import torch import torch.nn.functional as F import torch.nn as nn import numpy as np # Constants class Constants: PAD_WORD = '' UNK_WORD = '' BOS_WORD = '' EOS_WORD = '' # Layers class EncoderLayer(nn.Module): ''' Compose with two layers ''' def __init__(self, d_model, d_inner, n_head, d_k, d_v, dropout=0.1): super(EncoderLayer, self).__init__() self.slf_attn = MultiHeadAttention( n_head, d_model, d_k, d_v, dropout=dropout) self.pos_ffn = PositionwiseFeedForward( d_model, d_inner, dropout=dropout) def forward(self, enc_input, slf_attn_mask=None): enc_output, enc_slf_attn = self.slf_attn( enc_input, enc_input, enc_input, mask=slf_attn_mask) enc_output = self.pos_ffn(enc_output) return enc_output, enc_slf_attn class DecoderLayer(nn.Module): ''' Compose with three layers ''' def __init__(self, d_model, d_inner, n_head, d_k, d_v, dropout=0.1): super(DecoderLayer, self).__init__() self.slf_attn = MultiHeadAttention( n_head, d_model, d_k, d_v, dropout=dropout) self.enc_attn = MultiHeadAttention( n_head, d_model, d_k, d_v, dropout=dropout) self.pos_ffn = PositionwiseFeedForward( d_model, d_inner, dropout=dropout) def forward( self, dec_input, enc_output, slf_attn_mask=None, dec_enc_attn_mask=None): dec_output, dec_slf_attn = self.slf_attn( dec_input, dec_input, dec_input, mask=slf_attn_mask) dec_output, dec_enc_attn = self.enc_attn( dec_output, enc_output, enc_output, mask=dec_enc_attn_mask) dec_output = self.pos_ffn(dec_output) return dec_output, dec_slf_attn, dec_enc_attn # Models def get_pad_mask(seq, pad_idx): return (seq != pad_idx).unsqueeze(-2) def get_subsequent_mask(seq): ''' For masking out the subsequent info. ''' sz_b, len_s = seq.size() subsequent_mask = (1 - torch.triu( torch.ones((1, len_s, len_s), device=seq.device), diagonal=1)).bool() return subsequent_mask class PositionalEncoding(nn.Module): def __init__(self, d_hid, n_position=200): super(PositionalEncoding, self).__init__() # Not a parameter self.register_buffer( 'pos_table', self._get_sinusoid_encoding_table(n_position, d_hid)) def _get_sinusoid_encoding_table(self, n_position, d_hid): ''' Sinusoid position encoding table ''' # TODO: make it with torch instead of numpy def get_position_angle_vec(position): return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)] sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(n_position)]) sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1 return torch.FloatTensor(sinusoid_table).unsqueeze(0) def forward(self, x): return x + self.pos_table[:, :x.size(1)].clone().detach() class Encoder(nn.Module): ''' A encoder model with self attention mechanism. ''' def __init__( self, n_src_vocab, d_word_vec, n_layers, n_head, d_k, d_v, d_model, d_inner, pad_idx, dropout=0.1, n_position=200): super().__init__() self.src_word_emb = nn.Embedding( n_src_vocab, d_word_vec, padding_idx=pad_idx) self.position_enc = PositionalEncoding( d_word_vec, n_position=n_position) self.dropout = nn.Dropout(p=dropout) self.layer_stack = nn.ModuleList([ EncoderLayer(d_model, d_inner, n_head, d_k, d_v, dropout=dropout) for _ in range(n_layers)]) self.layer_norm = nn.LayerNorm(d_model, eps=1e-6) def forward(self, src_seq, src_mask, return_attns=False): enc_slf_attn_list = [] # -- Forward enc_output = self.dropout( self.position_enc(self.src_word_emb(src_seq))) enc_output = self.layer_norm(enc_output) for enc_layer in self.layer_stack: enc_output, enc_slf_attn = enc_layer( enc_output, slf_attn_mask=src_mask) enc_slf_attn_list += [enc_slf_attn] if return_attns else [] if return_attns: return enc_output, enc_slf_attn_list return enc_output, class Decoder(nn.Module): ''' A decoder model with self attention mechanism. ''' def __init__( self, n_trg_vocab, d_word_vec, n_layers, n_head, d_k, d_v, d_model, d_inner, pad_idx, n_position=200, dropout=0.1): super().__init__() self.trg_word_emb = nn.Embedding( n_trg_vocab, d_word_vec, padding_idx=pad_idx) self.position_enc = PositionalEncoding( d_word_vec, n_position=n_position) self.dropout = nn.Dropout(p=dropout) self.layer_stack = nn.ModuleList([ DecoderLayer(d_model, d_inner, n_head, d_k, d_v, dropout=dropout) for _ in range(n_layers)]) self.layer_norm = nn.LayerNorm(d_model, eps=1e-6) def forward(self, trg_seq, trg_mask, enc_output, src_mask, return_attns=False): dec_slf_attn_list, dec_enc_attn_list = [], [] # -- Forward dec_output = self.dropout( self.position_enc(self.trg_word_emb(trg_seq))) dec_output = self.layer_norm(dec_output) for dec_layer in self.layer_stack: dec_output, dec_slf_attn, dec_enc_attn = dec_layer( dec_output, enc_output, slf_attn_mask=trg_mask, dec_enc_attn_mask=src_mask) dec_slf_attn_list += [dec_slf_attn] if return_attns else [] dec_enc_attn_list += [dec_enc_attn] if return_attns else [] if return_attns: return dec_output, dec_slf_attn_list, dec_enc_attn_list return dec_output, class Transformer(nn.Module): ''' A sequence to sequence model with attention mechanism. ''' def __init__( self, n_src_vocab, n_trg_vocab, src_pad_idx, trg_pad_idx, d_word_vec=512, d_model=512, d_inner=2048, n_layers=6, n_head=8, d_k=64, d_v=64, dropout=0.1, n_position=200, trg_emb_prj_weight_sharing=True, emb_src_trg_weight_sharing=True): super().__init__() self.src_pad_idx, self.trg_pad_idx = src_pad_idx, trg_pad_idx self.encoder = Encoder( n_src_vocab=n_src_vocab, n_position=n_position, d_word_vec=d_word_vec, d_model=d_model, d_inner=d_inner, n_layers=n_layers, n_head=n_head, d_k=d_k, d_v=d_v, pad_idx=src_pad_idx, dropout=dropout) self.decoder = Decoder( n_trg_vocab=n_trg_vocab, n_position=n_position, d_word_vec=d_word_vec, d_model=d_model, d_inner=d_inner, n_layers=n_layers, n_head=n_head, d_k=d_k, d_v=d_v, pad_idx=trg_pad_idx, dropout=dropout) self.trg_word_prj = nn.Linear(d_model, n_trg_vocab, bias=False) for p in self.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) assert d_model == d_word_vec, \ 'To facilitate the residual connections, \ the dimensions of all module outputs shall be the same.' self.x_logit_scale = 1. if trg_emb_prj_weight_sharing: # Share the weight between target word embedding & last dense layer self.trg_word_prj.weight = self.decoder.trg_word_emb.weight self.x_logit_scale = (d_model ** -0.5) if emb_src_trg_weight_sharing: self.encoder.src_word_emb.weight = self.decoder.trg_word_emb.weight def forward(self, src_seq, trg_seq): src_mask = get_pad_mask(src_seq, self.src_pad_idx) trg_mask = get_pad_mask( trg_seq, self.trg_pad_idx) & get_subsequent_mask(trg_seq) enc_output, *_ = self.encoder(src_seq, src_mask) dec_output, *_ = self.decoder(trg_seq, trg_mask, enc_output, src_mask) seq_logit = self.trg_word_prj(dec_output) * self.x_logit_scale return seq_logit.view(-1, seq_logit.size(2)) # Modules class ScaledDotProductAttention(nn.Module): ''' Scaled Dot-Product Attention ''' def __init__(self, temperature, attn_dropout=0.1): super().__init__() self.temperature = temperature self.dropout = nn.Dropout(attn_dropout) def forward(self, q, k, v, mask=None): attn = torch.matmul(q / self.temperature, k.transpose(2, 3)) if mask is not None: attn = attn.masked_fill(mask == 0, -1e9) attn = self.dropout(F.softmax(attn, dim=-1)) output = torch.matmul(attn, v) return output, attn # Optim class ScheduledOptim(): '''A simple wrapper class for learning rate scheduling''' def __init__(self, optimizer, init_lr, d_model, n_warmup_steps): self._optimizer = optimizer self.init_lr = init_lr self.d_model = d_model self.n_warmup_steps = n_warmup_steps self.n_steps = 0 def step_and_update_lr(self): "Step with the inner optimizer" self._update_learning_rate() self._optimizer.step() def zero_grad(self): "Zero out the gradients with the inner optimizer" self._optimizer.zero_grad() def _get_lr_scale(self): d_model = self.d_model n_steps, n_warmup_steps = self.n_steps, self.n_warmup_steps return (d_model ** -0.5) * min(n_steps ** (-0.5), n_steps * n_warmup_steps ** (-1.5)) def _update_learning_rate(self): ''' Learning rate scheduling per step ''' self.n_steps += 1 lr = self.init_lr * self._get_lr_scale() for param_group in self._optimizer.param_groups: param_group['lr'] = lr # SubLayers class MultiHeadAttention(nn.Module): ''' Multi-Head Attention module ''' def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1): super().__init__() self.n_head = n_head self.d_k = d_k self.d_v = d_v self.w_qs = nn.Linear(d_model, n_head * d_k, bias=False) self.w_ks = nn.Linear(d_model, n_head * d_k, bias=False) self.w_vs = nn.Linear(d_model, n_head * d_v, bias=False) self.fc = nn.Linear(n_head * d_v, d_model, bias=False) self.attention = ScaledDotProductAttention(temperature=d_k ** 0.5) self.dropout = nn.Dropout(dropout) self.layer_norm = nn.LayerNorm(d_model, eps=1e-6) def forward(self, q, k, v, mask=None): d_k, d_v, n_head = self.d_k, self.d_v, self.n_head sz_b, len_q, len_k, len_v = q.size(0), q.size(1), k.size(1), v.size(1) residual = q # Pass through the pre-attention projection: b x lq x (n*dv) # Separate different heads: b x lq x n x dv q = self.w_qs(q).view(sz_b, len_q, n_head, d_k) k = self.w_ks(k).view(sz_b, len_k, n_head, d_k) v = self.w_vs(v).view(sz_b, len_v, n_head, d_v) # Transpose for attention dot product: b x n x lq x dv q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2) if mask is not None: mask = mask.unsqueeze(1) # For head axis broadcasting. q, attn = self.attention(q, k, v, mask=mask) # Transpose to move the head dimension back: b x lq x n x dv # Combine the last two dimensions to concatenate all the heads together: b x lq x (n*dv) q = q.transpose(1, 2).contiguous().view(sz_b, len_q, -1) q = self.dropout(self.fc(q)) q += residual q = self.layer_norm(q) return q, attn class PositionwiseFeedForward(nn.Module): ''' A two-feed-forward-layer module ''' def __init__(self, d_in, d_hid, dropout=0.1): super().__init__() self.w_1 = nn.Linear(d_in, d_hid) # position-wise self.w_2 = nn.Linear(d_hid, d_in) # position-wise self.layer_norm = nn.LayerNorm(d_in, eps=1e-6) self.dropout = nn.Dropout(dropout) def forward(self, x): residual = x x = self.w_2(F.relu(self.w_1(x))) x = self.dropout(x) x += residual x = self.layer_norm(x) return x # Translator class Translator(nn.Module): ''' Load a trained model and translate in beam search fashion. ''' def __init__( self, model, beam_size, max_seq_len, src_pad_idx, trg_pad_idx, trg_bos_idx, trg_eos_idx): super(Translator, self).__init__() self.alpha = 0.7 self.beam_size = beam_size self.max_seq_len = max_seq_len self.src_pad_idx = src_pad_idx self.trg_bos_idx = trg_bos_idx self.trg_eos_idx = trg_eos_idx self.model = model self.model.eval() self.register_buffer('init_seq', torch.LongTensor([[trg_bos_idx]])) self.register_buffer( 'blank_seqs', torch.full((beam_size, max_seq_len), trg_pad_idx, dtype=torch.long)) self.blank_seqs[:, 0] = self.trg_bos_idx self.register_buffer( 'len_map', torch.arange(1, max_seq_len + 1, dtype=torch.long).unsqueeze(0)) def _model_decode(self, trg_seq, enc_output, src_mask): trg_mask = get_subsequent_mask(trg_seq) dec_output, * \ _ = self.model.decoder(trg_seq, trg_mask, enc_output, src_mask) return F.softmax(self.model.trg_word_prj(dec_output), dim=-1) def _get_init_state(self, src_seq, src_mask): beam_size = self.beam_size enc_output, *_ = self.model.encoder(src_seq, src_mask) dec_output = self._model_decode(self.init_seq, enc_output, src_mask) best_k_probs, best_k_idx = dec_output[:, -1, :].topk(beam_size) scores = torch.log(best_k_probs).view(beam_size) gen_seq = self.blank_seqs.clone().detach() gen_seq[:, 1] = best_k_idx[0] enc_output = enc_output.repeat(beam_size, 1, 1) return enc_output, gen_seq, scores def _get_the_best_score_and_idx(self, gen_seq, dec_output, scores, step): assert len(scores.size()) == 1 beam_size = self.beam_size # Get k candidates for each beam, k^2 candidates in total. best_k2_probs, best_k2_idx = dec_output[:, -1, :].topk(beam_size) # Include the previous scores. scores = torch.log(best_k2_probs).view( beam_size, -1) + scores.view(beam_size, 1) # Get the best k candidates from k^2 candidates. scores, best_k_idx_in_k2 = scores.view(-1).topk(beam_size) # Get the corresponding positions of the best k candidiates. best_k_r_idxs, best_k_c_idxs = best_k_idx_in_k2 // beam_size, best_k_idx_in_k2 % beam_size best_k_idx = best_k2_idx[best_k_r_idxs, best_k_c_idxs] # Copy the corresponding previous tokens. gen_seq[:, :step] = gen_seq[best_k_r_idxs, :step] # Set the best tokens in this beam search step gen_seq[:, step] = best_k_idx return gen_seq, scores def translate_sentence(self, src_seq): # Only accept batch size equals to 1 in this function. # TODO: expand to batch operation. assert src_seq.size(0) == 1 src_pad_idx, trg_eos_idx = self.src_pad_idx, self.trg_eos_idx max_seq_len, beam_size, alpha = self.max_seq_len, self.beam_size, self.alpha with torch.no_grad(): src_mask = get_pad_mask(src_seq, src_pad_idx) enc_output, gen_seq, scores = self._get_init_state( src_seq, src_mask) ans_idx = 0 # default for step in range(2, max_seq_len): # decode up to max length dec_output = self._model_decode( gen_seq[:, :step], enc_output, src_mask) gen_seq, scores = self._get_the_best_score_and_idx( gen_seq, dec_output, scores, step) # Check if all path finished # -- locate the eos in the generated sequences eos_locs = gen_seq == trg_eos_idx # -- replace the eos with its position for the length penalty use seq_lens, _ = self.len_map.masked_fill( ~eos_locs, max_seq_len).min(1) # -- check if all beams contain eos if (eos_locs.sum(1) > 0).sum(0).item() == beam_size: # TODO: Try different terminate conditions. _, ans_idx = scores.div(seq_lens.float() ** alpha).max(0) ans_idx = ans_idx.item() break return gen_seq[ans_idx][:seq_lens[ans_idx]].tolist()