import gradio as gr import pathlib from deepface import DeepFace #db_path='https://huggingface.co/spaces/ipvikas/ImageProcessing/blob/main/MyPhotos' #db_path='https://huggingface.co/spaces/ipvikas/ImageProcessing/commit/c65e002550d4c148da1bb94c114373b2272f4d88#d2h-994579/' db_path= [[path.as_posix()] for path in sorted(pathlib.Path('Image_DATA').rglob('*.j*g'))] #from datasets import load_dataset #db_path= load_dataset("imagefolder", data_files=db_path) import pandas as pd def get_deepface(image): df = DeepFace.find(img_path=image, db_path=db_path) d = DeepFace.analyze(img_path=image) #new_list = zip(d.keys(), d.values()) #new_list = list(new_list) return d description = "Deepface is a lightweight face recognition and facial attribute analysis (age, gender, emotion and race) framework for python. It is a hybrid face recognition framework wrapping state-of-the-art models: VGG-Face, Google FaceNet, OpenFace, Facebook DeepFace, DeepID, ArcFace and Dlib." facial_attribute_demo = gr.Interface( fn=get_deepface, inputs="image", outputs=['text'], title="face recognition and facial attribute analysis", description=description, enable_queue=True, examples=[["10Jan_1.jpeg"]], cache_examples=False) #facial_attribute_demo.launch()