import os import gradio as gr from PIL import Image from modules import scripts, processing, shared, images debug = shared.log.trace if os.environ.get('SD_FACE_DEBUG', None) is not None else lambda *args, **kwargs: None class Script(scripts.Script): def title(self): return 'Face' def show(self, is_img2img): return True if shared.backend == shared.Backend.DIFFUSERS else False def load_images(self, files): init_images = [] for file in files or []: try: if isinstance(file, str): from modules.api.api import decode_base64_to_image image = decode_base64_to_image(file) elif isinstance(file, Image.Image): image = file elif isinstance(file, dict) and 'name' in file: image = Image.open(file['name']) # _TemporaryFileWrapper from gr.Files elif hasattr(file, 'name'): image = Image.open(file.name) # _TemporaryFileWrapper from gr.Files else: raise ValueError(f'PhotoMaker unknown input: {file}') init_images.append(image) except Exception as e: shared.log.warning(f'PhotoMaker failed to load image: {e}') return init_images def mode_change(self, mode): return [ gr.update(visible=mode=='FaceID'), gr.update(visible=mode=='FaceSwap'), gr.update(visible=mode=='InstantID'), gr.update(visible=mode=='PhotoMaker'), ] # return signature is array of gradio components def ui(self, _is_img2img): with gr.Row(): gr.HTML("  Face module
") with gr.Row(): mode = gr.Dropdown(label='Mode', choices=['None', 'FaceID', 'FaceSwap', 'InstantID', 'PhotoMaker'], value='None') with gr.Group(visible=False) as cfg_faceid: with gr.Row(): gr.HTML('  Tencent AI Lab IP-Adapter FaceID
') with gr.Row(): from modules.face.faceid import FACEID_MODELS ip_model = gr.Dropdown(choices=list(FACEID_MODELS), label='FaceID Model', value='FaceID Base') with gr.Row(visible=True): ip_override = gr.Checkbox(label='Override sampler', value=True) ip_cache = gr.Checkbox(label='Cache model', value=True) with gr.Row(visible=True): ip_strength = gr.Slider(label='Strength', minimum=0.0, maximum=2.0, step=0.01, value=1.0) ip_structure = gr.Slider(label='Structure', minimum=0.0, maximum=1.0, step=0.01, value=1.0) with gr.Group(visible=False) as cfg_faceswap: with gr.Row(): gr.HTML('  InsightFace InSwapper
') with gr.Row(visible=True): fs_cache = gr.Checkbox(label='Cache model', value=True) with gr.Group(visible=False) as cfg_instantid: with gr.Row(): gr.HTML('  InstantX InstantID
') with gr.Row(): id_strength = gr.Slider(label='Strength', minimum=0.0, maximum=2.0, step=0.01, value=1.0) id_conditioning = gr.Slider(label='Control', minimum=0.0, maximum=2.0, step=0.01, value=0.5) with gr.Row(visible=True): id_cache = gr.Checkbox(label='Cache model', value=False) with gr.Group(visible=False) as cfg_photomaker: with gr.Row(): gr.HTML('  Tenecent ARC Lab PhotoMaker
') with gr.Row(): pm_trigger = gr.Text(label='Trigger word', value="person") pm_strength = gr.Slider(label='Strength', minimum=0.0, maximum=2.0, step=0.01, value=1.0) pm_start = gr.Slider(label='Start', minimum=0.0, maximum=1.0, step=0.01, value=0.5) with gr.Row(): files = gr.File(label='Input images', file_count='multiple', file_types=['image'], type='file', interactive=True, height=100) with gr.Row(): gallery = gr.Gallery(show_label=False, value=[]) files.change(fn=self.load_images, inputs=[files], outputs=[gallery]) mode.change(fn=self.mode_change, inputs=[mode], outputs=[cfg_faceid, cfg_faceswap, cfg_instantid, cfg_photomaker]) return [mode, gallery, ip_model, ip_override, ip_cache, ip_strength, ip_structure, id_strength, id_conditioning, id_cache, pm_trigger, pm_strength, pm_start, fs_cache] def run(self, p: processing.StableDiffusionProcessing, mode, input_images, ip_model, ip_override, ip_cache, ip_strength, ip_structure, id_strength, id_conditioning, id_cache, pm_trigger, pm_strength, pm_start, fs_cache): # pylint: disable=arguments-differ, unused-argument if shared.backend != shared.Backend.DIFFUSERS: return None if mode == 'None': return None if input_images is None or len(input_images) == 0: shared.log.error('Face: no init images') return None if shared.sd_model_type != 'sd' and shared.sd_model_type != 'sdxl': shared.log.error('Face: base model not supported') return None input_images = input_images.copy() for i, image in enumerate(input_images): if isinstance(image, str): from modules.api.api import decode_base64_to_image input_images[i] = decode_base64_to_image(image).convert("RGB") for i, image in enumerate(input_images): if not isinstance(image, Image.Image): input_images[i] = Image.open(image['name']) processed = None processing.process_init(p) if mode == 'FaceID': # faceid runs as ipadapter in its own pipeline from modules.face.insightface import get_app app = get_app('buffalo_l') from modules.face.faceid import face_id processed_images = face_id(p, app=app, source_images=input_images, model=ip_model, override=ip_override, cache=ip_cache, scale=ip_strength, structure=ip_structure) # run faceid pipeline processed = processing.Processed(p, images_list=processed_images, seed=p.seed, subseed=p.subseed, index_of_first_image=0) # manually created processed object elif mode == 'PhotoMaker': # photomaker creates pipeline and triggers original process_images from modules.face.photomaker import photo_maker processed = photo_maker(p, input_images=input_images, trigger=pm_trigger, strength=pm_strength, start=pm_start) elif mode == 'InstantID': from modules.face.insightface import get_app app=get_app('antelopev2') from modules.face.instantid import instant_id # instantid creates pipeline and triggers original process_images processed = instant_id(p, app=app, source_images=input_images, strength=id_strength, conditioning=id_conditioning, cache=id_cache) if processed is None: # run normal pipeline processed = processing.process_images(p) if mode == 'FaceSwap': # faceswap runs as postprocessing from modules.face.insightface import get_app app=get_app('buffalo_l') from modules.face.faceswap import face_swap if shared.opts.save_images_before_face_restoration and not p.do_not_save_samples: for i, image in enumerate(processed.images): info = processing.create_infotext(p, index=i) images.save_image(image, path=p.outpath_samples, seed=p.all_seeds[i], prompt=p.all_prompts[i], info=info, p=p, suffix="-before-faceswap") processed.images = face_swap(p, app=app, input_images=processed.images, source_image=input_images[0], cache=fs_cache) processed.info = processed.infotext(p, 0) processed.infotexts = [processed.info] if shared.opts.samples_save and not p.do_not_save_samples: for i, image in enumerate(processed.images): info = processing.create_infotext(p, index=i) images.save_image(image, path=p.outpath_samples, seed=p.all_seeds[i], prompt=p.all_prompts[i], info=info, p=p) return processed