from PIL import Image import os import numpy as np from torchvision.transforms import functional as F import torch from torchmetrics.image.fid import FrechetInceptionDistance # Paths setup generated_dataset_path = "output/tryon_results" original_dataset_path = "data/VITON-HD/test/image" # Replace with your actual original dataset path # Get generated images image_paths = sorted([os.path.join(generated_dataset_path, x) for x in os.listdir(generated_dataset_path)]) generated_images = [np.array(Image.open(path).convert("RGB")) for path in image_paths] # Get corresponding original images original_images = [] for gen_path in image_paths: # Extract the XXXXXX part from "tryon_XXXXXX.jpg" base_name = os.path.basename(gen_path) # get filename from path original_id = base_name.replace("tryon_", "") # remove "tryon_" prefix # Construct original image path original_path = os.path.join(original_dataset_path, original_id) original_images.append(np.array(Image.open(original_path).convert("RGB"))) def preprocess_image(image): image = torch.tensor(image).unsqueeze(0) image = image.permute(0, 3, 1, 2) / 255.0 return F.center_crop(image, (768, 1024)) real_images = torch.cat([preprocess_image(image) for image in original_images]) fake_images = torch.cat([preprocess_image(image) for image in generated_images]) print(real_images.shape, fake_images.shape) fid = FrechetInceptionDistance(normalize=True) fid.update(real_images, real=True) fid.update(fake_images, real=False) print(f"FID: {float(fid.compute())}")