#!/usr/bin/env python from __future__ import annotations import argparse import os import pathlib import subprocess if os.getenv("SYSTEM") == "spaces": import mim mim.uninstall("mmcv-full", confirm_yes=True) mim.install("mmcv-full==1.6.1", is_yes=True) subprocess.call("pip uninstall -y opencv-python".split()) subprocess.call("pip uninstall -y opencv-python-headless".split()) subprocess.call("pip install opencv-python-headless==4.5.5.64".split()) import cv2 import gradio as gr import numpy as np from model import AppModel ## Edit and DESCRIPTION = """# MMDetection This is an unofficial demo for [https://github.com/open-mmlab/mmdetection](https://github.com/open-mmlab/mmdetection). """ FOOTER = 'visitor badge' DEFAULT_MODEL_TYPE = "detection" DEFAULT_MODEL_NAMES = { "detection": "faster_rcnn" } DEFAULT_MODEL_NAME = DEFAULT_MODEL_NAMES[DEFAULT_MODEL_TYPE] def parse_args() -> argparse.Namespace: parser = argparse.ArgumentParser() parser.add_argument("--device", type=str, default="cpu") parser.add_argument("--theme", type=str) parser.add_argument("--share", action="store_true") parser.add_argument("--port", type=int) parser.add_argument("--disable-queue", dest="enable_queue", action="store_false") return parser.parse_args() def update_input_image(image: np.ndarray) -> dict: if image is None: return gr.Image.update(value=None) scale = 1500 / max(image.shape[:2]) if scale < 1: image = cv2.resize(image, None, fx=scale, fy=scale) return gr.Image.update(value=image) def update_model_name(model_type: str) -> dict: model_dict = getattr(AppModel, f"{model_type.upper()}_MODEL_DICT") model_names = list(model_dict.keys()) model_name = DEFAULT_MODEL_NAMES[model_type] return gr.Dropdown.update(choices=model_names, value=model_name) def update_visualization_score_threshold(model_type: str) -> dict: return gr.Slider.update(visible=model_type != "panoptic_segmentation") def update_redraw_button(model_type: str) -> dict: return gr.Button.update(visible=model_type != "panoptic_segmentation") def set_example_image(example: list) -> dict: return gr.Image.update(value=example[0]) def main(): args = parse_args() model = AppModel(DEFAULT_MODEL_NAME, args.device) with gr.Blocks(theme=args.theme, css="style.css") as demo: gr.Markdown(DESCRIPTION) with gr.Row(): with gr.Column(): with gr.Row(): input_image = gr.Image(label="Input Image", type="numpy") with gr.Group(): with gr.Row(): model_type = gr.Radio( list(DEFAULT_MODEL_NAMES.keys()), value=DEFAULT_MODEL_TYPE, label="Model Type", ) with gr.Row(): model_name = gr.Dropdown( model.model_list(), value=DEFAULT_MODEL_NAME, label="Model", ) with gr.Row(): run_button = gr.Button(value="Run") prediction_results = gr.Variable() with gr.Column(): with gr.Row(): visualization = gr.Image(label="Result", type="numpy") with gr.Row(): visualization_score_threshold = gr.Slider( 0, 1, step=0.05, value=0.3, label="Visualization Score Threshold", ) with gr.Row(): redraw_button = gr.Button(value="Redraw") with gr.Row(): paths = sorted(pathlib.Path("images").rglob("*.jpeg")) example_images = gr.Dataset( components=[input_image], samples=[[path.as_posix()] for path in paths] ) gr.Markdown(FOOTER) input_image.change( fn=update_input_image, inputs=input_image, outputs=input_image ) model_type.change(fn=update_model_name, inputs=model_type, outputs=model_name) model_type.change( fn=update_visualization_score_threshold, inputs=model_type, outputs=visualization_score_threshold, ) model_type.change( fn=update_redraw_button, inputs=model_type, outputs=redraw_button ) model_name.change(fn=model.set_model, inputs=model_name, outputs=None) run_button.click( fn=model.run, inputs=[ model_name, input_image, visualization_score_threshold, ], outputs=[ prediction_results, visualization, ], ) redraw_button.click( fn=model.visualize_detection_results, inputs=[ input_image, prediction_results, visualization_score_threshold, ], outputs=visualization, ) example_images.click( fn=set_example_image, inputs=example_images, outputs=input_image ) demo.launch( enable_queue=args.enable_queue, server_port=args.port, share=args.share, ) if __name__ == "__main__": main()