# catvton-flux An advanced virtual try-on solution that combines the power of [CATVTON](https://arxiv.org/abs/2407.15886) (Contrastive Appearance and Topology Virtual Try-On) with Flux fill inpainting model for realistic and accurate clothing transfer. Also inspired by [In-Context LoRA](https://arxiv.org/abs/2410.23775) for prompt engineering. ## Showcase | Original | Garment | Result | |----------|---------|---------| | ![Original](example/person/1.jpg) | ![Garment](example/garment/1.jpg) | ![Result](example/result/1.png) | | ![Original](example/person/1.jpg) | ![Garment](example/garment/04564_00.jpg) | ![Result](example/result/2.png) | | ![Original](example/person/00008_00.jpg) | ![Garment](example/garment/00034_00.jpg) | ![Result](example/result/3.png) | ## Model Weights Hugging Face: 🤗 [catvton-flux-alpha](https://huggingface.co/xiaozaa/catvton-flux-alpha) The model weights are trained on the [VITON-HD](https://github.com/shadow2496/VITON-HD) dataset. ## Prerequisites ```bash bash conda create -n flux python=3.10 conda activate flux pip install -r requirements.txt ``` ## Usage ```bash python tryon_inference.py \ --image ./example/person/00008_00.jpg \ --mask ./example/person/00008_00_mask.png \ --garment ./example/garment/00034_00.jpg \ --seed 42 ``` ## TODO: - [ ] Release the FID score - [ ] Add gradio demo - [ ] Release updated weights with better performance ## Citation ```bibtex @misc{chong2024catvtonconcatenationneedvirtual, title={CatVTON: Concatenation Is All You Need for Virtual Try-On with Diffusion Models}, author={Zheng Chong and Xiao Dong and Haoxiang Li and Shiyue Zhang and Wenqing Zhang and Xujie Zhang and Hanqing Zhao and Xiaodan Liang}, year={2024}, eprint={2407.15886}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2407.15886}, } @article{lhhuang2024iclora, title={In-Context LoRA for Diffusion Transformers}, author={Huang, Lianghua and Wang, Wei and Wu, Zhi-Fan and Shi, Yupeng and Dou, Huanzhang and Liang, Chen and Feng, Yutong and Liu, Yu and Zhou, Jingren}, journal={arXiv preprint arxiv:2410.23775}, year={2024} } ``` ## License - The code is licensed under the MIT License. - The model weights have the same license as Flux.1 Fill and VITON-HD.