# # Simple example. # import spaces from diffusers import DiffusionPipeline import os import torch from transformers import pipeline import gradio as gr token = os.getenv("HUGGINGFACE_API_TOKEN") print(f'HUGGINGFACE_API_TOKEN: {token}') model = "meta-llama/Meta-Llama-3-8B-Instruct" model = "ibm-granite/granite-3b-code-instruct" print(f'Loading model {model}') pipe = pipeline("text-generation", model, torch_dtype=torch.bfloat16, device_map="auto", token=token) # pipe.to('cuda') @spaces.GPU def generate(prompt): response = pipe(prompt, max_new_tokens=512) # r = response[0]['generated_text'][-1]['content'] print(f'Response received!') r = response[0]['generated_text'] return r gr.Interface( fn=generate, inputs=gr.Text("When is the next solar eclipse?"), outputs=gr.Text(), ).launch()