import os from concurrent.futures import ThreadPoolExecutor from contextlib import contextmanager from typing import Dict, Optional, Tuple, Set import safetensors.torch import torch from tensordict import TensorDict import modules.memstats import modules.devices as devices from modules.shared import log, console from modules.sd_models import read_state_dict from modules.merging import merge_methods from modules.merging.merge_utils import WeightClass from modules.merging.merge_rebasin import ( apply_permutation, update_model_a, weight_matching, ) from modules.merging.merge_PermSpec import sdunet_permutation_spec from modules.merging.merge_PermSpec_SDXL import sdxl_permutation_spec ########################################################## # Files in modules.merging are heavily modified # versions of sd-meh by @s1dxl used with his blessing # orginal code can be found @ https://github.com/s1dlx/meh ########################################################## MAX_TOKENS = 77 KEY_POSITION_IDS = ".".join( [ "cond_stage_model", "transformer", "text_model", "embeddings", "position_ids", ] ) def fix_clip(model: Dict) -> Dict: if KEY_POSITION_IDS in model.keys(): model[KEY_POSITION_IDS] = torch.tensor( [list(range(MAX_TOKENS))], dtype=torch.int64, device=model[KEY_POSITION_IDS].device, ) return model def prune_sd_model(model: Dict, keyset: Set) -> Dict: keys = list(model.keys()) for k in keys: if ( not k.startswith("model.diffusion_model.") # and not k.startswith("first_stage_model.") and not k.startswith("cond_stage_model.") ) or k not in keyset: del model[k] return model def restore_sd_model(original_model: Dict, merged_model: Dict) -> Dict: for k in original_model: if k not in merged_model: merged_model[k] = original_model[k] return merged_model def log_vram(txt=""): log.debug(f"Merge {txt}: {modules.memstats.memory_stats()}") def load_thetas( models: Dict[str, os.PathLike], prune: bool, device: torch.device, precision: str, ) -> Dict: thetas = {k: TensorDict.from_dict(read_state_dict(m, "cpu")) for k, m in models.items()} if prune: keyset = set.intersection(*[set(m.keys()) for m in thetas.values() if len(m.keys())]) thetas = {k: prune_sd_model(m, keyset) for k, m in thetas.items()} for model_key, model in thetas.items(): for key, block in model.items(): if precision == "fp16": thetas[model_key].update({key: block.to(device).half()}) else: thetas[model_key].update({key: block.to(device)}) log_vram("models loaded") return thetas def merge_models( models: Dict[str, os.PathLike], merge_mode: str, precision: str = "fp16", weights_clip: bool = False, device: torch.device = None, work_device: torch.device = None, prune: bool = False, threads: int = 4, **kwargs, ) -> Dict: thetas = load_thetas(models, prune, device, precision) # log.info(f'Merge start: models={models.values()} precision={precision} clip={weights_clip} rebasin={re_basin} prune={prune} threads={threads}') weight_matcher = WeightClass(thetas["model_a"], **kwargs) if kwargs.get("re_basin", False): merged = rebasin_merge( thetas, weight_matcher, merge_mode, precision=precision, weights_clip=weights_clip, iterations=kwargs.get("re_basin_iterations", 1), device=device, work_device=work_device, threads=threads, ) else: merged = simple_merge( thetas, weight_matcher, merge_mode, precision=precision, weights_clip=weights_clip, device=device, work_device=work_device, threads=threads, ) return un_prune_model(merged, thetas, models, device, prune, precision) def un_prune_model( merged: Dict, thetas: Dict, models: Dict, device: torch.device, prune: bool, precision: str, ) -> Dict: if prune: log.info("Merge restoring pruned keys") del thetas devices.torch_gc(force=False) original_a = TensorDict.from_dict(read_state_dict(models["model_a"], device)) unpruned = 0 for key in original_a.keys(): if KEY_POSITION_IDS in key: continue if "model" in key and key not in merged.keys(): merged.update({key: original_a[key]}) unpruned += 1 if precision == "fp16": merged.update({key: merged[key].half()}) if unpruned > 248: # VAE has 248 keys, and we are purposely restoring it here log.debug(f"Merge restored from primary model: keys={unpruned - 248}") unpruned = 0 del original_a original_b = TensorDict.from_dict(read_state_dict(models["model_b"], device)) for key in original_b.keys(): if KEY_POSITION_IDS in key: continue if "model" in key and key not in merged.keys(): merged.update({key: original_b[key]}) unpruned += 1 if precision == "fp16": merged.update({key: merged[key].half()}) if unpruned != 0: log.debug(f"Merge restored from secondary model: keys={unpruned}") del original_b devices.torch_gc(force=False) return fix_clip(merged) def simple_merge( thetas: Dict[str, Dict], weight_matcher: WeightClass, merge_mode: str, precision: str = "fp16", weights_clip: bool = False, device: torch.device = None, work_device: torch.device = None, threads: int = 4, ) -> Dict: futures = [] # with tqdm(thetas["model_a"].keys(), desc="Merge") as progress: import rich.progress as p with p.Progress(p.TextColumn('[cyan]{task.description}'), p.BarColumn(), p.TaskProgressColumn(), p.TimeRemainingColumn(), p.TimeElapsedColumn(), p.TextColumn('[cyan]keys={task.fields[keys]}'), console=console) as progress: task = progress.add_task(description="Merging", total=len(thetas["model_a"].keys()), keys=len(thetas["model_a"].keys())) with ThreadPoolExecutor(max_workers=threads) as executor: for key in thetas["model_a"].keys(): future = executor.submit( simple_merge_key, progress, task, key, thetas, weight_matcher, merge_mode, precision, weights_clip, device, work_device, ) futures.append(future) for res in futures: res.result() if len(thetas["model_b"]) > 0: log.debug(f'Merge update thetas: keys={len(thetas["model_b"])}') for key in thetas["model_b"].keys(): if KEY_POSITION_IDS in key: continue if "model" in key and key not in thetas["model_a"].keys(): thetas["model_a"].update({key: thetas["model_b"][key]}) if precision == "fp16": thetas["model_a"].update({key: thetas["model_a"][key].half()}) return fix_clip(thetas["model_a"]) def rebasin_merge( thetas: Dict[str, os.PathLike], weight_matcher: WeightClass, merge_mode: str, precision: str = "fp16", weights_clip: bool = False, iterations: int = 1, device: torch.device = None, work_device: torch.device = None, threads: int = 1, ): # not sure how this does when 3 models are involved... model_a = thetas["model_a"].clone() if weight_matcher.SDXL: perm_spec = sdxl_permutation_spec() else: perm_spec = sdunet_permutation_spec() for it in range(iterations): log_vram(f"rebasin: iteration={it+1}") weight_matcher.set_it(it) # normal block merge we already know and love thetas["model_a"] = simple_merge( thetas, weight_matcher, merge_mode, precision, False, device, work_device, threads, ) # find permutations perm_1, y = weight_matching( perm_spec, model_a, thetas["model_a"], max_iter=it, init_perm=None, usefp16=precision == "fp16", device=device, ) thetas["model_a"] = apply_permutation(perm_spec, perm_1, thetas["model_a"]) perm_2, z = weight_matching( perm_spec, thetas["model_b"], thetas["model_a"], max_iter=it, init_perm=None, usefp16=precision == "fp16", device=device, ) new_alpha = torch.nn.functional.normalize( torch.sigmoid(torch.Tensor([y, z])), p=1, dim=0 ).tolist()[0] thetas["model_a"] = update_model_a( perm_spec, perm_2, thetas["model_a"], new_alpha ) if weights_clip: clip_thetas = thetas.copy() clip_thetas["model_a"] = model_a thetas["model_a"] = clip_weights(thetas, thetas["model_a"]) return thetas["model_a"] def simple_merge_key(progress, task, key, thetas, *args, **kwargs): with merge_key_context(key, thetas, *args, **kwargs) as result: if result is not None: thetas["model_a"].update({key: result.detach().clone()}) progress.update(task, advance=1) def merge_key( # pylint: disable=inconsistent-return-statements key: str, thetas: Dict, weight_matcher: WeightClass, merge_mode: str, precision: str = "fp16", weights_clip: bool = False, device: torch.device = None, work_device: torch.device = None, ) -> Optional[Tuple[str, Dict]]: if work_device is None: work_device = device if KEY_POSITION_IDS in key: return for theta in thetas.values(): if key not in theta.keys(): return thetas["model_a"][key] current_bases = weight_matcher(key) try: merge_method = getattr(merge_methods, merge_mode) except AttributeError as e: raise ValueError(f"{merge_mode} not implemented, aborting merge!") from e merge_args = get_merge_method_args(current_bases, thetas, key, work_device) # dealing with pix2pix and inpainting models if (a_size := merge_args["a"].size()) != (b_size := merge_args["b"].size()): if a_size[1] > b_size[1]: merged_key = merge_args["a"] else: merged_key = merge_args["b"] else: merged_key = merge_method(**merge_args).to(device) if weights_clip: merged_key = clip_weights_key(thetas, merged_key, key) if precision == "fp16": merged_key = merged_key.half() return merged_key def clip_weights(thetas, merged): for k in thetas["model_a"].keys(): if k in thetas["model_b"].keys(): merged.update({k: clip_weights_key(thetas, merged[k], k)}) return merged def clip_weights_key(thetas, merged_weights, key): t0 = thetas["model_a"][key] t1 = thetas["model_b"][key] maximums = torch.maximum(t0, t1) minimums = torch.minimum(t0, t1) return torch.minimum(torch.maximum(merged_weights, minimums), maximums) @contextmanager def merge_key_context(*args, **kwargs): result = merge_key(*args, **kwargs) try: yield result finally: if result is not None: del result def get_merge_method_args( current_bases: Dict, thetas: Dict, key: str, work_device: torch.device, ) -> Dict: merge_method_args = { "a": thetas["model_a"][key].to(work_device), "b": thetas["model_b"][key].to(work_device), **current_bases, } if "model_c" in thetas: merge_method_args["c"] = thetas["model_c"][key].to(work_device) return merge_method_args def save_model(model, output_file, file_format) -> None: log.info(f"Merge saving: model='{output_file}'") if file_format == "safetensors": safetensors.torch.save_file( model if type(model) == dict else model.to_dict(), f"{output_file}.safetensors", metadata={"format": "pt"}, ) else: torch.save({"state_dict": model}, f"{output_file}.ckpt")