import gradio as gr from gradio_client import Client import os HUGGINGFACEHUB_API_TOKEN=os.getenv("HUGGINGFACEHUB_API_TOKEN") #client = Client("https://AIShare-aichatbot.hf.space/", hf_token=HUGGINGFACEHUB_API_TOKEN) #client = Client("https://binqiangliu-gr-textbox.hf.space/") client = Client("https://binqiangliu-aichat.hf.space/", hf_token=HUGGINGFACEHUB_API_TOKEN) #result_1 = client.predict(fn_index=20) from gradio_client import Client client = Client("https://binqiangliu-aichat.hf.space/") result_1 = client.predict( "", # str (filepath to JSON file) in 'parameter_4' Json component "Howdy!", # str in '' Textbox component "Howdy!", # str in 'parameter_84' Textbox component 0, # int | float (numeric value between 0.0 and 2.0) in 'temp' Slider component 20, # int | float (numeric value between 20 and 1000) in 'top_k' Slider component 0, # int | float (numeric value between 0.0 and 2.0) in 'rep_penalty' Slider component 64, # int | float (numeric value between 64 and 8192) in 'new_tokens' Slider component "true", # str in 'sample' Radio component 2, # int | float (numeric value between 2 and 10) in 'number of recent talks to keep' Slider component "on", # str in 'internet mode' Radio component "05e6a9eace677f93c0e4a93f750c12d03c1f81e043630cb93378da46ce616567", # str in 'Serper api key' Textbox component fn_index=21 ) print(result) print("fn_index: "+str(result_1)) def chat_with_model(input_text): # result = client.predict(input_text, api_name="/user_input_from_st") #相当于在api调用的程序上执行了相应的动作(例如触发Textbox的submit或者其他事件) result = client.predict(input_text, api_name="/accept_value_input") #result = client.predict(input_text, api_name="/value_inp_outp") print(result) return result iface = gr.Interface(fn=chat_with_model, inputs="text", outputs="text") #使用Interface会自动创建用于输入的Textbox以及用于显示的Textbox iface.launch()