import os from installer import install from modules import paths, shared, devices, modelloader, errors model_dir = "GFPGAN" user_path = None model_path = os.path.join(paths.models_path, model_dir) model_url = "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth" have_gfpgan = False loaded_gfpgan_model = None def gfpgann(): import facexlib import gfpgan # pylint: disable=unused-import global loaded_gfpgan_model # pylint: disable=global-statement if loaded_gfpgan_model is not None: loaded_gfpgan_model.gfpgan.to(devices.device_gfpgan) return loaded_gfpgan_model if gfpgan_constructor is None: return None models = modelloader.load_models(model_path, model_url, user_path, ext_filter="GFPGAN") if len(models) == 1 and "http" in models[0]: model_file = models[0] elif len(models) != 0: latest_file = max(models, key=os.path.getctime) model_file = latest_file else: shared.log.error(f"Model failed loading: type=GFPGAN model={model_file}") return None if hasattr(facexlib.detection.retinaface, 'device'): facexlib.detection.retinaface.device = devices.device_gfpgan model = gfpgan_constructor(model_path=model_file, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None, device=devices.device_gfpgan) loaded_gfpgan_model = model shared.log.info(f"Model loaded: type=GFPGAN model={model_file}") return model def send_model_to(model, device): model.gfpgan.to(device) model.face_helper.face_det.to(device) model.face_helper.face_parse.to(device) def gfpgan_fix_faces(np_image): model = gfpgann() if model is None: return np_image send_model_to(model, devices.device_gfpgan) np_image_bgr = np_image[:, :, ::-1] _cropped_faces, _restored_faces, gfpgan_output_bgr = model.enhance(np_image_bgr, has_aligned=False, only_center_face=False, paste_back=True) np_image = gfpgan_output_bgr[:, :, ::-1] model.face_helper.clean_all() if shared.opts.face_restoration_unload: send_model_to(model, devices.cpu) return np_image gfpgan_constructor = None def setup_model(dirname): try: if not os.path.exists(model_path): os.makedirs(model_path) except Exception: pass try: install('basicsr') install('gfpgan') import gfpgan import facexlib import modules.face_restoration global user_path # pylint: disable=global-statement global have_gfpgan # pylint: disable=global-statement global gfpgan_constructor # pylint: disable=global-statement load_file_from_url_orig = gfpgan.utils.load_file_from_url facex_load_file_from_url_orig = facexlib.detection.load_file_from_url facex_load_file_from_url_orig2 = facexlib.parsing.load_file_from_url def my_load_file_from_url(**kwargs): return load_file_from_url_orig(**dict(kwargs, model_dir=model_path)) def facex_load_file_from_url(**kwargs): return facex_load_file_from_url_orig(**dict(kwargs, save_dir=model_path, model_dir=None)) def facex_load_file_from_url2(**kwargs): return facex_load_file_from_url_orig2(**dict(kwargs, save_dir=model_path, model_dir=None)) gfpgan.utils.load_file_from_url = my_load_file_from_url facexlib.detection.load_file_from_url = facex_load_file_from_url facexlib.parsing.load_file_from_url = facex_load_file_from_url2 user_path = dirname have_gfpgan = True gfpgan_constructor = gfpgan.GFPGANer class FaceRestorerGFPGAN(modules.face_restoration.FaceRestoration): def name(self): return "GFPGAN" def restore(self, np_image, p=None): # pylint: disable=unused-argument return gfpgan_fix_faces(np_image) shared.face_restorers.append(FaceRestorerGFPGAN()) except Exception as e: errors.log.error(f'GFPGan failed to initialize: {e}')