import torch import torch.nn as nn from collections import OrderedDict from diffusers.models.embeddings import ( TimestepEmbedding, Timesteps, ) def conv_nd(dims, *args, **kwargs): """ Create a 1D, 2D, or 3D convolution module. """ if dims == 1: return nn.Conv1d(*args, **kwargs) elif dims == 2: return nn.Conv2d(*args, **kwargs) elif dims == 3: return nn.Conv3d(*args, **kwargs) raise ValueError(f"unsupported dimensions: {dims}") def avg_pool_nd(dims, *args, **kwargs): """ Create a 1D, 2D, or 3D average pooling module. """ if dims == 1: return nn.AvgPool1d(*args, **kwargs) elif dims == 2: return nn.AvgPool2d(*args, **kwargs) elif dims == 3: return nn.AvgPool3d(*args, **kwargs) raise ValueError(f"unsupported dimensions: {dims}") def get_parameter_dtype(parameter: torch.nn.Module): try: params = tuple(parameter.parameters()) if len(params) > 0: return params[0].dtype buffers = tuple(parameter.buffers()) if len(buffers) > 0: return buffers[0].dtype except StopIteration: # For torch.nn.DataParallel compatibility in PyTorch 1.5 def find_tensor_attributes(module: torch.nn.Module) -> List[Tuple[str, Tensor]]: tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)] return tuples gen = parameter._named_members(get_members_fn=find_tensor_attributes) first_tuple = next(gen) return first_tuple[1].dtype class Downsample(nn.Module): """ A downsampling layer with an optional convolution. :param channels: channels in the inputs and outputs. :param use_conv: a bool determining if a convolution is applied. :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then downsampling occurs in the inner-two dimensions. """ def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1): super().__init__() self.channels = channels self.out_channels = out_channels or channels self.use_conv = use_conv self.dims = dims stride = 2 if dims != 3 else (1, 2, 2) if use_conv: self.op = conv_nd(dims, self.channels, self.out_channels, 3, stride=stride, padding=padding) else: assert self.channels == self.out_channels from torch.nn import MaxUnpool2d self.op = MaxUnpool2d(dims, kernel_size=stride, stride=stride) def forward(self, x): assert x.shape[1] == self.channels return self.op(x) class Upsample(nn.Module): def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1): super().__init__() self.channels = channels self.out_channels = out_channels or channels self.use_conv = use_conv self.dims = dims stride = 2 if dims != 3 else (1, 2, 2) if use_conv: self.op = nn.ConvTranspose2d(self.channels, self.out_channels, 3, stride=stride, padding=1) else: assert self.channels == self.out_channels self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) def forward(self, x, output_size): assert x.shape[1] == self.channels return self.op(x, output_size) class Linear(nn.Module): def __init__(self, temb_channels, out_channels): super(Linear, self).__init__() self.linear = nn.Linear(temb_channels, out_channels) def forward(self, x): return self.linear(x) class ResnetBlock(nn.Module): def __init__(self, in_c, out_c, down, up, ksize=3, sk=False, use_conv=True, enable_timestep=False, temb_channels=None, use_norm=False): super().__init__() self.use_norm = use_norm self.enable_timestep = enable_timestep ps = ksize // 2 if in_c != out_c or sk == False: self.in_conv = nn.Conv2d(in_c, out_c, ksize, 1, ps) else: self.in_conv = None self.block1 = nn.Conv2d(out_c, out_c, 3, 1, 1) self.act = nn.ReLU() if use_norm: self.norm1 = nn.GroupNorm(num_groups=32, num_channels=out_c, eps=1e-6, affine=True) self.block2 = nn.Conv2d(out_c, out_c, ksize, 1, ps) if sk == False: self.skep = nn.Conv2d(in_c, out_c, ksize, 1, ps) else: self.skep = None self.down = down self.up = up if self.down: self.down_opt = Downsample(in_c, use_conv=use_conv) if self.up: self.up_opt = Upsample(in_c, use_conv=use_conv) if enable_timestep: self.timestep_proj = Linear(temb_channels, out_c) def forward(self, x, output_size=None, temb=None): if self.down == True: x = self.down_opt(x) if self.up == True: x = self.up_opt(x, output_size) if self.in_conv is not None: # edit x = self.in_conv(x) h = self.block1(x) if temb is not None: temb = self.timestep_proj(temb)[:, :, None, None] h = h + temb if self.use_norm: h = self.norm1(h) h = self.act(h) h = self.block2(h) if self.skep is not None: return h + self.skep(x) else: return h + x class Adapter_XL(nn.Module): def __init__(self, in_channels=[1280, 640, 320], out_channels=[1280, 1280, 640], nums_rb=3, ksize=3, sk=True, use_conv=False, use_zero_conv=True, enable_timestep=False, use_norm=False, temb_channels=None, fusion_type='ADD'): super(Adapter_XL, self).__init__() self.channels = in_channels self.nums_rb = nums_rb self.body = [] self.out = [] self.use_zero_conv = use_zero_conv self.fusion_type = fusion_type self.gamma = [] self.beta = [] self.norm = [] if fusion_type == "SPADE": self.use_zero_conv = False for i in range(len(self.channels)): if self.fusion_type == 'SPADE': # Corresponding to SPADE self.gamma.append(nn.Conv2d(out_channels[i], out_channels[i], 1, padding=0)) self.beta.append(nn.Conv2d(out_channels[i], out_channels[i], 1, padding=0)) self.norm.append(nn.BatchNorm2d(out_channels[i])) elif use_zero_conv: self.out.append(self.make_zero_conv(out_channels[i])) else: self.out.append(nn.Conv2d(out_channels[i], out_channels[i], 1, padding=0)) for j in range(nums_rb): if i==0: # 1280, 32, 32 -> 1280, 32, 32 self.body.append( ResnetBlock(in_channels[i], out_channels[i], down=False, up=False, ksize=ksize, sk=sk, use_conv=use_conv, enable_timestep=enable_timestep, temb_channels=temb_channels, use_norm=use_norm)) # 1280, 32, 32 -> 1280, 32, 32 elif i==1: # 640, 64, 64 -> 1280, 64, 64 if j==0: self.body.append( ResnetBlock(in_channels[i], out_channels[i], down=False, up=False, ksize=ksize, sk=sk, use_conv=use_conv, enable_timestep=enable_timestep, temb_channels=temb_channels, use_norm=use_norm)) else: self.body.append( ResnetBlock(out_channels[i], out_channels[i], down=False, up=False, ksize=ksize,sk=sk, use_conv=use_conv, enable_timestep=enable_timestep, temb_channels=temb_channels, use_norm=use_norm)) else: # 320, 64, 64 -> 640, 128, 128 if j==0: self.body.append( ResnetBlock(in_channels[i], out_channels[i], down=False, up=True, ksize=ksize, sk=sk, use_conv=True, enable_timestep=enable_timestep, temb_channels=temb_channels, use_norm=use_norm)) # use convtranspose2d else: self.body.append( ResnetBlock(out_channels[i], out_channels[i], down=False, up=False, ksize=ksize, sk=sk, use_conv=use_conv, enable_timestep=enable_timestep, temb_channels=temb_channels, use_norm=use_norm)) self.body = nn.ModuleList(self.body) if self.use_zero_conv: self.zero_out = nn.ModuleList(self.out) # if self.fusion_type == 'SPADE': # self.norm = nn.ModuleList(self.norm) # self.gamma = nn.ModuleList(self.gamma) # self.beta = nn.ModuleList(self.beta) # else: # self.zero_out = nn.ModuleList(self.out) # if enable_timestep: # a = 320 # # time_embed_dim = a * 4 # self.time_proj = Timesteps(a, True, 0) # timestep_input_dim = a # # self.time_embedding = TimestepEmbedding( # timestep_input_dim, # time_embed_dim, # act_fn='silu', # post_act_fn=None, # cond_proj_dim=None, # ) def make_zero_conv(self, channels): return zero_module(nn.Conv2d(channels, channels, 1, padding=0)) @property def dtype(self) -> torch.dtype: """ `torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype). """ return get_parameter_dtype(self) def forward(self, x, t=None): # extract features features = [] b, c, _, _ = x[-1].shape if t is not None: if not torch.is_tensor(t): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) is_mps = x[0].device.type == "mps" if isinstance(timestep, float): dtype = torch.float32 if is_mps else torch.float64 else: dtype = torch.int32 if is_mps else torch.int64 t = torch.tensor([t], dtype=dtype, device=x[0].device) elif len(t.shape) == 0: t = t[None].to(x[0].device) t = t.expand(b) t = self.time_proj(t) # b, 320 t = t.to(dtype=x[0].dtype) t = self.time_embedding(t) # b, 1280 output_size = (b, 640, 128, 128) # last CA layer output for i in range(len(self.channels)): for j in range(self.nums_rb): idx = i * self.nums_rb + j if j == 0: if i < 2: out = self.body[idx](x[i], temb=t) else: out = self.body[idx](x[i], output_size=output_size, temb=t) else: out = self.body[idx](out, temb=t) if self.fusion_type == 'SPADE': out_gamma = self.gamma[i](out) out_beta = self.beta[i](out) out = [out_gamma, out_beta] else: out = self.zero_out[i](out) features.append(out) return features def zero_module(module): """ Zero out the parameters of a module and return it. """ for p in module.parameters(): p.detach().zero_() return module