from __future__ import annotations import os import numpy as np import torch import torch.nn as nn from mmdet.apis import inference_detector, init_detector_from_hf_hub MODEL_DICT = {"faster_rcnn": {"repo_id": "blesot/Faster-R-CNN-Object-detection"}, "mask_rcnn": {"repo_id": "blesot/Mask-RCNN"}} class Model: def __init__(self, model_name: str, device: str | torch.device): self.device = torch.device(device) self._load_all_models_once() self.model_name = model_name self.model = self._load_model(model_name) def _load_all_models_once(self) -> None: for name in MODEL_DICT.keys(): self._load_model(name) def _load_model(self, name: str) -> nn.Module: dic = MODEL_DICT[name] return init_detector_from_hf_hub(dic['repo_id'], device=self.device) def set_model(self, name: str) -> None: if name == self.model_name: return self.model_name = name self.model = self._load_model(name) def detect_and_visualize( self, image: np.ndarray, score_threshold: float ) -> tuple[list[np.ndarray] | tuple[list[np.ndarray], list[list[np.ndarray]]] | dict[str, np.ndarray], np.ndarray]: out = self.detect(image) vis = self.visualize_detection_results(image, out, score_threshold) return out, vis def detect( self, image: np.ndarray ) -> list[np.ndarray] | tuple[ list[np.ndarray], list[list[np.ndarray]]] | dict[str, np.ndarray]: image = image[:, :, ::-1] # RGB -> BGR out = inference_detector(self.model, image) return out def visualize_detection_results( self, image: np.ndarray, detection_results: list[np.ndarray] | tuple[list[np.ndarray], list[list[np.ndarray]]] | dict[str, np.ndarray], score_threshold: float = 0.3) -> np.ndarray: image = image[:, :, ::-1] # RGB -> BGR vis = self.model.show_result(image, detection_results, score_thr=score_threshold, bbox_color=None, text_color=(200, 200, 200), mask_color=None) return vis[:, :, ::-1] # BGR -> RGB class AppModel(Model): def run( self, model_name: str, image: np.ndarray, score_threshold: float ) -> tuple[list[np.ndarray] | tuple[list[np.ndarray], list[list[np.ndarray]]] | dict[str, np.ndarray], np.ndarray]: self.set_model(model_name) return self.detect_and_visualize(image, score_threshold) def model_list(self) -> list[str]: return list(MODEL_DICT.keys())