import time from turtle import width import torch import folium import numpy as np import pandas as pd import streamlit as st from folium.plugins import MarkerCluster from streamlit_folium import folium_static def app(): st.write("# Welcome to Ship Detection Application! :satellite:") st.markdown( """ This application is build based on YOLOv5 with extral large model. User just upload an image, and press the 'Predict' button to make a prediction base on a training model before. ### For more information, please visit: - Check out [my github](https://github.com/bills1912) - Jump into YOLOv5 [documentation](https://docs.ultralytics.com/) """ ) ais = pd.read_csv("https://raw.githubusercontent.com/bills1912/marin-vessels-detection/main/data/MarineTraffic_VesselExport_2022-11-25.csv") ais_jakarta = ais[ais['Destination Port'] == 'JAKARTA'] ais_list = ais_jakarta.values.tolist() f = folium.Figure(width=1000, height=500) jakarta_vessels = folium.Map(location=[-5.626954250925966, 106.70735731868719], zoom_start=8).add_to(f) ais_data = folium.FeatureGroup(name="marine_vessels") mCluster = MarkerCluster(name="Marine Vessels") for i in ais_list: html = f"

{i[1]}

Vessel Type: {i[8]}
Destination Port: {i[2]}
Reported Destination: {i[4]}
Current Port: {i[6]}\
Latitude: {i[10]}
Longitude: {i[11]}" iframe = folium.IFrame(html) popup = folium.Popup(iframe, min_width=250, max_width=300) ais_data.add_child(mCluster.add_child(folium.Marker(location=[i[10], i[11]], popup=popup, icon=folium.Icon(color="black", icon="ship", prefix="fa")))) jakarta_vessels.add_child(ais_data) folium_static(jakarta_vessels, width=1370, height=700)