH0ZpvGzp7GvX+OwY+1bifM4jB3iCHXK19h1LAWFpSXQanOQfexr/G+KGvLB0Yg0TKTh0tw4OvIvJQ6uUChcmdEhjsAQ4eu5KhuJSXuttgCFxebjx7gZPZbPw8wo2CvEdDTcqFjWx/DejTC0K5wgDs63AHc+ro+1KW6au7YuypmVWMMJQIdgvLp4ulgJJHw8HQNleuQd3IB1hWIlVAiLmogp0yZiQqilmVZCWi2ufcq0CAwU6wjicaipKWfyiZNRTJ5cOYqUnX/Bj5d1UEXGItgwMtGAjaNV97xlWcbJCyZP2HFSKZN7jc4RDA83HdT5xiPea1HFX5vxpoHe3OdjkFd8yjBBztjbCk1EK+jeC8MdH+DYhQzsLhXrWsQRwX3Y93w7Hwtu3cOf7j/AhzfycKrcBt1deuBNsRdPm85PdAUa5IzRVmk6MMG4T0kuk0W7jiLfRoWQIa58u/NAfzhXZeGn/SkoMfS7vBV7zxVD7s7a+F6NcR4ehWDHYqQmfY2Uy1nQcMfePsdk3WakqOUImjSNPX2NMZNFrdHpiBbxdlEA2kvY8sabeM14+/AbsUfzxHz2FsKctSgqtDBoLnwB4kLZ+dVHsfSNJVj2u6VInP4pTjBVWTFiEpZ6CN1iXFmfyvvsHMCJS2poJTJhVHb8WiweLcPZzauwpV43IzoNNdX1MkRTcA5p+7fjwn1HBA0LEdrrbS6mj7gEwquPk1DP05SNItQ7c4HqWkBWr2uY2mFN2WpNIvHEoMEWbDD5KAzqz461FNuq18Es6DicHsRdF9enTwi8ehm9P/e5ueOM7M3666t7gHtFeSirFor156m38TqjPuUARx8pdPm3ULJTi8pjFXjw95soudMNCt/usPRxbCb1hmsPHe7esmbAXB2qd97Bvb8bb2XQ2TCltlID7RmxW4/ucApmP5w7t6HefJ9dhxbl6wtRfJfJo0FOqP+J9JbCDnrU3GKvf+FC0hLua2THO6DXBAUqTmpQzY4hOgiN5MxmpGmM5IwBK22mRmhPIfu2FB5+ZudjOAd4wrnyBnKN/elWv49l+8hEHljwFTW0GclIizKhKRlKNMe8xEnwkelxcfN8JP52OZa9/yZmbc+BTuaFyPgG35E5U2ZFsOOAK/87G6+9vxIr/sD0nQXf4mKlDD5j38QUsV/C2ACm32hwYs2bWPgH1u+37H2+z2EPMy8MnSx2IrostQ8EWcXZLfnpP2BXSgEk/UMwhFd6jWQCu99dfYPhbCxDmpItnGyw5ENuqp7DJgSjR6qgy9qJrfuTkX+buyamQ6UnIemHLOhUozDar3m5YfAvNZkivv56SUZZZHwEwlxKcfjPidjVhI2z8UMz2+yN1bhYxWVnUSNly06hEyNuMpf1RY3Dv2Vy5XdMbjG5Mm1zBnTMoh46rWmj2Fq51dbzE08f6+Jp7b8X1zgUYokdad8alIP94VxxFWd+aTxKtCrrH0gvlsNvkKgM+kUj7tXxCBrzHub8Kh4xM+MRP+cDzHwxWFg/g+EVMQtjBzAhbO+DsbGzMHmIcLMoR8Qh7iUjpdIhBOPjP0BCfMN54qJC6s8DcO1xGB0Rj4TEBL5P3NvvIWHKSKM+TvCNeg/z5szFTPZeMbPmY87suRjWW2w20E2FiDffR/wbXJ+5SJg3H5H9jQ1wMyxcm/Fn7Mqc+O03vNPKZfRsrBzLKl5ZjQTesZWKNX8QUuC6z1yF71N2YsN/rcCq36/A6vU7kfK3DzGGb2VwabV2H8P2z4T2Vb9fje1HN2Mpdz6CaFdqUHLiCLL1SgQMEhz2HPZ+sYib916L97xbk7IsCCNjo+DHCvYDohATOwNDjD39bu5wQzEKWzW4zAkeL84X5NXMWZj5q/cxc2QoQl9NxHg/sQthPQ9uY8XFQixrbVY3Sw5ODvYANU7G1ebzE88ndXkoLWOGopyfWiYgkUNu5hgrS9+CLTuTwbpawBNB/k7QZh9FZqOZAOXI/ikdJQ4+CPIVqzjMZFGrdDqiBSaiN+esqAUz/vwxppmBUhYZuwrzxiqhy9iJpGKxzpiX/eHOdnlpa41mMu/GlnQ1++34Y+jrQs2ufC6SyIxPZpjGhHpDUalFETeTcW4ocO4bzN/SmiwjRMelBMWlNUxsiE4m3uaajIhopsvMjEZUaKBQ36z9pMKQyaZ2WEyEsDCmsR3WlK1mGTWys3VwDYpsNODBeVggXKtzkG32EzTRwfhrfB8xIZ5iq3gtE15GRBzr82oUwoO495fCdQTT1+bMRxx33FuCzRf8UiJeGWG4PsE2DBWzBxvOEz5LsPFmvpnI3ms+wt06kZNNWoWyL3NR+A9DNJSjDrWNs1IL9OrOPrcjdNnFKC9ti+XPzOLRzuw0j3A3vQz1EzcD7dGDKUJllx8Y+RNqUZn9gF2jExyGilUFOlTAAXZDu6HbcHv26iFqS7tBHuMGx+Ji3DvZlJJFdAzKoSk3kjMMa20my1QgO68Ykn7+8DXRd5g+4+eEqhtZ9SlMG7/Pe8z+aep9VBbtIz8L8oD3FSUksHOy+z/xPUwaFIzQ2EVImNUgE0KNfUPPsZ/n8YhFmJeMH0x1+K8NQr9oTSquMJ3VZeC4eke6OYHcICzkI+vPRg+LwvXIK2F7pRcixYFSFlYGaeBpTzkjnj3qYmYvSSHjTStRJoxkulHiXLzyciSCRF2gWRnWewxi3o5HqIkC44rQGXMxM8JfLJsREAQvWzUunLSQA7z4CM5cVqPWrgm9ycaHyZ/3Bf9SbDziEt5HQmwUXI3kY2MdaT4i+hkFMUlGAUc2YekbsViyvRWpPuMTEeXF5MiF3VhmGBTFWPPWKAwbzs5lVGdAp2/ahrJWbrX1/MTTxzxu9rT2Nt2EECIa7YVd4/qn1G49Urj1dIS+KLeJXPIVUN+pgMTFrcFYdAxkgvdnJG38DFs2fYZNP2ZBEhCF8YGCsMtN/hx7syrYoVex95vPseucpTUoPBE+Iwoe5Sn159n43TlU9Y/CtBENzn9udoivRzmSWbvwXjnQ9R+F0aLTTDJwMsZ61ODCLtbG3mvLlxtwplyJ0PCRQgcRRWAYnC99jY1fcX0+x74sKQKiohFgcQAIe5BEm16b+Wfs2uzGqr+nQStRYcKvl2FlYgRcuJFfXy4VHVtvYfnCcfCRqnH4/y3CtFcXYc0RNWRBsfjkM2Gk2ZTFb2EMe5Ze2bEc04aPwqw/H0WRgz+mJi7g2wmifclCSSng7OYjFJ2ZHHnJE9qTLdzzzcqydBz5ZieymSjTZu3Elm++RprRCGqFpwr2xTeYKmE9ssBoRAVIkfnj59i0iW0bv0amSxiCngex8iSorcUhw9PYah5gTyH7Uvt4YX3fHpjv4IhP+/tglEKP/KJ7aBibxmjT+YnnFhtP9GT2Ra1OcP6WXfoZ6m4+mPRmPCIG+ls3WtRGBWeF+UxmI3R5KNVKoezd4IA3lUVt0OmIZnCBjBu4KvHGu2c3Y504UOrM7tVIEI3FponAysXj4K7PQdJ/rBfrTEnw4DweWpReMzUqz/6i5teqdPGYKFSsWY+kTAUm/HEtlo8GLu7YAf362QirTcWa39Ca010HJyidpPyaqfUofJg9sheb/vrn+jVWm7efCpC209QO25LceG0x62y1Bkou5qDM2R/BJn4yVg5wQln2KXA+lHpsR2Dsi56ovbhT0MHYNW49+wDKEZEIMA4suA8QbDP22fi1EVXT8PJwJ5Qa6W7JD4agxVg9O48yQziG06tSbzki+MVxDWsldXRqHqGuuI6bTNmAjzN69mVfD9NXTDOy2sAuxg099fdQuktf75BoHbboPsIZ8koNyo80nEHax449QXR4yM0kNOJRgY5pTjawdRG/vGIt7p3TwXGaHwZM6o7KU3dQHewCVzctSrbSuoYdH1e4uUihfyAOLrLWZmoG/eUcqCUqePsY6Tm9h8BDUY5sJjuE8mS8YvI+n2HHuWp4vRRn5tBvLY7w6lmAXV8xeciu/WAe4BEZBdfsLaJM2InMCicE18+wfN79PI9DAFy470pzC1uECpHdKOKUTmcXiMNbGlF0n3uuqeAzTygLTBcGZzFp7SIOLk9KOoo8vRJjFm/Duo8WYOHvN2Dza/7sPdPwj81CH+I5oreS/TpqoDcaV6Pyc0LGNqb7/PUvSL3DKlqSYTezcL3SCV4BRj5mxRB49dLh2i+W1151dXEC7hThusVxMBXIT03CkcuW9CZH+E6agWGyPOxjsmXLN+w6txxAoV0IJk8wyCB/hEb4AFkGHWktfswE/EZGQoiDkoziOX4I+1uVTSUUy18TZ/5taCIrjEcoJkybiHkfb8DexGDIy5qXK9bKrXpaeX7i6dNU/MwQRntS7TaPeO34ERrtuZ2l+qfS3hpUcO7Bje5hxmNz2EgbUoDalCPz2On6BWFr1QeQdoOdaeAIcP4Vq+gXggAndp4TDefB3aM4frkczv5hotAUKDy/B2rRaqpVp6PQyGlWeyUJmzZtQFqxYXhSOYpL2WdxcjE5B8oykfKLwY2mgzrlFPLZZw+wJHz7jUKQczHSfzL+jHuQklMLlZcwarerU7RlFZIy9JAHTMdUL0Cb9i1W/Sg2Lp6EMCYsr3y/CEu2pKGoMA1bPlyFE2rAZchExLEuvR24X4IOujv5/KKxV7YvxbSwUYh8x7LzjCAel9KyBhmmGhYE55I0JJvc80eQXauCV3+xiqORLNuDM9etkWXMSO3nhJKb9QtViagQ+euPMM94i48WZZEjAgaqUJtzBKlq0SlYp2EyMAdlZjOSiCfL0dJbOH8PUHp6IzHYD6P6yKC/cxvf36ehrISAYnCc6X3Mtqlm3hAhhbGYhsYlEKHTxsNXokbGJdGFXnka+/6ehNRiObwjZ/CjReckzMX4wZ5Np1RXuvAGcm1Ls1zrfXPmsqgNOh3RDDJoNRpoa7W4uOVTLP3deuy6wJ4rqgj8ZvUyhIm9LBH28SJM8NAjb+9arGltGlFRFMkdXIQXSMWqtydi2PBRGBYWjWX3puPdED1OrFuCXWIPohMitWuQIQp/BETFIbR3BbIvGDmyHhbgTEpOw0SLVthP7UpZCrJvy+EXbDRb2S8EfnbF7HpNwobsms/h4FefYceZhpH6VbdKUGXjBKXxBd7NMLLN2G3l3x/2xemmutvJc8hv6dFcnoVUwzGcXnWNXY+zG4yHoXYqejmg18zeUHDBwR9M8iCgW7gSvfvWofSYpvmZOc1gcbZhc4iLdEvtGp4aDw/eRtHKq8hZeYOdRw7n0d3x4HBpm6+JeII4uCNocKSwhc/AK/GJGNZDg0sXhLWfrLaZmqMuDdk3AK+BoWIFO2+QDxRlBbgmpldQDfKH4r7Rvcp0nbL0Pci47wRfphe1nRoUZqaI8lCHQj6CVYLcywaZkMeuraJhhiX5eZ4Aaug4OW1Io26BpIMZKGU61dBfbcPKOdwyNrOx8rtFGGMeND6+A0nH86Fz8MKYWbMxb1owP4D97E+7cZhSsnd5JN0NOpErs9OjMHW8DyQ3L+GSUbb/sss/IVPb8LBpWYblIDOvAs7eL9QPmnRm8olPo9zEZLCeTo7sQVdtmonIGuQjMIi9Z/65A/X+a1Rm4MiZAki8g8TBU46Q2wL6SkNmGC571gZs2XFAGPRJMqptNDHb0ISxifjk9yuwMCYY7kxundjVvFyxWm4ZaOX5iaeP5fgZ23M7S/Xt1N4F1jhUo+w+k3HSVoxeqC6G2mSpFqawFTPB59C9SWWhEYrukFWoUWCWq6vsXgVrc2IKgoEKaC0t9l7vNJNC5jYCEVEJiHn7fSTM+QCvDGr8WfQlRfzo7QZy+DUb7LtbMLG5a2Omd8ib7HyzG7aoAUzh7OX25IzyDoUa6/7nIPI4JbA2B/v+8C0fAOSI8+3L7we+tg1nUo6J22qMcWOVzi78WoZbtnKjxRQY+i+bceHUISTv3IDVv57Ip+QiiCeBs6Lhvld0Z/dq71DMMrp/E2ZPhp+M9XM1Mk4byTL2y79jhSyzCYZH73Koc82d88VI27oZScbbP46IM3+4dXiA0jtX+VI9ZWVolJGQeHJIuuPTYD8Ml5fh0MVLmHnmIlb9chvanp5YHOhiusYh8dxSdeWA6X3MtiPXxEYR+4GTEceMFH6bGS2sS7grCdnGQb+HBchM/hpbv/wMW/72A1JvAB4RcZg5RpwdbY6mlOkqUi7DqXU0kkVt0OmIZvgGS2KjETnhTSxZtxP7936DFe/Mxz+y2d/YdzjiwsVu5oQvw79P84K88Gh9ivdWIfrndZUWFlf1eAvL54bi/pGVWCVbge8PC3qYSbp4onPQZ0SDDImfgQhVNTL3bxVG0BuoZnaQ+JLHavupvalABje6vn8wgnn55Ihgztl/IwMZlgY6yH0QMCYWU2e+x/SvDzBnRmDjFFuVD0w+G6e7VZUWmDrq6jSoNM7gaQltWePUzzZGpmJnwk4Gxa9U7HvU4uZWs0BcDwf0fNEZNrdKcO+M4KJoPTL0CG8827BZJIJ3oabaUgSXmwHZF/bXi3DvuhyKdz3R70MvqN5VwLZTfgFdEGdPhIaG8Fv4UH+42uQhedsWXBBvGqttpmapQe41NWpV/qJ88IdvfzlKrqTU35v8/V2UY3avst8yM7sUzi1NK24OHbcEsPWQn+cJoIKc01tq9Wb+NiN+XIJPtudA6+CFqQu5ZWwWYKpzNvalc0fooRd/GAlfrMPSKBW06Tux4u1RmLZgLfYVyhA26/9g7ccNgWmiK+KIgEkGnSgRMZOD4VCcgl37TpvoBZUPTAcrWSPDNJfzUObsgyA+ZbEr/LyFbAlNJZG8V850Kls7JitaSY/uTNfRQJ1nNormbjkq6wdPpeNkqhqK4XMx7533EBM9A8M8XRsGdJKMagOhWPl6C7MNObYuQuTwRCz83XomVxQYM2cFNvwxQmy0gJVyq57Wnp946jQfR3ty+y6wxmENyu7rIOvTv4m0VY5Q9XZEbUlRQ9orSWMhKm+LdSCRPLZR5xySgIQZo5i6okb2uZ+wd8fX2HfZ3JnP3ooJflOEkR5N8lCD7LR0pBlvp04j9Vxm0wpRV+NMPkq5iAbTxosajZTQI+/cURw+YrQdOIR9e4/iEtd8fCVee2cJ1m0/irPXtJCrgjHh3RXY/sVb/NEE0b74MzkFaEsb1D/97SzT+zctDWdSTyPtar0ka7ss8+4PN33joCOzmFDFL+httFWYyiOpLW9RE8+I4U694CWrRU5+EVZUPwKXkWvPg1JsuPmAKeq9MY4WOCEYNTXlpvcx26rMpmZoLyfxKfYM26btSci829R0ixroK3KQfexrbElhxmLQKBgvU1hP3V1oK+Vwc2+YK6PoNxJBXKpTriD3gYuiBppbYnqcRrLIgk6nCETA4BFwdeAKFnQ6opWoUaTl/uAKKJpYm3bxwkn8YvpaiT8Wf7cN37Mtzo8bjqJA4OvbsPljIQXp4WLhPC7efLEedz8VP3jlvuaQUFGPCgv/cwHCyg5h1W+7Y/HciXAvPog1XxzF/YBYLP0jOdU6FTdTTGXIli1IvWEYgd4M7WA/tYlr6bhW7YaAYUw+OUcioI8O1zIspPlyHoeYxFiEq4CSK+dwZM9WbN+TZZX9JLF61EQXRGoLxXxP9LWrQNGu26g0jNgUkU1zg4usDg9tHOD8q97oyTbn/pwWK0P38b3hNKrl9BXdxveC0sHybMOau5xrVg5b47XgOPqw8+MRasoMU1wb6DbBFSrFXZTs0kM2SYXetmUo/tstVDj2geuMVrtciSeB+hS2cCmL2bbpcAH0ju7wMFtW0CqbqSVyBfngHeAI9AuEt10xrmeZ2kAd5v4mP08byUcp9wdy7stnmGpgnJDCVHu/fqC5JU78ORGRsYuw5HfLsfSDRAybuAilCqbt1GqQt5frsQAThrCyJg1fLPgUuzKBorRvsWzJIVyplcEnPLbZTA9EZ6cCmTsbdKKNGz7Djv2nYeHR04gWZVjZz8i/6wiPAE/2+30BXs7lyM82y5ZgRFn5Az5I52HxsSqFszfTgfo1FcKTQtKcn5lRlbUVWzZvxcGTOSiFEoMmJyI+emTDACuSUa1j3nxM8GhhtmE9OTix9xsse2MnLlYym2vkm2byzJSW5ZY5rTs/8XRpKY72pPYmaxxyL5vKafq021uDOjMPWudARARaWJy6XxSGuNWgMM8oJZ+tk6Ac1COFyo0dW15qvSOqtBxaOzeozKKVqr5MAN8tbnL0hzlu7kroc37CjuRkZF7JgkZbjhoLfwOJ0mw9HxsfuLIKrcbCO7EHRZVcCl1eCjIvN2zZeZeQnZNnOhL2OSQpl3O1yyDXMsHMBKiwrUdK+iUc/nE3dkGFsKiJiAvti0t/Xor5b8cictRanGVPOcWgUUgQTkMQ7YQUipAxCLArR+4VwZmu1eogk1XjutH9m3n5LK7nnUVusZER20ZZpvJwY5ZMgdVySkADLXtrpZvZIty9udSExNNCadNcgkYJZM01E4TVKBEc/T7ixwWLZTOanA0jptMJehkBfKCPybO7gNeoGZg2QgXVqCFw1alx7brQZkkWNdLptKzVawxeiY6CsyWdjmiamFXYm3IMyZ8bD3pSwZ0zGJlMLzou1JjDuUZ1lXrInFnfvsLGr6/PULix10qhUMQN0GJ7n6APjTIyRGBxCDf7Qo0rPwk1Btx//QneDlBj15rlOIEAuLuwc2SvRNL29bjIvuYeLmbPF6Lr0U72U9vIQUZ2OZwDRmHYUH84l7GypTfs6w6lPgfJ3+1E2uVzKCwtQVVtUzKvAS7lvMzTHypjR52DD1yehwnUXNDwvf7o20OHW7tucUtPNqIbHqGyuhY2To5w7CNsdg689Q+50pHJm5acADL0CFFA2tRsw5xKlLFzKQYYD7a1gUMQJ68eoFrIbNlAr+5wCbfFnb338LDGBrY9paguqsLDYh0qb+jg2OOZhLeJ5sg9gPRiOQIixtX7Ray2mVokB7nse3f1HYGAQB/I1Ew+GM1G5u/vRgPVhYGfZcUNaY3NUSiNZz16QmnBXdUqyM/zGHyLK5zMd/ZG5CtCDYf7r8dhKBMTuvzzSBLrzJnwRy5T1R5smKbG4b2HsP94Dp+dYQw3AOtahnicDIaMshaRc/OwCMIU62RYCS5dKYbCJwTBg33gXJyDS+azxYzQZ+cwfcpTWIvQHIcxGPvySAT0spAOgcscU+cENw/T55+snysUDzVQixklJA5OkDB7rvBKMlL2fI2t3OKs/YZgEPe4JRnVSkKxMjqY2V5NzTaMxbrdx3Dm0FqYLFXoweQNt6/Vo6lJ69bJrbafn3j6NBU/s7Rvz3ZxjUPwuUu5l8Zl8/3TbG8Vdw7gyGUdVJGJmBoeCKUjMz4cPOEREo/4qf6Q3DiB47lGo+iZMAyeHA0VP5JCzq8FFN6vBvlZDemYtA+YILXrBZWLK+yZ4GvEHSYAi50wbAo7D98uhcJ7BiIDJCi8cMrqkRQ6XQ1kfX3Fa5EyoTwZY/0tWJg9AhEVyT4L99rWFUFTR0HFpRDLtjA7QH0K2XeVGDJlsnhtTLi7jMO0uPmYOcbalB1dmDUHcZY9aN1f+gQbPorFFG4B2N+vxrKPP8TKxbG882vM3P+Dpf+6AL8R2+M+GodA7kFYdhdX+JMQRNswWVesTwhCp8xHXLgT1ClJSBMVQPXFTJQpQzCZyTMZ74CSQxkSh9cT3kGE8UjqFmWZBtpKph/27A+lQimeyxNe7nIUN1rfkEMCe8O1GW32/PkrkJFRgFrvcZg6SDR75IGImBBIgcMnSLTSCyfDB2FrD+GpfejeXdyqk8DfzwvrnewwUSrDfKU7Fnl1B6ru4FRrfCREl8VEzhg2phtZjwaFxdWw9x+PScxANcghhWcUXhmpgv5GDsTYXyM0qQeQWa1C5BsJCPX0hH1tBo6cZ8bu8HhMHch0pJN7kM+Pvm1CFjXS6Wpw/Uga1E4hmBltQacjmmZXKq5XyeAyeja+/3QB4qbNxvKvNuDVAKZ/Zqdio5iNIebTPbhw/hi+F9NorXr7RYRHmm5f8GlttDi77kVM+2An3w97V2Nfth4ImI7NXy3DPO78f/sEE1Ts/BmH8IXxqFmPRVidGICiA2uxgg9YqnGfnbKHgkuBI4z2t5jalOhatJP9xNGirWaBsgtZKLHzR2iAHCWZDWkITdDXoFbmDi+V6AFmuk74iwMapyo1Q3PuHAol/oiKmYGAPtz6RuMwKWYInC1lyOxS2KL7r7mg4SOUZd1DrcoRDi8aNgdIewi9dNvycfNT0+12FheZ0UGzIx939ot/qOFK9PvYD32nm055aG62IU+xFuV5NZB79YVrrANs3WSwe9MdfXp3Q0X2XbN0kBI4zuoDKZfqnQ9y1qGm4hFs7ISor6SXnNnoVkwTIZ4y5cg4k4OqXsGICBR0GqttJivgBy65jUCkN5B/xTRNt+bnTJT0CMakSPF9bJTwGheFAIka6Ya1oU0owP/f3rvARXVdff8/GJzhNoAMFx0Eh4sgCCqCNxSjCfGuicEGDS2axGqf1qRPNH376tOnxr59tH0T7f+N9qJNE7WPieQJMfGu0WpEJSoGFYNCBFFkBAQBRy6DDP73PucMzAwDDAYEdX0/HvbsvfYcDs6cddbaa++1tWWNUA6aiOFMH/B9YCOmiekHfxA0zvODWL/jlLBCavyyT7BuaSKSlq7D5gXioP2JrcZB+1lYty8D5zM+wSoppfuRXdkoVqgwasFmbP3jSqz6zTp8/sdZCJIxu2jve9JKxTScyGE2kSoOyz5di6XzJmPaqyuxddMsMPMXxVlp2C/0I4gWbNVhDbnXBPtldIQLyvLPth+A03+Do6e0UEQmYm7CSPgo3SFn319V8EzMeZnVddk4edHKoEFTJs7nGaCJT0KEu2gDcf0yNcYXuu8yUMgblBMx+8evYUaMtOe9vQvUGl/I9RX8MUw6qrN0uNowDWdu6KFQxeKnuzdjjaC3VjO9MheDnU31ysPrLdvOT/QG2oqfWSu7Ui7zVPm8w19IgcSWCKNY9Ejdx9cPt8s6M+e0CTU3LuK63h/hsSMxbDg7hkUiRC1HZc5h7P5XFnNJJLyHYoTXTfzrO09MmjUZI0eORuQAOUpP/w8OXm5Jr2Moq0afkGiMiBmBIW41OF9QAueAkQh3vIVv826yHnqmsMthH8KMy3HjMSJ2LCKDXFGdtRv7so3G4wAMiu2P+svMkWzeBMwd/kMj4V79Hb67UY2qEj3cI0Zj9JhxwjmGBRhQUGQPb9dqXMlmhjF7h1foOHgWncT3vs9gxjMTMGLEcPjLb+P0rk+RVys6NebXVgPtNR1cBsUiTri2cYiO8ENTcToOHvsO9dKH/+QThVkLRwsbu2Zs2Y8LUiuQjd2FzhgRHY1RY+ORMGkSRoV6MA/hGNa/vQYZd3XIuAxEjoltlsdH+rKHYCY+Xve/8Nl16TQE0SnEe1/tF4LIocPFIzQA7gYtLhxKQ3qhSXqv+gJcK/dCyMhxGDua64bRCFfbQXviCxwrlIbVJF128ooPJsxIaEOX3UdZpRtCYmIQPSwK7ne+QUFtNKJHO+L60XMoMx3M4ufT9IfaeG0mh5fuFL7n47mVubhlNxhDR41jv49d17CBqD+ThRqNH3Bd6kM8FOM9+iHMtRZ5xTqckNo4oS59Ee+pQF1lGT7lEwMf6HG+og7D3bwR6ueNiWpvDPd0BO5o8en3t/HXNsa52jo/8aRhRc8YD2ajXBfsCnM7pC3qtVdx20mD8BEjEcvsCK6HIgf1F2yJfQfPoKYtW+JBJYpyb6LeN5LZUNEYxt4/1N8V9oZGppLK8O2Jc6jkukfRhi6yatMNgBKNMDxoQknWAeRVWB02JlqRh33Xmb0zdCj7DsQgflIswvs5oy4nDf9nxf+Hb6WB9PBpr2DiQCVqC/bj46PW7e9hs36CsWrmQGb8E7ubY73MXjqjQ8DI4RgWEYVR/PzeCuj4+X+zofn8fBXiqo/exCjdQaz++ccQ19ZfRmVgAmZNTcJPXx2NgQ6FOPje/8XX7eUJI3oN3DcZyD5J0e9oA25X9Nc3+zMitvhPkl/j0eILNbc1+zrWfbVWuIQiMsIRJZnZYiYGZnM1eo1EoPImzhzKQqWkx/jf069e0omVN6HrO1TwAbgPxW2dhoKbsPdxxV3Jp7O8FgF27vx8HfoMGIxopnNDAxQoSc/AHXWIib419w2tnkewx4Abxmvu9TjCdbIbnJk37+ithBvTJS2HHPX5d9Fgbb9/hv1gd/RlLta9bJM+ahe4D3LEg4q70F2RHg4Ocri/6AM3fTlu7ahnTwnrGC7rUDPAFZ6D+kIV4wF3Txlq87UoSasHe3w00+eFAejvWYWSj2vRJLUbmE/tMqE/vMb0hZtbHcoPVLZ53cSjwaqe0d1EQ78YRIb0RUl2LnR1HftMVu8za9RWwSlkOPo53ETmkWzziQX3C3H1FvOpRsaLv4fZN0HOlTh/YAe+q5a+RBY6TxjnCWXP32HcDhsM5a1juNwYAi+jrrE2VmTl/je/fhrn+UHkHkKBE7NZhkdgWGwc4qP94cZ094nNK/DvO43/42GYvSAeAc61uLb/Uxzhdgn7/z2hj8DE6DAMCgtDeLg/+tppcWb7Wiz+u3FPHB3OnNPCOSQMw8KZTTR+EhJGhaGfUy0K9m/Ar//jkJClgXgCEWwN92YbwTqi/+V4y2LMxJZxH47RfvEowbcHzqGig3u9sfwyCio8EBA5kumrGAyLjkZ4YF92mpPY/eWxZvvHXL80QXfjKqpVMZjwjGgDRQ/2RdP1f2HX8VzmiTEaCnG92g+R4+Ixmo8HxYzEIKUO5w+l4YqOP7NJR1kyMWkRs2mrcGVzGr6W2kTisG71TzDIuRC7f/+fbfpAF/blwzkmij33QphfzvVWcLNe+TnTK+K35GH1lq3nJ3oabx81bpeJX5L24mlCKRZdVw8Miex1t27k0FHIuWQ+y6szyJx94GxX02pvLoHwZCwaUY2d2/egoo87lI4O0NdUoKEtD0ThApm+BmZjWpYoVFDKG1Grq26/Xzu0e80m2NqvGVv+xqcYv9iJGOorh+7aIZzIkRpNiYjDtEDXtuUE0c3YdM93eJ87QK6QoUGvF3VgVClSPz388EaAvQuc+Oqler5v2hhM/1k88PW72GeZBoroXtiTfLLMHhUGA87RQAHRbSjgpHRnWsTwELaE+F403EGd3hOxLy9ARG06/mfPN6izUReZ6kCPkYsxN7IG6anbkdumY05YRbBn5Ki4eAxnWu373AU8pL0k2mHovusiei9d4D8J2OKrPQwP40PZOwBNpiuiAxCXnAT/66lIPSHt7Up0P452sHe3w4PqJjywko2tTR72fUSvoNPjJA8F86lcPKF4UA1drUku0/boTTqKkOBb00RChTu4eDiz3b0NLRk8YTICUSim/WsT6fwNHfUjiBa6TYc9jL3VoX6R/MOmdq6XdFQX84j01kOcn+h+IiJjceniGan2aLELGhT5QFiDyCOJQsle8PWIzXXLsvvlQ6JG/qDAYbuYBg6lJoIgiKcFVWQiIgzpSL/c9obanYMChwRBdJ6u10UEQRA9SL+pSJoVhKK9/8ApLQ8oiGlYp08JQNn+P+EoZSwhCIIgCIIgCKKT8MDhd9lnWsXPHkX8TtjjkNdbSjGO2LrdWHa/nCAIgugeKi6l0UA9QRA9DukigiCeKEoykHkNCJv5Jhb99C28uvgtJD3vh4ZzX1LQkCAIgiAIgiCIh8Za/My8bll2jVxYccgbLQKKPVofEvXDUpUSBEEQBEEQBEEQxCNFSM2lYC8eJr0zQRAEQRAEQRBEC8YVh10df7OlLqw45EiF0CiUYtFjdYIgCIIgCIIgCIJ4bLhfDZ2ujB0UNCQIgiAIgiAI4ofTVfG2ztbt7ezshGgijySKZc/XCYIgCIIgCIIgCIIgCIIgCIIgCOJppSvibQ9Tt2+d07Tn6wRBEARBEARBEARBEARBEARBEATxtNIV8baHqbfsccjDiEKL2Kkn623tcahS+UivCIIgCIIgCIIgCIIgCIIgCIIgCOLxpqKiTHrVgtkeh+3E07qlHhgSyau9isih1gOHBEEQBEEQBEEQBEEQBEEQBEEQBPEkwwOHly6ekWqPFpM9DlnJXvSGOkEQBEEQBEEQBEEQBEEQBEEQBEE8rdgST+uOuskeh6xkL3pDnSAIgiAIgiAIgiAIgiAIgiAIgiCeVmyJp3VH3Z5HETlCNFEqe0OdIAiCIAiCIAiCIAiCIAiCIAiCIJ5GbI2ndXXdnkcROUI0USp7Q50gCIIgCIIgCIIgCIIgCIIgCIIgnkZsjad1dZ32OCQIgiAIgiAIgiAIgiAIgiAIgiCIXoQt8bTuqNMehwRBEETX4R6OiOAAyKQqQRBPEfYucHJxkSoEQRAE0Tvxi52I52LVUo0gCIIgegIHyF1UkNtLVYIgiDawJZ7WHXW7oEFRYgsPJ5qVvDfvYdne/fIhUSORcymTCTuB5xhMmTwW/h4OYt1QA+3FdBw9nY06oWEMpv9sBKrS/oJTt4WGLoYrfE/IGu+gTt8otdmA90wkJbrj/N+2I1dqak13X/uTghpLt3yCRVHAle3zMW+9VmoXGf+7NGycoYYucwPil3wstRLEoyIAcclJ8L+eitQTN6Q2jtgeoZSqVtB+/S72XZYqpgj6IxzNb21qRENDDcqvZuH06bOouC+120jYzF9heJXl9VmigJPSHagvQ52V86snvokpfdLx0VdZwvniB0gCU3SXsXP7HlRI1aedyW79sDzUF66ycuw+XYw/SO3tkeihxuJgFVwdmJfRZMC98mJ8XFiJrfy5akTmhPcDAxDT1xHgzkhjDQoLb2J1RT3yxB7EE0c7+uRmOj7Y841U6R78E97ClBA9sj/9C07fkRqJXsGo/0rD5qlqoDYbG+MX4wOp/VHgN3c1NvzbZAR5SA1VeUh9dwXWHrCw0365ASvmxMLP+P2tKsSRT1Zh+Qc2aKzRq7H3L5PhhwZc+OszWGDxB6ZsOoRlsezERYew+MVVOCO1m7LoH19j6XA5ULgbwxPXSK2MiESseWcJntMooZBmxehK85D+4Qqs/Mz8b3haaPV8v69HXXUxso7tQU65XmrsLbRvtxBdx+BF67Du9Tj4yXU4s34yFm+XBBLT/rQHayeopJoJlvecFVrrEWv6IQ7LNi1HUrRavFcNDSj+5iMsf3MLrogdGHFY8fE7SAoTFY0u+2MsX7hB0gmiL/kT5UEsZ9dzQmgjeh4fxL68AMOd87Bvy5foXq3rgOApb2CScxa27TzGniiWRCPh9QR4XNqKz06XSW1tIdpkHt+24ccRPcAb2HHmFQxuNcPVXGetSsvAHI342pKOxpIEW2Yus2WcpQamq/b9dXk79kIsVn26DnOCLe2Plfj83CwEtWHXCDTbPtZ1LvGIaGtM5nIG0s9mQ9cktVtjYCJSpgVBfz4Vqd+0NwZDPH6oMW3FWqycEwqlrBA7Y+ZjtSThPJyeaUtfWGHVJzg/u81fgPUT38A2oWJ6nUID9MxX+8KKr0b0HBGRsfgu+2yr+FlH8bWukJuvOGQlbxTr7DBpf5TyTuORgLlz4+FVnYld27cilR27MqrRd9hUzB4TIHXqbtSIfXEBZo+kmYs9hxYb/3oQBQ1yDJ7zDpb6S80c/zew9HlxwCz19xQ0JHoTWmR+Ieot4ThdytpKkWmss+PoVbGndWqQe1Dq+/kBnL5QCkXIRMz5cTLCjA5LlxKNSckLMClEqpoRAI2fAqU3s6U6o+Rsy99mPL44SkFDDg/sDQrHqnBvuEpNthDj5oelYSrI75bg67xr+PrmPch9ArA42B1jpT6wk+P9sBDEeDxAYeE1HMq7gUt3+0ATMghr+nLLgHiSqbtyoPV9968sSdp9FJ3ei/Rjh3GRgoa9jFi8OESyT53DEL9IfPlImLASG5ZPRpBzBS4cPoR9JwuhU4YiadU6rBot9WH4pWzA2pRY+KEQJ/ayfoezUeyswXP/thZrTPq1xajZkey9HGYDjl0ovLKKfwxSZkuvTfF/GwlRzAm3hF3/5/94G9ODlWgozRau7UROBeReoZi+Ygs2pzzFdr/J833nVxnIrfFD3EuvY7S3JO81tGe3EF2CfyLWfHoIO/4tDn7tpJzwdub3WAPK8wtRYHpc62BgarRRj2hFPcL0Q7mkH9ZNkPowXzxl0ztIiVWjofAU9u09BmYSw2/cEvz9z69IfRjz5mN6WANOrB6LGX/PhjxqClJmiCK/ZWvxkzAt9v0/Chr2KjxGQOPJSnkQIoLFpu6jEflXtTD4hmKotUlYIaHw71OB3PMdBQ2J3okScq6jqrTmOogdxVViD07xNXOZcJRKYeTGdibHJEu2jIHZMjt3Y6ekq6YvN7d5TBn1m+XMxrBifzQjx7Bn35ZsHHPmJMdYbSd6ApMxmU/24jgfk4mYijlTRrJPsB2KjuHwsWM4epGChk8UE97A5t2fYO3c0JaAsgUPo2c61hcmFFs5f34FhDMbIJaMUb9Zh3f4dda26C2dc2tfjeh5Hia+1hVycY9DOx5IFEv+w7TeE/LO4jE4FB51l/HV/nSU6cqgY0fZpe3Ye5Ypaz8mk/o108cdSqUPlG2l0+KptrhcaWXJOH+v8D4FnLzCoennLr5WukPG+jo48HNbvo/L+fl84KSQVkRaQ6ESr8tZITV0QHvX+bRyeg3WH2fOp3MUXlw2S2oEUn4zC4PlDSg4uBkbi6RG5mCOSpiMaTMmt5mqZvAEUT5tRhwGS20E0bU0oqFG1FvCUc+e4uxJXmess6OjGfKGe1Lf8svIzfoSO7elIadejfgpE+Ek9WnGqP+4zpKaWmPUWRa6RdA5juBazMHRyjmUoVArK1BUYLLqurG+5W8zHjU1ktAIX7HNz8d0ZB9WFX5Pe9f3hODqiRiXe/j6fDZ2l0ttHeKIxRovyKtuYt33t7Gy8i5W3irEJzfrAZU35hsfHy5eiFHa41bB90i+fRerKyux5PtruFRvj/59legvdSOeTBobq1vfd7UWDkizDSHdd6Zwe4TbIrxPv2hoPPldz/WCpBOM9oqlHVVfCm1RsZTpgWE8j6kdZPm7BGzQAe1dL9E+oxMxzJ85iLl5KOaBtfFLJIGRUIznts6EUKnOkWykBB7MM8E/Fs+Z2EU83V97NtKiBVMQxOyvC1sXY8GvV2Hlm/Mxb0ce9HIN4pNb7LSkqbHMsdbiyK/nY+lvWb9fL8aMrdnMqVVj2IyOgnOxSBrKJ4fl4QozARWhcVgqSVqjwsgXWgcWR/1srJUVCLFY9ctZwvUX7FqO+FmLhWtb+pOZeOm3x9j/pRKjfrwcc6TeTx0mz/eKG2eRuX8Hzt91QcTwaKmDhFFfmN3Tok5ofS9bazfRD638KBO91IzYv0WXtGO3EF3DhImI17D7fPsqrM/SSY2tCfRSArqL2PbyfLxkery9RephnUWLuR6pwIm1iaIeYfphgaQfRiVLQcHRS5DEVxVrj2HFy8ux8rcrsGDWezhRwczTkVOwwjihNNCL3bk63N4FFP+tUNCJcj5YwIOTP9Kg+MAGrD4udiV6B6rIIHhUZSPzOnsEhZjoF+H+tjIOYq3dbJzFREdYIz8LV2vdoYnwkRqMOCA4WA1ZyffINTGpZM6ifupwDKd5HMkES3unld1kIutoDMsmH+8pJ7k/+NyW4pNvmOuglxdj9V6xC+eDt01l/FiHC3V8sF6LdOZnt0XKhDCmX5iuWs9smd+vwWquqz7PA5jNM2yq1MkU/zewbIYGiiIt2nUFw8biF60G8BfixWgrK7iJHqN5TEaXh0I+JpN+A7KB0dIkBBO9w+5zn+AoeHAd1XQPlcUFqGKuvBkd3c/NfpEVHUj0PJPiMMqrHEfeXYCdzePP5nRaz9iqL4x8sMLi/PPxh+907OnCdOA3W5EqdJrM9BY7pyEPqT8x0VvcxuK+2rzJQi+id/Aw8TXT+sPKxRWHPLrYi8qHQqaAwkJhVmVtw7a0wzCZPASZJhHJr76GOYnJSPrJz7Fo3lT4mLzPKSQRSYt+juSX52HOvNeQwl5PCuHBQYmQmUh6cSriZrI+c2ciITacNUZgTGICQpzY+wclsHO/gKHGaKUvqy98E8nzkoXfmfzqW0h6NrrVrBOn8GSkLEgRryvlTaTMmig+SNqg9XUuRvxAk+t8ijnx6y2Ck+g1biHW8Fmos9chRXAkT2H978UUuH5z1+Lz9DRs/uNqrP3daqzblIb0f76N8YKU4f8KNu7+Gjv+JMrX/m4ddhzbihXNs1oJohfTVIBT6Xlo8A3FkOYpTg7wGcl0xauLMXfuPMydvxivLkxBlBAQMMFOjbj5TGdZ0y0eYzE1MRrcjfYZweRM75klPwhQw+PODRRanyBlHecoZpC8hZRko45cjNHhkzA7eSae+MUB90qw+kIRVnbm/0vhCg171twqrcQeVg2VyfAMe1ZsLs7FuNNX8abxXPe0rH4Bc+9YeaYamnBLekk8nZjZEHP5ffcm5kS3ZGhQjUxC0nPPIy6J9XkxAaMjeOCGr9pJwrg4yV5h7+N2VMq0MS0TFAQbaRKMwxjG84yeJ+qUufMXiPe4r4necebnbV8HtL7exYgb0MbAGdGKafOiwFN4XvnXBjCVA0VEHJZJMpG5WMZtnV/OleqciVj0G9b2mwV4TmrhqwIPp23AOqNddGQDfvHTlez1G0iS+piTiFEaZvHqLuLI31pWFBWvP4UrtcxOGzwR06S29a+MxfCYRCw/LTWYoG/oYDXSjPkYxr6i+ryjWH9RnDw23vwPlNChnNmHiqhJLUEEgVlI4RlDKirMHfHR/PpZWXgQb6w+JbZJFB9YgZ1HC1HAnIzAKKnxqacMpeWNzCUzDp67IziB+VrM75qbyG0Kbne8huHCikQHhCQswDzmE5kR/CLmJb+IIcbb21Q/CPc+86MSok0mRYl6KdZs7FTMAiOsMOzIbiG6hqu7sWbhTCxYf0hqsMZkeHObVJjlLk5WsG2PwVcwis+uLzqHtbtYlekvPqEBf2PPipixLam8ng8VJjkUZG4wWS24G9uymE6QhWLYj6QmpiPK2Xck/JexGPWrMPYepheuxmLV8inwKzqIP1jc60RPE4qIIBdU5X+L8/nssxwYgTDjGElTAGITX8PskeYBPmUM0xUvJ0AtpAc00UPc//nxm5g7JrZFR1glD/nX9fAIHGE+Ad0+FmEDHVBW8K2YwtQ+iP3+N/Hqj0X7RRjDYTrGdGzJDAsbSUBlbu+02E0/xzxuZyUzvTlvKjShSUz/vWZie5muYrLRxyMAXzdh9Q+3Kzqa+GRG8gIksIeH/vxurLRipxhpd8ciPjfYDDWW/p+5GCzX4sj6c7grtbZCsE34JImWyVYcv19NwjBnMLum7ckaRA+jLUUVDxg68opkm4xhemAB01vPxyNCUAaWdkzL/Zwk+E6t72caC34MOPoRVrzM/Jodndggpl09Y6O+aJdXsGgS+wW12dj5H8at4cLA53ShKBdrTQKc4sQq5qsFjqNVzb0IW+Jp3VGKKw7ZBfSmsrNUXfwWWrsgTJmfjLjBoe2s6nNBWIie3cN/wrYtf8IHOy9D5xaFMZGSd+o9FbOfDYDu5If44B/vY9vf/4TPztZD8yxT5KZWozII/tV78dHf3pX2C8rC0S1pyK0BdJfT2Lk/RKaQpisIoydFw/nWYWxn5xJ+5548OISORaxZGh/2EBlWjcPG69qejnKvkZgS10aaVY8EzDC7zvex77IDwhJmIqyDiW5PB7ux9r8zoZOp8dzPVmLNgjh48Zlff18hOZKvYNXSiQhyYEr3/72BGS++gfVHtZBHJOKdP4kG2bRlr2A882WvfLYKM5hTOu/dYyh2DsX0BZaz9Amil3KzlDkZ7vAx7kEUnIip0Y64uud9fPQROz74EKfKVRg9baqZA6sMHwWPi23oljuHsXNLBvgQrvYUkzO9ly+8S0SjVkGnzYPt7gvTyc8mIMzuMvYZ9d8nF5nTbLJHwJOMwYBD7EHcKRwVcEUNtE3u2D40Ch/FRmLNyCicjOiHZW1ML46RyTDZyRWbBgUiUl6Dc6X3JAnxVNJnJCY8EwDDhTTxPmf33vYz99h9F98yGMfxGyTqAmbrtOx76oJgf8leYcdHu/KgHzgW49pLHcbOo8oWdYqgd265IOqZidI9zl5PTkBwU3s6IBSxcUEAs6/E692AXTlAyJh488E3og1mYcYQ9j9Vm4v0DzLxxXfiIPqoX9kyYG+C/xtY92+x8DKY2E5ZzM7iE7PahDmj3H6uuCXtoWFkN4p5vmoPL/Dpd2ZIKxoX/WYz9i6IgqKKXfNWSdYGc6aw38MDoxlbcGbXJcHRHRxrPa1Xwdls6NnfP/5nsVILY9EsjGT/RcVMZuaIj1ML5yi+ekg4pyXiTOHlWG+Snfvpxh0qdwcY9OIMFtngqZjg34jzO5mu2MJtis04Xa1C7OgxTFqD3PxSyAaEIthE72iC1JCV5uGiMOszAKNfSGA+VzpSPxB1zgefnkXdQOYHWQQK2qQDu4XoIk4fwn6ml9vHC3Ie6ZAF4qdntmKjNHHz9O51SDEL5FuiEQa1dKU6LEv7Guf/uQ5r/7gBe88cwo5fxUl9wM7Bnwg8CMg/7RbOMJ3H7VIvf2nW/N512Ha8HIHJG7CZrzA8/DHSpy7HdP9CpC5fY3X/U6IHUYcjwLkCuRfLgKt5KDKoEWYcu8Fl5F+zDPD5ICzQHXVXs1DIavKhL2ASMyFydrX4PzleoxDRwdwjbU4BdB4BCDEdAwoLhtpwA99d4plTmD005QUMlxe02C/bDqDIMRpTn7OYENFZ/AIgP/4Xdr18XOgsytyikDCyXhzDYsf2dKY7m1cxMWz08QiGkiuhBnhP+Bp7N60VJ0FZ6JLWxGLVS1JWhM3tr45OTT2GggYVxi/7BBt/tQRLf7cZW18KZXZQa1vGL2UFkqLkKD++BcvbW+Wsy8aZIqbDomehJdN8LH4xjp23lsmuSU1E78Nbxb43jWgwWU2oDnFH9ifs3v7bX3DqttRoinQ/Xzu4ucV34vcz85cEdURjwY8Hx5ld1MZKQ+u0r2ds1hftMGrVLIxiz43i4+y7JbWxpx3u1rLCR2OiXxizVXDjpYdn8wRSouexJZ7WHaU9Dx/ycUshksjK3lDvNLXfYN9/p+JUqQKB8S8Is1FfTXkNkyIDWi3rLjq3B1pj2r/So8hhytrJTTSp1ENCobx7Gae+M+6+1YiqrD3IvuuOYHauZu7fwOn0vNaThlpRgNM73sX2g1ktabu0pahkhqaHl1QXaEThWZPr0n2D9EvVUIZEw9qwjnp4BDzKMnG4+Tr10KYfRS4zpDUDpaannOJta5Ga3QBF2CxM17D/0syPxVmqnGVTBIV55fM3sHxbJoqLMrHt7bU4wfxMr6GThVnz4h4ceuhvizMtruxYgRmjxiL+9U38DATxGKBFVXMEzwVRQwNgyD2MU1ppSVpTBXK+ykKZkjnFfN8QI1U5SDfTLRnM8WZOenhHq3vC4e9ngLbQIj//gHgs+tmvzI6k8ZI+VYxE2AADctPN9d+py9VShbAk0ZGvs3BCTNgAKMsKsP7cJWzOu4N7Lr5IDPPCfLGbCXIsGByJVUODEelpj1vXi7GnMysciccSZWRSq/tuujFCc/8sDv7jT/jsdIHUANTdKkOdvTtUpiNMd7JNdEELpnaUQZuFIp0DVN7t7CddbWJXcb1ztYw5Ib7CCiCuAwL76TvQAS5Q9AEaao1tjSg7sRnbPjtAe6XawuyJGMw+V33eKcFJbA6sRb/SuRmkP4rFYGYaFR9fa2I7bcHZh/oQtNBzI1omNwkQS0xYgHd+txpL5/BVklphr40j7Tres/Ac/wOFwCirnt4trKpESJT1YETObuGa/YYw51loUGPFs1FCip4Tf7OY9iIMMLL/u1rjrFzCDAdHKY0WP0IRlpCEWO8a5J4X91M1XEnFRx9tRmapcQlGNUrLawB3L2Ewu+FSHrQyNQKDpAmf9tEICXBAWf5ZcTXPgGiEuVcj58Q30Akrhxh3juE485E8QkfRgPhjhxy6igroDDpc2PYeVvx2E3aeZzejOg6/WLdSuh+tME9MLaiMTcR4p4tIfXcVVmw8hIJaJQbPewebk8VubSI57Apno/Otxba3EjGa+XXDRz2Dl/aG4adT1bj2PyuwvlODfMSjQDMkCE7NqUGzkJOvh09wy2q7VgE+YT9EPW58z1d5uCAs2BcNeUfN/Z8Teahqa1WgkdtnkF9lOgbEfKkwNQw385DP9RGzX4YMBArPHmixX2qzcfT0DcgCTVZFPgx38nDeeL26AnC1qbue1fx76r7LQ2nzKqZO+HgEpjH9U1ylx92ig9j421VY+9GxjnWJjasNBY5/htTjhdA7azB+3kIsmhElTGA/85WlLfMKVi2IhbKK2VJv7Zba2kKHP59k32fTPapnz8coZuOUZ+3GFamJ6HlkrkabyAeqgARMnxQE2c2LuGhiXlZd+go5uraWpor3s+x6BtKvS34Pv58PfojUvRnCJBgaC35CaVfPdEZftIW11YacNOy/yL5LzlFY8OlqprMmY9qrq/H5sjh4dRzwIB41NsTTuqNuDx5BtJMiiWJIscfrD8X9G8g5/KG4su+fX+IUz4Efl4S544OkDpwa6CqllwI1aDAaegylqwJ1xcyQlOoiZahkOlvpYRLCq2fnkV52SB8f+Ee/gClzFiNl4Zt4dVG8lWAgc6RvSi8ldLdK0eDo2npAhcGvE96xmMfOx88pHlMRwixoD592Bu+eKrTY+NeDKODKzpCHfb//uHm2eFKwuLvX4Jc+wen0r6VjHcb7skYPLyFdxbbtfLaYEsP+bSvOZxzC4bTNWPezybRMm3iM8IWyOdbH98vgaS2mmugMdszn6btcoOLffYmGsmIL/cac0zvsva4dDNF5B0MtK0WRhS5DyVlxk3CTY9dZaTa4myucmMatMJ8cjqq7lnsgEkZ0Bq7U7NGgzceSkhqkNRqwtbIYGwrvsYeDNya25G+TaMCb313Aq5k8wFgF5cBQrApyx1hJSjyZ1F050Oq+O3pVEnIUQQgbn4jpc3/OdMFbePWF8Nb7odbes2LrWNpREu1lw9JVWdhVDHvpLTbpgCycPKWFMuY1LHr955gz8wUMD/Ch/XtsJEUYtGrAlStaCHs2e2UK+wAiLAaL2l3lY45oO+lQfNHU2dyNM9dstohNUEPBP0BDQ+vv2PY3EB+zAEt/uwn7ipQYz5zXzf/VzkqA5MkYxgOj+XkoFvZe9MRZvuJIFoqRr1mbfrcbe/lgi38MUmaz6uglGB/G3p991CxFj4BOCF+xa+3k6synhX4jkZS8QDpeQJy6Hjn7t5vMoHeA3Hck4hJSMOcnzOZ49S3Mbs5BymjKRC7z1zSDpdWfQaHwl2mRK6zmYShdIa/R4oaFAqmqZHKlO/teE48XW7A8cSbin5uP5RvTsH/vFqx+fTG+yGX3WHAMklrt3yXB7kMhHFKbjX8ueQNrdxzC/o9W4aX1p1DOPOVhz3eQDUZ6WOhrre0IFIc1y2bBL/djLM9MxObdhwS/ML3DVZDEI0GaTFBxqxgKaTBeV1IqbMXQvC2MRYDPIywAHlV5yBbsCtH/Kb/9vSBrpqoKfIFF+5QhN78ayiBpIrdiBAJ99Lj6nTgxQrRfKqA13dedc6catZYTsTqLVfurLWz38Qhg/+8XY8ZzkzHj9TX4YO8hpG5c0YEuicWaH9m22pCT8ueNWJGghi4rDat/MhYzlmxgtowco+b9Bzb8piXTQcqfF2KUhw5ntq61yMhgneJ3me1mkGPYs2I2hUUvxLJnoBZntj9sEIHoelwQNsVoEy3AnKlRcC5Nx85934iToSRq75VJr6wh3s+lNy1SWdzne9dXC/NgaCz4SaR9PdNZfWGNUf+VaGW1ocjOt9YgNUcHZfBkLOXbUSydDLfcQzjDH0QNDbC2MJboIazEzx5F/cnZ47CZRjTU5CH36w+xLV0LZcRYtJdByxKZrAvXdzNjdxJ7aEyJcIWu8DKOH9iBHVvTmTqwxAEK47Q5IwrHdgfFGkouIzMzy+TIxOlT3yDze+PMEwKnC1HOvYLauyhuNYO0AQVnj+HIUZPjwCHs23sMF7n4+Bq89PpybNxxDGeu6qBQR+G5n67Gjj9LG/ATRG9HrYaXfQ0qSqU6o+q6qc4Q9capE99IzrWIrI8wfdUEcbVPRyg1aijvlLbWb4310ibhLUed2QYQDux3Si+JDjnEjDeO9l692T6Fe4QcKHK4Wj5LJPIMYoAxTcve7+WN+W30I54MGhu5g2lx3xknSnlMxJwFiRitBsqunMXRPduxY8/lTgxSdTUd64C6y9uxbet2HDyZh3LmVA+ZugDJM032ViTaYCGei+BT0OQYNo/vS8iPlXhOGAXVYJRpus4OuCvpHkvj1K15PztrMDuMf7E8+lvsgThRTGGqY/aZ2GBBHk7s3YKVL6fhArPj/MbMb2MPRWDRs0OFSXaKqETp71uNVZPEQF9Q9BKrq5j27zjHfq8KI19YiDnJMfBDBc5+aWVA8KRWuD6/EOurM1P+ays+/3Qdlg2XGp42bqYLqYyNx0fbtuGUcYY8wyM6BSkvjIWaWQa5Z7/C3s8+xD5jUFCgEflXtTCogxFm74DgYPa5Xc9BrnF1IUcmEycZEE8o7B7TcSWhhLKt/eb2VogphMsKsdHUn9sltiuUYoTmSKl4Hq9AodqMXwizT1l5t6L1/ovj/7gc0z0y8ef/3ISkn87FKFk2/v6Hj1GgjMMv3lko9SJ6jLAIaJh9oIpObJmkMDGAPdHcoQkzpiuWAnwDhzKt7oOQQHdUXfvWbMKSQ5+HG9/RXbyMMseB4KpJHj4IPvXXkW82QbL3+DC2+HhEG1joEjMWLcZz/m2tArJkCZ7j+WMrmE5Z8h525gDFmR9j5fJDQtAviO+bzLvNWIuUMaxfbQO8Zq5jdsQn7IgT7QyfOPZ6rXnKQIENOJzN7LCwsfjFhLeREMUcudwM/LnDayIeHTXISWuxiT7Y/Cd8tv8bVJnaNDbSkc6iseAnjPb0zEPpC0sWMr3BHmStVhsaOYW1P5mMGUtWYMVvV2HpT8YiYUk53LjxVF6I/WInohdgSzytO0pxj0OTiKJQsguy2v6I5J1DhaiZbyJ5YpRUt8A4q90GyqtqIO830HwTbIRC7c2MsdKWlF42o/KDj2MFTn+2Haey0lFYYjJwZ4YLPHzNr1LVXwWZrhrW5kbqdHrI5fW4dikdOc3HGVwrOIP8Ulqp0xGp+Xy4XQ6FjilmphjFYxPSsy7iyK7d2Ak1RiVMRlJsf1x8dwUW/yQR8WM3CDMulEPGIkU8DUH0XuxVGD46FE538pAr7LdaAR1TDc7MjW7RGezI+RbXvs9AkUlWQJnK11wH2gfBhzXoLJcEmeECzQDmqN/MMZtR1yF3q1HX5A5ffwv9p6LNvduk5h5uMQdErXSCuHZaZL4TD6HUoELaQyHRW4Ojw4LxvkVkRS48Yg1oeAgnhnhC6O8HVUMeDn+ahsxLZ1FUzmwTg+22UpdSUQ5dkwqB4ab3vAPUvuaDNzJnd8j0WhRdOYz0PR9i+0Fmkw0YiiHcoSHaZlEcBjsz/X1+i+AIthzinn0t6TqlAJ+TEuOFOsNfBTeTIOH+XC30UGLYs0tagmj+SzAyuL1ZCB+Lqxs9AhHPV/dJ+P1sIoaxz05feA6pQksiNu7+GqcPbTB3fv2ZrcZLQ4P53oPNLER8KPv9umx8YPb3rcI+HmDwj8SL1lYxnd6EE3yVU9QrWBbNvmtF57DNmM7elNNpYtrTsMlYlSIGI5uZsBpJz4ciiD0fr52X2ggzfP1UaMj7Cp8dPoycK5dRwfyaRks3L/8irjaoETZ0PMIGso/iqrSah1NeDZ2jL9TmjhnUzEeC2UQlvgWEiQazV8Ojo+zqxKNnzlrsTf8ah983nYSphp+SK/IKFLe5Z88hXOH3oU8YlpmuAkwWU5jqyvlOdkAxnzDKyqAI0/1N49g9zu9dLa58JbY0M2EtVkxS4syHa7GtaDKCfOXQMV3wwd5NOJKrg8I02xDRA0ipQa8dNpugwI99l/XwCOOTEkSEAJ9LECKGjkKwRwVyzxtX9GhRwXwcn8CR5hONBviir/SyXfTMTypTIDB0DIaGqqAryGrRO4L90tqHkQ/wgfJ+BbRtLdFwcYeXaRpTL3chsP3w2O7jEcCKLTzT1FasMtUl0l5eRl3SQizWzIxidohtqw2F8aX24j0KOQTrVimHvpavpFbCrz/TgcKhFO0dhdjGdZslH3yZyXScGvGrJmOwrAEX/vVeG5OviMcXUWepfEOluoR7OCIixf3faSz4SaMDPfOQ+sKUUf81C8OYP2httSGfzLkmTfTB5pQew/69h3Aih++HyHxI5gdeyUqT+hG9AatxtLbau1Au7nH4gL0yLVlhtf0RyTtHBYpK6+EUOglTIoMgFwwxBZQBCZg9Ro2G63mwdb/gim9zhM2np8SHi+exV0EzMQFhMi2y+Ibc7cKMtlpmtPUdCJVSJb6/vh4GuMM/RBoA6+ODsOdHNRu5LThAE5eECCU3PB2YwTkTCREuqMo7w87aGu2FHFSpojF1tHSd7O9VRSfhRymvI64jrUEA6w/iTBXg9+w72PyrRCF116LfrcPK37yNNcsSBWdz/Gv/gRW/XIJfSPKkX01EOH9SV92hPPLED8LBgTmIUrod4+Gk+GFD9qb59H2CEzBl/muI9dAifc9hacZtDbKzbwBBk5AwWErxx/XbhAVI/nGS+UbabuFIiA8V+zCdFTGdOeY8FXRuyx5Funpmw/gw41XpLp0rCv7eNdAWWtGTZnsgGQ/pffoMXGQKWhNvrv8mMf1HiMxUaXBy9BBsd+OPbIahGsdKGyH3C8Km/q5Y4CDHYm9/LPZn/2dVFTgkbW+SdvceGuSuiAnTYFNfJyQqnLCqvwaJfnL2uLqDtLa2ViCeCKzpGaWLdF81NMIg94NGLd34inCMfmZQz6zea/oGpy/WwGfUAkyJDmf2UyjCnklBfKCgIUSUEzH7x69hRoy0b7W9C9QaX8j1FRAWmBBtsozv3ccsyQtfbhIcwZZDDJwJ6Tpn8J7HUMwNTt+JWPvpOqxhNtGOf8xCoOmj6W/i3oCKqIXYkbYB6/64AZ//8xUE8bxJ7bB+B08BpsL4ZZ9g3dJEJC1dh80LRAf5xFajg5yGMzf0UKhi8dPdm7FG6LcaWzfNFQKfxcxptTrbddkkwREuv7gbG83+vkPifkB8Iti8yWJfM7RY+69s6GVKISXUlZObcEaSmJOJlet3C6nrR/3yExz+J/+/WY11mz5B+nuT4SfT4cx/r8NOqTdhjl7PnlX9g6EWVuTw5/tUTAi1fL5fRv41PdMBI6GuL0BOvtTMuZ2OnFJ3DJ82E2rBTnKAMvAFxIfJUHRe3OuH7ydfdod90sNnQOPF9JxXNOLmjLDYl8WK3UI8enaewrU6ObzGLcTn7y1B0oyFWPWPzXiRpwrOPYUPpNWEfsu24vS5DKQ3Z3nJxJ+P50HvHIqkTZux6lXmlzE9sncpT+vF9Nvej8Vue9dhXy5fkTMLW/+xEov4+f/5jrDCWp/NdILZLP5Z2PibiXDL2oLV23go6BBuM4NZ7qxifqAag335zAZ6wPQoQmrQRhTlW6TsYwj7GjqLKwEFpABf2Bh2jzfvh8hpRO7pbOi8R+KlaRPhz3SEz+AXMOeZIBv1APOfcrWQh8ZjuGc18i+Z7OPelInzeQbRh3EX7SmZ10RMjfGF7ju+P7wVbpaiyl6N4ROimb3jA1XwTMwZ4WPchvMh6YSPR2DbRfbJMF0yvVmXrBX38jLVJUY6Wm3o/wZ2ZGTg/JEN0sTyNJzIYTpIFYdln67FUmZ/THt1JbNlZgkD8M22zI7lmBH/DEabHQfZ04xRdJC9XoC1/LUluz7BGaYnlR5MP1Vk4ovWEQDisYfprMs3YAiciOmR0v3cJwDDn52KuBAvIW03jQU/YXSkZ2zWF7Owbh/TRxmfYJXZpMmOVhsewxcXtYIP9hOmF9f9ZiVWvc98ttkaoCoT+95tb/EA8cixEj8TImjW2rtQLu1xKIQSTUomMas/WnlnqTqbioM5VfCKS0TK4l9h0c/eRNL0aDiVpGPXQWmDfVuoPYa9e7LRwIw44TyLX0NCwD2c35eK/GYDtC2Y0XaKGab9xmBOcgom8DQpumM4fq6aOUivsWti53t9AaKqC9D61tPi9Ml6RM1/i/V7Cykzw2HIPYC9Z9sIVlYdxt6D3wPh0nWyv3fOSFeUpn9hsq8I0TYfY/Hqj3GmXIlR894W0lotnaGBvPAY1v96A4rZ57H+9x/hhFaBYZJ8xbwoyLWZ2LZ+VRuDSwRhG06Dp7ak25GO2SNbTyewHfN8+rMnhsK59Cx2pW5HrukGHvlp2HWyFCrmSL7K9RHXb5p65BzeY+JgM7WVk4GrPlPFPkxnxXlV4PSXaShsXqF2GZmnb8AhbCb7fUmI5gF1tS+8GopRaE3/mO2BZDxmQsxI1YjCI1/i/F0V4pIl/ZfgjmzjHoiE9Ey0F/cDk9hYdAVpxXqoBgRjcUw4FvAlL5VF2JxXiT1SH+jL8U5OMW41KREZGoplw0MxeYArGkquYX1+NTKkbsSTiTU9k/TiJHGmc/4BHGfeRsTsN0XbZMHz8NDe6LFUpRXf/AM7TxXDOfJ5zEiciijnHBw8Y2L/MFvqwL9uwCkmSdJdP8f0wHqcP7gH0jgzYQ3/tzGKK9qKXBxptZpOi21ZPLCmwuAps4T66v+XhivsS6AMjsP0GXHw+n4Ljpip4t1Y+vp72JdTAfgMxfi4MGHl3t9zO/jm7FqOd7ZlolihwXOvvo0Vr/L0Olqc+OsKLDdZYbTtF+9gWyb7hb5RmC70m4xhXnoU7H0Pi399SuplihorYvmM7ApcOdx6j5/iHdm4YgC8hkzBHKnNjA/EQCjfB/vCjnaeOcfX4A1uM7IuXhH8/2YynovVQKkrZM70UiwWgg6ENQpPHkO+fTimv859Ff58V0F7vfVseCEIYM9uddPVPALVyN7DbISGIPadEG2EpOcHoi7rSxzMM56nDJlfZ6FCEYqEuUzPvRQPj/yzuCqtvhexYrcQPQDTIb/n95ICQZMWYsXvlmDOcBUactLwjuB/WeDQspq5eP0KvPNZHhq8ojBnKfPLuB5p5HpkGZY26zfmv/36fexjTrvX8FlYys8foWR2LTv/f24yOb8aKZvewHhZJv5usgf+B3sy0RDxCvZmpGG6ugIn9m6QJERP4DE8HD4GLa4VWJnpJuxrqEBghDHjVA2yL92AgekRbW6G+djP7QP47PNvoHWJwKSZ8zB1uCNy92dYzepkldwcFPLI3p0C5Jrtt9oI7fHtOFrkjrj5oj316kvRcCo6jF3fmAQYTRHGhiqgCE3AHGaXzYn3xNWz39uw32IH2OjjEaIuWb+30ESXTESQzFKXcOKw7oUoKAzsWd/RakPmo4naSouN//lfgi0j10zEol/xvcJmNdsyy63aMp0hU5oUBZRfOUaTlp5U+P3Mt9yKk+7n15MQ63wDRw+li7qNxoKfIDqhZ2xAmGMnk7K1SIz/o7jasOCwtdWGImdWL8f649zRicJzc2ZhzjiNOPa9+o2H3lOR6CZM4ma2xtd4YV7vvNwuMCRSCDD2JiKHjkLOJWvR8I5QwEnpDgcYoK+p+AGp2Bwgd/GE4kE1dLWdtbbYexUyNOhN3mfvAic+07++rVSlErb2M0Hm7ANnuxroamhZ+sPgFzsRQ3lqmmvikuxWRMRhWqBr23KCeOywTb91rFsUTNcZmK5rhGr8zzHbKQMffWWSYqyzKFRQyhtRyzf+Dk/GomeA9L9tB18UQ7TNWAfmrRoMyGjnSd7fXoYoe6CC9TvX6574RI/Rxx1KR4cfaC91BczLsW8ETK/Bqg6QbLwmsnm6E7/YWCgzM9vIrhCKwRF5uGJiDy37OAMpYYXYGTMfq6U26/A08JFQ4Q4uHs5sJ72Wrf16AP9YPDfUE3qyCTtFh/aEx1TMnReAwh2bkWk2MG+CqY0gNVkiU7jAoG9PN7TYLUQPI/hXclRcPCasoOkMgydMRiAKsf+4OIBulYf138jvezKxZ3ZGk+l9PwbTfxYPfM3TnkpNP4RO21PdpYt+yBjW04ZkazR0oEsemu4+P/HkI/k9hrbvZxoLJrqWUIyfoQHIBuqVRETG4tLFnlnGZBc0KOoBhMWHPMzYO8ohUSMfMnBIEARBPFoU0Ix5EV7aNGTe6CIHmAKHBPGUoELY9GSMtj+Dnfu+gY4PuPGUPDMTEWufhdS0Yz22EpKwYPhKfP7XWQiqzUbqxs3Yxsz0UfMWY9m8KChLj2HF9BW0eT7ROYQJkyoEPpOIOIdMbPtCmk1PEATRRTgxn+JHo4HMtFTk6LifooAqJhmzY4CsTz7EeTIyCIIgCILo5fDA4XfZZ9kr2+JqXVnaBYVECqlLbev+aMohD73ikCAIgnjsocAhQTw9+CZg9pRo+DgDBn0jZDzPiq4AR3emIf8H5+8iupLxv9yMd5Kj4GWSOhlVeUhdvQBrTdKOEoRNCM96vu/KDaR/lmqeXp0gCKIrsA9C7OyZGN5PAdxvhEHmABlqkP+v7Th6tVrqRBAEQRAE0XsRAocXz9gcV+vSUlxx2LugFYcEQRAEQRBPC1J6Lb7JfzspeYjegJR+SwE0lF7CEb4vIUEQBEH0ZoR0x3zWi77dlMcEQRAEQRC9jZYVh4+e5hWHRowRRSM9UacVhwRBEARBEARBEARBEARBEARBEMTTiOmKQyNdEX+zpW4POzv+jx28FF70eJ0gCIIgCIIgCIIgCIIgCIIgCIIgnlqsxM8eRd2exw/FJYe85C+kOvthVn+EcoIgCIIgCIIgCIIgCIIgCIIgCIJ4emkdPxMLi3oXyx+rPQ5VKh/pFUEQBEEQBEEQBEEQBEEQBEEQBEE83lRUlEmvWqA9DsWXArxOexwSBEEQBEEQBEEQBEEQBEEQBEEQTyO0x6FFnSAIgiAIgiAIgiAIgiAIgiAIgiCeWqzEzx5Fve09DnuwThAEQRAEQRAEQRAEQRAEQRAEQRBPLx3H07qjbg9IkcReVBIEQRAEQRAEQRAEQRAEQRAEQRDE04vtcbWuLO15+FCIJBpLY2TRst1YPgI5QRAEQRAEQRAEQRAEQRAEQRAEQTy1WImfWY2rGcsukkt7HNqhuTRGFi3bjeUjkBMEQRAEQRAEQRAEQRAEQRAEQRDEU4uV+JnVuJqx7CK5PXvVHEnkUcXeUCcIgiAIoncQKpNhLLcbCIIgugnSMwRBdAmu9rB3lV4TBEEQBEE8zXjYw85Rek089nR1/M2Wul3QoCix1osYEjUSOZcypZoNhCdj0TNqqcJoakRDXTWKsg7j+KUbMEjNxNOCGtNWrMXK2aFQysUWvTYTqe++gfXHxXpb+M1djQ3/NhlBHlJDVR573wqsPaCVGkTG/3IDVsyNhZ+zWNdrT+Hvv16OD3LEOkFYxx3+41/AhHBfOMnElrryAmT960vk3GkUGyR9VnbqL9h1sUZss0A+NAUpcb7Qfv0u9l2WGo0EJ+HV5wNQ8Q17/3kr77dXIfjZJEwIcoGMTx0x1KDo1Bc4+J3pd9wBHkMSMSUuAEp+nU16lGXtwa6zBaKY6H6Ydfde8ECM7cusPP45NdagML8Qb1c14pbYwzoyJ7wfGIAYlWQdtvG+/g6uWBOqQajwATPu30Pe1UKsvGto6Wcnx3uDBrFrcGDfgQbcKsjH3IoGSSjDmpAIxNzLxcISJpNaid7AI9AziEbC6wnQ3DmLbTuPwfitaGbAC0iZGQrpEdyM7lIqUk/ckGqA08CZeP6ZcPjwZymz3XQFx7DrcBbqRDHxKFF44eBQP7ja1+Dc+at4Uy+1W8POAasCNJjs4yLqJ0M9bt28gXUldcgQewhM9grEqmA3qWZCaT7GFd4TX5OeeUwR7YSEMQHw6CO2GKq1yD61B5nXq8UG75lISgyHw+Uvsf3rPLHNEvULSGb2eqOFbhDpQM9AAfXoJEwaxnQd/x5yWyXnKL46kW2mQ2zSM/ZqREx5EaP9JduothTnD36MzFJJZxLtYj9FjZCRTB9YUlyMvI9qpYolfaD8dw36txHkKz/6Pe6clCpGHOVwXaCGj3cf1GcXQvvlfUnAsYfilQHwC1Kwb+cD3Pv+Jm6l1vOhD4E+PxqIfq63cZNdT68b/CBa4TF6MeaGl2Lfli9h7oVzfBD78gJEVR/GRwezpLZ24DbPiGrs3L4HFVIT8bTyBnaceQWDJfu4BR3OrJ+MxdulKmfCG9j8q7kYpZas2doKXNj3PlauPYRiscUKtp/fcjwJVYXY99flWPmZ6Tf+4ce1BPwnY8Wat5EUoQQKd2N44hpJYEGH/X7gdTwlyLzikZAQC38PZtNyDDXQXkxH+tls6JrEJtJHTwkOMjjOU6OfxlHwhxsb63HnaDGqThu/CB1jN9obA573gBOqcOP3t1EvtQt4O8Njfn94utkzmwe431CLyq9vmZ/foQ9cFjG7yEvogcrTxbj9ldFusofzkiC4l1zHLTNbiuitRETG4rvss1Lt0cJcI+s5THuy/nCUInP7VqTy4/MDOJ2nhzouCXOZQ0s8XfgtW4t35oZCXpmNI3sPYd/JQjT4xiJl1QakSH2sMmElNiyfjCBnZhQeFt+nU4YiadU6rBot9WH4pWzA2hRm5BkKcYKd/8h5Ztyp47B0QwfnJ55yHKB5/jVMGeSAa/9KFXXVZ4dx7UEA4l5IQrBC6ibhExEPY/zaHB8MjfCVXlvigOAQNWTMXvAJHQtm+lvgAPWEZEzyv4esXR9i+7YPsSujGl7jkpAQLBm4DHloEmaP80VVxpesz2bsOlUBZfQLmB7uLvUguhcHvBfKB9IfoLDwGg7l3cClu32gCQvDe27tLcmR4/2wEMTw9xXkY/dl9j6dovX7ZK54LyoYoc4NLf3uOSI0fLB5P6U3xiorkXbmAt7Or0F/jReWSqKZXgF4Rn4LW0ppML938Sj0DCMkFP58UMQ3FENbKxr23XGFvL4AR412mXTsOmsyGOI9FbOnDIKs4DA+Y3rmsyPfo8E/AbPHB0kdiEcH0x3B/flCHRuww/8OCMPkfgpU3LzB9Ec+Mm4/QP+BIXjH1zxUrGJOM5ibW1FSjkLT455JMIb0zGOJx8jXMJfZCbrTX0r395c4XaXC8CnJGO0tdZJwColGsNXvFrNZooLgJNVa0YGecRqejOnDXHHjSKpgq+w8UgDZoKmYMdJH6sGwSc+4IHhKEuK8qnF612Z2ri9x6rYHhk9PQphxQJdoF3tH/kE1oKqwCrdND217gVcD7hdZ9GfHnbt80OsBYPFW+3gvqJcNhI+qxV41Q+MGzyADyv7xPfJ23oHdIE84Gx9jMV7oF1iL219S0PBxoSqnAFWOQYgIlhpM8RgBjaceV7+zIWhIEGYoIefqqkqLgvxCs6O4Suwh8go2r3oFo3z1KDh5CPv2nkKBQYVhc/8Da35msmChFTaeP9lkPGnnbuw8nI1yZw2mL7cYd3rYcS0GD0zu/XQ1ksKsGeot2NLvh1zH04JTeDKSXxoDr+psHP6C20WpOJhZAeWwqZgzfUzbtg7xBGIPx58EIEDjgNrLJbiZXorKegV8nh8Iz9E2pldxc0bfZ3jQ0ApM5vmqH3xc76PyXDGzg0uY7SRvff4YD/h66HD9D9/j+4x6KGPcYRwKsJ/SD76KcpTvpaDh40XH8bTuqDM3znoO056sPxwG1OnKoONH+WXknt6Oz88yRT1kLDRSDxEHyF18oFT6wEnRhuPRx12QK5Xu4M/91rR3DgWclCrIuYOsUFn0MXmfNDuX6HoWjQmFwpCHL5YsxvLfrsLKN+djxfEK5mSEYXw7ls2iBVMQJG/Aha2LseDX4vvm7ciDXq5BfPIsqVcsfvFSLDMJtTjy2/lYys6//PVE/EE4fyym/6o9Q5J4uolGWKADtGe24VT+DUlXZeHUzmPIb1QhwF/qxuFjJh6hiLL2dVKPRRgf6bc2Wck+FmEDgcKz2ajyDBL7mRHFHHAFu4aPcb6kAnW1FSi7lIqsWw7wD4qS+vhg6Ag1DHlf4eClPNanmvXZjqO5BqhHTgR9wx8Bcg9EedijorAAybfvYnVlJZZcLURevQM0Xkr0l7q1QuGGMKXxfffwh7vsfd+z9zWy93m2rASY3NcbGrkBebl5Jv3ycamO9evvgclSv5mOjkB9A24xmyGjphb3HOwgLAxQeOENjQznCsrxCbcniF7EI9AzzJYJGxwAXD+L7Cp3aCJMBuklVCp3QF+DCqNdJh11euNIsAOCR4RDeTsLB05koYrpmar8Pdh7rhTKiPGIsghwEt3LTC8/xCjrcOu2LWs9XRDVj9m1JYVYcquS6Y97ePt6ATKq7eHq5Yb5Ui/OQEemd2rv4JPrxUg2Pcpb5sySnnkcCUBYiDvqLu8R7ATx/s5Dzv4dyCxzgFpjMWlTFoAhkVZWoynGYshA9l16KD3jgyGhKnYNB5DOdB23VSqYDjl5tQYegUOliVM26hmPeEQPNCD3aCpySqrZufjfcgC5BjViR4ZKnYj2cPBk9/G9u6j879vmx8HW60RbaEJ9mkX//66C3p450cw+1Z2Wugn0gUuMBwy5N1D4P+Xms+6NeDvAEQ1o5LMMvqtHHfPi7fnXjg+wPadEzckK1N8RehKPA7oM5JYw/yQkWmpowSMsAB6115F/U2rgsA/bSRi/kcZh2kQcj7Eci5E5m47Z/JDxHBvGmoieI7k/+NyW4pNv4KWX55sci7F6r9iFM+q/EjHKowFXdizES2+uwsrfLsdLvz2GYsgx7PmF8JP6tcLG86dMCGPPqQqcWD8fS3+/Bqt/vRgLPs9jPqAGw6ZKnRgPO67FeW5CLLxKj2Htwt1oL2eQLf1+yHU8FdhHY9wYNfSX07B9/2EUlnC76AaKslKR+uVl6JlfNS6ktT7geqc9XWGUK10sbajWOqp1Hwnj2LYkN9d1RkhvdSnh7lD5OaAmtxhlaTrUfs3so403cbvBAV4jlTwI0yGKmb7wsr+LO7elBhPsx3rAS96E21/dQOX+WtRn6FD9QTFKa9n5Y1ybz2/vJYdDfSMMzP1+cK0e9czHEqItQR7wjZGhfH8V7rc3v4vohXQcT+uOuvCdEiOJwgup4CU7zOrCC6noXnlXUXenGg19HJqj6nCOxqTkt5CSnIw5c5OR/OpbmPtMlEkU3wE+I19DyquLkfTyPMydvxivLkxBlKeJ8rRyjqSEaJNzcHkSxsUlIyUlBXPmLUDygp9jypAoxCa+gZR5/Lysjf2OWIsZuURXoMb+zauwYuUGbCuSmhjXatvLucVhxqFGzpyUizjyt5YVEcXrT+FKLeA1eCKmCS2TMZgPvBaeM0vLsHNHtpCyYnB0othAEG2gkFsYdU1ZOPrP93H0qlTn1OQxZ1mBkChLZ1manV/C5FayC8ojQ6E2aHE161sUVrkjONJyxXUOTn66FUfz2rEQlEOh8dDjxlXz3ITaKwWoc/aDv6fUQHQf9yuw7twlrC03+ZweGFpSnLRFe49QE1moI19CUYlcnVgXeFCPa3dZ6eHavM/Ynto69sxzRhQzMme6ucK1jq/6EVcmoegG3rQ6ckf0BrpTz/DB/jB1I4quHkPutWp4hIyCShIZUToxy0tXhSrBsbU2CSsKgQMcUHbtrFm6wIZLedDa+0I9UGoguh+ZOxYGuqHh5k2k1XakZCTa6sb0TEuYQAYvboAbHghtYx1keMaKp0x65vFFprAcpCrD+S/ex86zpilHtcjN1Vtd3ewxPBw+9UzPtM5DaIOeuYOLe7fi8zOW6U1NsU3PKAcFwKOeByFMbSN2Xddq4KQOamNVNtGCPc+SzvTCA8HUsPN9+D0G7cZ5wNP1Ae5kVcF8DnwjarZfRWmaHk1t7UFyQ48aOMNxmB3sYpzYq/swlNtBMccXLqWlqDxpo34jegk1yC0ohWxAqMWK5QBE8IkL1y83pzB1CklE0qKfI/nleZgz7zWksNeTWB/rqBH74gIml6oSIc8uwOyRxplUDzme0+FYE9Hj+LoJE0v0DVr4xU7EtBlxGCxKTFBj2mD2XdBdxL717FvmH4vneL/jKzAjZqyQxrPNVKU2nZ/J2xusb9ZxDzuuJXLk76vw0osrkNrBVjod9/th1/FUEBYBTR8tzp+0EnotPYrTl7QwOJrO1JQhMOFNvMp1xctclzBdMcYkE4J9ENM1TP5jJk9k+ib551iUnAhN88C2iY5awHQU0zdJP/k5UqaZrmw0H9ue84oojzLTdQzSW12OQ4grXFCPu+dMJk811uPeNWbZeLjCqZ2kPgJDPOEVJEPl2du4Z2X+lYMn/yLcRZ1p1srGBugrWenpDLkUvmgq0UPv6giFtx3sw5zgWtvI1EsfuM70ArJLoPte7Ec8XnR1/M0WuWCGiZFE4YVUiJFF87rwQiq6V95VePRTQV5/D+LYqA9iZybAvzodqR/8Cds++hM+2nUZsrAETAqXHN/gREyNdsS1g5vxwT/ex0cffIhT5SqMnpwgOY0BGP2C+Tk++JQ5owMTzNPiMDWh6XsDO//B+vz9fRxkzw//+AT45G6TzpuGnBp3RA1vPYOO+KFocebwIew/nGli0L2CVePYw7G2EGe2SU2tCIMX/5ArbsG8y24U8+TjHl4I51VpFpmuvNDcYDydjWL+RfPSSAFGgrAkC1k5NVCNXIC5CRPh79XWimaOAbmXbgADo8xX3giz84HCS9ktPkUzLggL8kVD/kUUogy5+dVQBkUzU98UvbAyu850NMZjIiL6N6KoIFusOzPjAlWosBzIKy1HJfsd7FYguoBQmQyTHcyPGOMjkD2cDzUakCE9szkxbt6Icm7CrUpd2yn7GipxtLQRKk0Qtnu7YLGzGzYN0iDU7h7OlUr7iTFu3eeOnisCzTwCB3gJ2yIqoDJmG7xXirRbcjwTPRQrAuxwKf8OGvoFIMZwExtK21tFQPQc3a1nAHlYIHwaCpCTL6USUwYhwkzRODA14gBD3xFIXvwmkpMX41VWzhlv4oTaKyDvU4PyWxaRySYtqtiz1MOT0sx3Bf3tW+sZ48QAERlWDfRH/8bbSNPaGqG7hz1F7HPrp8Gm/m5Mz7jgvYFBGKtsQGFxJdKkXvzcguNq544FscPwXkwk1oyMwtFBfTHf9BpIzzyG3MBFnqY/ZCqSZs5EGPe3rASFjZRdyENVq9XNrB7mjqrcDGaxtKZjPdOIhhrTVcwM+2gMDXFB1bWLou9no55xYvoKFaWt9lErK68GlKpWEyMIS2Sw53aDvQtUKwdh0E+DEfLvIRiwRIk+nVq40AeuIz2gqK1A9VETA0jgAZqszLo3o1SHyrN6uMwIwaAprqjNuI36KC/4+OpQtp1SlD6OCEF+mRqBQSZfJO+h8FdWI5fpFbE+FbOfDYDu5IfCOMu2v/8Jn52th+bZJMT+oKh/Z8dzbBhrInoeYYO+BnhP+Bp7N63F2t+tw44zh7DjV3GiXGAi/Ljir7gHr3/swfkvNmCd0I+950+vtL3akGPT+YHU1GMoaFBh/LJPsPFXS7D0d5ux9aVQ9jsz8cVWqdNDj2uJnDjQ3l6MLXTc74ddx9OAD/O3cLsY16zOT6lB4alUHOU+lxFlKIL1B/AR01fbmI7ZdakGHkNbMiH4jErAcJdSHP1vJt/C9c0e5MqCMHqkqX/kgmD/ahxmukbUN3nQDxyLccb0zuoZeD7GHeXNuvF9HL43FLFmthTpre7AQRhUqcd9izjy/RI+jc0J8gFi3SoOfaB8XgXFnVJUHLE+4alJ2PLBGQphgNqIDA7CRyZHH+PX5NwdlOT3gfeSEGiG2aH0CLNrX+gH78ZSlO6mFKWPK10df7NFztw8i1ymvaB8OFygjoxHhHAkIH7OzzE32h0VFzJER3DAWER4lCLrq2+aV20YtHuQnmeAWhPBai6IGhoA2fUMpBs39W+qQM7BD5G6N0N0QAdEI8y9GjknWs6BO8dw/FI1PEJNZ8I2oignXeqjR5EQeSpD/iVeMpoKkHu9BjKF6Ugd0T3EYVXaEjHVxM538IHUajta6PnIqUwupT3qALlcCCwSRGsaUXZiM1K/ykOtVzSmzOWD6W9h7syp0Chbj6wYrmbhar0vwoa3TEoQZ+cXIOeqlWmKyrEI66fHtTxxpaDuYh7KnAciuD3DpE8o4qZFw1mbgZP50jk93Zk5Y4DBup0CWdtRCKITvOQfiVUxpkcgFhgDdhb0d/TCmjAvyKtuYktle89IAz6/pUWhXg5NUAgWRAUisi/zQW+WYI/JpNC0OxWoaHJEZIgfVjnxYIIjVvGBf1fLD92A9TevYtzZCxh37hreMfTFwgEGZBRUYo/Ug+htdLOe4amMB/ui7po005+nEitVIDDU1HNRoKqkAIXXzuKr/36fOaviPqnOESZ7j6m8xGdqG3oGnRpsJtpiok+ghZ6JxFI3SciIceuHid4PUJh/Cxs7YX4fK7+Fc5XsYwxgeisqBGP7ydFwuwSf3zUNNdvjXu1d3Guqw6Wcy1h9Lhe7bzBr2jMAiwNcESP1Ij3zeFJ3eTu2f/YNyhyDEDebr/B5C8lzExEhLDO1oCq99ermkGiEOJYi97y1sKEtesYCexUipk+Epv4yjp+Tzmmjnunr7tK2+8k8ZVJHHWGHJl0N7jXqcW93Ia7+/TpuXK6BnXc/9Et25kMRNtH2akPbuX+wBMVrvkfemuvsPAp4jHPFvSPl7a/uIXovTZnIvQ5oBsdKDYA6IgjKqhu4Ku0Xpx4SCuXdyzj1nTTOwuygqqw9yL5rLfNKZ+jkeE6HY01Eb2CaQYfiKj3uFh3Ext+uwtqPjqGgVonB897B5mSpEzTw4g8PzUSkBOuwb+MqrHg3DWfKAb8JS7DhNy3fR0tsOz/j+GdIPV4IvbMG4+ctxKIZUfBCBc58tRtHTFb1mfNDx7W6it5yHb0HwY64X2+SdaMDmrTITM+TJmgy3+1sDsrsXaGUbPSybzbjg22pyK8V62j6HhXM7lZ6mEX9UHRuD7TSA9OgzUKRzgEqb1HvqUMHwqk0C4ebdaMe2pNnUWhqqpPeerQ08f9ke9gJk7Wt4zCtH7xd61F2QNem+dqYybP6yKGa5g3nMHvY+8rhvMAPXm6WxmwT9J8UofD336PgD1pU17rBa4gBZTvbPjfR27E9rtaVJXOHLHKZ9oLy4XCHJjYasfwYHY0wXyD/qw+xM0tyHpWu/NZC9Pw3kbKw5UgYxIw9T18mUUHpDJTelFbdGLlfDZ2uWlTq/Bw1Wtww2ziZ+cOVNUzmzh72RvSo5SnfiB4mFIs2vYM5GqD48PtYzlNNdBo1FDxQYmiQVq52QEMDOpoQSzzNNEJ37QD27fiTMJi+80AWdO5RSJibhDCePdKMPGTnVsMjbKy0arBldr61b7IHc6Q99KUo00m58OU3oC1XIGRIGyub7YMQN/cFROAyDuz7piWNl+4eM3plkLWxesBgamwSD80fCi9g3GnT4yretJLxpb+DG94L94NrTQk+udrBQLrCCxuGBkBdX4K0b9k5z1zExrwqKPxDsMJ0oP5+JdZeKcU91n/yUB5MGITJjndw6Cb/FhjQYO0ztpNjRXB/6ApuYJ2dG7aHh+PosHAcHOCCsVIXorfQfXoGHiOg8WxEaWmVqGeULtBqKyAPHmqSSqwG2rNpOHriLMp4GiNmR4n7pOpbJlndvSfqnDb0DPsTiC7gk5KrFnrmApKluXGQuWJZsBfkt4uw8S53DGyEve+9qBDEKKpw6MJFzGXnXPtdCXR9A7As3Mtkj8N6rLx2DVMua7GytgGHGuvxh1uF2F1igLyfJxKtTUIhPfNYYShPx9HP+Ez4v2D7rhO48cAPcS+9jjhfy1BbDbLNVje7IIoP6F/PRra1TGc26RlT3BE2PQVx3mVI/3IPyoyjITbqGd09dhFtuZ/sXKSOOqIBNf/QQruxHDXZ99FU2oD6tFsoK2yCk78bnEwmK7SNHG6j21pt+DDYw3FOfzhdK0blNQWUPw3AgLc1UP+0s6sgiZ6lEflXtTComW0i6I5QBA9UoOxKOozDMUpXBeqK85rrImWo5AuGLQbZO0cnx3M6HGsiegP7f78YM56bjBmvr8EHew8hdeMKvLT+FMqhxLDnl0i9dJIvpMWR387Hyo8OYf+O97B4yW5cMcgRNDoRo4R+rbHt/EDKnzdiRYIauqw0rP7JWMxYsgH7iuQYNe8/2ghMdsW4VlfQW66jd1FZXQP0cWQ6wEZqqs11lr7ewtZgz62AiYifloK5XJe8/hbiWi11rYGOp6a0RHrGCbqx/IZ5MLOpArWmCUZIbz1a+B7OzLB80FaSlyAPeA9zRD3zq+61teEo55YOtw/eQb2jBwb8KBghzMbxcbmLksvcqDagySLRhgBfyTjDC42nS1Bj74K+SzWCXeQ73/GhIzBET2B7XK0rS9GVEiKJwgupaKN8VPKHQotTW94XlnJv++gwCvUuUPtbbKR/vwK5mVnIND0yvsGpsznNQSGHPoJV2jYyGc08fSxQI2XTRiyNVaD8+CYs/nVaBykYClHOvwQe/ZEkNkhMFFOY6u6K7z9+B9yHUPZl1pIp/mHw4zPTqiqwX2whiPa5X42KG8dwcHsqchrUGD609azYqvOXhdn8EXwz7XZn54v7fUARgPjkBUgSjkQM92Iqq9XeIBw+yCYGDXelmgyycZjhWwtXeFgunfX0YC5PDarKpTrR/QgD9IHQ8DSCuaXY2EHQdrGXN1zt7+HctXKs57MP2bP1k8piHCxrPVCfoSvBlHMXsfLcJazOzMa43HJUyB2BRj0KrYySLlYHIqbuOtbdAd7QDIS6pggbr2ih8w3C8r7cqCB6JV2qZwBVJN/vywGaiUY9swBzoplb2ccilZgVtGUV7OEpTbLSV6P2Pk99bPkeXyhd2DXdaW/fMqIrWNp/IDRyA+7ZK7F0oB+2syPRk0+BdUSYnx82uVlfXh7j7im8L6+wGKvrHwipk/fcK8fmm/fY5+uNiR1sinJLz71lOVytfF1IzzymNNWgruQs0tP+gnStCyJGWJmwZLq62SNeyJBwNTtLEprTOT3jAJ/xyYjnQcPU7cg1zs7n2KhndDXsO+nhBQuvER7uzK7SVcA4V5/oHAYdH67sA5kNKe7tJnlC5fzDVhuaYvecD9TKOyjb2QD5FDW8+1Sh9J+3UOPSDz4v2Dy0S/QG8kXdERjGbtoB4QhkNsq1y+ajojJZB+M3jwobxpqIXsiuCmF8R6E0hkm0uMs/MJ0WF46LLQJFrJ0/Y5SuVvctbJNW51+C54YqhbSkf17yHnbmAMWZH2Pl8kNtBCY7O67VXfSW6+h9VFUzG9jTF/5WJyo5wCOQ2T0DbA3DMfsnYQmSpkZAqbuBnPQD2LnjLzh1UxJ3Apt0I+mtLsdQxQN4jnCwGDLuI2TlaOD/5Vawh8tkninjPgxuHuj7Y2/hcOvLZc5wY69dTBJvPDhbAe3/vYqrf8/H1Y1XUfiXKjxwYvZNYwMaS6VOJvSZo4an7hbKjwAus/rD+U4ZSj4rh2HgAKgmkY/1WNHZ+FoXyEXVJkQShRdS0Ub5qOQ/lKYsnMyqgFNofEtue6bM6xQO0BekI+dSy5FbcBG5eQXs9tWiopo5q76h0hsk3MMRERkupropr4bO0Rdqi3z56v7sIXCn9d4YRE/BjZotWBarhC5zExa89bENRs3HuMI/QI9AxM8WWzh+P5uIYezD1xeeQypvKDqJa1zRa8Kwwp83iIxfGinkuy/+/pDYQBCWBLyApIUpiBKUiRWsjbnrM/AdT9ETORHD25udr45GoLIa53e8iw/+ZnJ89A3KZAEYEsmc7WbcETbzNcR7WczMN6LLg1bngsDB5rrQY1AAlLXFKLojNRDdi8wV24cGQ4Ny7M7RYr0NKz3l7eaRlUEuPWKf6euPo8OC8b7jA3zdaMAhfm72+8Z6s/ez51zLHmUi/Z18Md/nHnZfv4sMZgT3V9pDy56pafpqZFfaQ6noI/Ukepzu1DMIRUSQC6qytprrmb/9BadLmJMbOVaaaRuNSXy2aqj5L/NwY3pIV82+0ZxsFDGnRj3I+B6JkCD2BGf2FLseonuR2zWhod4AuYsbs2vFQ+XElYQdXN3Ya4V1m1xl34GeMYr79MVnw8Kxy8d8kL6/wpHZ6XXQWuRzIj3zGOESj+kLf474gVLdEqvPopbVzcOHhcKjitWtOk626hkODxouxuyIRmTvSzUPGgrYpmd0hVroXIIQZrHvT4jGBXXaAouVTEQr/JTwflsDnxnm96hM2OurHvc7nAcih1u0Eg5dtdrQ0xVeo/vg9t5K3G+0Z6rIAfXFdbhfqkftdT1c3Kw9CIneSx7y2efmEzwSYeFBkGuZ7jCxUcqraiDvNxDmwzOhUHsDVaVtL9lQqkwnUgVA5S69fFg6HGsiegMrtnyN0+lbscpkHAezVeALo3XlhWKdeUJnCtknpgzEsAlSE2e0Bl48c0fFLRwRW1ph2/nlaHfHIgVfA2bkYca1uoPech29k4bcPGiZHomNC5JaTHAejwnPj0GYp617iauh9lWg7MxW7DtxDDn5edDVMKXXyaFyQTcGMF1oGsx0DoKX6bAQ6a1u4f6NWuiZL+MyxMQedpDDOZDd+LX3oDeqAjPYB/ygUVgR2sfbBS79xIO7TXwSloK97uMqdITdJF8MeNsPyrAHaCptQhM3VN2c4RJgD/1Ndn6xWwtDPOETWIvSnTV4wPSP3MMOdddr0Vh4D/du20FOdtHjRWfja10gF9SIeQ7Tnq93BXXnTyC33h1R48eIzqI2A7l3VBg6bSrUTDlyZF4TMSNpMeaO54ZjI3Iv34AhcCKmR/pAuMX7BGD4s1MRF+Il3ny3mSItdcfwaTOlczgwe+IFxIfJUHRe2geR6HFS3t8sGDUozUZ6aRh+8bvVWCMdK1Kk1A/+b2BHRgbOH9mAFLEF63fwNBLiJtXrliYiaek6bF4QBQUzA05s3SL1OoS1B/Kgl4XixU2bserVyVj0m61Ym6BmD4Fs7P9bptSPICy4eQMVdr6InjwTGnfJW1AEIez5mYhwqUFhrrWRlUbkZxegrl80Yn3anp2vHjQQTib7fTSjZ3pPC/gEjZAGzaSZ+f2rcX7/V9DKpLSm/HAxWpE3kPVdBZzCEhAfzHWhqOemDHNH1eU20hcSXQsPGvKVhvJ6FBbpoHBzw6q+xsMJM6VuM1UanBw9BNvdxId62u3bzMB3xdjBfljjLBf2Lvzf/TWY1Y890SruIE1aSfj13UpoHVwRM1iDTSpX/G83T2yPYL/PvgbnSmqEFUTN2LlgzWAvaAtK8AcheKmHro750g78KckcW/a10TfaENUkHg3dqGegDkeAczU7h+VqxBpkC4omEGHCr2TOc7kMmtGJCBOuQQFlsKRD8s5Iq3eYzXU+j/3OWEyNDoKcWaPcJpsdHwDDtbYCl0RXsr7oMiZdMD82F/PEjnU4d/ky5t4WFYalnjlUeQe3mmQIDWH6w92R6Rk5Fqv88IaGebN1t5FhXAhyX4fCegeoBmqwXeWERBN91FBaha2mJj/pmceLmlyU1bogbEIyInwl26GPD/xHv4LRAxpRlGex7YOEuLo5FLFMUZTltKQaNMNmPQM4hSdhaqQD8v+1Bzm1ni32jNJd9ONs1TOCf6dA2DMviHrTXgXNxLkY7laN3At5UieiTYprUVvrAI/o/vB8XgEHXzkcE/vDR2OPugId6o1ZDGJUGPCbEPSfZR5g7NrVhjK4zOsHB54++Xteb0JjzQPYO4ojpzJPBfR62tnncUObUwCd70jEBwKFV8x97Ypvc1DmFoUp8eHCPS7evwkIk2mRddFa9oQb0JY1QjloIob34/oiFBHTpiLEbHbBQ9DhWBPRG9h2sRBwDsV0aRwnaelafL4sTthf8MLej6VewAdfZgrjQs/9ThwXmvbqSuz4P7MQJGvAlZNbmoNmc5auxpoVrzSvELTt/Gk4kdMAqOKw7NO1WDpvsnD+rZtmYTB7eBVnpTVnsLJpXItheR1dja3X8dSi/wZHT2mhiEzE3ISR8GF2iFyhgip4Jua8zOq6bJy8aC1/pDXq0cAehh4DoqAUHl3MjxqciOhWqUrbp+LsWRTJQpEw5wWEMV2nCpiIKXOGwsPUnCa91T2cq0T5nQdwZx+aYBdpFHB91Q++zNapvFAt2TrMXvlZCEL/lzcUQkp3A2o2FeLme+bHbWFgphq32euqs/w18OCcDrUOzug/oz/cn3eG41g3eC5Sw8uhHhWnLALUzP/qO8MddScrUC8sALiP+7Ws2Zl/ufqgD7utG+vJx3qc6Cie1h11WV+V7zvmOUx5QLFn6z6+frhd1onhae+hGKFhZmBmtkk6mQqUNARi6NBBcC45hxt3ddBe08FlUCzixo3HiNhxiI7wQ1NxOg4e+w71/P+kMhfX6/wRMe4ZjB45DiNGREL9oBBH9x5AuXB361GWXw77EGa4CucYi8ggV1Rn7ca+bKNhOgCDYvuj/jJT1MaZr1auzzlgJMIdb+HbvIdYc060y4uL3kA4n3bo6otBocFmx0CHfHy0JxtwH425P4qCV5MW57bsx7f8jbmHUOA0HMOGR2BYbBzio/3hZtDixOYV+PedLd8sXcYZ6AaMRszQMAwbMwmjwlVQ6PKQuvY/sf5bCh8TbfCgBAU3mtAvbBiime7gOmhEdAQGOuuQczgV32ilESyuL/rrcSU7T9ybR1cJRchw9NNfxrGMq8yU5LjDf2gkHG+dwvd3ojH6uVAg7wC+LbY0SJtQ0eSPYUP7wZCThZL7o/DM9BBmhDqjX/hwRA41OZguuy79zsaSHJQ4RCBm7FjEjuR6jhkb7P7Ye+oarGSxJLoauRuWDGAOBxzg4dkXwSrT4wGqinU4wbqFuvRFvKcCdZVl+JR9Me411uBWlQFhnj6I9PPBRLUXwpR9UFd6HRsL76J5PfSDBmRUNrD3eiPYV4Uwb3d4NN3FudzreLNONBBEZPjfmhDE1l/H2lI9xKdVE6oaHDA9NAALfb3gb1eOI9fv4oTp24ieo7v0TLkDguOmYpBdPk5kGuUm3HGA57Ch6N/4Ha6U6FBxtQz2gSMweiz7/bGjERnoins5h7H/GxMdcjcfhXf7M5trHEZJNpl9yVnsOfSNaJMRj5woV0+MYvbTrZI72C/5kJZ6Bg/0OF9Rh+Fu3gj182Z6xhvDeYrTO1p8+v1t/LV5TL4Jh6p0GO7ogYgBvhhr1Efaa/i/N2twQepFeuZxpEbwqRz9IzCC2QiCnhkxHCG+dtCeSMPBK1JqApdQREY4osTo/zCbutFrJAKVN3HmUBYqpc/TK3Qc+tV/h+9u1HRCz/hi1JSx6KdgbUFDze2Zof1xz/g7bdIzRv+O+Yij2d8SE42gvnXMLWA6k30niY54gPv5NWgIUMIzzBNeMR5w93ZAfb4Wt/6nDg+MOkHtAvdBjnhQcRe6K5KCcZDD/UUfuOnLcWtHPbvzbaCvI5RRLkBZFXS55u/o88IA9PesQsnHtWiSRIbaJrhM6A+vMX3h5laH8gOVaLC2LxTRe6mtghO3URxuIvNItvmkg/uFuHrLDSEj4zHWeP86V+L8gR34rlr6EljYPFUleriHMr0xjOuLwVDeOobLjSHwEvQQ3wj4YcZzRL3Y7lgT0eNYjuPER2vQl4/3fPC/sPSTlvEePi50pikCY6OjMGxUHBJGhcFLocOVz/+I5e+elxYMqJGyciWzVQw49c9DuMpabDu/DmfOaeEcwvqER2HU+EnC+fs51aJg/wb8+j8OSdk5bBzXsnId5sQjaUkY+lbl4W+fpktt1mi7n23X8XTTWH4ZBRUeCIgcyfRQDIZFRyM8sC8zfU5i95fHmm2eVj6YgKnOYbqk3BlBw0ZjJNdp3I/yuIHvK3zhjRuSvrGioyS/zb1a0mPse5efr0OfAYMRzWyj0AAFStIzcEcd0tKH9FY3IdlFGjeoQj2hGuoOpasBlVk3cfug0RO2h3wUs0uc7+PumRq+W4xVHKJVcHerR/Xx2hYfWn8fdaX3YR/WF17sd7gHuUJuqEHp/lu4d8X0Q7OH44IB6FtbirJdxvWj7NocZPAc3x/uYzygtKvC7S9rYCBzt9fj7aMW4mQdxdO6o24XNCiKhxJ5jTXxLxkre7g+JGokci5148qtPuzGdXSAvqYCDVY9FAWclO5wMFRDV9vGHaRQQSlvRK2uGhSff9JQY1RCJFS4g4uHM9tJwxCK8TM0UOoKsf84zUgmOoGgP2TMoGtHx/QG7F3g5OIIQ5u6kuit9LeXIcq+CYWND9CedgqVyaBhTzEhXWknEM8PVBgMOMcf3UTvozfoGcHeQge2kmhzob4MdV2xuRXx6GC2+2SZfcd6wNZ+FpCeeQwQ7nEF+D6HuhpbZ9P3BDbqGa43Hep7+d/Si3G0g727HR5UNPGMW70H43VVs+tqFZEmngwcIHfxhOJBJ2wehQtk+pquH8vpcKyJ6Hmk8Z6Gjsdx/GInYqjHPSvjQq9g87E3MKxwC0Yv3CS1GbH1/LZfR9u0dx1Ej9AlY8UPodMssXdg9pnpwzgAcclJ8L+eitQTFlloSG91D672fEit++wiD3Z+SOlKO0N3XxfR5URExuK77LOt4mePoi4GDnsZ3R44JAiCIAiCIAiCIAiCIAiC6Az+q7H3i8nQbR+Leeultp6gt1wH0bvoNxVJs4JQtPcfOCVknBG3n5k+JQBl+/+Eo7SfPEE8VjQHDnsAIWuyEFE0KY25TC3bH5WcIAiCIAiCIAiCIAiCIAiiVzEO0OUcwr6eDtb1lusgehclGci8BoTNfBOLfvoWXl38FpKe90PDuS8paEgQjzMW8bNHEb+jFYcEQRAEQRAEQRAEQRAEQRAE8SRgTCkPA6UhJYjHmJ5fcSjkLjXFWLcsjXS3nCAIgiAIgiAIgiAIgiAIgiCITnG/GjpdGTsoaEgQTwadja/9cLkUOOQbH5pirFuWRrpbThAEQRAEQRAEQRAEQRAEQRAEQRBPM52Nr/1wudU9Dnu6NBgaIXNwEF4TBEEQBEEQBEEQBEEQBEEQBEEQxNMAj4/xOJmAjXG1rizFwKGdFFHsJWVdbQ1cnJXCa4IgCIIgCIIgCIIgCIIgCIIgCIJ4GuDxMR4nE7AxrtaVZQd7HBp5tPW71Xfg0ddLqhEEQRAEQRAEQRAEQRAEQRAEQRDEkw+Pj/E4mUjXxt9sqXewx6GRR1uvrCwXlmL29fSWWgiCIAiCIAiCIAiCIAiCIAiCIAjiyYXHxXh8jMfJRLo2/mZL3WLFoVQac5latj9Cuba4ED6+fhQ8JAiCIAiCIAiCIAiCIAiCIAiCIJ5oeDyMx8V4fKy9+Jn0wnrZBXK7oEFRxtZeh6OTM9R+GhgaG1FVWY6aWp3wmiAIgiAIgiAIgiAIgiAIgiAIgiAeZ/jqQr6nIU9Pyl/zoGF9Xa0k7Rl6deDQSF/2H+bm7gknZxfIZA5SK0EQBEEQBEEQBEEQBEEQBEEQBEE8nhgMjairrRH2NGxJT9qz2AUPihIWJvIspqalEct2kpOc5C2QnOQkJznJSU5ykpOc5CRvgeQkJznJSU5ykpOc5CQneQskJ/njKLcXOz2QOreUIq3bSS6WIiQnufVShOQkt16KkJzk1ksRkpPceilCcpJbL0VITnLrpQjJSW69FCE5ya2XIiQnufVShOQkt16KkJzk1ksRkpPceilC8p6SPxapSgmCIAiCIAiCIAiCIAiCIAiCIAiC6F7spZIgCIIgCIIgCIIgCIIgCIIgCIIgiKcYe56zlEMllVRSSSWVVFJJJZVUUkkllVRSSSWVVFJJJZVUUkkllVQ+xaX1VKW8ydjFGiQnOcnbhuQkJ3nbkJzkJG8bkpOc5G1DcpKTvG1ITnKStw3JSU7ytiE5yUneNiQn+dMtb5WqVOze9ptI3vLTGiRv+WkNkrf8tAbJW35ag+QtP61B8paf1iB5y09rkLzlpzVI3vLTGiRv+WkNkrf8tAbJW35ag+QtP61B8paf1iB5y09rkLzlpzVI3vLTGiRv+WkNkrf8tAbJW35ag+QtP61B8paf1iB5y09rkLzlpzVILv5sY8UhQRAEQRAEQRAEQRAEQRAEQRAEQRBPE/Z2UnCxVSkWrdtJLpZiQXKSWy/FguQkt16KBclJbr0UC5KT3HopFiQnufVSLEhOcuulWJCc5NZLsSA5ya2XYkFyklsvxYLkJLdeigXJSW69FAuSk9x6KRYk7xE58P8Dt8v67kFrD3wAAAAASUVORK5CYII=" } }, "cell_type": "markdown", "metadata": {}, "source": [ "![image.png](attachment:image.png)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Price, EPS next Y/5Y, Beta, Number of Shares Outstanding\n", "\n", "Extract (using requests.get) and Parse (using Beautiful Soup) data from Finviz table in the Finviz website (see screenshot above), needed to calculate intrinsic value of stock." ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'Price': 189.69, 'EPS next Y': 8.99, 'EPS next 5Y': 6.14, 'Beta': 1.32}" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# List of data we want to extract from Finviz Table\n", "# Price is the current stock price\n", "# EPS next Y is the estimated earnings growth for next year\n", "# EPS next 5Y is the estimated earnings growth for next 5 years (if this is not present on finviz, we will use EPS next Y instead)\n", "# Beta captures the volatility of the stock, used for estimating discount rate later\n", "# Shs Outstand is the number of shares present in the market\n", "metric = ['Price', 'EPS next Y', 'EPS next 5Y', 'Beta']\n", "\n", "def fundamental_metric(soup, metric):\n", " # the table which stores the data in Finviz has html table attribute class of 'snapshot-td2'\n", " return soup.find_all(text = metric)[-1].find_next(class_='snapshot-td2').text\n", " \n", "def get_finviz_data(ticker):\n", " try:\n", " url = (\"http://finviz.com/quote.ashx?t=\" + ticker.lower())\n", " soup = bs(requests.get(url,headers={'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:20.0) Gecko/20100101 Firefox/20.0'}).content)\n", " dict_finviz = {} \n", " for m in metric: \n", " dict_finviz[m] = fundamental_metric(soup,m)\n", " for key, value in dict_finviz.items():\n", " # replace percentages\n", " if (value[-1]=='%'):\n", " dict_finviz[key] = value[:-1]\n", " dict_finviz[key] = float(dict_finviz[key])\n", " # billion\n", " if (value[-1]=='B'):\n", " dict_finviz[key] = value[:-1]\n", " dict_finviz[key] = float(dict_finviz[key])*1000000000 \n", " # million\n", " if (value[-1]=='M'):\n", " dict_finviz[key] = value[:-1]\n", " dict_finviz[key] = float(dict_finviz[key])*1000000\n", " try:\n", " dict_finviz[key] = float(dict_finviz[key])\n", " except:\n", " pass \n", " except Exception as e:\n", " print (e)\n", " print ('Not successful parsing ' + ticker + ' data.') \n", " return dict_finviz\n", "\n", "finviz_data = get_finviz_data(ticker)\n", "\n", "finviz_data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Estimate Discount Rate from Beta\n", "\n", "Beta shows the volatility of the stock, the higher the beta, we want to be more conservative by increasing the discount rate also." ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Discount Rate: 10\n" ] } ], "source": [ "beta = finviz_data['Beta']\n", "\n", "# Beta shows the volatility of the stock, \n", "# the higher the beta, we want to be more conservative by increasing the discount rate also.\n", "discount_rate = 9\n", "if(beta<0.80):\n", " discount_rate = 7\n", "elif(beta>=0.80 and beta<1):\n", " discount_rate = 8\n", "elif(beta>=1 and beta<1.1):\n", " discount_rate = 8.5\n", "elif(beta>=1.1 and beta<1.2):\n", " discount_rate = 9\n", "elif(beta>=1.2 and beta<1.3):\n", " discount_rate = 9.5\n", "elif(beta>=1.3 and beta<1.4):\n", " discount_rate = 10\n", "elif(beta>=1.4 and beta<1.6):\n", " discount_rate = 10.5\n", "elif(beta>=1.61):\n", " discount_rate = 11 \n", "\n", "print(\"Discount Rate: \", discount_rate)" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "6.14" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "finviz_data['EPS next 5Y']" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "8.99" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "finviz_data['EPS next Y']" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Print All Data Needed for Intrinsic Value Calculation\n", "## Including EPS Growth 5Y, Shares Outstanding" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "TTM Free Cash Flow: 99584000000\n", "Total Debt: 111088000000\n", "Cash and ST Investments: 61555000000\n", "EPS Growth 5Y: 6.14\n", "EPS Growth 6Y to 10Y: 3.07\n", "Long Term Growth Rate: 3.0\n", "Discount Rate: 10\n", "Shares Outstanding: 15552799744\n" ] } ], "source": [ "EPS_growth_5Y = finviz_data['EPS next 5Y']\n", "# sometimes EPS next 5Y is empty and shows as a '-' string, in this case use EPS next Y\n", "if isinstance(EPS_growth_5Y, str):\n", " if not EPS_growth_5Y.isdigit():\n", " EPS_growth_5Y = finviz_data['EPS next Y']\n", "EPS_growth_6Y_to_10Y = EPS_growth_5Y/2 # Half the previous growth rate, conservative estimate\n", "# Long term = previous growth rate or around long term inflation rate, whichever is lower to be conservative estimate\n", "long_term_growth_rate = np.minimum(EPS_growth_6Y_to_10Y, 3) \n", "\n", "print(\"TTM Free Cash Flow: \", cash_flow)\n", "print(\"Total Debt: \", total_debt)\n", "print(\"Cash and ST Investments: \", cash_and_ST_investments)\n", "\n", "print(\"EPS Growth 5Y: \", EPS_growth_5Y)\n", "print(\"EPS Growth 6Y to 10Y: \", EPS_growth_6Y_to_10Y)\n", "print(\"Long Term Growth Rate: \", long_term_growth_rate)\n", "\n", "print(\"Discount Rate: \", discount_rate)\n", "\n", "print(\"Shares Outstanding: \", shares_outstanding)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Calculate Intrinsic Value\n", "1. First Project Cash Flows from Year 1 to Year 10 using Present (TTM) Free Cash Flow\n", "2. Discount the Cash Flows to Present Value\n", "3. Calculate the Terminal Value after Year 10 (Discounted to Present Value) Assuming the Company will Grow at a Constant Steady Rate Forever (https://corporatefinanceinstitute.com/resources/financial-modeling/dcf-terminal-value-formula/)\n", "4. Add the Cash Flows and the Terminal Value Up\n", "5. Then Account for the Cash + Short Term Investments and Subtract Total Debt\n", "6. Divide by Total Number of Shares Outstanding" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Discounted Cash Flows\n", "\n", "Year 2024: $96089506909.09088\n", "Year 2025: $92717638757.55368\n", "Year 2026: $89464092524.78859\n", "Year 2027: $86324716187.10056\n", "Year 2028: $83295503419.08046\n", "Year 2029: $78047886703.67838\n", "Year 2030: $73130869841.34662\n", "Year 2031: $68523625041.34178\n", "Year 2032: $64206636663.737236\n", "Year 2033: $60161618553.92178\n" ] }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "alignmentgroup": "True", "hovertemplate": "variable=Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Cash Flow", "marker": { "color": "#636efa", "pattern": { "shape": "" } }, "name": "Cash Flow", "offsetgroup": "Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 105698457599.99998, 112188342896.63997, 119076707150.49365, 126388016969.53395, 134148241211.46332, 138266592216.65524, 142511376597.70654, 146886475859.25613, 151395890668.13528, 156043744511.64703 ], "yaxis": "y" }, { "alignmentgroup": "True", "hovertemplate": "variable=Discounted Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Discounted Cash Flow", "marker": { "color": "#EF553B", "pattern": { "shape": "" } }, "name": "Discounted Cash Flow", "offsetgroup": "Discounted Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 96089506909.09088, 92717638757.55368, 89464092524.78859, 86324716187.10056, 83295503419.08046, 78047886703.67838, 73130869841.34662, 68523625041.34178, 64206636663.737236, 60161618553.92178 ], "yaxis": "y" } ], "layout": { "barmode": "group", "legend": { "title": { "text": "variable" }, "tracegroupgap": 0 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "AAPL Projected Free Cash Flows" }, "xaxis": { "anchor": "y", "domain": [ 0, 1 ], "tickangle": -90, "title": { "text": "Forecasted Year" }, "type": "category" }, "yaxis": { "anchor": "x", "domain": [ 0, 1 ], "title": { "text": "Free Cash Flows" } } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Growth in Perpuity Approach\n", "\n", "10th Year Cashflow: 60161618553.92178\n", "Long Term Growth Rate: 3.0\n", "Terminal Value: 885235244436.2776\n" ] } ], "source": [ "def calculate_intrinsic_value(cash_flow, total_debt, cash_and_ST_investments, \n", " EPS_growth_5Y, EPS_growth_6Y_to_10Y, long_term_growth_rate,\n", " shares_outstanding, discount_rate): \n", " \n", " # Convert all percentages to decmials\n", " EPS_growth_5Y_d = EPS_growth_5Y/100\n", " EPS_growth_6Y_to_10Y_d = EPS_growth_6Y_to_10Y/100\n", " long_term_growth_rate_d = long_term_growth_rate/100\n", " discount_rate_d = discount_rate/100\n", " print(\"Discounted Cash Flows\\n\")\n", " \n", " # Lists of projected cash flows from year 1 to year 20\n", " cash_flow_list = []\n", " cash_flow_discounted_list = []\n", " year_list = []\n", " \n", " \n", " # Years 1 to 5\n", " for year in range(1, 6):\n", " year_list.append(year + latest_year)\n", " cash_flow*=(1 + EPS_growth_5Y_d) \n", " cash_flow_list.append(cash_flow)\n", " cash_flow_discounted = cash_flow/((1 + discount_rate_d)**year)\n", " cash_flow_discounted_list.append(cash_flow_discounted)\n", " print(\"Year \" + str(year + latest_year) + \": $\" + str(cash_flow_discounted)) ## Print out the projected discounted cash flows\n", " \n", " # Years 6 to 10\n", " for year in range(6, 11):\n", " year_list.append(year + latest_year)\n", " cash_flow*=(1 + EPS_growth_6Y_to_10Y_d)\n", " cash_flow_list.append(cash_flow)\n", " cash_flow_discounted = cash_flow/((1 + discount_rate_d)**year)\n", " cash_flow_discounted_list.append(cash_flow_discounted)\n", " print(\"Year \" + str(year + latest_year) + \": $\" + str(cash_flow_discounted)) ## Print out the projected discounted cash flows\n", " \n", " df = pd.DataFrame.from_dict({'Year': year_list, 'Cash Flow': cash_flow_list, 'Discounted Cash Flow': cash_flow_discounted_list})\n", " df = df.set_index('Year')\n", " \n", " # Plot using matplotlib\n", " # df.plot(kind='bar', title = 'Projected Cash Flows of ' + ticker)\n", " # plt.show()\n", " \n", " # Plot using plotly\n", " fig_cash_forecast = px.bar(df, barmode='group', title=ticker + ' Projected Free Cash Flows')\n", " fig_cash_forecast.update_xaxes(type='category', tickangle=270)\n", " fig_cash_forecast.update_xaxes(tickangle=270, title='Forecasted Year')\n", " fig_cash_forecast.update_yaxes(title='Free Cash Flows')\n", " fig_cash_forecast.show()\n", "\n", " # Growth in Perpuity Approach \n", " print(\"Growth in Perpuity Approach\\n\")\n", " cashflow_10Y = cash_flow_discounted_list[-1]\n", " print(\"10th Year Cashflow: \", cashflow_10Y)\n", " print(\"Long Term Growth Rate: \", long_term_growth_rate)\n", " # Formula to Calculate: https://corporatefinanceinstitute.com/resources/financial-modeling/dcf-terminal-value-formula/\n", " terminal_value = cashflow_10Y*(1+long_term_growth_rate_d)/(discount_rate_d-long_term_growth_rate_d)\n", " print(\"Terminal Value: \", terminal_value)\n", " \n", " \n", " intrinsic_value = (sum(cash_flow_discounted_list) + terminal_value - total_debt + cash_and_ST_investments)/shares_outstanding\n", " \n", " return intrinsic_value\n", "\n", "\n", "intrinsic_value = calculate_intrinsic_value(cash_flow, total_debt, cash_and_ST_investments, \n", " EPS_growth_5Y, EPS_growth_6Y_to_10Y, long_term_growth_rate,\n", " shares_outstanding, discount_rate) " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Print Intrinsic Value, Current Share Price, Margin of Safety" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Intrinsic Value: 104.65410510193459\n", "Current Price: 189.69\n", "Margin of Safety: -81.25423729459942\n" ] } ], "source": [ "print(\"Intrinsic Value: \", intrinsic_value)\n", "current_price = finviz_data['Price']\n", "print(\"Current Price: \", current_price)\n", "print(\"Margin of Safety: \", (1-current_price/intrinsic_value)*100) " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Calculate Intrinsic Value for Different Discount Rates and Long Term Growth Rates" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "discount_rates = [discount_rate-2, discount_rate-1.5, \n", " discount_rate-1, discount_rate-0.5, \n", " discount_rate, \n", " discount_rate+0.5, discount_rate+1,\n", " discount_rate+1.5, discount_rate+2]" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [], "source": [ "long_term_growth_rates = [long_term_growth_rate-1, long_term_growth_rate-0.5, \n", " long_term_growth_rate, \n", " long_term_growth_rate+0.5, long_term_growth_rate+1]" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Discounted Cash Flows\n", "\n", "Year 2024: $97868942222.2222\n", "Year 2025: $96183421550.61725\n", "Year 2026: $94526929290.57883\n", "Year 2027: $92898965508.35217\n", "Year 2028: $91299038880.15276\n", "Year 2029: $87131406827.56801\n", "Year 2030: $83154019460.34659\n", "Year 2031: $79358192460.9067\n", "Year 2032: $75735637934.68196\n", "Year 2033: $72278446314.14508\n" ] }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "alignmentgroup": "True", "hovertemplate": "variable=Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Cash Flow", "marker": { "color": "#636efa", "pattern": { "shape": "" } }, "name": "Cash Flow", "offsetgroup": "Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 105698457599.99998, 112188342896.63997, 119076707150.49365, 126388016969.53395, 134148241211.46332, 138266592216.65524, 142511376597.70654, 146886475859.25613, 151395890668.13528, 156043744511.64703 ], "yaxis": "y" }, { "alignmentgroup": "True", "hovertemplate": "variable=Discounted Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Discounted Cash Flow", "marker": { "color": "#EF553B", "pattern": { "shape": "" } }, "name": "Discounted Cash Flow", "offsetgroup": "Discounted Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 97868942222.2222, 96183421550.61725, 94526929290.57883, 92898965508.35217, 91299038880.15276, 87131406827.56801, 83154019460.34659, 79358192460.9067, 75735637934.68196, 72278446314.14508 ], "yaxis": "y" } ], "layout": { "barmode": "group", "legend": { "title": { "text": "variable" }, "tracegroupgap": 0 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "AAPL Projected Free Cash Flows" }, "xaxis": { "anchor": "y", "domain": [ 0, 1 ], "tickangle": -90, "title": { "text": "Forecasted Year" }, "type": "category" }, "yaxis": { "anchor": "x", "domain": [ 0, 1 ], "title": { "text": "Free Cash Flows" } } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Growth in Perpuity Approach\n", "\n", "10th Year Cashflow: 72278446314.14508\n", "Long Term Growth Rate: 2.0\n", "Terminal Value: 1228733587340.4663\n", "Discounted Cash Flows\n", "\n", "Year 2024: $97868942222.2222\n", "Year 2025: $96183421550.61725\n", "Year 2026: $94526929290.57883\n", "Year 2027: $92898965508.35217\n", "Year 2028: $91299038880.15276\n", "Year 2029: $87131406827.56801\n", "Year 2030: $83154019460.34659\n", "Year 2031: $79358192460.9067\n", "Year 2032: $75735637934.68196\n", "Year 2033: $72278446314.14508\n" ] }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "alignmentgroup": "True", "hovertemplate": "variable=Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Cash Flow", "marker": { "color": "#636efa", "pattern": { "shape": "" } }, "name": "Cash Flow", "offsetgroup": "Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 105698457599.99998, 112188342896.63997, 119076707150.49365, 126388016969.53395, 134148241211.46332, 138266592216.65524, 142511376597.70654, 146886475859.25613, 151395890668.13528, 156043744511.64703 ], "yaxis": "y" }, { "alignmentgroup": "True", "hovertemplate": "variable=Discounted Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Discounted Cash Flow", "marker": { "color": "#EF553B", "pattern": { "shape": "" } }, "name": "Discounted Cash Flow", "offsetgroup": "Discounted Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 97868942222.2222, 96183421550.61725, 94526929290.57883, 92898965508.35217, 91299038880.15276, 87131406827.56801, 83154019460.34659, 79358192460.9067, 75735637934.68196, 72278446314.14508 ], "yaxis": "y" } ], "layout": { "barmode": "group", "legend": { "title": { "text": "variable" }, "tracegroupgap": 0 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "AAPL Projected Free Cash Flows" }, "xaxis": { "anchor": "y", "domain": [ 0, 1 ], "tickangle": -90, "title": { "text": "Forecasted Year" }, "type": "category" }, "yaxis": { "anchor": "x", "domain": [ 0, 1 ], "title": { "text": "Free Cash Flows" } } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Growth in Perpuity Approach\n", "\n", "10th Year Cashflow: 72278446314.14508\n", "Long Term Growth Rate: 2.5\n", "Terminal Value: 1347007408581.7947\n", "Discounted Cash Flows\n", "\n", "Year 2024: $97868942222.2222\n", "Year 2025: $96183421550.61725\n", "Year 2026: $94526929290.57883\n", "Year 2027: $92898965508.35217\n", "Year 2028: $91299038880.15276\n", "Year 2029: $87131406827.56801\n", "Year 2030: $83154019460.34659\n", "Year 2031: $79358192460.9067\n", "Year 2032: $75735637934.68196\n", "Year 2033: $72278446314.14508\n" ] }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "alignmentgroup": "True", "hovertemplate": "variable=Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Cash Flow", "marker": { "color": "#636efa", "pattern": { "shape": "" } }, "name": "Cash Flow", "offsetgroup": "Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 105698457599.99998, 112188342896.63997, 119076707150.49365, 126388016969.53395, 134148241211.46332, 138266592216.65524, 142511376597.70654, 146886475859.25613, 151395890668.13528, 156043744511.64703 ], "yaxis": "y" }, { "alignmentgroup": "True", "hovertemplate": "variable=Discounted Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Discounted Cash Flow", "marker": { "color": "#EF553B", "pattern": { "shape": "" } }, "name": "Discounted Cash Flow", "offsetgroup": "Discounted Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 97868942222.2222, 96183421550.61725, 94526929290.57883, 92898965508.35217, 91299038880.15276, 87131406827.56801, 83154019460.34659, 79358192460.9067, 75735637934.68196, 72278446314.14508 ], "yaxis": "y" } ], "layout": { "barmode": "group", "legend": { "title": { "text": "variable" }, "tracegroupgap": 0 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "AAPL Projected Free Cash Flows" }, "xaxis": { "anchor": "y", "domain": [ 0, 1 ], "tickangle": -90, "title": { "text": "Forecasted Year" }, "type": "category" }, "yaxis": { "anchor": "x", "domain": [ 0, 1 ], "title": { "text": "Free Cash Flows" } } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Growth in Perpuity Approach\n", "\n", "10th Year Cashflow: 72278446314.14508\n", "Long Term Growth Rate: 3.0\n", "Terminal Value: 1488935994071.3884\n", "Discounted Cash Flows\n", "\n", "Year 2024: $97868942222.2222\n", "Year 2025: $96183421550.61725\n", "Year 2026: $94526929290.57883\n", "Year 2027: $92898965508.35217\n", "Year 2028: $91299038880.15276\n", "Year 2029: $87131406827.56801\n", "Year 2030: $83154019460.34659\n", "Year 2031: $79358192460.9067\n", "Year 2032: $75735637934.68196\n", "Year 2033: $72278446314.14508\n" ] }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "alignmentgroup": "True", "hovertemplate": "variable=Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Cash Flow", "marker": { "color": "#636efa", "pattern": { "shape": "" } }, "name": "Cash Flow", "offsetgroup": "Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 105698457599.99998, 112188342896.63997, 119076707150.49365, 126388016969.53395, 134148241211.46332, 138266592216.65524, 142511376597.70654, 146886475859.25613, 151395890668.13528, 156043744511.64703 ], "yaxis": "y" }, { "alignmentgroup": "True", "hovertemplate": "variable=Discounted Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Discounted Cash Flow", "marker": { "color": "#EF553B", "pattern": { "shape": "" } }, "name": "Discounted Cash Flow", "offsetgroup": "Discounted Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 97868942222.2222, 96183421550.61725, 94526929290.57883, 92898965508.35217, 91299038880.15276, 87131406827.56801, 83154019460.34659, 79358192460.9067, 75735637934.68196, 72278446314.14508 ], "yaxis": "y" } ], "layout": { "barmode": "group", "legend": { "title": { "text": "variable" }, "tracegroupgap": 0 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "AAPL Projected Free Cash Flows" }, "xaxis": { "anchor": "y", "domain": [ 0, 1 ], "tickangle": -90, "title": { "text": "Forecasted Year" }, "type": "category" }, "yaxis": { "anchor": "x", "domain": [ 0, 1 ], "title": { "text": "Free Cash Flows" } } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Growth in Perpuity Approach\n", "\n", "10th Year Cashflow: 72278446314.14508\n", "Long Term Growth Rate: 3.5\n", "Terminal Value: 1662404265225.3367\n", "Discounted Cash Flows\n", "\n", "Year 2024: $97868942222.2222\n", "Year 2025: $96183421550.61725\n", "Year 2026: $94526929290.57883\n", "Year 2027: $92898965508.35217\n", "Year 2028: $91299038880.15276\n", "Year 2029: $87131406827.56801\n", "Year 2030: $83154019460.34659\n", "Year 2031: $79358192460.9067\n", "Year 2032: $75735637934.68196\n", "Year 2033: $72278446314.14508\n" ] }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "alignmentgroup": "True", "hovertemplate": "variable=Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Cash Flow", "marker": { "color": "#636efa", "pattern": { "shape": "" } }, "name": "Cash Flow", "offsetgroup": "Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 105698457599.99998, 112188342896.63997, 119076707150.49365, 126388016969.53395, 134148241211.46332, 138266592216.65524, 142511376597.70654, 146886475859.25613, 151395890668.13528, 156043744511.64703 ], "yaxis": "y" }, { "alignmentgroup": "True", "hovertemplate": "variable=Discounted Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Discounted Cash Flow", "marker": { "color": "#EF553B", "pattern": { "shape": "" } }, "name": "Discounted Cash Flow", "offsetgroup": "Discounted Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 97868942222.2222, 96183421550.61725, 94526929290.57883, 92898965508.35217, 91299038880.15276, 87131406827.56801, 83154019460.34659, 79358192460.9067, 75735637934.68196, 72278446314.14508 ], "yaxis": "y" } ], "layout": { "barmode": "group", "legend": { "title": { "text": "variable" }, "tracegroupgap": 0 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "AAPL Projected Free Cash Flows" }, "xaxis": { "anchor": "y", "domain": [ 0, 1 ], "tickangle": -90, "title": { "text": "Forecasted Year" }, "type": "category" }, "yaxis": { "anchor": "x", "domain": [ 0, 1 ], "title": { "text": "Free Cash Flows" } } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Growth in Perpuity Approach\n", "\n", "10th Year Cashflow: 72278446314.14508\n", "Long Term Growth Rate: 4.0\n", "Terminal Value: 1879239604167.7722\n", "Discounted Cash Flows\n", "\n", "Year 2024: $97417933271.88939\n", "Year 2025: $95298980990.58377\n", "Year 2026: $93226118362.58582\n", "Year 2027: $91198342884.8374\n", "Year 2028: $89214673859.87686\n", "Year 2029: $84749828891.58995\n", "Year 2030: $80508431924.94171\n", "Year 2031: $76479300262.70729\n", "Year 2032: $72651810857.85475\n", "Year 2033: $69015872305.24507\n" ] }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "alignmentgroup": "True", "hovertemplate": "variable=Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Cash Flow", "marker": { "color": "#636efa", "pattern": { "shape": "" } }, "name": "Cash Flow", "offsetgroup": "Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 105698457599.99998, 112188342896.63997, 119076707150.49365, 126388016969.53395, 134148241211.46332, 138266592216.65524, 142511376597.70654, 146886475859.25613, 151395890668.13528, 156043744511.64703 ], "yaxis": "y" }, { "alignmentgroup": "True", "hovertemplate": "variable=Discounted Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Discounted Cash Flow", "marker": { "color": "#EF553B", "pattern": { "shape": "" } }, "name": "Discounted Cash Flow", "offsetgroup": "Discounted Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 97417933271.88939, 95298980990.58377, 93226118362.58582, 91198342884.8374, 89214673859.87686, 84749828891.58995, 80508431924.94171, 76479300262.70729, 72651810857.85475, 69015872305.24507 ], "yaxis": "y" } ], "layout": { "barmode": "group", "legend": { "title": { "text": "variable" }, "tracegroupgap": 0 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "AAPL Projected Free Cash Flows" }, "xaxis": { "anchor": "y", "domain": [ 0, 1 ], "tickangle": -90, "title": { "text": "Forecasted Year" }, "type": "category" }, "yaxis": { "anchor": "x", "domain": [ 0, 1 ], "title": { "text": "Free Cash Flows" } } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Growth in Perpuity Approach\n", "\n", "10th Year Cashflow: 69015872305.24507\n", "Long Term Growth Rate: 2.0\n", "Terminal Value: 1083018303866.9226\n", "Discounted Cash Flows\n", "\n", "Year 2024: $97417933271.88939\n", "Year 2025: $95298980990.58377\n", "Year 2026: $93226118362.58582\n", "Year 2027: $91198342884.8374\n", "Year 2028: $89214673859.87686\n", "Year 2029: $84749828891.58995\n", "Year 2030: $80508431924.94171\n", "Year 2031: $76479300262.70729\n", "Year 2032: $72651810857.85475\n", "Year 2033: $69015872305.24507\n" ] }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "alignmentgroup": "True", "hovertemplate": "variable=Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Cash Flow", "marker": { "color": "#636efa", "pattern": { "shape": "" } }, "name": "Cash Flow", "offsetgroup": "Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 105698457599.99998, 112188342896.63997, 119076707150.49365, 126388016969.53395, 134148241211.46332, 138266592216.65524, 142511376597.70654, 146886475859.25613, 151395890668.13528, 156043744511.64703 ], "yaxis": "y" }, { "alignmentgroup": "True", "hovertemplate": "variable=Discounted Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Discounted Cash Flow", "marker": { "color": "#EF553B", "pattern": { "shape": "" } }, "name": "Discounted Cash Flow", "offsetgroup": "Discounted Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 97417933271.88939, 95298980990.58377, 93226118362.58582, 91198342884.8374, 89214673859.87686, 84749828891.58995, 80508431924.94171, 76479300262.70729, 72651810857.85475, 69015872305.24507 ], "yaxis": "y" } ], "layout": { "barmode": "group", "legend": { "title": { "text": "variable" }, "tracegroupgap": 0 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "AAPL Projected Free Cash Flows" }, "xaxis": { "anchor": "y", "domain": [ 0, 1 ], "tickangle": -90, "title": { "text": "Forecasted Year" }, "type": "category" }, "yaxis": { "anchor": "x", "domain": [ 0, 1 ], "title": { "text": "Free Cash Flows" } } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Growth in Perpuity Approach\n", "\n", "10th Year Cashflow: 69015872305.24507\n", "Long Term Growth Rate: 2.5\n", "Terminal Value: 1179021151881.2698\n", "Discounted Cash Flows\n", "\n", "Year 2024: $97417933271.88939\n", "Year 2025: $95298980990.58377\n", "Year 2026: $93226118362.58582\n", "Year 2027: $91198342884.8374\n", "Year 2028: $89214673859.87686\n", "Year 2029: $84749828891.58995\n", "Year 2030: $80508431924.94171\n", "Year 2031: $76479300262.70729\n", "Year 2032: $72651810857.85475\n", "Year 2033: $69015872305.24507\n" ] }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "alignmentgroup": "True", "hovertemplate": "variable=Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Cash Flow", "marker": { "color": "#636efa", "pattern": { "shape": "" } }, "name": "Cash Flow", "offsetgroup": "Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 105698457599.99998, 112188342896.63997, 119076707150.49365, 126388016969.53395, 134148241211.46332, 138266592216.65524, 142511376597.70654, 146886475859.25613, 151395890668.13528, 156043744511.64703 ], "yaxis": "y" }, { "alignmentgroup": "True", "hovertemplate": "variable=Discounted Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Discounted Cash Flow", "marker": { "color": "#EF553B", "pattern": { "shape": "" } }, "name": "Discounted Cash Flow", "offsetgroup": "Discounted Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 97417933271.88939, 95298980990.58377, 93226118362.58582, 91198342884.8374, 89214673859.87686, 84749828891.58995, 80508431924.94171, 76479300262.70729, 72651810857.85475, 69015872305.24507 ], "yaxis": "y" } ], "layout": { "barmode": "group", "legend": { "title": { "text": "variable" }, "tracegroupgap": 0 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "AAPL Projected Free Cash Flows" }, "xaxis": { "anchor": "y", "domain": [ 0, 1 ], "tickangle": -90, "title": { "text": "Forecasted Year" }, "type": "category" }, "yaxis": { "anchor": "x", "domain": [ 0, 1 ], "title": { "text": "Free Cash Flows" } } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Growth in Perpuity Approach\n", "\n", "10th Year Cashflow: 69015872305.24507\n", "Long Term Growth Rate: 3.0\n", "Terminal Value: 1292479063170.953\n", "Discounted Cash Flows\n", "\n", "Year 2024: $97417933271.88939\n", "Year 2025: $95298980990.58377\n", "Year 2026: $93226118362.58582\n", "Year 2027: $91198342884.8374\n", "Year 2028: $89214673859.87686\n", "Year 2029: $84749828891.58995\n", "Year 2030: $80508431924.94171\n", "Year 2031: $76479300262.70729\n", "Year 2032: $72651810857.85475\n", "Year 2033: $69015872305.24507\n" ] }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "alignmentgroup": "True", "hovertemplate": "variable=Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Cash Flow", "marker": { "color": "#636efa", "pattern": { "shape": "" } }, "name": "Cash Flow", "offsetgroup": "Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 105698457599.99998, 112188342896.63997, 119076707150.49365, 126388016969.53395, 134148241211.46332, 138266592216.65524, 142511376597.70654, 146886475859.25613, 151395890668.13528, 156043744511.64703 ], "yaxis": "y" }, { "alignmentgroup": "True", "hovertemplate": "variable=Discounted Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Discounted Cash Flow", "marker": { "color": "#EF553B", "pattern": { "shape": "" } }, "name": "Discounted Cash Flow", "offsetgroup": "Discounted Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 97417933271.88939, 95298980990.58377, 93226118362.58582, 91198342884.8374, 89214673859.87686, 84749828891.58995, 80508431924.94171, 76479300262.70729, 72651810857.85475, 69015872305.24507 ], "yaxis": "y" } ], "layout": { "barmode": "group", "legend": { "title": { "text": "variable" }, "tracegroupgap": 0 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "AAPL Projected Free Cash Flows" }, "xaxis": { "anchor": "y", "domain": [ 0, 1 ], "tickangle": -90, "title": { "text": "Forecasted Year" }, "type": "category" }, "yaxis": { "anchor": "x", "domain": [ 0, 1 ], "title": { "text": "Free Cash Flows" } } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Growth in Perpuity Approach\n", "\n", "10th Year Cashflow: 69015872305.24507\n", "Long Term Growth Rate: 3.5\n", "Terminal Value: 1428628556718.573\n", "Discounted Cash Flows\n", "\n", "Year 2024: $97417933271.88939\n", "Year 2025: $95298980990.58377\n", "Year 2026: $93226118362.58582\n", "Year 2027: $91198342884.8374\n", "Year 2028: $89214673859.87686\n", "Year 2029: $84749828891.58995\n", "Year 2030: $80508431924.94171\n", "Year 2031: $76479300262.70729\n", "Year 2032: $72651810857.85475\n", "Year 2033: $69015872305.24507\n" ] }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "alignmentgroup": "True", "hovertemplate": "variable=Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Cash Flow", "marker": { "color": "#636efa", "pattern": { "shape": "" } }, "name": "Cash Flow", "offsetgroup": "Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 105698457599.99998, 112188342896.63997, 119076707150.49365, 126388016969.53395, 134148241211.46332, 138266592216.65524, 142511376597.70654, 146886475859.25613, 151395890668.13528, 156043744511.64703 ], "yaxis": "y" }, { "alignmentgroup": "True", "hovertemplate": "variable=Discounted Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Discounted Cash Flow", "marker": { "color": "#EF553B", "pattern": { "shape": "" } }, "name": "Discounted Cash Flow", "offsetgroup": "Discounted Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 97417933271.88939, 95298980990.58377, 93226118362.58582, 91198342884.8374, 89214673859.87686, 84749828891.58995, 80508431924.94171, 76479300262.70729, 72651810857.85475, 69015872305.24507 ], "yaxis": "y" } ], "layout": { "barmode": "group", "legend": { "title": { "text": "variable" }, "tracegroupgap": 0 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "AAPL Projected Free Cash Flows" }, "xaxis": { "anchor": "y", "domain": [ 0, 1 ], "tickangle": -90, "title": { "text": "Forecasted Year" }, "type": "category" }, "yaxis": { "anchor": "x", "domain": [ 0, 1 ], "title": { "text": "Free Cash Flows" } } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Growth in Perpuity Approach\n", "\n", "10th Year Cashflow: 69015872305.24507\n", "Long Term Growth Rate: 4.0\n", "Terminal Value: 1595033493276.775\n", "Discounted Cash Flows\n", "\n", "Year 2024: $96971062018.3486\n", "Year 2025: $94426683693.83044\n", "Year 2026: $91949066121.68039\n", "Year 2027: $89536457597.75371\n", "Year 2028: $87187152380.05116\n", "Year 2029: $82443851337.7236\n", "Year 2030: $77958603278.708\n", "Year 2031: $73717369173.72873\n", "Year 2032: $69706873768.22218\n", "Year 2033: $65914564030.18954\n" ] }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "alignmentgroup": "True", "hovertemplate": "variable=Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Cash Flow", "marker": { "color": "#636efa", "pattern": { "shape": "" } }, "name": "Cash Flow", "offsetgroup": "Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 105698457599.99998, 112188342896.63997, 119076707150.49365, 126388016969.53395, 134148241211.46332, 138266592216.65524, 142511376597.70654, 146886475859.25613, 151395890668.13528, 156043744511.64703 ], "yaxis": "y" }, { "alignmentgroup": "True", "hovertemplate": "variable=Discounted Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Discounted Cash Flow", "marker": { "color": "#EF553B", "pattern": { "shape": "" } }, "name": "Discounted Cash Flow", "offsetgroup": "Discounted Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 96971062018.3486, 94426683693.83044, 91949066121.68039, 89536457597.75371, 87187152380.05116, 82443851337.7236, 77958603278.708, 73717369173.72873, 69706873768.22218, 65914564030.18954 ], "yaxis": "y" } ], "layout": { "barmode": "group", "legend": { "title": { "text": "variable" }, "tracegroupgap": 0 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "AAPL Projected Free Cash Flows" }, "xaxis": { "anchor": "y", "domain": [ 0, 1 ], "tickangle": -90, "title": { "text": "Forecasted Year" }, "type": "category" }, "yaxis": { "anchor": "x", "domain": [ 0, 1 ], "title": { "text": "Free Cash Flows" } } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Growth in Perpuity Approach\n", "\n", "10th Year Cashflow: 65914564030.18954\n", "Long Term Growth Rate: 2.0\n", "Terminal Value: 960469361582.762\n", "Discounted Cash Flows\n", "\n", "Year 2024: $96971062018.3486\n", "Year 2025: $94426683693.83044\n", "Year 2026: $91949066121.68039\n", "Year 2027: $89536457597.75371\n", "Year 2028: $87187152380.05116\n", "Year 2029: $82443851337.7236\n", "Year 2030: $77958603278.708\n", "Year 2031: $73717369173.72873\n", "Year 2032: $69706873768.22218\n", "Year 2033: $65914564030.18954\n" ] }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "alignmentgroup": "True", "hovertemplate": "variable=Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Cash Flow", "marker": { "color": "#636efa", "pattern": { "shape": "" } }, "name": "Cash Flow", "offsetgroup": "Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 105698457599.99998, 112188342896.63997, 119076707150.49365, 126388016969.53395, 134148241211.46332, 138266592216.65524, 142511376597.70654, 146886475859.25613, 151395890668.13528, 156043744511.64703 ], "yaxis": "y" }, { "alignmentgroup": "True", "hovertemplate": "variable=Discounted Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Discounted Cash Flow", "marker": { "color": "#EF553B", "pattern": { "shape": "" } }, "name": "Discounted Cash Flow", "offsetgroup": "Discounted Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 96971062018.3486, 94426683693.83044, 91949066121.68039, 89536457597.75371, 87187152380.05116, 82443851337.7236, 77958603278.708, 73717369173.72873, 69706873768.22218, 65914564030.18954 ], "yaxis": "y" } ], "layout": { "barmode": "group", "legend": { "title": { "text": "variable" }, "tracegroupgap": 0 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "AAPL Projected Free Cash Flows" }, "xaxis": { "anchor": "y", "domain": [ 0, 1 ], "tickangle": -90, "title": { "text": "Forecasted Year" }, "type": "category" }, "yaxis": { "anchor": "x", "domain": [ 0, 1 ], "title": { "text": "Free Cash Flows" } } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Growth in Perpuity Approach\n", "\n", "10th Year Cashflow: 65914564030.18954\n", "Long Term Growth Rate: 2.5\n", "Terminal Value: 1039421971245.2964\n", "Discounted Cash Flows\n", "\n", "Year 2024: $96971062018.3486\n", "Year 2025: $94426683693.83044\n", "Year 2026: $91949066121.68039\n", "Year 2027: $89536457597.75371\n", "Year 2028: $87187152380.05116\n", "Year 2029: $82443851337.7236\n", "Year 2030: $77958603278.708\n", "Year 2031: $73717369173.72873\n", "Year 2032: $69706873768.22218\n", "Year 2033: $65914564030.18954\n" ] }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "alignmentgroup": "True", "hovertemplate": "variable=Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Cash Flow", "marker": { "color": "#636efa", "pattern": { "shape": "" } }, "name": "Cash Flow", "offsetgroup": "Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 105698457599.99998, 112188342896.63997, 119076707150.49365, 126388016969.53395, 134148241211.46332, 138266592216.65524, 142511376597.70654, 146886475859.25613, 151395890668.13528, 156043744511.64703 ], "yaxis": "y" }, { "alignmentgroup": "True", "hovertemplate": "variable=Discounted Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Discounted Cash Flow", "marker": { "color": "#EF553B", "pattern": { "shape": "" } }, "name": "Discounted Cash Flow", "offsetgroup": "Discounted Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 96971062018.3486, 94426683693.83044, 91949066121.68039, 89536457597.75371, 87187152380.05116, 82443851337.7236, 77958603278.708, 73717369173.72873, 69706873768.22218, 65914564030.18954 ], "yaxis": "y" } ], "layout": { "barmode": "group", "legend": { "title": { "text": "variable" }, "tracegroupgap": 0 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "AAPL Projected Free Cash Flows" }, "xaxis": { "anchor": "y", "domain": [ 0, 1 ], "tickangle": -90, "title": { "text": "Forecasted Year" }, "type": "category" }, "yaxis": { "anchor": "x", "domain": [ 0, 1 ], "title": { "text": "Free Cash Flows" } } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Growth in Perpuity Approach\n", "\n", "10th Year Cashflow: 65914564030.18954\n", "Long Term Growth Rate: 3.0\n", "Terminal Value: 1131533349184.9204\n", "Discounted Cash Flows\n", "\n", "Year 2024: $96971062018.3486\n", "Year 2025: $94426683693.83044\n", "Year 2026: $91949066121.68039\n", "Year 2027: $89536457597.75371\n", "Year 2028: $87187152380.05116\n", "Year 2029: $82443851337.7236\n", "Year 2030: $77958603278.708\n", "Year 2031: $73717369173.72873\n", "Year 2032: $69706873768.22218\n", "Year 2033: $65914564030.18954\n" ] }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "alignmentgroup": "True", "hovertemplate": "variable=Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Cash Flow", "marker": { "color": "#636efa", "pattern": { "shape": "" } }, "name": "Cash Flow", "offsetgroup": "Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 105698457599.99998, 112188342896.63997, 119076707150.49365, 126388016969.53395, 134148241211.46332, 138266592216.65524, 142511376597.70654, 146886475859.25613, 151395890668.13528, 156043744511.64703 ], "yaxis": "y" }, { "alignmentgroup": "True", "hovertemplate": "variable=Discounted Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Discounted Cash Flow", "marker": { "color": "#EF553B", "pattern": { "shape": "" } }, "name": "Discounted Cash Flow", "offsetgroup": "Discounted Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 96971062018.3486, 94426683693.83044, 91949066121.68039, 89536457597.75371, 87187152380.05116, 82443851337.7236, 77958603278.708, 73717369173.72873, 69706873768.22218, 65914564030.18954 ], "yaxis": "y" } ], "layout": { "barmode": "group", "legend": { "title": { "text": "variable" }, "tracegroupgap": 0 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "AAPL Projected Free Cash Flows" }, "xaxis": { "anchor": "y", "domain": [ 0, 1 ], "tickangle": -90, "title": { "text": "Forecasted Year" }, "type": "category" }, "yaxis": { "anchor": "x", "domain": [ 0, 1 ], "title": { "text": "Free Cash Flows" } } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Growth in Perpuity Approach\n", "\n", "10th Year Cashflow: 65914564030.18954\n", "Long Term Growth Rate: 3.5\n", "Terminal Value: 1240392250386.294\n", "Discounted Cash Flows\n", "\n", "Year 2024: $96971062018.3486\n", "Year 2025: $94426683693.83044\n", "Year 2026: $91949066121.68039\n", "Year 2027: $89536457597.75371\n", "Year 2028: $87187152380.05116\n", "Year 2029: $82443851337.7236\n", "Year 2030: $77958603278.708\n", "Year 2031: $73717369173.72873\n", "Year 2032: $69706873768.22218\n", "Year 2033: $65914564030.18954\n" ] }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "alignmentgroup": "True", "hovertemplate": "variable=Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Cash Flow", "marker": { "color": "#636efa", "pattern": { "shape": "" } }, "name": "Cash Flow", "offsetgroup": "Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 105698457599.99998, 112188342896.63997, 119076707150.49365, 126388016969.53395, 134148241211.46332, 138266592216.65524, 142511376597.70654, 146886475859.25613, 151395890668.13528, 156043744511.64703 ], "yaxis": "y" }, { "alignmentgroup": "True", "hovertemplate": "variable=Discounted Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Discounted Cash Flow", "marker": { "color": "#EF553B", "pattern": { "shape": "" } }, "name": "Discounted Cash Flow", "offsetgroup": "Discounted Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 96971062018.3486, 94426683693.83044, 91949066121.68039, 89536457597.75371, 87187152380.05116, 82443851337.7236, 77958603278.708, 73717369173.72873, 69706873768.22218, 65914564030.18954 ], "yaxis": "y" } ], "layout": { "barmode": "group", "legend": { "title": { "text": "variable" }, "tracegroupgap": 0 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "AAPL Projected Free Cash Flows" }, "xaxis": { "anchor": "y", "domain": [ 0, 1 ], "tickangle": -90, "title": { "text": "Forecasted Year" }, "type": "category" }, "yaxis": { "anchor": "x", "domain": [ 0, 1 ], "title": { "text": "Free Cash Flows" } } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Growth in Perpuity Approach\n", "\n", "10th Year Cashflow: 65914564030.18954\n", "Long Term Growth Rate: 4.0\n", "Terminal Value: 1371022931827.9424\n", "Discounted Cash Flows\n", "\n", "Year 2024: $96528271780.8219\n", "Year 2025: $93566308372.75284\n", "Year 2026: $90695232608.98618\n", "Year 2027: $87912255608.38167\n", "Year 2028: $85214674066.42583\n", "Year 2029: $80210743890.65306\n", "Year 2030: $75500651806.48047\n", "Year 2031: $71067143211.81682\n", "Year 2032: $66893976720.01789\n", "Year 2033: $62965864662.39492\n" ] }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "alignmentgroup": "True", "hovertemplate": "variable=Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Cash Flow", "marker": { "color": "#636efa", "pattern": { "shape": "" } }, "name": "Cash Flow", "offsetgroup": "Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 105698457599.99998, 112188342896.63997, 119076707150.49365, 126388016969.53395, 134148241211.46332, 138266592216.65524, 142511376597.70654, 146886475859.25613, 151395890668.13528, 156043744511.64703 ], "yaxis": "y" }, { "alignmentgroup": "True", "hovertemplate": "variable=Discounted Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Discounted Cash Flow", "marker": { "color": "#EF553B", "pattern": { "shape": "" } }, "name": "Discounted Cash Flow", "offsetgroup": "Discounted Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 96528271780.8219, 93566308372.75284, 90695232608.98618, 87912255608.38167, 85214674066.42583, 80210743890.65306, 75500651806.48047, 71067143211.81682, 66893976720.01789, 62965864662.39492 ], "yaxis": "y" } ], "layout": { "barmode": "group", "legend": { "title": { "text": "variable" }, "tracegroupgap": 0 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "AAPL Projected Free Cash Flows" }, "xaxis": { "anchor": "y", "domain": [ 0, 1 ], "tickangle": -90, "title": { "text": "Forecasted Year" }, "type": "category" }, "yaxis": { "anchor": "x", "domain": [ 0, 1 ], "title": { "text": "Free Cash Flows" } } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Growth in Perpuity Approach\n", "\n", "10th Year Cashflow: 62965864662.39492\n", "Long Term Growth Rate: 2.0\n", "Terminal Value: 856335759408.571\n", "Discounted Cash Flows\n", "\n", "Year 2024: $96528271780.8219\n", "Year 2025: $93566308372.75284\n", "Year 2026: $90695232608.98618\n", "Year 2027: $87912255608.38167\n", "Year 2028: $85214674066.42583\n", "Year 2029: $80210743890.65306\n", "Year 2030: $75500651806.48047\n", "Year 2031: $71067143211.81682\n", "Year 2032: $66893976720.01789\n", "Year 2033: $62965864662.39492\n" ] }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "alignmentgroup": "True", "hovertemplate": "variable=Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Cash Flow", "marker": { "color": "#636efa", "pattern": { "shape": "" } }, "name": "Cash Flow", "offsetgroup": "Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 105698457599.99998, 112188342896.63997, 119076707150.49365, 126388016969.53395, 134148241211.46332, 138266592216.65524, 142511376597.70654, 146886475859.25613, 151395890668.13528, 156043744511.64703 ], "yaxis": "y" }, { "alignmentgroup": "True", "hovertemplate": "variable=Discounted Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Discounted Cash Flow", "marker": { "color": "#EF553B", "pattern": { "shape": "" } }, "name": "Discounted Cash Flow", "offsetgroup": "Discounted Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 96528271780.8219, 93566308372.75284, 90695232608.98618, 87912255608.38167, 85214674066.42583, 80210743890.65306, 75500651806.48047, 71067143211.81682, 66893976720.01789, 62965864662.39492 ], "yaxis": "y" } ], "layout": { "barmode": "group", "legend": { "title": { "text": "variable" }, "tracegroupgap": 0 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "AAPL Projected Free Cash Flows" }, "xaxis": { "anchor": "y", "domain": [ 0, 1 ], "tickangle": -90, "title": { "text": "Forecasted Year" }, "type": "category" }, "yaxis": { "anchor": "x", "domain": [ 0, 1 ], "title": { "text": "Free Cash Flows" } } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Growth in Perpuity Approach\n", "\n", "10th Year Cashflow: 62965864662.39492\n", "Long Term Growth Rate: 2.5\n", "Terminal Value: 922000161127.9254\n", "Discounted Cash Flows\n", "\n", "Year 2024: $96528271780.8219\n", "Year 2025: $93566308372.75284\n", "Year 2026: $90695232608.98618\n", "Year 2027: $87912255608.38167\n", "Year 2028: $85214674066.42583\n", "Year 2029: $80210743890.65306\n", "Year 2030: $75500651806.48047\n", "Year 2031: $71067143211.81682\n", "Year 2032: $66893976720.01789\n", "Year 2033: $62965864662.39492\n" ] }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "alignmentgroup": "True", "hovertemplate": "variable=Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Cash Flow", "marker": { "color": "#636efa", "pattern": { "shape": "" } }, "name": "Cash Flow", "offsetgroup": "Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 105698457599.99998, 112188342896.63997, 119076707150.49365, 126388016969.53395, 134148241211.46332, 138266592216.65524, 142511376597.70654, 146886475859.25613, 151395890668.13528, 156043744511.64703 ], "yaxis": "y" }, { "alignmentgroup": "True", "hovertemplate": "variable=Discounted Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Discounted Cash Flow", "marker": { "color": "#EF553B", "pattern": { "shape": "" } }, "name": "Discounted Cash Flow", "offsetgroup": "Discounted Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 96528271780.8219, 93566308372.75284, 90695232608.98618, 87912255608.38167, 85214674066.42583, 80210743890.65306, 75500651806.48047, 71067143211.81682, 66893976720.01789, 62965864662.39492 ], "yaxis": "y" } ], "layout": { "barmode": "group", "legend": { "title": { "text": "variable" }, "tracegroupgap": 0 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "AAPL Projected Free Cash Flows" }, "xaxis": { "anchor": "y", "domain": [ 0, 1 ], "tickangle": -90, "title": { "text": "Forecasted Year" }, "type": "category" }, "yaxis": { "anchor": "x", "domain": [ 0, 1 ], "title": { "text": "Free Cash Flows" } } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Growth in Perpuity Approach\n", "\n", "10th Year Cashflow: 62965864662.39492\n", "Long Term Growth Rate: 3.0\n", "Terminal Value: 997766778496.4117\n", "Discounted Cash Flows\n", "\n", "Year 2024: $96528271780.8219\n", "Year 2025: $93566308372.75284\n", "Year 2026: $90695232608.98618\n", "Year 2027: $87912255608.38167\n", "Year 2028: $85214674066.42583\n", "Year 2029: $80210743890.65306\n", "Year 2030: $75500651806.48047\n", "Year 2031: $71067143211.81682\n", "Year 2032: $66893976720.01789\n", "Year 2033: $62965864662.39492\n" ] }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "alignmentgroup": "True", "hovertemplate": "variable=Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Cash Flow", "marker": { "color": "#636efa", "pattern": { "shape": "" } }, "name": "Cash Flow", "offsetgroup": "Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 105698457599.99998, 112188342896.63997, 119076707150.49365, 126388016969.53395, 134148241211.46332, 138266592216.65524, 142511376597.70654, 146886475859.25613, 151395890668.13528, 156043744511.64703 ], "yaxis": "y" }, { "alignmentgroup": "True", "hovertemplate": "variable=Discounted Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Discounted Cash Flow", "marker": { "color": "#EF553B", "pattern": { "shape": "" } }, "name": "Discounted Cash Flow", "offsetgroup": "Discounted Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 96528271780.8219, 93566308372.75284, 90695232608.98618, 87912255608.38167, 85214674066.42583, 80210743890.65306, 75500651806.48047, 71067143211.81682, 66893976720.01789, 62965864662.39492 ], "yaxis": "y" } ], "layout": { "barmode": "group", "legend": { "title": { "text": "variable" }, "tracegroupgap": 0 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "AAPL Projected Free Cash Flows" }, "xaxis": { "anchor": "y", "domain": [ 0, 1 ], "tickangle": -90, "title": { "text": "Forecasted Year" }, "type": "category" }, "yaxis": { "anchor": "x", "domain": [ 0, 1 ], "title": { "text": "Free Cash Flows" } } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Growth in Perpuity Approach\n", "\n", "10th Year Cashflow: 62965864662.39492\n", "Long Term Growth Rate: 3.5\n", "Terminal Value: 1086161165426.3123\n", "Discounted Cash Flows\n", "\n", "Year 2024: $96528271780.8219\n", "Year 2025: $93566308372.75284\n", "Year 2026: $90695232608.98618\n", "Year 2027: $87912255608.38167\n", "Year 2028: $85214674066.42583\n", "Year 2029: $80210743890.65306\n", "Year 2030: $75500651806.48047\n", "Year 2031: $71067143211.81682\n", "Year 2032: $66893976720.01789\n", "Year 2033: $62965864662.39492\n" ] }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "alignmentgroup": "True", "hovertemplate": "variable=Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Cash Flow", "marker": { "color": "#636efa", "pattern": { "shape": "" } }, "name": "Cash Flow", "offsetgroup": "Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 105698457599.99998, 112188342896.63997, 119076707150.49365, 126388016969.53395, 134148241211.46332, 138266592216.65524, 142511376597.70654, 146886475859.25613, 151395890668.13528, 156043744511.64703 ], "yaxis": "y" }, { "alignmentgroup": "True", "hovertemplate": "variable=Discounted Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Discounted Cash Flow", "marker": { "color": "#EF553B", "pattern": { "shape": "" } }, "name": "Discounted Cash Flow", "offsetgroup": "Discounted Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 96528271780.8219, 93566308372.75284, 90695232608.98618, 87912255608.38167, 85214674066.42583, 80210743890.65306, 75500651806.48047, 71067143211.81682, 66893976720.01789, 62965864662.39492 ], "yaxis": "y" } ], "layout": { "barmode": "group", "legend": { "title": { "text": "variable" }, "tracegroupgap": 0 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "AAPL Projected Free Cash Flows" }, "xaxis": { "anchor": "y", "domain": [ 0, 1 ], "tickangle": -90, "title": { "text": "Forecasted Year" }, "type": "category" }, "yaxis": { "anchor": "x", "domain": [ 0, 1 ], "title": { "text": "Free Cash Flows" } } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Growth in Perpuity Approach\n", "\n", "10th Year Cashflow: 62965864662.39492\n", "Long Term Growth Rate: 4.0\n", "Terminal Value: 1190627259070.7402\n", "Discounted Cash Flows\n", "\n", "Year 2024: $96089506909.09088\n", "Year 2025: $92717638757.55368\n", "Year 2026: $89464092524.78859\n", "Year 2027: $86324716187.10056\n", "Year 2028: $83295503419.08046\n", "Year 2029: $78047886703.67838\n", "Year 2030: $73130869841.34662\n", "Year 2031: $68523625041.34178\n", "Year 2032: $64206636663.737236\n", "Year 2033: $60161618553.92178\n" ] }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "alignmentgroup": "True", "hovertemplate": "variable=Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Cash Flow", "marker": { "color": "#636efa", "pattern": { "shape": "" } }, "name": "Cash Flow", "offsetgroup": "Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 105698457599.99998, 112188342896.63997, 119076707150.49365, 126388016969.53395, 134148241211.46332, 138266592216.65524, 142511376597.70654, 146886475859.25613, 151395890668.13528, 156043744511.64703 ], "yaxis": "y" }, { "alignmentgroup": "True", "hovertemplate": "variable=Discounted Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Discounted Cash Flow", "marker": { "color": "#EF553B", "pattern": { "shape": "" } }, "name": "Discounted Cash Flow", "offsetgroup": "Discounted Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 96089506909.09088, 92717638757.55368, 89464092524.78859, 86324716187.10056, 83295503419.08046, 78047886703.67838, 73130869841.34662, 68523625041.34178, 64206636663.737236, 60161618553.92178 ], "yaxis": "y" } ], "layout": { "barmode": "group", "legend": { "title": { "text": "variable" }, "tracegroupgap": 0 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "AAPL Projected Free Cash Flows" }, "xaxis": { "anchor": "y", "domain": [ 0, 1 ], "tickangle": -90, "title": { "text": "Forecasted Year" }, "type": "category" }, "yaxis": { "anchor": "x", "domain": [ 0, 1 ], "title": { "text": "Free Cash Flows" } } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Growth in Perpuity Approach\n", "\n", "10th Year Cashflow: 60161618553.92178\n", "Long Term Growth Rate: 2.0\n", "Terminal Value: 767060636562.5028\n", "Discounted Cash Flows\n", "\n", "Year 2024: $96089506909.09088\n", "Year 2025: $92717638757.55368\n", "Year 2026: $89464092524.78859\n", "Year 2027: $86324716187.10056\n", "Year 2028: $83295503419.08046\n", "Year 2029: $78047886703.67838\n", "Year 2030: $73130869841.34662\n", "Year 2031: $68523625041.34178\n", "Year 2032: $64206636663.737236\n", "Year 2033: $60161618553.92178\n" ] }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "alignmentgroup": "True", "hovertemplate": "variable=Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Cash Flow", "marker": { "color": "#636efa", "pattern": { "shape": "" } }, "name": "Cash Flow", "offsetgroup": "Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 105698457599.99998, 112188342896.63997, 119076707150.49365, 126388016969.53395, 134148241211.46332, 138266592216.65524, 142511376597.70654, 146886475859.25613, 151395890668.13528, 156043744511.64703 ], "yaxis": "y" }, { "alignmentgroup": "True", "hovertemplate": "variable=Discounted Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Discounted Cash Flow", "marker": { "color": "#EF553B", "pattern": { "shape": "" } }, "name": "Discounted Cash Flow", "offsetgroup": "Discounted Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 96089506909.09088, 92717638757.55368, 89464092524.78859, 86324716187.10056, 83295503419.08046, 78047886703.67838, 73130869841.34662, 68523625041.34178, 64206636663.737236, 60161618553.92178 ], "yaxis": "y" } ], "layout": { "barmode": "group", "legend": { "title": { "text": "variable" }, "tracegroupgap": 0 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "AAPL Projected Free Cash Flows" }, "xaxis": { "anchor": "y", "domain": [ 0, 1 ], "tickangle": -90, "title": { "text": "Forecasted Year" }, "type": "category" }, "yaxis": { "anchor": "x", "domain": [ 0, 1 ], "title": { "text": "Free Cash Flows" } } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Growth in Perpuity Approach\n", "\n", "10th Year Cashflow: 60161618553.92178\n", "Long Term Growth Rate: 2.5\n", "Terminal Value: 822208786903.5975\n", "Discounted Cash Flows\n", "\n", "Year 2024: $96089506909.09088\n", "Year 2025: $92717638757.55368\n", "Year 2026: $89464092524.78859\n", "Year 2027: $86324716187.10056\n", "Year 2028: $83295503419.08046\n", "Year 2029: $78047886703.67838\n", "Year 2030: $73130869841.34662\n", "Year 2031: $68523625041.34178\n", "Year 2032: $64206636663.737236\n", "Year 2033: $60161618553.92178\n" ] }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "alignmentgroup": "True", "hovertemplate": "variable=Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Cash Flow", "marker": { "color": "#636efa", "pattern": { "shape": "" } }, "name": "Cash Flow", "offsetgroup": "Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 105698457599.99998, 112188342896.63997, 119076707150.49365, 126388016969.53395, 134148241211.46332, 138266592216.65524, 142511376597.70654, 146886475859.25613, 151395890668.13528, 156043744511.64703 ], "yaxis": "y" }, { "alignmentgroup": "True", "hovertemplate": "variable=Discounted Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Discounted Cash Flow", "marker": { "color": "#EF553B", "pattern": { "shape": "" } }, "name": "Discounted Cash Flow", "offsetgroup": "Discounted Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 96089506909.09088, 92717638757.55368, 89464092524.78859, 86324716187.10056, 83295503419.08046, 78047886703.67838, 73130869841.34662, 68523625041.34178, 64206636663.737236, 60161618553.92178 ], "yaxis": "y" } ], "layout": { "barmode": "group", "legend": { "title": { "text": "variable" }, "tracegroupgap": 0 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "AAPL Projected Free Cash Flows" }, "xaxis": { "anchor": "y", "domain": [ 0, 1 ], "tickangle": -90, "title": { "text": "Forecasted Year" }, "type": "category" }, "yaxis": { "anchor": "x", "domain": [ 0, 1 ], "title": { "text": "Free Cash Flows" } } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Growth in Perpuity Approach\n", "\n", "10th Year Cashflow: 60161618553.92178\n", "Long Term Growth Rate: 3.0\n", "Terminal Value: 885235244436.2776\n", "Discounted Cash Flows\n", "\n", "Year 2024: $96089506909.09088\n", "Year 2025: $92717638757.55368\n", "Year 2026: $89464092524.78859\n", "Year 2027: $86324716187.10056\n", "Year 2028: $83295503419.08046\n", "Year 2029: $78047886703.67838\n", "Year 2030: $73130869841.34662\n", "Year 2031: $68523625041.34178\n", "Year 2032: $64206636663.737236\n", "Year 2033: $60161618553.92178\n" ] }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "alignmentgroup": "True", "hovertemplate": "variable=Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Cash Flow", "marker": { "color": "#636efa", "pattern": { "shape": "" } }, "name": "Cash Flow", "offsetgroup": "Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 105698457599.99998, 112188342896.63997, 119076707150.49365, 126388016969.53395, 134148241211.46332, 138266592216.65524, 142511376597.70654, 146886475859.25613, 151395890668.13528, 156043744511.64703 ], "yaxis": "y" }, { "alignmentgroup": "True", "hovertemplate": "variable=Discounted Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Discounted Cash Flow", "marker": { "color": "#EF553B", "pattern": { "shape": "" } }, "name": "Discounted Cash Flow", "offsetgroup": "Discounted Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 96089506909.09088, 92717638757.55368, 89464092524.78859, 86324716187.10056, 83295503419.08046, 78047886703.67838, 73130869841.34662, 68523625041.34178, 64206636663.737236, 60161618553.92178 ], "yaxis": "y" } ], "layout": { "barmode": "group", "legend": { "title": { "text": "variable" }, "tracegroupgap": 0 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "AAPL Projected Free Cash Flows" }, "xaxis": { "anchor": "y", "domain": [ 0, 1 ], "tickangle": -90, "title": { "text": "Forecasted Year" }, "type": "category" }, "yaxis": { "anchor": "x", "domain": [ 0, 1 ], "title": { "text": "Free Cash Flows" } } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Growth in Perpuity Approach\n", "\n", "10th Year Cashflow: 60161618553.92178\n", "Long Term Growth Rate: 3.5\n", "Terminal Value: 957958080050.9083\n", "Discounted Cash Flows\n", "\n", "Year 2024: $96089506909.09088\n", "Year 2025: $92717638757.55368\n", "Year 2026: $89464092524.78859\n", "Year 2027: $86324716187.10056\n", "Year 2028: $83295503419.08046\n", "Year 2029: $78047886703.67838\n", "Year 2030: $73130869841.34662\n", "Year 2031: $68523625041.34178\n", "Year 2032: $64206636663.737236\n", "Year 2033: $60161618553.92178\n" ] }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "alignmentgroup": "True", "hovertemplate": "variable=Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Cash Flow", "marker": { "color": "#636efa", "pattern": { "shape": "" } }, "name": "Cash Flow", "offsetgroup": "Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 105698457599.99998, 112188342896.63997, 119076707150.49365, 126388016969.53395, 134148241211.46332, 138266592216.65524, 142511376597.70654, 146886475859.25613, 151395890668.13528, 156043744511.64703 ], "yaxis": "y" }, { "alignmentgroup": "True", "hovertemplate": "variable=Discounted Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Discounted Cash Flow", "marker": { "color": "#EF553B", "pattern": { "shape": "" } }, "name": "Discounted Cash Flow", "offsetgroup": "Discounted Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 96089506909.09088, 92717638757.55368, 89464092524.78859, 86324716187.10056, 83295503419.08046, 78047886703.67838, 73130869841.34662, 68523625041.34178, 64206636663.737236, 60161618553.92178 ], "yaxis": "y" } ], "layout": { "barmode": "group", "legend": { "title": { "text": "variable" }, "tracegroupgap": 0 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "AAPL Projected Free Cash Flows" }, "xaxis": { "anchor": "y", "domain": [ 0, 1 ], "tickangle": -90, "title": { "text": "Forecasted Year" }, "type": "category" }, "yaxis": { "anchor": "x", "domain": [ 0, 1 ], "title": { "text": "Free Cash Flows" } } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Growth in Perpuity Approach\n", "\n", "10th Year Cashflow: 60161618553.92178\n", "Long Term Growth Rate: 4.0\n", "Terminal Value: 1042801388267.9775\n", "Discounted Cash Flows\n", "\n", "Year 2024: $95654712760.18098\n", "Year 2025: $91880463460.32224\n", "Year 2026: $88255134766.32219\n", "Year 2027: $84772850715.8139\n", "Year 2028: $81427967194.35735\n", "Year 2029: $75952765418.30238\n", "Year 2030: $70845715218.68257\n", "Year 2031: $66082062150.13225\n", "Year 2032: $61638716251.711586\n", "Year 2033: $57494140127.27524\n" ] }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "alignmentgroup": "True", "hovertemplate": "variable=Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Cash Flow", "marker": { "color": "#636efa", "pattern": { "shape": "" } }, "name": "Cash Flow", "offsetgroup": "Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 105698457599.99998, 112188342896.63997, 119076707150.49365, 126388016969.53395, 134148241211.46332, 138266592216.65524, 142511376597.70654, 146886475859.25613, 151395890668.13528, 156043744511.64703 ], "yaxis": "y" }, { "alignmentgroup": "True", "hovertemplate": "variable=Discounted Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Discounted Cash Flow", "marker": { "color": "#EF553B", "pattern": { "shape": "" } }, "name": "Discounted Cash Flow", "offsetgroup": "Discounted Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 95654712760.18098, 91880463460.32224, 88255134766.32219, 84772850715.8139, 81427967194.35735, 75952765418.30238, 70845715218.68257, 66082062150.13225, 61638716251.711586, 57494140127.27524 ], "yaxis": "y" } ], "layout": { "barmode": "group", "legend": { "title": { "text": "variable" }, "tracegroupgap": 0 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "AAPL Projected Free Cash Flows" }, "xaxis": { "anchor": "y", "domain": [ 0, 1 ], "tickangle": -90, "title": { "text": "Forecasted Year" }, "type": "category" }, "yaxis": { "anchor": "x", "domain": [ 0, 1 ], "title": { "text": "Free Cash Flows" } } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Growth in Perpuity Approach\n", "\n", "10th Year Cashflow: 57494140127.27524\n", "Long Term Growth Rate: 2.0\n", "Terminal Value: 689929681527.303\n", "Discounted Cash Flows\n", "\n", "Year 2024: $95654712760.18098\n", "Year 2025: $91880463460.32224\n", "Year 2026: $88255134766.32219\n", "Year 2027: $84772850715.8139\n", "Year 2028: $81427967194.35735\n", "Year 2029: $75952765418.30238\n", "Year 2030: $70845715218.68257\n", "Year 2031: $66082062150.13225\n", "Year 2032: $61638716251.711586\n", "Year 2033: $57494140127.27524\n" ] }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "alignmentgroup": "True", "hovertemplate": "variable=Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Cash Flow", "marker": { "color": "#636efa", "pattern": { "shape": "" } }, "name": "Cash Flow", "offsetgroup": "Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 105698457599.99998, 112188342896.63997, 119076707150.49365, 126388016969.53395, 134148241211.46332, 138266592216.65524, 142511376597.70654, 146886475859.25613, 151395890668.13528, 156043744511.64703 ], "yaxis": "y" }, { "alignmentgroup": "True", "hovertemplate": "variable=Discounted Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Discounted Cash Flow", "marker": { "color": "#EF553B", "pattern": { "shape": "" } }, "name": "Discounted Cash Flow", "offsetgroup": "Discounted Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 95654712760.18098, 91880463460.32224, 88255134766.32219, 84772850715.8139, 81427967194.35735, 75952765418.30238, 70845715218.68257, 66082062150.13225, 61638716251.711586, 57494140127.27524 ], "yaxis": "y" } ], "layout": { "barmode": "group", "legend": { "title": { "text": "variable" }, "tracegroupgap": 0 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "AAPL Projected Free Cash Flows" }, "xaxis": { "anchor": "y", "domain": [ 0, 1 ], "tickangle": -90, "title": { "text": "Forecasted Year" }, "type": "category" }, "yaxis": { "anchor": "x", "domain": [ 0, 1 ], "title": { "text": "Free Cash Flows" } } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Growth in Perpuity Approach\n", "\n", "10th Year Cashflow: 57494140127.27524\n", "Long Term Growth Rate: 2.5\n", "Terminal Value: 736643670380.7141\n", "Discounted Cash Flows\n", "\n", "Year 2024: $95654712760.18098\n", "Year 2025: $91880463460.32224\n", "Year 2026: $88255134766.32219\n", "Year 2027: $84772850715.8139\n", "Year 2028: $81427967194.35735\n", "Year 2029: $75952765418.30238\n", "Year 2030: $70845715218.68257\n", "Year 2031: $66082062150.13225\n", "Year 2032: $61638716251.711586\n", "Year 2033: $57494140127.27524\n" ] }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "alignmentgroup": "True", "hovertemplate": "variable=Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Cash Flow", "marker": { "color": "#636efa", "pattern": { "shape": "" } }, "name": "Cash Flow", "offsetgroup": "Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 105698457599.99998, 112188342896.63997, 119076707150.49365, 126388016969.53395, 134148241211.46332, 138266592216.65524, 142511376597.70654, 146886475859.25613, 151395890668.13528, 156043744511.64703 ], "yaxis": "y" }, { "alignmentgroup": "True", "hovertemplate": "variable=Discounted Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Discounted Cash Flow", "marker": { "color": "#EF553B", "pattern": { "shape": "" } }, "name": "Discounted Cash Flow", "offsetgroup": "Discounted Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 95654712760.18098, 91880463460.32224, 88255134766.32219, 84772850715.8139, 81427967194.35735, 75952765418.30238, 70845715218.68257, 66082062150.13225, 61638716251.711586, 57494140127.27524 ], "yaxis": "y" } ], "layout": { "barmode": "group", "legend": { "title": { "text": "variable" }, "tracegroupgap": 0 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "AAPL Projected Free Cash Flows" }, "xaxis": { "anchor": "y", "domain": [ 0, 1 ], "tickangle": -90, "title": { "text": "Forecasted Year" }, "type": "category" }, "yaxis": { "anchor": "x", "domain": [ 0, 1 ], "title": { "text": "Free Cash Flows" } } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Growth in Perpuity Approach\n", "\n", "10th Year Cashflow: 57494140127.27524\n", "Long Term Growth Rate: 3.0\n", "Terminal Value: 789586191081.2467\n", "Discounted Cash Flows\n", "\n", "Year 2024: $95654712760.18098\n", "Year 2025: $91880463460.32224\n", "Year 2026: $88255134766.32219\n", "Year 2027: $84772850715.8139\n", "Year 2028: $81427967194.35735\n", "Year 2029: $75952765418.30238\n", "Year 2030: $70845715218.68257\n", "Year 2031: $66082062150.13225\n", "Year 2032: $61638716251.711586\n", "Year 2033: $57494140127.27524\n" ] }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "alignmentgroup": "True", "hovertemplate": "variable=Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Cash Flow", "marker": { "color": "#636efa", "pattern": { "shape": "" } }, "name": "Cash Flow", "offsetgroup": "Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 105698457599.99998, 112188342896.63997, 119076707150.49365, 126388016969.53395, 134148241211.46332, 138266592216.65524, 142511376597.70654, 146886475859.25613, 151395890668.13528, 156043744511.64703 ], "yaxis": "y" }, { "alignmentgroup": "True", "hovertemplate": "variable=Discounted Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Discounted Cash Flow", "marker": { "color": "#EF553B", "pattern": { "shape": "" } }, "name": "Discounted Cash Flow", "offsetgroup": "Discounted Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 95654712760.18098, 91880463460.32224, 88255134766.32219, 84772850715.8139, 81427967194.35735, 75952765418.30238, 70845715218.68257, 66082062150.13225, 61638716251.711586, 57494140127.27524 ], "yaxis": "y" } ], "layout": { "barmode": "group", "legend": { "title": { "text": "variable" }, "tracegroupgap": 0 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "AAPL Projected Free Cash Flows" }, "xaxis": { "anchor": "y", "domain": [ 0, 1 ], "tickangle": -90, "title": { "text": "Forecasted Year" }, "type": "category" }, "yaxis": { "anchor": "x", "domain": [ 0, 1 ], "title": { "text": "Free Cash Flows" } } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Growth in Perpuity Approach\n", "\n", "10th Year Cashflow: 57494140127.27524\n", "Long Term Growth Rate: 3.5\n", "Terminal Value: 850091929024.7124\n", "Discounted Cash Flows\n", "\n", "Year 2024: $95654712760.18098\n", "Year 2025: $91880463460.32224\n", "Year 2026: $88255134766.32219\n", "Year 2027: $84772850715.8139\n", "Year 2028: $81427967194.35735\n", "Year 2029: $75952765418.30238\n", "Year 2030: $70845715218.68257\n", "Year 2031: $66082062150.13225\n", "Year 2032: $61638716251.711586\n", "Year 2033: $57494140127.27524\n" ] }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "alignmentgroup": "True", "hovertemplate": "variable=Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Cash Flow", "marker": { "color": "#636efa", "pattern": { "shape": "" } }, "name": "Cash Flow", "offsetgroup": "Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 105698457599.99998, 112188342896.63997, 119076707150.49365, 126388016969.53395, 134148241211.46332, 138266592216.65524, 142511376597.70654, 146886475859.25613, 151395890668.13528, 156043744511.64703 ], "yaxis": "y" }, { "alignmentgroup": "True", "hovertemplate": "variable=Discounted Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Discounted Cash Flow", "marker": { "color": "#EF553B", "pattern": { "shape": "" } }, "name": "Discounted Cash Flow", "offsetgroup": "Discounted Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 95654712760.18098, 91880463460.32224, 88255134766.32219, 84772850715.8139, 81427967194.35735, 75952765418.30238, 70845715218.68257, 66082062150.13225, 61638716251.711586, 57494140127.27524 ], "yaxis": "y" } ], "layout": { "barmode": "group", "legend": { "title": { "text": "variable" }, "tracegroupgap": 0 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "AAPL Projected Free Cash Flows" }, "xaxis": { "anchor": "y", "domain": [ 0, 1 ], "tickangle": -90, "title": { "text": "Forecasted Year" }, "type": "category" }, "yaxis": { "anchor": "x", "domain": [ 0, 1 ], "title": { "text": "Free Cash Flows" } } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Growth in Perpuity Approach\n", "\n", "10th Year Cashflow: 57494140127.27524\n", "Long Term Growth Rate: 4.0\n", "Terminal Value: 919906242036.4038\n", "Discounted Cash Flows\n", "\n", "Year 2024: $95223835675.67566\n", "Year 2025: $91054575843.3893\n", "Year 2026: $87067861982.13818\n", "Year 2027: $83255701538.5959\n", "Year 2028: $79610451903.66277\n", "Year 2029: $73922966465.86055\n", "Year 2030: $68641803185.91212\n", "Year 2031: $63737933823.17082\n", "Year 2032: $59184403956.344284\n", "Year 2033: $54956184826.850494\n" ] }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "alignmentgroup": "True", "hovertemplate": "variable=Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Cash Flow", "marker": { "color": "#636efa", "pattern": { "shape": "" } }, "name": "Cash Flow", "offsetgroup": "Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 105698457599.99998, 112188342896.63997, 119076707150.49365, 126388016969.53395, 134148241211.46332, 138266592216.65524, 142511376597.70654, 146886475859.25613, 151395890668.13528, 156043744511.64703 ], "yaxis": "y" }, { "alignmentgroup": "True", "hovertemplate": "variable=Discounted Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Discounted Cash Flow", "marker": { "color": "#EF553B", "pattern": { "shape": "" } }, "name": "Discounted Cash Flow", "offsetgroup": "Discounted Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 95223835675.67566, 91054575843.3893, 87067861982.13818, 83255701538.5959, 79610451903.66277, 73922966465.86055, 68641803185.91212, 63737933823.17082, 59184403956.344284, 54956184826.850494 ], "yaxis": "y" } ], "layout": { "barmode": "group", "legend": { "title": { "text": "variable" }, "tracegroupgap": 0 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "AAPL Projected Free Cash Flows" }, "xaxis": { "anchor": "y", "domain": [ 0, 1 ], "tickangle": -90, "title": { "text": "Forecasted Year" }, "type": "category" }, "yaxis": { "anchor": "x", "domain": [ 0, 1 ], "title": { "text": "Free Cash Flows" } } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Growth in Perpuity Approach\n", "\n", "10th Year Cashflow: 54956184826.850494\n", "Long Term Growth Rate: 2.0\n", "Terminal Value: 622836761370.9723\n", "Discounted Cash Flows\n", "\n", "Year 2024: $95223835675.67566\n", "Year 2025: $91054575843.3893\n", "Year 2026: $87067861982.13818\n", "Year 2027: $83255701538.5959\n", "Year 2028: $79610451903.66277\n", "Year 2029: $73922966465.86055\n", "Year 2030: $68641803185.91212\n", "Year 2031: $63737933823.17082\n", "Year 2032: $59184403956.344284\n", "Year 2033: $54956184826.850494\n" ] }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "alignmentgroup": "True", "hovertemplate": "variable=Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Cash Flow", "marker": { "color": "#636efa", "pattern": { "shape": "" } }, "name": "Cash Flow", "offsetgroup": "Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 105698457599.99998, 112188342896.63997, 119076707150.49365, 126388016969.53395, 134148241211.46332, 138266592216.65524, 142511376597.70654, 146886475859.25613, 151395890668.13528, 156043744511.64703 ], "yaxis": "y" }, { "alignmentgroup": "True", "hovertemplate": "variable=Discounted Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Discounted Cash Flow", "marker": { "color": "#EF553B", "pattern": { "shape": "" } }, "name": "Discounted Cash Flow", "offsetgroup": "Discounted Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 95223835675.67566, 91054575843.3893, 87067861982.13818, 83255701538.5959, 79610451903.66277, 73922966465.86055, 68641803185.91212, 63737933823.17082, 59184403956.344284, 54956184826.850494 ], "yaxis": "y" } ], "layout": { "barmode": "group", "legend": { "title": { "text": "variable" }, "tracegroupgap": 0 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "AAPL Projected Free Cash Flows" }, "xaxis": { "anchor": "y", "domain": [ 0, 1 ], "tickangle": -90, "title": { "text": "Forecasted Year" }, "type": "category" }, "yaxis": { "anchor": "x", "domain": [ 0, 1 ], "title": { "text": "Free Cash Flows" } } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Growth in Perpuity Approach\n", "\n", "10th Year Cashflow: 54956184826.850494\n", "Long Term Growth Rate: 2.5\n", "Terminal Value: 662706934676.7266\n", "Discounted Cash Flows\n", "\n", "Year 2024: $95223835675.67566\n", "Year 2025: $91054575843.3893\n", "Year 2026: $87067861982.13818\n", "Year 2027: $83255701538.5959\n", "Year 2028: $79610451903.66277\n", "Year 2029: $73922966465.86055\n", "Year 2030: $68641803185.91212\n", "Year 2031: $63737933823.17082\n", "Year 2032: $59184403956.344284\n", "Year 2033: $54956184826.850494\n" ] }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "alignmentgroup": "True", "hovertemplate": "variable=Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Cash Flow", "marker": { "color": "#636efa", "pattern": { "shape": "" } }, "name": "Cash Flow", "offsetgroup": "Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 105698457599.99998, 112188342896.63997, 119076707150.49365, 126388016969.53395, 134148241211.46332, 138266592216.65524, 142511376597.70654, 146886475859.25613, 151395890668.13528, 156043744511.64703 ], "yaxis": "y" }, { "alignmentgroup": "True", "hovertemplate": "variable=Discounted Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Discounted Cash Flow", "marker": { "color": "#EF553B", "pattern": { "shape": "" } }, "name": "Discounted Cash Flow", "offsetgroup": "Discounted Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 95223835675.67566, 91054575843.3893, 87067861982.13818, 83255701538.5959, 79610451903.66277, 73922966465.86055, 68641803185.91212, 63737933823.17082, 59184403956.344284, 54956184826.850494 ], "yaxis": "y" } ], "layout": { "barmode": "group", "legend": { "title": { "text": "variable" }, "tracegroupgap": 0 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "AAPL Projected Free Cash Flows" }, "xaxis": { "anchor": "y", "domain": [ 0, 1 ], "tickangle": -90, "title": { "text": "Forecasted Year" }, "type": "category" }, "yaxis": { "anchor": "x", "domain": [ 0, 1 ], "title": { "text": "Free Cash Flows" } } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Growth in Perpuity Approach\n", "\n", "10th Year Cashflow: 54956184826.850494\n", "Long Term Growth Rate: 3.0\n", "Terminal Value: 707560879645.7002\n", "Discounted Cash Flows\n", "\n", "Year 2024: $95223835675.67566\n", "Year 2025: $91054575843.3893\n", "Year 2026: $87067861982.13818\n", "Year 2027: $83255701538.5959\n", "Year 2028: $79610451903.66277\n", "Year 2029: $73922966465.86055\n", "Year 2030: $68641803185.91212\n", "Year 2031: $63737933823.17082\n", "Year 2032: $59184403956.344284\n", "Year 2033: $54956184826.850494\n" ] }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "alignmentgroup": "True", "hovertemplate": "variable=Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Cash Flow", "marker": { "color": "#636efa", "pattern": { "shape": "" } }, "name": "Cash Flow", "offsetgroup": "Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 105698457599.99998, 112188342896.63997, 119076707150.49365, 126388016969.53395, 134148241211.46332, 138266592216.65524, 142511376597.70654, 146886475859.25613, 151395890668.13528, 156043744511.64703 ], "yaxis": "y" }, { "alignmentgroup": "True", "hovertemplate": "variable=Discounted Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Discounted Cash Flow", "marker": { "color": "#EF553B", "pattern": { "shape": "" } }, "name": "Discounted Cash Flow", "offsetgroup": "Discounted Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 95223835675.67566, 91054575843.3893, 87067861982.13818, 83255701538.5959, 79610451903.66277, 73922966465.86055, 68641803185.91212, 63737933823.17082, 59184403956.344284, 54956184826.850494 ], "yaxis": "y" } ], "layout": { "barmode": "group", "legend": { "title": { "text": "variable" }, "tracegroupgap": 0 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "AAPL Projected Free Cash Flows" }, "xaxis": { "anchor": "y", "domain": [ 0, 1 ], "tickangle": -90, "title": { "text": "Forecasted Year" }, "type": "category" }, "yaxis": { "anchor": "x", "domain": [ 0, 1 ], "title": { "text": "Free Cash Flows" } } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Growth in Perpuity Approach\n", "\n", "10th Year Cashflow: 54956184826.850494\n", "Long Term Growth Rate: 3.5\n", "Terminal Value: 758395350610.5369\n", "Discounted Cash Flows\n", "\n", "Year 2024: $95223835675.67566\n", "Year 2025: $91054575843.3893\n", "Year 2026: $87067861982.13818\n", "Year 2027: $83255701538.5959\n", "Year 2028: $79610451903.66277\n", "Year 2029: $73922966465.86055\n", "Year 2030: $68641803185.91212\n", "Year 2031: $63737933823.17082\n", "Year 2032: $59184403956.344284\n", "Year 2033: $54956184826.850494\n" ] }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "alignmentgroup": "True", "hovertemplate": "variable=Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Cash Flow", "marker": { "color": "#636efa", "pattern": { "shape": "" } }, "name": "Cash Flow", "offsetgroup": "Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 105698457599.99998, 112188342896.63997, 119076707150.49365, 126388016969.53395, 134148241211.46332, 138266592216.65524, 142511376597.70654, 146886475859.25613, 151395890668.13528, 156043744511.64703 ], "yaxis": "y" }, { "alignmentgroup": "True", "hovertemplate": "variable=Discounted Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Discounted Cash Flow", "marker": { "color": "#EF553B", "pattern": { "shape": "" } }, "name": "Discounted Cash Flow", "offsetgroup": "Discounted Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 95223835675.67566, 91054575843.3893, 87067861982.13818, 83255701538.5959, 79610451903.66277, 73922966465.86055, 68641803185.91212, 63737933823.17082, 59184403956.344284, 54956184826.850494 ], "yaxis": "y" } ], "layout": { "barmode": "group", "legend": { "title": { "text": "variable" }, "tracegroupgap": 0 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "AAPL Projected Free Cash Flows" }, "xaxis": { "anchor": "y", "domain": [ 0, 1 ], "tickangle": -90, "title": { "text": "Forecasted Year" }, "type": "category" }, "yaxis": { "anchor": "x", "domain": [ 0, 1 ], "title": { "text": "Free Cash Flows" } } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Growth in Perpuity Approach\n", "\n", "10th Year Cashflow: 54956184826.850494\n", "Long Term Growth Rate: 4.0\n", "Terminal Value: 816491888856.0645\n", "Discounted Cash Flows\n", "\n", "Year 2024: $94796822959.64124\n", "Year 2025: $90239773891.80556\n", "Year 2026: $85901790142.38782\n", "Year 2027: $81772340858.41293\n", "Year 2028: $77841401423.42554\n", "Year 2029: $71956172598.31813\n", "Year 2030: $66515898741.7816\n", "Year 2031: $61486938863.81551\n", "Year 2032: $56838195414.29116\n", "Year 2033: $52540921985.21066\n" ] }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "alignmentgroup": "True", "hovertemplate": "variable=Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Cash Flow", "marker": { "color": "#636efa", "pattern": { "shape": "" } }, "name": "Cash Flow", "offsetgroup": "Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 105698457599.99998, 112188342896.63997, 119076707150.49365, 126388016969.53395, 134148241211.46332, 138266592216.65524, 142511376597.70654, 146886475859.25613, 151395890668.13528, 156043744511.64703 ], "yaxis": "y" }, { "alignmentgroup": "True", "hovertemplate": "variable=Discounted Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Discounted Cash Flow", "marker": { "color": "#EF553B", "pattern": { "shape": "" } }, "name": "Discounted Cash Flow", "offsetgroup": "Discounted Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 94796822959.64124, 90239773891.80556, 85901790142.38782, 81772340858.41293, 77841401423.42554, 71956172598.31813, 66515898741.7816, 61486938863.81551, 56838195414.29116, 52540921985.21066 ], "yaxis": "y" } ], "layout": { "barmode": "group", "legend": { "title": { "text": "variable" }, "tracegroupgap": 0 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "AAPL Projected Free Cash Flows" }, "xaxis": { "anchor": "y", "domain": [ 0, 1 ], "tickangle": -90, "title": { "text": "Forecasted Year" }, "type": "category" }, "yaxis": { "anchor": "x", "domain": [ 0, 1 ], "title": { "text": "Free Cash Flows" } } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Growth in Perpuity Approach\n", "\n", "10th Year Cashflow: 52540921985.21066\n", "Long Term Growth Rate: 2.0\n", "Terminal Value: 564123583420.1566\n", "Discounted Cash Flows\n", "\n", "Year 2024: $94796822959.64124\n", "Year 2025: $90239773891.80556\n", "Year 2026: $85901790142.38782\n", "Year 2027: $81772340858.41293\n", "Year 2028: $77841401423.42554\n", "Year 2029: $71956172598.31813\n", "Year 2030: $66515898741.7816\n", "Year 2031: $61486938863.81551\n", "Year 2032: $56838195414.29116\n", "Year 2033: $52540921985.21066\n" ] }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "alignmentgroup": "True", "hovertemplate": "variable=Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Cash Flow", "marker": { "color": "#636efa", "pattern": { "shape": "" } }, "name": "Cash Flow", "offsetgroup": "Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 105698457599.99998, 112188342896.63997, 119076707150.49365, 126388016969.53395, 134148241211.46332, 138266592216.65524, 142511376597.70654, 146886475859.25613, 151395890668.13528, 156043744511.64703 ], "yaxis": "y" }, { "alignmentgroup": "True", "hovertemplate": "variable=Discounted Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Discounted Cash Flow", "marker": { "color": "#EF553B", "pattern": { "shape": "" } }, "name": "Discounted Cash Flow", "offsetgroup": "Discounted Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 94796822959.64124, 90239773891.80556, 85901790142.38782, 81772340858.41293, 77841401423.42554, 71956172598.31813, 66515898741.7816, 61486938863.81551, 56838195414.29116, 52540921985.21066 ], "yaxis": "y" } ], "layout": { "barmode": "group", "legend": { "title": { "text": "variable" }, "tracegroupgap": 0 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "AAPL Projected Free Cash Flows" }, "xaxis": { "anchor": "y", "domain": [ 0, 1 ], "tickangle": -90, "title": { "text": "Forecasted Year" }, "type": "category" }, "yaxis": { "anchor": "x", "domain": [ 0, 1 ], "title": { "text": "Free Cash Flows" } } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Growth in Perpuity Approach\n", "\n", "10th Year Cashflow: 52540921985.21066\n", "Long Term Growth Rate: 2.5\n", "Terminal Value: 598382722609.3436\n", "Discounted Cash Flows\n", "\n", "Year 2024: $94796822959.64124\n", "Year 2025: $90239773891.80556\n", "Year 2026: $85901790142.38782\n", "Year 2027: $81772340858.41293\n", "Year 2028: $77841401423.42554\n", "Year 2029: $71956172598.31813\n", "Year 2030: $66515898741.7816\n", "Year 2031: $61486938863.81551\n", "Year 2032: $56838195414.29116\n", "Year 2033: $52540921985.21066\n" ] }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "alignmentgroup": "True", "hovertemplate": "variable=Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Cash Flow", "marker": { "color": "#636efa", "pattern": { "shape": "" } }, "name": "Cash Flow", "offsetgroup": "Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 105698457599.99998, 112188342896.63997, 119076707150.49365, 126388016969.53395, 134148241211.46332, 138266592216.65524, 142511376597.70654, 146886475859.25613, 151395890668.13528, 156043744511.64703 ], "yaxis": "y" }, { "alignmentgroup": "True", "hovertemplate": "variable=Discounted Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Discounted Cash Flow", "marker": { "color": "#EF553B", "pattern": { "shape": "" } }, "name": "Discounted Cash Flow", "offsetgroup": "Discounted Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 94796822959.64124, 90239773891.80556, 85901790142.38782, 81772340858.41293, 77841401423.42554, 71956172598.31813, 66515898741.7816, 61486938863.81551, 56838195414.29116, 52540921985.21066 ], "yaxis": "y" } ], "layout": { "barmode": "group", "legend": { "title": { "text": "variable" }, "tracegroupgap": 0 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "AAPL Projected Free Cash Flows" }, "xaxis": { "anchor": "y", "domain": [ 0, 1 ], "tickangle": -90, "title": { "text": "Forecasted Year" }, "type": "category" }, "yaxis": { "anchor": "x", "domain": [ 0, 1 ], "title": { "text": "Free Cash Flows" } } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Growth in Perpuity Approach\n", "\n", "10th Year Cashflow: 52540921985.21066\n", "Long Term Growth Rate: 3.0\n", "Terminal Value: 636672348761.9645\n", "Discounted Cash Flows\n", "\n", "Year 2024: $94796822959.64124\n", "Year 2025: $90239773891.80556\n", "Year 2026: $85901790142.38782\n", "Year 2027: $81772340858.41293\n", "Year 2028: $77841401423.42554\n", "Year 2029: $71956172598.31813\n", "Year 2030: $66515898741.7816\n", "Year 2031: $61486938863.81551\n", "Year 2032: $56838195414.29116\n", "Year 2033: $52540921985.21066\n" ] }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "alignmentgroup": "True", "hovertemplate": "variable=Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Cash Flow", "marker": { "color": "#636efa", "pattern": { "shape": "" } }, "name": "Cash Flow", "offsetgroup": "Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 105698457599.99998, 112188342896.63997, 119076707150.49365, 126388016969.53395, 134148241211.46332, 138266592216.65524, 142511376597.70654, 146886475859.25613, 151395890668.13528, 156043744511.64703 ], "yaxis": "y" }, { "alignmentgroup": "True", "hovertemplate": "variable=Discounted Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Discounted Cash Flow", "marker": { "color": "#EF553B", "pattern": { "shape": "" } }, "name": "Discounted Cash Flow", "offsetgroup": "Discounted Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 94796822959.64124, 90239773891.80556, 85901790142.38782, 81772340858.41293, 77841401423.42554, 71956172598.31813, 66515898741.7816, 61486938863.81551, 56838195414.29116, 52540921985.21066 ], "yaxis": "y" } ], "layout": { "barmode": "group", "legend": { "title": { "text": "variable" }, "tracegroupgap": 0 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "AAPL Projected Free Cash Flows" }, "xaxis": { "anchor": "y", "domain": [ 0, 1 ], "tickangle": -90, "title": { "text": "Forecasted Year" }, "type": "category" }, "yaxis": { "anchor": "x", "domain": [ 0, 1 ], "title": { "text": "Free Cash Flows" } } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Growth in Perpuity Approach\n", "\n", "10th Year Cashflow: 52540921985.21066\n", "Long Term Growth Rate: 3.5\n", "Terminal Value: 679748178183.6628\n", "Discounted Cash Flows\n", "\n", "Year 2024: $94796822959.64124\n", "Year 2025: $90239773891.80556\n", "Year 2026: $85901790142.38782\n", "Year 2027: $81772340858.41293\n", "Year 2028: $77841401423.42554\n", "Year 2029: $71956172598.31813\n", "Year 2030: $66515898741.7816\n", "Year 2031: $61486938863.81551\n", "Year 2032: $56838195414.29116\n", "Year 2033: $52540921985.21066\n" ] }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "alignmentgroup": "True", "hovertemplate": "variable=Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Cash Flow", "marker": { "color": "#636efa", "pattern": { "shape": "" } }, "name": "Cash Flow", "offsetgroup": "Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 105698457599.99998, 112188342896.63997, 119076707150.49365, 126388016969.53395, 134148241211.46332, 138266592216.65524, 142511376597.70654, 146886475859.25613, 151395890668.13528, 156043744511.64703 ], "yaxis": "y" }, { "alignmentgroup": "True", "hovertemplate": "variable=Discounted Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Discounted Cash Flow", "marker": { "color": "#EF553B", "pattern": { "shape": "" } }, "name": "Discounted Cash Flow", "offsetgroup": "Discounted Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 94796822959.64124, 90239773891.80556, 85901790142.38782, 81772340858.41293, 77841401423.42554, 71956172598.31813, 66515898741.7816, 61486938863.81551, 56838195414.29116, 52540921985.21066 ], "yaxis": "y" } ], "layout": { "barmode": "group", "legend": { "title": { "text": "variable" }, "tracegroupgap": 0 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "AAPL Projected Free Cash Flows" }, "xaxis": { "anchor": "y", "domain": [ 0, 1 ], "tickangle": -90, "title": { "text": "Forecasted Year" }, "type": "category" }, "yaxis": { "anchor": "x", "domain": [ 0, 1 ], "title": { "text": "Free Cash Flows" } } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Growth in Perpuity Approach\n", "\n", "10th Year Cashflow: 52540921985.21066\n", "Long Term Growth Rate: 4.0\n", "Terminal Value: 728567451528.2545\n", "Discounted Cash Flows\n", "\n", "Year 2024: $94373622857.14284\n", "Year 2025: $89435860089.79588\n", "Year 2026: $84756448124.38333\n", "Year 2027: $80321869677.8754\n", "Year 2028: $76119314710.80083\n", "Year 2029: $70050158636.09143\n", "Year 2030: $64464909380.55306\n", "Year 2031: $59324984016.55003\n", "Year 2032: $54594875915.94473\n", "Year 2033: $50241909470.14664\n" ] }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "alignmentgroup": "True", "hovertemplate": "variable=Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Cash Flow", "marker": { "color": "#636efa", "pattern": { "shape": "" } }, "name": "Cash Flow", "offsetgroup": "Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 105698457599.99998, 112188342896.63997, 119076707150.49365, 126388016969.53395, 134148241211.46332, 138266592216.65524, 142511376597.70654, 146886475859.25613, 151395890668.13528, 156043744511.64703 ], "yaxis": "y" }, { "alignmentgroup": "True", "hovertemplate": "variable=Discounted Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Discounted Cash Flow", "marker": { "color": "#EF553B", "pattern": { "shape": "" } }, "name": "Discounted Cash Flow", "offsetgroup": "Discounted Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 94373622857.14284, 89435860089.79588, 84756448124.38333, 80321869677.8754, 76119314710.80083, 70050158636.09143, 64464909380.55306, 59324984016.55003, 54594875915.94473, 50241909470.14664 ], "yaxis": "y" } ], "layout": { "barmode": "group", "legend": { "title": { "text": "variable" }, "tracegroupgap": 0 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "AAPL Projected Free Cash Flows" }, "xaxis": { "anchor": "y", "domain": [ 0, 1 ], "tickangle": -90, "title": { "text": "Forecasted Year" }, "type": "category" }, "yaxis": { "anchor": "x", "domain": [ 0, 1 ], "title": { "text": "Free Cash Flows" } } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Growth in Perpuity Approach\n", "\n", "10th Year Cashflow: 50241909470.14664\n", "Long Term Growth Rate: 2.0\n", "Terminal Value: 512467476595.4957\n", "Discounted Cash Flows\n", "\n", "Year 2024: $94373622857.14284\n", "Year 2025: $89435860089.79588\n", "Year 2026: $84756448124.38333\n", "Year 2027: $80321869677.8754\n", "Year 2028: $76119314710.80083\n", "Year 2029: $70050158636.09143\n", "Year 2030: $64464909380.55306\n", "Year 2031: $59324984016.55003\n", "Year 2032: $54594875915.94473\n", "Year 2033: $50241909470.14664\n" ] }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "alignmentgroup": "True", "hovertemplate": "variable=Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Cash Flow", "marker": { "color": "#636efa", "pattern": { "shape": "" } }, "name": "Cash Flow", "offsetgroup": "Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 105698457599.99998, 112188342896.63997, 119076707150.49365, 126388016969.53395, 134148241211.46332, 138266592216.65524, 142511376597.70654, 146886475859.25613, 151395890668.13528, 156043744511.64703 ], "yaxis": "y" }, { "alignmentgroup": "True", "hovertemplate": "variable=Discounted Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Discounted Cash Flow", "marker": { "color": "#EF553B", "pattern": { "shape": "" } }, "name": "Discounted Cash Flow", "offsetgroup": "Discounted Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 94373622857.14284, 89435860089.79588, 84756448124.38333, 80321869677.8754, 76119314710.80083, 70050158636.09143, 64464909380.55306, 59324984016.55003, 54594875915.94473, 50241909470.14664 ], "yaxis": "y" } ], "layout": { "barmode": "group", "legend": { "title": { "text": "variable" }, "tracegroupgap": 0 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "AAPL Projected Free Cash Flows" }, "xaxis": { "anchor": "y", "domain": [ 0, 1 ], "tickangle": -90, "title": { "text": "Forecasted Year" }, "type": "category" }, "yaxis": { "anchor": "x", "domain": [ 0, 1 ], "title": { "text": "Free Cash Flows" } } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Growth in Perpuity Approach\n", "\n", "10th Year Cashflow: 50241909470.14664\n", "Long Term Growth Rate: 2.5\n", "Terminal Value: 542083760072.6347\n", "Discounted Cash Flows\n", "\n", "Year 2024: $94373622857.14284\n", "Year 2025: $89435860089.79588\n", "Year 2026: $84756448124.38333\n", "Year 2027: $80321869677.8754\n", "Year 2028: $76119314710.80083\n", "Year 2029: $70050158636.09143\n", "Year 2030: $64464909380.55306\n", "Year 2031: $59324984016.55003\n", "Year 2032: $54594875915.94473\n", "Year 2033: $50241909470.14664\n" ] }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "alignmentgroup": "True", "hovertemplate": "variable=Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Cash Flow", "marker": { "color": "#636efa", "pattern": { "shape": "" } }, "name": "Cash Flow", "offsetgroup": "Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 105698457599.99998, 112188342896.63997, 119076707150.49365, 126388016969.53395, 134148241211.46332, 138266592216.65524, 142511376597.70654, 146886475859.25613, 151395890668.13528, 156043744511.64703 ], "yaxis": "y" }, { "alignmentgroup": "True", "hovertemplate": "variable=Discounted Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Discounted Cash Flow", "marker": { "color": "#EF553B", "pattern": { "shape": "" } }, "name": "Discounted Cash Flow", "offsetgroup": "Discounted Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 94373622857.14284, 89435860089.79588, 84756448124.38333, 80321869677.8754, 76119314710.80083, 70050158636.09143, 64464909380.55306, 59324984016.55003, 54594875915.94473, 50241909470.14664 ], "yaxis": "y" } ], "layout": { "barmode": "group", "legend": { "title": { "text": "variable" }, "tracegroupgap": 0 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "AAPL Projected Free Cash Flows" }, "xaxis": { "anchor": "y", "domain": [ 0, 1 ], "tickangle": -90, "title": { "text": "Forecasted Year" }, "type": "category" }, "yaxis": { "anchor": "x", "domain": [ 0, 1 ], "title": { "text": "Free Cash Flows" } } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Growth in Perpuity Approach\n", "\n", "10th Year Cashflow: 50241909470.14664\n", "Long Term Growth Rate: 3.0\n", "Terminal Value: 574990741713.9004\n", "Discounted Cash Flows\n", "\n", "Year 2024: $94373622857.14284\n", "Year 2025: $89435860089.79588\n", "Year 2026: $84756448124.38333\n", "Year 2027: $80321869677.8754\n", "Year 2028: $76119314710.80083\n", "Year 2029: $70050158636.09143\n", "Year 2030: $64464909380.55306\n", "Year 2031: $59324984016.55003\n", "Year 2032: $54594875915.94473\n", "Year 2033: $50241909470.14664\n" ] }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "alignmentgroup": "True", "hovertemplate": "variable=Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Cash Flow", "marker": { "color": "#636efa", "pattern": { "shape": "" } }, "name": "Cash Flow", "offsetgroup": "Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 105698457599.99998, 112188342896.63997, 119076707150.49365, 126388016969.53395, 134148241211.46332, 138266592216.65524, 142511376597.70654, 146886475859.25613, 151395890668.13528, 156043744511.64703 ], "yaxis": "y" }, { "alignmentgroup": "True", "hovertemplate": "variable=Discounted Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Discounted Cash Flow", "marker": { "color": "#EF553B", "pattern": { "shape": "" } }, "name": "Discounted Cash Flow", "offsetgroup": "Discounted Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 94373622857.14284, 89435860089.79588, 84756448124.38333, 80321869677.8754, 76119314710.80083, 70050158636.09143, 64464909380.55306, 59324984016.55003, 54594875915.94473, 50241909470.14664 ], "yaxis": "y" } ], "layout": { "barmode": "group", "legend": { "title": { "text": "variable" }, "tracegroupgap": 0 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "AAPL Projected Free Cash Flows" }, "xaxis": { "anchor": "y", "domain": [ 0, 1 ], "tickangle": -90, "title": { "text": "Forecasted Year" }, "type": "category" }, "yaxis": { "anchor": "x", "domain": [ 0, 1 ], "title": { "text": "Free Cash Flows" } } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Growth in Perpuity Approach\n", "\n", "10th Year Cashflow: 50241909470.14664\n", "Long Term Growth Rate: 3.5\n", "Terminal Value: 611769132960.0209\n", "Discounted Cash Flows\n", "\n", "Year 2024: $94373622857.14284\n", "Year 2025: $89435860089.79588\n", "Year 2026: $84756448124.38333\n", "Year 2027: $80321869677.8754\n", "Year 2028: $76119314710.80083\n", "Year 2029: $70050158636.09143\n", "Year 2030: $64464909380.55306\n", "Year 2031: $59324984016.55003\n", "Year 2032: $54594875915.94473\n", "Year 2033: $50241909470.14664\n" ] }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "alignmentgroup": "True", "hovertemplate": "variable=Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Cash Flow", "marker": { "color": "#636efa", "pattern": { "shape": "" } }, "name": "Cash Flow", "offsetgroup": "Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 105698457599.99998, 112188342896.63997, 119076707150.49365, 126388016969.53395, 134148241211.46332, 138266592216.65524, 142511376597.70654, 146886475859.25613, 151395890668.13528, 156043744511.64703 ], "yaxis": "y" }, { "alignmentgroup": "True", "hovertemplate": "variable=Discounted Cash Flow
Year=%{x}
value=%{y}", "legendgroup": "Discounted Cash Flow", "marker": { "color": "#EF553B", "pattern": { "shape": "" } }, "name": "Discounted Cash Flow", "offsetgroup": "Discounted Cash Flow", "orientation": "v", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033 ], "xaxis": "x", "y": [ 94373622857.14284, 89435860089.79588, 84756448124.38333, 80321869677.8754, 76119314710.80083, 70050158636.09143, 64464909380.55306, 59324984016.55003, 54594875915.94473, 50241909470.14664 ], "yaxis": "y" } ], "layout": { "barmode": "group", "legend": { "title": { "text": "variable" }, "tracegroupgap": 0 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "AAPL Projected Free Cash Flows" }, "xaxis": { "anchor": "y", "domain": [ 0, 1 ], "tickangle": -90, "title": { "text": "Forecasted Year" }, "type": "category" }, "yaxis": { "anchor": "x", "domain": [ 0, 1 ], "title": { "text": "Free Cash Flows" } } } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Growth in Perpuity Approach\n", "\n", "10th Year Cashflow: 50241909470.14664\n", "Long Term Growth Rate: 4.0\n", "Terminal Value: 653144823111.9065\n" ] } ], "source": [ "intrinsic_values = {}\n", "for dr in discount_rates:\n", " intrinsic_values[dr] = {}\n", " for lr in long_term_growth_rates:\n", " intrinsic_value = calculate_intrinsic_value(cash_flow, total_debt, cash_and_ST_investments, \n", " EPS_growth_5Y, EPS_growth_6Y_to_10Y, lr,\n", " shares_outstanding, dr) \n", " intrinsic_values[dr][lr] = intrinsic_value\n", "\n" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Long Term Growth Rates
2.02.53.03.54.0
Discount Rates
8.0131.785635139.390299148.515896159.669404173.611289
8.5121.087304127.260010134.555025143.309043154.008399
9.0111.925060117.001484122.923979129.923291138.322466
9.5103.991430108.213461113.085035118.768538125.485405
10.097.055820100.601686104.654105109.329973114.785152
10.590.94190393.94547897.349528101.239872105.728730
11.085.51254588.07608190.96006094.22856997.964009
11.580.65948682.86225085.32416288.09381391.232751
12.076.29613078.20037180.31619582.68093985.341276
\n", "
" ], "text/plain": [ " Long Term Growth Rates \\\n", " 2.0 2.5 3.0 3.5 \n", "Discount Rates \n", "8.0 131.785635 139.390299 148.515896 159.669404 \n", "8.5 121.087304 127.260010 134.555025 143.309043 \n", "9.0 111.925060 117.001484 122.923979 129.923291 \n", "9.5 103.991430 108.213461 113.085035 118.768538 \n", "10.0 97.055820 100.601686 104.654105 109.329973 \n", "10.5 90.941903 93.945478 97.349528 101.239872 \n", "11.0 85.512545 88.076081 90.960060 94.228569 \n", "11.5 80.659486 82.862250 85.324162 88.093813 \n", "12.0 76.296130 78.200371 80.316195 82.680939 \n", "\n", " \n", " 4.0 \n", "Discount Rates \n", "8.0 173.611289 \n", "8.5 154.008399 \n", "9.0 138.322466 \n", "9.5 125.485405 \n", "10.0 114.785152 \n", "10.5 105.728730 \n", "11.0 97.964009 \n", "11.5 91.232751 \n", "12.0 85.341276 " ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_intrinsic_values = pd.DataFrame(intrinsic_values).T\n", "df_intrinsic_values.index.name = 'Discount Rates'\n", "df_intrinsic_values.columns = pd.MultiIndex.from_product([['Long Term Growth Rates'], df_intrinsic_values.columns])\n", "df_intrinsic_values" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.7" } }, "nbformat": 4, "nbformat_minor": 4 }