import gradio as gr from tryon_inference import run_inference import os import numpy as np from PIL import Image import tempfile def gradio_inference( image_data, garment, num_steps=50, guidance_scale=30.0, seed=-1, size=(768,1024) ): """Wrapper function for Gradio interface""" # Use temporary directory with tempfile.TemporaryDirectory() as tmp_dir: # Save inputs to temp directory temp_image = os.path.join(tmp_dir, "image.png") temp_mask = os.path.join(tmp_dir, "mask.png") temp_garment = os.path.join(tmp_dir, "garment.png") # Extract image and mask from ImageEditor data image = image_data["background"] mask = image_data["layers"][0] # First layer contains the mask # Convert to numpy array and process mask mask_array = np.array(mask) is_black = np.all(mask_array < 10, axis=2) mask = Image.fromarray(((~is_black) * 255).astype(np.uint8)) # Save files to temp directory image.save(temp_image) mask.save(temp_mask) garment.save(temp_garment) try: # Run inference _, tryon_result = run_inference( image_path=temp_image, mask_path=temp_mask, garment_path=temp_garment, num_steps=num_steps, guidance_scale=guidance_scale, seed=seed, size=size ) return tryon_result except Exception as e: raise gr.Error(f"Error during inference: {str(e)}") def create_demo(): with gr.Blocks() as demo: gr.Markdown(""" # CATVTON FLUX Virtual Try-On Demo Upload a model image, an agnostic mask, and a garment image to generate virtual try-on results. [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/xiaozaa/catvton-flux-alpha) [![GitHub](https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white)](https://github.com/nftblackmagic/catvton-flux) """) with gr.Column(): with gr.Row(): with gr.Column(): image_input = gr.ImageMask( label="Model Image (Draw mask where garment should go)", type="pil", height=600, ) gr.Examples( examples=[ ["./example/person/00008_00.jpg"], ["./example/person/00055_00.jpg"], ["./example/person/00057_00.jpg"], ["./example/person/00067_00.jpg"], ["./example/person/00069_00.jpg"], ], inputs=[image_input], label="Person Images", ) with gr.Column(): garment_input = gr.Image(label="Garment Image", type="pil", height=600) gr.Examples( examples=[ ["./example/garment/04564_00.jpg"], ["./example/garment/00055_00.jpg"], ["./example/garment/00057_00.jpg"], ["./example/garment/00067_00.jpg"], ["./example/garment/00069_00.jpg"], ], inputs=[garment_input], label="Garment Images", ) with gr.Row(): num_steps = gr.Slider( minimum=1, maximum=100, value=50, step=1, label="Number of Steps" ) guidance_scale = gr.Slider( minimum=1.0, maximum=50.0, value=30.0, step=0.5, label="Guidance Scale" ) seed = gr.Slider( minimum=-1, maximum=2147483647, step=1, value=-1, label="Seed (-1 for random)" ) submit_btn = gr.Button("Generate Try-On", variant="primary") with gr.Column(): tryon_output = gr.Image(label="Try-On Result") with gr.Row(): gr.Markdown(""" ### Notes: - The model image should be a full-body photo - The mask should indicate the region where the garment will be placed - The garment image should be on a clean background """) submit_btn.click( fn=gradio_inference, inputs=[ image_input, garment_input, num_steps, guidance_scale, seed ], outputs=[tryon_output], api_name="try-on" ) return demo if __name__ == "__main__": demo = create_demo() demo.queue() # Enable queuing for multiple users demo.launch( share=True, server_name="0.0.0.0" # Makes the server accessible from other machines )