from contextlib import contextmanager import hashlib import math from pathlib import Path import shutil import threading import time import urllib import warnings from PIL import Image import safetensors import torch from torch import nn, optim from torch.utils import data from torchvision.transforms import functional as TF def from_pil_image(x): """Converts from a PIL image to a tensor.""" x = TF.to_tensor(x) if x.ndim == 2: x = x[..., None] return x * 2 - 1 def to_pil_image(x): """Converts from a tensor to a PIL image.""" if x.ndim == 4: assert x.shape[0] == 1 x = x[0] if x.shape[0] == 1: x = x[0] return TF.to_pil_image((x.clamp(-1, 1) + 1) / 2) def hf_datasets_augs_helper(examples, transform, image_key, mode='RGB'): """Apply passed in transforms for HuggingFace Datasets.""" images = [transform(image.convert(mode)) for image in examples[image_key]] return {image_key: images} def append_dims(x, target_dims): """Appends dimensions to the end of a tensor until it has target_dims dimensions.""" dims_to_append = target_dims - x.ndim if dims_to_append < 0: raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less') return x[(...,) + (None,) * dims_to_append] def n_params(module): """Returns the number of trainable parameters in a module.""" return sum(p.numel() for p in module.parameters()) def download_file(path, url, digest=None): """Downloads a file if it does not exist, optionally checking its SHA-256 hash.""" path = Path(path) path.parent.mkdir(parents=True, exist_ok=True) if not path.exists(): with urllib.request.urlopen(url) as response, open(path, 'wb') as f: shutil.copyfileobj(response, f) if digest is not None: file_digest = hashlib.sha256(open(path, 'rb').read()).hexdigest() if digest != file_digest: raise OSError(f'hash of {path} (url: {url}) failed to validate') return path @contextmanager def train_mode(model, mode=True): """A context manager that places a model into training mode and restores the previous mode on exit.""" modes = [module.training for module in model.modules()] try: yield model.train(mode) finally: for i, module in enumerate(model.modules()): module.training = modes[i] def eval_mode(model): """A context manager that places a model into evaluation mode and restores the previous mode on exit.""" return train_mode(model, False) @torch.no_grad() def ema_update(model, averaged_model, decay): """Incorporates updated model parameters into an exponential moving averaged version of a model. It should be called after each optimizer step.""" model_params = dict(model.named_parameters()) averaged_params = dict(averaged_model.named_parameters()) assert model_params.keys() == averaged_params.keys() for name, param in model_params.items(): averaged_params[name].lerp_(param, 1 - decay) model_buffers = dict(model.named_buffers()) averaged_buffers = dict(averaged_model.named_buffers()) assert model_buffers.keys() == averaged_buffers.keys() for name, buf in model_buffers.items(): averaged_buffers[name].copy_(buf) class EMAWarmup: """Implements an EMA warmup using an inverse decay schedule. If inv_gamma=1 and power=1, implements a simple average. inv_gamma=1, power=2/3 are good values for models you plan to train for a million or more steps (reaches decay factor 0.999 at 31.6K steps, 0.9999 at 1M steps), inv_gamma=1, power=3/4 for models you plan to train for less (reaches decay factor 0.999 at 10K steps, 0.9999 at 215.4k steps). Args: inv_gamma (float): Inverse multiplicative factor of EMA warmup. Default: 1. power (float): Exponential factor of EMA warmup. Default: 1. min_value (float): The minimum EMA decay rate. Default: 0. max_value (float): The maximum EMA decay rate. Default: 1. start_at (int): The epoch to start averaging at. Default: 0. last_epoch (int): The index of last epoch. Default: 0. """ def __init__(self, inv_gamma=1., power=1., min_value=0., max_value=1., start_at=0, last_epoch=0): self.inv_gamma = inv_gamma self.power = power self.min_value = min_value self.max_value = max_value self.start_at = start_at self.last_epoch = last_epoch def state_dict(self): """Returns the state of the class as a :class:`dict`.""" return dict(self.__dict__.items()) def load_state_dict(self, state_dict): """Loads the class's state. Args: state_dict (dict): scaler state. Should be an object returned from a call to :meth:`state_dict`. """ self.__dict__.update(state_dict) def get_value(self): """Gets the current EMA decay rate.""" epoch = max(0, self.last_epoch - self.start_at) value = 1 - (1 + epoch / self.inv_gamma) ** -self.power return 0. if epoch < 0 else min(self.max_value, max(self.min_value, value)) def step(self): """Updates the step count.""" self.last_epoch += 1 class InverseLR(optim.lr_scheduler._LRScheduler): """Implements an inverse decay learning rate schedule with an optional exponential warmup. When last_epoch=-1, sets initial lr as lr. inv_gamma is the number of steps/epochs required for the learning rate to decay to (1 / 2)**power of its original value. Args: optimizer (Optimizer): Wrapped optimizer. inv_gamma (float): Inverse multiplicative factor of learning rate decay. Default: 1. power (float): Exponential factor of learning rate decay. Default: 1. warmup (float): Exponential warmup factor (0 <= warmup < 1, 0 to disable) Default: 0. min_lr (float): The minimum learning rate. Default: 0. last_epoch (int): The index of last epoch. Default: -1. verbose (bool): If ``True``, prints a message to stdout for each update. Default: ``False``. """ def __init__(self, optimizer, inv_gamma=1., power=1., warmup=0., min_lr=0., last_epoch=-1, verbose=False): self.inv_gamma = inv_gamma self.power = power if not 0. <= warmup < 1: raise ValueError('Invalid value for warmup') self.warmup = warmup self.min_lr = min_lr super().__init__(optimizer, last_epoch, verbose) def get_lr(self): if not self._get_lr_called_within_step: warnings.warn("To get the last learning rate computed by the scheduler, " "please use `get_last_lr()`.") return self._get_closed_form_lr() def _get_closed_form_lr(self): warmup = 1 - self.warmup ** (self.last_epoch + 1) lr_mult = (1 + self.last_epoch / self.inv_gamma) ** -self.power return [warmup * max(self.min_lr, base_lr * lr_mult) for base_lr in self.base_lrs] class ExponentialLR(optim.lr_scheduler._LRScheduler): """Implements an exponential learning rate schedule with an optional exponential warmup. When last_epoch=-1, sets initial lr as lr. Decays the learning rate continuously by decay (default 0.5) every num_steps steps. Args: optimizer (Optimizer): Wrapped optimizer. num_steps (float): The number of steps to decay the learning rate by decay in. decay (float): The factor by which to decay the learning rate every num_steps steps. Default: 0.5. warmup (float): Exponential warmup factor (0 <= warmup < 1, 0 to disable) Default: 0. min_lr (float): The minimum learning rate. Default: 0. last_epoch (int): The index of last epoch. Default: -1. verbose (bool): If ``True``, prints a message to stdout for each update. Default: ``False``. """ def __init__(self, optimizer, num_steps, decay=0.5, warmup=0., min_lr=0., last_epoch=-1, verbose=False): self.num_steps = num_steps self.decay = decay if not 0. <= warmup < 1: raise ValueError('Invalid value for warmup') self.warmup = warmup self.min_lr = min_lr super().__init__(optimizer, last_epoch, verbose) def get_lr(self): if not self._get_lr_called_within_step: warnings.warn("To get the last learning rate computed by the scheduler, " "please use `get_last_lr()`.") return self._get_closed_form_lr() def _get_closed_form_lr(self): warmup = 1 - self.warmup ** (self.last_epoch + 1) lr_mult = (self.decay ** (1 / self.num_steps)) ** self.last_epoch return [warmup * max(self.min_lr, base_lr * lr_mult) for base_lr in self.base_lrs] class ConstantLRWithWarmup(optim.lr_scheduler._LRScheduler): """Implements a constant learning rate schedule with an optional exponential warmup. When last_epoch=-1, sets initial lr as lr. Args: optimizer (Optimizer): Wrapped optimizer. warmup (float): Exponential warmup factor (0 <= warmup < 1, 0 to disable) Default: 0. last_epoch (int): The index of last epoch. Default: -1. verbose (bool): If ``True``, prints a message to stdout for each update. Default: ``False``. """ def __init__(self, optimizer, warmup=0., last_epoch=-1, verbose=False): if not 0. <= warmup < 1: raise ValueError('Invalid value for warmup') self.warmup = warmup super().__init__(optimizer, last_epoch, verbose) def get_lr(self): if not self._get_lr_called_within_step: warnings.warn("To get the last learning rate computed by the scheduler, " "please use `get_last_lr()`.") return self._get_closed_form_lr() def _get_closed_form_lr(self): warmup = 1 - self.warmup ** (self.last_epoch + 1) return [warmup * base_lr for base_lr in self.base_lrs] def stratified_uniform(shape, group=0, groups=1, dtype=None, device=None): """Draws stratified samples from a uniform distribution.""" if groups <= 0: raise ValueError(f"groups must be positive, got {groups}") if group < 0 or group >= groups: raise ValueError(f"group must be in [0, {groups})") n = shape[-1] * groups offsets = torch.arange(group, n, groups, dtype=dtype, device=device) u = torch.rand(shape, dtype=dtype, device=device) return (offsets + u) / n stratified_settings = threading.local() @contextmanager def enable_stratified(group=0, groups=1, disable=False): """A context manager that enables stratified sampling.""" try: stratified_settings.disable = disable stratified_settings.group = group stratified_settings.groups = groups yield finally: del stratified_settings.disable del stratified_settings.group del stratified_settings.groups @contextmanager def enable_stratified_accelerate(accelerator, disable=False): """A context manager that enables stratified sampling, distributing the strata across all processes and gradient accumulation steps using settings from Hugging Face Accelerate.""" try: rank = accelerator.process_index world_size = accelerator.num_processes acc_steps = accelerator.gradient_state.num_steps acc_step = accelerator.step % acc_steps group = rank * acc_steps + acc_step groups = world_size * acc_steps with enable_stratified(group, groups, disable=disable): yield finally: pass def stratified_with_settings(shape, dtype=None, device=None): """Draws stratified samples from a uniform distribution, using settings from a context manager.""" if not hasattr(stratified_settings, 'disable') or stratified_settings.disable: return torch.rand(shape, dtype=dtype, device=device) return stratified_uniform( shape, stratified_settings.group, stratified_settings.groups, dtype=dtype, device=device ) def rand_log_normal(shape, loc=0., scale=1., device='cpu', dtype=torch.float32): """Draws samples from an lognormal distribution.""" u = stratified_with_settings(shape, device=device, dtype=dtype) * (1 - 2e-7) + 1e-7 return torch.distributions.Normal(loc, scale).icdf(u).exp() def rand_log_logistic(shape, loc=0., scale=1., min_value=0., max_value=float('inf'), device='cpu', dtype=torch.float32): """Draws samples from an optionally truncated log-logistic distribution.""" min_value = torch.as_tensor(min_value, device=device, dtype=torch.float64) max_value = torch.as_tensor(max_value, device=device, dtype=torch.float64) min_cdf = min_value.log().sub(loc).div(scale).sigmoid() max_cdf = max_value.log().sub(loc).div(scale).sigmoid() u = stratified_with_settings(shape, device=device, dtype=torch.float64) * (max_cdf - min_cdf) + min_cdf return u.logit().mul(scale).add(loc).exp().to(dtype) def rand_log_uniform(shape, min_value, max_value, device='cpu', dtype=torch.float32): """Draws samples from an log-uniform distribution.""" min_value = math.log(min_value) max_value = math.log(max_value) return (stratified_with_settings(shape, device=device, dtype=dtype) * (max_value - min_value) + min_value).exp() def rand_v_diffusion(shape, sigma_data=1., min_value=0., max_value=float('inf'), device='cpu', dtype=torch.float32): """Draws samples from a truncated v-diffusion training timestep distribution.""" min_cdf = math.atan(min_value / sigma_data) * 2 / math.pi max_cdf = math.atan(max_value / sigma_data) * 2 / math.pi u = stratified_with_settings(shape, device=device, dtype=dtype) * (max_cdf - min_cdf) + min_cdf return torch.tan(u * math.pi / 2) * sigma_data def rand_cosine_interpolated(shape, image_d, noise_d_low, noise_d_high, sigma_data=1., min_value=1e-3, max_value=1e3, device='cpu', dtype=torch.float32): """Draws samples from an interpolated cosine timestep distribution (from simple diffusion).""" def logsnr_schedule_cosine(t, logsnr_min, logsnr_max): t_min = math.atan(math.exp(-0.5 * logsnr_max)) t_max = math.atan(math.exp(-0.5 * logsnr_min)) return -2 * torch.log(torch.tan(t_min + t * (t_max - t_min))) def logsnr_schedule_cosine_shifted(t, image_d, noise_d, logsnr_min, logsnr_max): shift = 2 * math.log(noise_d / image_d) return logsnr_schedule_cosine(t, logsnr_min - shift, logsnr_max - shift) + shift def logsnr_schedule_cosine_interpolated(t, image_d, noise_d_low, noise_d_high, logsnr_min, logsnr_max): logsnr_low = logsnr_schedule_cosine_shifted(t, image_d, noise_d_low, logsnr_min, logsnr_max) logsnr_high = logsnr_schedule_cosine_shifted(t, image_d, noise_d_high, logsnr_min, logsnr_max) return torch.lerp(logsnr_low, logsnr_high, t) logsnr_min = -2 * math.log(min_value / sigma_data) logsnr_max = -2 * math.log(max_value / sigma_data) u = stratified_with_settings(shape, device=device, dtype=dtype) logsnr = logsnr_schedule_cosine_interpolated(u, image_d, noise_d_low, noise_d_high, logsnr_min, logsnr_max) return torch.exp(-logsnr / 2) * sigma_data def rand_split_log_normal(shape, loc, scale_1, scale_2, device='cpu', dtype=torch.float32): """Draws samples from a split lognormal distribution.""" n = torch.randn(shape, device=device, dtype=dtype).abs() u = torch.rand(shape, device=device, dtype=dtype) n_left = n * -scale_1 + loc n_right = n * scale_2 + loc ratio = scale_1 / (scale_1 + scale_2) return torch.where(u < ratio, n_left, n_right).exp() class FolderOfImages(data.Dataset): """Recursively finds all images in a directory. It does not support classes/targets.""" IMG_EXTENSIONS = {'.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif', '.tiff', '.webp'} def __init__(self, root, transform=None): super().__init__() self.root = Path(root) self.transform = nn.Identity() if transform is None else transform self.paths = sorted(path for path in self.root.rglob('*') if path.suffix.lower() in self.IMG_EXTENSIONS) def __repr__(self): return f'FolderOfImages(root="{self.root}", len: {len(self)})' def __len__(self): return len(self.paths) def __getitem__(self, key): path = self.paths[key] with open(path, 'rb') as f: image = Image.open(f).convert('RGB') image = self.transform(image) return image, class CSVLogger: def __init__(self, filename, columns): self.filename = Path(filename) self.columns = columns if self.filename.exists(): self.file = open(self.filename, 'a') else: self.file = open(self.filename, 'w') self.write(*self.columns) def write(self, *args): print(*args, sep=',', file=self.file, flush=True) @contextmanager def tf32_mode(cudnn=None, matmul=None): """A context manager that sets whether TF32 is allowed on cuDNN or matmul.""" cudnn_old = torch.backends.cudnn.allow_tf32 matmul_old = torch.backends.cuda.matmul.allow_tf32 try: if cudnn is not None: torch.backends.cudnn.allow_tf32 = cudnn if matmul is not None: torch.backends.cuda.matmul.allow_tf32 = matmul yield finally: if cudnn is not None: torch.backends.cudnn.allow_tf32 = cudnn_old if matmul is not None: torch.backends.cuda.matmul.allow_tf32 = matmul_old def get_safetensors_metadata(path): """Retrieves the metadata from a safetensors file.""" return safetensors.safe_open(path, "pt").metadata() def ema_update_dict(values, updates, decay): for k, v in updates.items(): if k not in values: values[k] = v else: values[k] *= decay values[k] += (1 - decay) * v return values