import time
from turtle import width
import torch
import folium
import numpy as np
import pandas as pd
import streamlit as st
from folium.plugins import MarkerCluster
from streamlit_folium import folium_static
st.set_page_config(
page_title="Ship Detection using YOLOv5 Medium Model",
page_icon=":ship:",
layout="wide"
)
st.write("# Welcome to Ship Detection Application! :satellite:")
st.markdown(
"""
This application is build based on YOLOv5 with extral large model. User just
upload an image, and press the 'Predict' button to make a prediction base on
a training model before.
### For more information, please visit:
- Check out [my github](https://github.com/bills1912)
- Jump into YOLOv5 [documentation](https://docs.ultralytics.com/)
"""
)
st.write("## Ship Imagery Prediction")
map_col1, map_col2, map_col3 = st.columns(3)
ais = pd.read_csv("https://raw.githubusercontent.com/bills1912/marin-vessels-detection/main/data/MarineTraffic_VesselExport_2022-11-25.csv")
ais_jakarta = ais[ais['Destination Port'] == 'JAKARTA']
ais_list = ais_jakarta.values.tolist()
f = folium.Figure(width=1000, height=500)
jakarta_vessels = folium.Map(location=[-5.626954250925966, 106.70735731868719], zoom_start=8).add_to(f)
ais_data = folium.FeatureGroup(name="marine_vessels")
mCluster = MarkerCluster(name="Marine Vessels")
for i in ais_list:
html = f"
{i[1]}
Vessel Type: {i[8]} Destination Port: {i[2]} Reported Destination: {i[4]} Current Port: {i[6]}\
Latitude: {i[9]} Longitude: {i[10]}"
iframe = folium.IFrame(html)
popup = folium.Popup(iframe, min_width=250, max_width=300)
ais_data.add_child(mCluster.add_child(folium.Marker(location=[i[10], i[11]], popup=popup, icon=folium.Icon(color="black", icon="ship", prefix="fa"))))
jakarta_vessels.add_child(ais_data)
folium_static(jakarta_vessels, width=1370, height=700)
st.write("### Model evaluation:")
eval_col1, eval_col2, eval_col3, eval_col4 = st.columns(spec=4)
eval_col1.metric("Precision", "89.52%")
eval_col2.metric("Recall", "83.54%")
eval_col3.metric("mAP 0.5", "85.39%")
eval_col4.metric("mAP 0.5:0.95", "62.63%")
uploaded_file = st.file_uploader("Choose a ship imagery")
if uploaded_file is not None:
st.image(uploaded_file, caption='Image to predict')
# st.write(uploaded_file.)
prediction = st.button("Predict")
if prediction:
ship_model = torch.hub.load('ultralytics/yolov5', 'custom', path="supercomputer/best.pt", force_reload=True)
# results = ship_model(f"C:/Users/bilva/YOLOv5/ship_test/{uploaded_file.name}")
results = ship_model(f"C:/Google Earth Pro/images/{uploaded_file.name}")
with st.spinner("Loading..."):
time.sleep(3.5)
st.success("Done!")
st.image(np.squeeze(results.render()))
results.print()
# with st.echo():
# st.text(f"results.print()")
# st.markdown(results.print())
# for percent_progress in range (100):
# time.sleep(0.1)
# progress.progress(percent_progress + 1)