#! /usr/bin/env python
# coding=utf-8
# Copyright 2023 Bofeng Huang
import datetime
import logging
import os
import re
import warnings
import gradio as gr
import librosa
# import nltk
import pandas as pd
import psutil
import pytube as pt
import torch
# import torchaudio
from transformers import pipeline, Wav2Vec2ProcessorWithLM, AutoModelForCTC
from transformers.utils.logging import disable_progress_bar
# nltk.download("punkt")
# from nltk.tokenize import sent_tokenize
warnings.filterwarnings("ignore")
disable_progress_bar()
DEFAULT_MODEL_NAME = "bofenghuang/asr-wav2vec2-ctc-french"
SAMPLE_RATE = 16_000
GEN_KWARGS = {
"chunk_length_s": 30,
"stride_length_s": 5,
}
logging.basicConfig(
format="%(asctime)s [%(levelname)s] [%(name)s] %(message)s",
datefmt="%Y-%m-%dT%H:%M:%SZ",
)
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
# device = 0 if torch.cuda.is_available() else "cpu"
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
logger.info(f"Model will be loaded on device `{device}`")
cached_models = {}
def _return_yt_html_embed(yt_url):
video_id = yt_url.split("?v=")[-1]
HTML_str = (
f'
'
" "
)
return HTML_str
def download_audio_from_youtube(yt_url, downloaded_filename="audio.wav"):
yt = pt.YouTube(yt_url)
stream = yt.streams.filter(only_audio=True)[0]
# stream.download(filename="audio.mp3")
stream.download(filename=downloaded_filename)
return downloaded_filename
def download_video_from_youtube(yt_url, downloaded_filename="video.mp4"):
yt = pt.YouTube(yt_url)
stream = yt.streams.filter(progressive=True, file_extension="mp4").order_by("resolution").desc().first()
stream.download(filename=downloaded_filename)
logger.info(f"Download YouTube video from {yt_url}")
return downloaded_filename
def _print_memory_info():
memory = psutil.virtual_memory()
logger.info(
f"Memory info - Free: {memory.available / (1024 ** 3):.2f} Gb, used: {memory.percent}%, total: {memory.total / (1024 ** 3):.2f} Gb"
)
def _print_cuda_memory_info():
used_mem, tot_mem = torch.cuda.mem_get_info()
logger.info(
f"CUDA memory info - Free: {used_mem / 1024 ** 3:.2f} Gb, used: {(tot_mem - used_mem) / 1024 ** 3:.2f} Gb, total: {tot_mem / 1024 ** 3:.2f} Gb"
)
def print_memory_info():
_print_memory_info()
_print_cuda_memory_info()
def maybe_load_cached_pipeline(model_name):
model = cached_models.get(model_name)
if model is None:
pipe = pipeline(model=model_name, device=device)
# model = AutoModelForCTC.from_pretrained(model_name).to(device)
# processor = Wav2Vec2ProcessorWithLM.from_pretrained(model_name)
# pipe = pipeline(
# "automatic-speech-recognition",
# model=model,
# tokenizer=processor.tokenizer,
# feature_extractor=processor.feature_extractor,
# decoder=processor.decoder,
# )
logger.info(f"`{model_name}` has been loaded on device `{device}`")
print_memory_info()
cached_models[model_name] = pipe
return model
def process_audio_file(audio_file):
# waveform, sample_rate = torchaudio.load(audio_file)
# waveform = waveform.squeeze(axis=0) # mono
# # resample
# if sample_rate != SAMPLE_RATE:
# resampler = torchaudio.transforms.Resample(sample_rate, SAMPLE_RATE)
# waveform = resampler(waveform)
waveform, sample_rate = librosa.load(audio_file, mono=True)
# resample
if sample_rate != SAMPLE_RATE:
waveform = librosa.resample(waveform, orig_sr=sample_rate, target_sr=SAMPLE_RATE)
return waveform
def infer(model, filename, return_df=False):
audio_data = process_audio_file(filename)
text = model(audio_data, **GEN_KWARGS)["text"]
if return_df:
# return pd.DataFrame({"text": sent_tokenize(text)})
return pd.DataFrame({"text": [text]})
else:
return text
def transcribe(microphone, file_upload, model_name=DEFAULT_MODEL_NAME):
warn_output = ""
if (microphone is not None) and (file_upload is not None):
warn_output = (
"WARNING: You've uploaded an audio file and used the microphone. "
"The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
)
elif (microphone is None) and (file_upload is None):
return "ERROR: You have to either use the microphone or upload an audio file"
file = microphone if microphone is not None else file_upload
model = maybe_load_cached_pipeline(model_name)
text = infer(model, file, return_df=True)
logger.info(f'Transcription by `{model_name}`:\n{text.to_json(orient="index", force_ascii=False, indent=2)}\n')
# return warn_output + text
return text
def yt_transcribe(yt_url, model_name=DEFAULT_MODEL_NAME):
# html_embed_str = _return_yt_html_embed(yt_url)
audio_file_path = download_audio_from_youtube(yt_url)
model = maybe_load_cached_pipeline(model_name)
text = infer(model, audio_file_path, return_df=True)
logger.info(
f'Transcription by `{model_name}` of "{yt_url}":\n{text.to_json(orient="index", force_ascii=False, indent=2)}\n'
)
# return html_embed_str, text
return text
def video_transcribe(video_file_path, model_name=DEFAULT_MODEL_NAME):
if video_file_path is None:
raise ValueError("Failed to transcribe video as no video_file_path has been defined")
audio_file_path = re.sub(r"\.mp4$", ".wav", video_file_path)
os.system(
f'ffmpeg -hide_banner -loglevel error -y -i "{video_file_path}" -ar 16000 -ac 1 -c:a pcm_s16le "{audio_file_path}"'
)
model = maybe_load_cached_pipeline(model_name)
text = infer(model, audio_file_path, return_df=True)
logger.info(f'Transcription by `{model_name}`:\n{text.to_json(orient="index", force_ascii=False, indent=2)}\n')
return text
# load default model
maybe_load_cached_pipeline(DEFAULT_MODEL_NAME)
# default_text_output_df = pd.DataFrame(columns=["start", "end", "text"])
default_text_output_df = pd.DataFrame(columns=["text"])
with gr.Blocks() as demo:
with gr.Tab("Transcribe Audio"):
gr.Markdown(
f"""
Speech-to-Text in French: Transcribe Audio
Transcribe long-form microphone or audio inputs!
Demo uses the fine-tuned wav2vec2 model {DEFAULT_MODEL_NAME} and 🤗 Transformers to transcribe audio files of arbitrary length.
To achieve improved accuracy and well-punctuated text, please use the [Whisper demo](https://huggingface.co/spaces/bofenghuang/whisper-demo-french).
"""
)
microphone_input = gr.inputs.Audio(source="microphone", type="filepath", label="Record", optional=True)
upload_input = gr.inputs.Audio(source="upload", type="filepath", label="Upload File", optional=True)
# with_timestamps_input = gr.Checkbox(label="With timestamps?")
microphone_transcribe_btn = gr.Button("Transcribe Audio")
# gr.Markdown('''
# Here you will get generated transcrit.
# ''')
# microphone_text_output = gr.outputs.Textbox(label="Transcription")
text_output_df2 = gr.DataFrame(
value=default_text_output_df,
label="Transcription",
row_count=(0, "dynamic"),
max_rows=10,
wrap=True,
overflow_row_behaviour="paginate",
)
microphone_transcribe_btn.click(transcribe, inputs=[microphone_input, upload_input], outputs=text_output_df2)
# with gr.Tab("Transcribe YouTube"):
# gr.Markdown(
# f"""
#
#
Speech-to-Text in French: Transcribe YouTube
#
# Transcribe long-form YouTube videos!
# Demo uses the fine-tuned checkpoint: {DEFAULT_MODEL_NAME} to transcribe video files of arbitrary length.
# """
# )
# yt_link_input2 = gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL")
# with_timestamps_input2 = gr.Checkbox(label="With timestamps?", value=True)
# yt_transcribe_btn = gr.Button("Transcribe YouTube")
# # yt_text_output = gr.outputs.Textbox(label="Transcription")
# text_output_df3 = gr.DataFrame(
# value=default_text_output_df,
# label="Transcription",
# row_count=(0, "dynamic"),
# max_rows=10,
# wrap=True,
# overflow_row_behaviour="paginate",
# )
# # yt_html_output = gr.outputs.HTML(label="YouTube Page")
# yt_transcribe_btn.click(yt_transcribe, inputs=[yt_link_input2, with_timestamps_input2], outputs=[text_output_df3])
with gr.Tab("Transcribe Video"):
gr.Markdown(
f"""
Speech-to-Text in French: Transcribe Video
Transcribe long-form YouTube videos or uploaded video inputs!
Demo uses the fine-tuned wav2vec2 model {DEFAULT_MODEL_NAME} and 🤗 Transformers to transcribe audio files of arbitrary length.
To achieve improved accuracy and well-punctuated text, please use the [Whisper demo](https://huggingface.co/spaces/bofenghuang/whisper-demo-french).
"""
)
yt_link_input = gr.inputs.Textbox(
lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"
)
download_youtube_btn = gr.Button("Download Youtube video")
downloaded_video_output = gr.Video(label="Video file", mirror_webcam=False)
download_youtube_btn.click(
download_video_from_youtube, inputs=[yt_link_input], outputs=[downloaded_video_output]
)
# with_timestamps_input3 = gr.Checkbox(label="With timestamps?", value=True)
video_transcribe_btn = gr.Button("Transcribe video")
text_output_df = gr.DataFrame(
value=default_text_output_df,
label="Transcription",
row_count=(0, "dynamic"),
max_rows=10,
wrap=True,
overflow_row_behaviour="paginate",
)
video_transcribe_btn.click(video_transcribe, inputs=[downloaded_video_output], outputs=[text_output_df])
demo.launch(server_name="0.0.0.0", debug=True)
# demo.launch(server_name="0.0.0.0", debug=True, share=True)
# demo.launch(enable_queue=True)