from transformers import pipeline, AutoModelForSeq2SeqLM, AutoTokenizer import torch import gradio as gr class SunChatbot: def __init__(self, model_name="facebook/blenderbot-400M-distill"): self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.tokenizer = AutoTokenizer.from_pretrained(model_name) self.model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to(self.device) self.nlp_pipeline = pipeline("text2text-generation", model=self.model, tokenizer=self.tokenizer, device=0 if torch.cuda.is_available() else -1) def shine_light_on_errors(self, user_input): """Identifies potential errors in input and provides suggestions.""" correction_prompt = f"Correct any mistakes in the following text: {user_input}" return self.nlp_pipeline(correction_prompt, max_length=100)[0]['generated_text'] def analyze_patterns(self, user_input): """Detects patterns and generates insightful analysis.""" pattern_prompt = f"Analyze the patterns in the following data: {user_input}" return self.nlp_pipeline(pattern_prompt, max_length=150)[0]['generated_text'] def provide_solar_insights(self, user_query): """Offers futuristic techniques and correlations in solar technologies.""" solar_prompt = f"Provide innovative insights on solar technologies: {user_query}" return self.nlp_pipeline(solar_prompt, max_length=200)[0]['generated_text'] def inspire_creativity(self, user_prompt): """Provides dynamic brainstorming assistance.""" creativity_prompt = f"Give me a creative idea related to: {user_prompt}" return self.nlp_pipeline(creativity_prompt, max_length=150)[0]['generated_text'] def handle_tasks_seamlessly(self, task_list): """Manages multiple tasks efficiently.""" task_prompt = f"Manage these tasks efficiently: {task_list}" return self.nlp_pipeline(task_prompt, max_length=200)[0]['generated_text'] def quick_or_detailed_response(self, user_query, detail_level="quick"): """Provides concise or detailed responses based on the user's preference.""" if detail_level == "quick": prompt = f"Provide a concise answer to: {user_query}" else: prompt = f"Provide a detailed analysis of: {user_query}" return self.nlp_pipeline(prompt, max_length=250)[0]['generated_text'] def reframe_negative_thoughts(self, user_input): """Reframes negative topics in a constructive light.""" positive_prompt = f"Reframe the following in a positive way: {user_input}" return self.nlp_pipeline(positive_prompt, max_length=150)[0]['generated_text'] def chatbot_interface(user_input, detail_level): sun_bot = SunChatbot() return sun_bot.quick_or_detailed_response(user_input, detail_level) gr.Interface( fn=chatbot_interface, inputs=["text", gr.Radio(["quick", "detailed"], label="Response Detail Level")], outputs="text", title="Sun Chatbot", description="A chatbot that energizes conversations and provides insightful responses inspired by the Sun." ).launch()