from pathlib import Path from typing import Dict, NamedTuple, Union import numpy as np import torch NULL_CHAR = '\x00' class PrimingData(NamedTuple): """combines data required for priming the HandwritingRNN sampling""" stroke_tensors: torch.Tensor # (batch_size, num_prime_strokes, 3) char_seq_tensors: torch.Tensor # (batch_size, num_prime_chars) char_seq_lengths: torch.Tensor # (batch_size,) def construct_alphabet_list(alphabet_string: str) -> list[str]: if not isinstance(alphabet_string, str): raise TypeError("alphabet_string must be a string") char_list = list(alphabet_string) return [NULL_CHAR] + char_list def get_alphabet_map(alphabet_list: list[str]) -> Dict[str, int]: """creates a char to index map from full alphabet list""" return {char: idx for idx, char in enumerate(alphabet_list)} def encode_text(text: str, char_to_index_map: Dict[str, int], max_length: int, add_eos: bool = True, eos_char_index: int = 0 ) -> tuple[np.ndarray, int]: """Encode a text string into a sequence of integer indices""" encoded = [char_to_index_map.get(c, eos_char_index) for c in text] if add_eos: encoded.append(eos_char_index) true_length = len(encoded) if true_length <= max_length: padded_encoded = np.full(max_length, eos_char_index, dtype=np.int64) padded_encoded[:true_length] = encoded else: padded_encoded = np.array(encoded[:max_length], dtype=np.int64) true_length = max_length return np.array([padded_encoded]), true_length def convert_offsets_to_absolute_coords(stroke_offsets: list[list[float]]) -> list[list[float]]: if not stroke_offsets: return [] # convert to numpy for vectorized operations strokes_array = np.array(stroke_offsets) # vectorized cumulative sum for x and y strokes_array[:, 0] = np.cumsum(strokes_array[:, 0]) # cumulative dx strokes_array[:, 1] = np.cumsum(strokes_array[:, 1]) # cumulative dy return strokes_array.tolist() def load_np_strokes(stroke_path: Union[Path, str]) -> np.ndarray: """loads stroke sequence from stroke_path""" stroke_path = Path(stroke_path) if not stroke_path.exists(): raise FileNotFoundError(f"style strokes file not found at {stroke_path}") return np.load(stroke_path) def load_text(text_path: Union[Path, str]) -> str: """loads text from a text_path""" text_path = Path(text_path) if not text_path.exists(): raise FileNotFoundError(f"Text file not found at {text_path}") if not text_path.is_file(): raise IsADirectoryError(f"Path is a directory, not a file.") try: with open(text_path, 'r', encoding='utf-8') as f: content = f.read() return content except Exception as e: raise IOError(f"Error reading text file {text_path}: {e}") def load_priming_data(style: int): priming_text = load_text(f"./styles/style{style}.txt") priming_strokes = load_np_strokes(f"./styles/style{style}.npy") return priming_text, priming_strokes