import spaces import argparse from ast import parse import datetime import json import os import time import hashlib import re import gradio as gr import requests import random from filelock import FileLock from io import BytesIO from PIL import Image, ImageDraw, ImageFont from constants import LOGDIR from utils import ( build_logger, server_error_msg, violates_moderation, moderation_msg, load_image_from_base64, get_log_filename, ) from conversation import Conversation logger = build_logger("gradio_web_server", "gradio_web_server.log") headers = {"User-Agent": "InternVL-Chat Client"} no_change_btn = gr.Button() enable_btn = gr.Button(interactive=True) disable_btn = gr.Button(interactive=False) @spaces.GPU(duration=10) def make_zerogpu_happy(): pass def write2file(path, content): lock = FileLock(f"{path}.lock") with lock: with open(path, "a") as fout: fout.write(content) get_window_url_params = """ function() { const params = new URLSearchParams(window.location.search); url_params = Object.fromEntries(params); console.log(url_params); return url_params; } """ def init_state(state=None): if state is not None: del state return Conversation() def find_bounding_boxes(state, response): pattern = re.compile(r"\s*(.*?)\s*\s*\s*(\[\[.*?\]\])\s*") matches = pattern.findall(response) results = [] for match in matches: results.append((match[0], eval(match[1]))) returned_image = None latest_image = state.get_images(source=state.USER)[-1] returned_image = latest_image.copy() width, height = returned_image.size draw = ImageDraw.Draw(returned_image) for result in results: line_width = max(1, int(min(width, height) / 200)) random_color = ( random.randint(0, 128), random.randint(0, 128), random.randint(0, 128), ) category_name, coordinates = result coordinates = [ ( float(x[0]) / 1000, float(x[1]) / 1000, float(x[2]) / 1000, float(x[3]) / 1000, ) for x in coordinates ] coordinates = [ ( int(x[0] * width), int(x[1] * height), int(x[2] * width), int(x[3] * height), ) for x in coordinates ] for box in coordinates: draw.rectangle(box, outline=random_color, width=line_width) font = ImageFont.truetype("assets/SimHei.ttf", int(20 * line_width / 2)) text_size = font.getbbox(category_name) text_width, text_height = ( text_size[2] - text_size[0], text_size[3] - text_size[1], ) text_position = (box[0], max(0, box[1] - text_height)) draw.rectangle( [ text_position, (text_position[0] + text_width, text_position[1] + text_height), ], fill=random_color, ) draw.text(text_position, category_name, fill="white", font=font) return returned_image if len(matches) > 0 else None def vote_last_response(state, liked, request: gr.Request): conv_data = { "tstamp": round(time.time(), 4), "like": liked, "model": 'InternVL2.5-78B', "state": state.dict(), "ip": request.client.host, } write2file(get_log_filename(), json.dumps(conv_data) + "\n") def upvote_last_response(state, request: gr.Request): logger.info(f"upvote. ip: {request.client.host}") vote_last_response(state, True, request) textbox = gr.MultimodalTextbox(value=None, interactive=True) return (textbox,) + (disable_btn,) * 3 def downvote_last_response(state, request: gr.Request): logger.info(f"downvote. ip: {request.client.host}") vote_last_response(state, False, request) textbox = gr.MultimodalTextbox(value=None, interactive=True) return (textbox,) + (disable_btn,) * 3 def vote_selected_response( state, request: gr.Request, data: gr.LikeData ): logger.info( f"Vote: {data.liked}, index: {data.index}, value: {data.value} , ip: {request.client.host}" ) conv_data = { "tstamp": round(time.time(), 4), "like": data.liked, "index": data.index, "model": 'InternVL2.5-78B', "state": state.dict(), "ip": request.client.host, } write2file(get_log_filename(), json.dumps(conv_data) + "\n") return def flag_last_response(state, request: gr.Request): logger.info(f"flag. ip: {request.client.host}") vote_last_response(state, "flag", request) textbox = gr.MultimodalTextbox(value=None, interactive=True) return (textbox,) + (disable_btn,) * 3 def regenerate(state, image_process_mode, request: gr.Request): logger.info(f"regenerate. ip: {request.client.host}") # state.messages[-1][-1] = None state.update_message(Conversation.ASSISTANT, content='', image=None, idx=-1) prev_human_msg = state.messages[-2] if type(prev_human_msg[1]) in (tuple, list): prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode) state.skip_next = False textbox = gr.MultimodalTextbox(value=None, interactive=True) return (state, state.to_gradio_chatbot(), textbox) + (disable_btn,) * 5 def clear_history(request: gr.Request): logger.info(f"clear_history. ip: {request.client.host}") state = init_state() textbox = gr.MultimodalTextbox(value=None, interactive=True) return (state, state.to_gradio_chatbot(), textbox) + (disable_btn,) * 5 def add_text(state, message, system_prompt, request: gr.Request): print(f"state: {state}") if not state: state = init_state() images = message.get("files", []) text = message.get("text", "").strip() logger.info(f"add_text. ip: {request.client.host}. len: {len(text)}") # import pdb; pdb.set_trace() textbox = gr.MultimodalTextbox(value=None, interactive=False) if len(text) <= 0 and len(images) == 0: state.skip_next = True return (state, state.to_gradio_chatbot(), textbox) + (no_change_btn,) * 5 if args.moderate: flagged = violates_moderation(text) if flagged: state.skip_next = True textbox = gr.MultimodalTextbox( value={"text": moderation_msg}, interactive=True ) return (state, state.to_gradio_chatbot(), textbox) + (no_change_btn,) * 5 images = [Image.open(path).convert("RGB") for path in images] if len(images) > 0 and len(state.get_images(source=state.USER)) > 0: state = init_state(state) state.set_system_message(system_prompt) state.append_message(Conversation.USER, text, images) state.skip_next = False return (state, state.to_gradio_chatbot(), textbox) + ( disable_btn, ) * 5 def http_bot( state, temperature, top_p, repetition_penalty, max_new_tokens, max_input_tiles, request: gr.Request, ): model_name = 'InternVL2.5-78B' logger.info(f"http_bot. ip: {request.client.host}") start_tstamp = time.time() if hasattr(state, "skip_next") and state.skip_next: # This generate call is skipped due to invalid inputs yield ( state, state.to_gradio_chatbot(), gr.MultimodalTextbox(interactive=False), ) + (no_change_btn,) * 5 return worker_addr = os.environ.get("WORKER_ADDR", "") api_token = os.environ.get("API_TOKEN", "") headers = {"Authorization": f"{api_token}", "Content-Type": "application/json"} # No available worker if worker_addr == "": # state.messages[-1][-1] = server_error_msg state.update_message(Conversation.ASSISTANT, server_error_msg) yield ( state, state.to_gradio_chatbot(), gr.MultimodalTextbox(interactive=False), disable_btn, disable_btn, disable_btn, enable_btn, enable_btn, ) return all_images = state.get_images(source=state.USER) all_image_paths = [state.save_image(image) for image in all_images] # Make requests pload = { "model": model_name, "messages": state.get_prompt_v2(inlude_image=True, max_dynamic_patch=max_input_tiles), "temperature": float(temperature), "top_p": float(top_p), "max_tokens": max_new_tokens, "repetition_penalty": repetition_penalty, "stream": True } logger.info(f"==== request ====\n{pload}") state.append_message(Conversation.ASSISTANT, state.streaming_placeholder) yield ( state, state.to_gradio_chatbot(), gr.MultimodalTextbox(interactive=False), ) + (disable_btn,) * 5 try: # Stream output response = requests.post(worker_addr, json=pload, headers=headers, stream=True, timeout=40) finnal_output = '' for chunk in response.iter_lines(decode_unicode=False, delimiter=b"\n"): if chunk: chunk = chunk.decode() if chunk == 'data: [DONE]': break if chunk.startswith("data:"): chunk = chunk[5:] chunk = json.loads(chunk) output = chunk['choices'][0]['delta']['content'] finnal_output += output state.update_message(Conversation.ASSISTANT, finnal_output + state.streaming_placeholder, None) yield ( state, state.to_gradio_chatbot(), gr.MultimodalTextbox(interactive=False), ) + (disable_btn,) * 5 except requests.exceptions.RequestException as e: state.update_message(Conversation.ASSISTANT, server_error_msg, None) yield ( state, state.to_gradio_chatbot(), gr.MultimodalTextbox(interactive=True), ) + ( disable_btn, disable_btn, disable_btn, enable_btn, enable_btn, ) return ai_response = state.return_last_message() if "" in ai_response: returned_image = find_bounding_boxes(state, ai_response) returned_image = [returned_image] if returned_image else [] state.update_message(Conversation.ASSISTANT, ai_response, returned_image) state.end_of_current_turn() yield ( state, state.to_gradio_chatbot(), gr.MultimodalTextbox(interactive=True), ) + (enable_btn,) * 5 finish_tstamp = time.time() logger.info(f"{finnal_output}") data = { "tstamp": round(finish_tstamp, 4), "like": None, "model": model_name, "start": round(start_tstamp, 4), "finish": round(start_tstamp, 4), "state": state.dict(), "images": all_image_paths, "ip": request.client.host, } write2file(get_log_filename(), json.dumps(data) + "\n") title_html = """

InternVL2.5: Better than the Best—Expanding Performance Boundaries of Open-Source Multimodal Models with the Progressive Scaling Strategy

[📜 InternVL2 Blog] [🌟 Official Demo] [🚀 Quick Start] [🌐 API] """ # .gradio-container {margin: 5px 10px 0 10px !important}; block_css = """ .gradio-container {margin: 0.1% 1% 0 1% !important; max-width: 98% !important;}; #buttons button { min-width: min(120px,100%); } .gradient-text { font-size: 28px; width: auto; font-weight: bold; background: linear-gradient(45deg, red, orange, yellow, green, blue, indigo, violet); background-clip: text; -webkit-background-clip: text; color: transparent; } .plain-text { font-size: 22px; width: auto; font-weight: bold; } """ js = """ function createWaveAnimation() { const text = document.getElementById('text'); var i = 0; setInterval(function() { const colors = [ 'red, orange, yellow, green, blue, indigo, violet, purple', 'orange, yellow, green, blue, indigo, violet, purple, red', 'yellow, green, blue, indigo, violet, purple, red, orange', 'green, blue, indigo, violet, purple, red, orange, yellow', 'blue, indigo, violet, purple, red, orange, yellow, green', 'indigo, violet, purple, red, orange, yellow, green, blue', 'violet, purple, red, orange, yellow, green, blue, indigo', 'purple, red, orange, yellow, green, blue, indigo, violet', ]; const angle = 45; const colorIndex = i % colors.length; text.style.background = `linear-gradient(${angle}deg, ${colors[colorIndex]})`; text.style.webkitBackgroundClip = 'text'; text.style.backgroundClip = 'text'; text.style.color = 'transparent'; text.style.fontSize = '28px'; text.style.width = 'auto'; text.textContent = 'InternVL2'; text.style.fontWeight = 'bold'; i += 1; }, 200); const params = new URLSearchParams(window.location.search); url_params = Object.fromEntries(params); // console.log(url_params); // console.log('hello world...'); // console.log(window.location.search); // console.log('hello world...'); // alert(window.location.search) // alert(url_params); return url_params; } """ def build_demo(embed_mode): textbox = gr.MultimodalTextbox( interactive=True, file_types=["image", "video"], placeholder="Enter message or upload file...", show_label=False, ) with gr.Blocks( title="InternVL-Chat", theme=gr.themes.Default(), css=block_css, ) as demo: state = gr.State() if not embed_mode: gr.HTML(title_html) with gr.Row(): with gr.Column(scale=2): with gr.Accordion("Settings", open=False) as setting_row: system_prompt = gr.Textbox( value="请尽可能详细地回答用户的问题。", label="System Prompt", interactive=True, ) temperature = gr.Slider( minimum=0.0, maximum=1.0, value=0.2, step=0.1, interactive=True, label="Temperature", ) top_p = gr.Slider( minimum=0.0, maximum=1.0, value=0.7, step=0.1, interactive=True, label="Top P", ) repetition_penalty = gr.Slider( minimum=1.0, maximum=1.5, value=1.1, step=0.02, interactive=True, label="Repetition penalty", ) max_output_tokens = gr.Slider( minimum=0, maximum=4096, value=1024, step=64, interactive=True, label="Max output tokens", ) max_input_tiles = gr.Slider( minimum=1, maximum=32, value=12, step=1, interactive=True, label="Max input tiles (control the image size)", ) examples = gr.Examples( examples=[ [ { "files": [ "gallery/prod_9.jpg", ], "text": "What's at the far end of the image?", } ], [ { "files": [ "gallery/1-2.PNG", ], "text": "用python实现这个流程图", } ], [ { "files": [ "gallery/15.PNG", ], "text": "请帮我分析一下这张图内容", } ], ], inputs=[textbox], ) with gr.Column(scale=8): chatbot = gr.Chatbot( elem_id="chatbot", label="InternVL2", height=580, show_copy_button=True, show_share_button=True, avatar_images=[ "assets/human.png", "assets/assistant.png", ], bubble_full_width=False, ) with gr.Row(): with gr.Column(scale=8): textbox.render() with gr.Column(scale=1, min_width=50): submit_btn = gr.Button(value="Send", variant="primary") with gr.Row(elem_id="buttons") as button_row: upvote_btn = gr.Button(value="👍 Upvote", interactive=False) downvote_btn = gr.Button(value="👎 Downvote", interactive=False) flag_btn = gr.Button(value="⚠️ Flag", interactive=False) # stop_btn = gr.Button(value="⏹️ Stop Generation", interactive=False) regenerate_btn = gr.Button( value="🔄 Regenerate", interactive=False ) clear_btn = gr.Button(value="🗑️ Clear", interactive=False) url_params = gr.JSON(visible=False) # Register listeners btn_list = [upvote_btn, downvote_btn, flag_btn, regenerate_btn, clear_btn] upvote_btn.click( upvote_last_response, [state], [textbox, upvote_btn, downvote_btn, flag_btn], ) downvote_btn.click( downvote_last_response, [state], [textbox, upvote_btn, downvote_btn, flag_btn], ) chatbot.like( vote_selected_response, [state], [], ) flag_btn.click( flag_last_response, [state], [textbox, upvote_btn, downvote_btn, flag_btn], ) regenerate_btn.click( regenerate, [state, system_prompt], [state, chatbot, textbox] + btn_list, ).then( http_bot, [ state, temperature, top_p, repetition_penalty, max_output_tokens, max_input_tiles, ], [state, chatbot, textbox] + btn_list, ) clear_btn.click(clear_history, None, [state, chatbot, textbox] + btn_list) textbox.submit( add_text, [state, textbox, system_prompt], [state, chatbot, textbox] + btn_list, ).then( http_bot, [ state, temperature, top_p, repetition_penalty, max_output_tokens, max_input_tiles, ], [state, chatbot, textbox] + btn_list, ) submit_btn.click( add_text, [state, textbox, system_prompt], [state, chatbot, textbox] + btn_list, ).then( http_bot, [ state, temperature, top_p, repetition_penalty, max_output_tokens, max_input_tiles, ], [state, chatbot, textbox] + btn_list, ) return demo if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--host", type=str, default="0.0.0.0") parser.add_argument("--port", type=int, default=7860) parser.add_argument("--concurrency-count", type=int, default=10) parser.add_argument("--share", action="store_true") parser.add_argument("--moderate", action="store_true") parser.add_argument("--embed", action="store_true") args = parser.parse_args() logger.info(f"args: {args}") logger.info(args) demo = build_demo(args.embed) demo.queue(api_open=False).launch( server_name=args.host, server_port=args.port, share=args.share, max_threads=args.concurrency_count, )