import logging import warnings import gradio as gr import pytube as pt import torch from huggingface_hub import model_info from transformers import pipeline from transformers.utils.logging import disable_progress_bar warnings.filterwarnings("ignore") disable_progress_bar() DEFAULT_MODEL_NAME = "bofenghuang/whisper-medium-cv11-french-punct" MODEL_NAMES = [ "openai/whisper-small", "openai/whisper-medium", "openai/whisper-large-v2", "bofenghuang/whisper-small-cv11-french", "bofenghuang/whisper-small-cv11-french-punct", "bofenghuang/whisper-medium-cv11-french", "bofenghuang/whisper-medium-cv11-french-punct", ] CHUNK_LENGTH_S = 30 MAX_NEW_TOKENS = 225 logging.basicConfig( format="%(asctime)s [%(levelname)s] [%(name)s] %(message)s", datefmt="%Y-%m-%dT%H:%M:%SZ", ) logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) device = 0 if torch.cuda.is_available() else "cpu" logger.info(f"Model will be loaded on device {device}") cached_models = {} def maybe_load_cached_pipeline(model_name): pipe = cached_models.get(model_name) if pipe is None: # load pipeline # todo: set decoding option for pipeline pipe = pipeline( task="automatic-speech-recognition", model=model_name, chunk_length_s=CHUNK_LENGTH_S, device=device, ) # set forced_decoder_ids pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language="fr", task="transcribe") # limit genneration max length pipe.model.config.max_length = MAX_NEW_TOKENS + 1 logger.info(f"`{model_name}` pipeline has been initialized") cached_models[model_name] = pipe return pipe def transcribe(microphone, file_upload, model_name): warn_output = "" if (microphone is not None) and (file_upload is not None): warn_output = ( "WARNING: You've uploaded an audio file and used the microphone. " "The recorded file from the microphone will be used and the uploaded audio will be discarded.\n" ) elif (microphone is None) and (file_upload is None): return "ERROR: You have to either use the microphone or upload an audio file" file = microphone if microphone is not None else file_upload pipe = maybe_load_cached_pipeline(model_name) text = pipe(file)["text"] logger.info(f"Transcription: {text}") return warn_output + text def _return_yt_html_embed(yt_url): video_id = yt_url.split("?v=")[-1] HTML_str = ( f'