# some code blocks are taken from https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/tree/main import json import os from datetime import datetime, timezone import gradio as gr import pandas as pd import requests from huggingface_hub import HfApi from src.css_html import custom_css from src.text_content import ABOUT_TEXT, SUBMISSION_TEXT_3 from src.utils import ( AutoEvalColumn, fields, is_model_on_hub, make_clickable_names, plot_elo_mle, plot_solve_rate, styled_error, styled_message, ) from datasets import load_dataset TOKEN = os.environ.get("TOKEN", None) api = HfApi(TOKEN) df = load_dataset("bigcode/bigcodebench-results", split="train").to_pandas().sort_values("complete", ascending=False) elo_mle_df = load_dataset("bigcode/bigcodebench-elo", split="train").to_pandas() complete_solve_rate = load_dataset("bigcode/bigcodebench-complete-solve-rate", split="train").to_pandas() instruct_solve_rate = load_dataset("bigcode/bigcodebench-instruct-solve-rate", split="train").to_pandas() QUEUE_REPO = "bigcode/bigcodebench-requests" EVAL_REQUESTS_PATH = "eval-queue" COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden] TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden] COLS_LITE = [ c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden ] TYPES_LITE = [ c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden ] def add_new_eval( model: str, revision: str, model_type: str, ): current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ") if model_type is None or model_type == "": return styled_error("Please select a model type.") # check the model actually exists before adding the eval if revision == "": revision = "main" model_on_hub, error = is_model_on_hub(model, revision) if not model_on_hub: return styled_error(f'Model "{model}" {error}') print("adding new eval") eval_entry = { "model": model, "revision": revision, "status": "PENDING", "submitted_time": current_time, "model_type": model_type.split(" ")[1], } user_name = "" model_path = model if "/" in model: user_name = model.split("/")[0] model_path = model.split("/")[1] OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}" os.makedirs(OUT_DIR, exist_ok=True) out_path = f"{OUT_DIR}/{model_path}_eval_request.json" print(f"Saving eval request to {out_path}") with open(out_path, "w") as f: f.write(json.dumps(eval_entry)) api.upload_file( path_or_fileobj=out_path, path_in_repo=out_path.split("eval-queue/")[1], repo_id=QUEUE_REPO, repo_type="dataset", commit_message=f"Add {model} to eval queue", ) # remove the local file os.remove(out_path) return styled_message("Your request has been submitted to the evaluation queue!\n") def select_columns(df, columns): always_here_cols = [ AutoEvalColumn.model_type_symbol.name, AutoEvalColumn.model.name, ] # We use COLS to maintain sorting filtered_df = df[ always_here_cols + [c for c in COLS if c in df.columns and c in columns] ] return filtered_df def filter_items(df, leaderboard_table, query): if query == "all": return df[leaderboard_table.columns] else: query = query[0] filtered_df = df[df["type"].str.contains(query, na=False)] return filtered_df[leaderboard_table.columns] def search_table(df, leaderboard_table, query): filtered_df = df[(df["model"].str.contains(query, case=False))] return filtered_df[leaderboard_table.columns] df = make_clickable_names(df) #
#

Warning: This leaderboard is not regularily updated with the latest instruction-tuned code models, check the Submit Results section for submitting new evaluation results. # You can also check other code leaderboards like EvalPlus & Can-AI-Code .

#
demo = gr.Blocks(css=custom_css) with demo: with gr.Row(): gr.Markdown( """

🌸BigCodeBench Leaderboard🌸

\
\

Inspired from the 🤗 Open LLM Leaderboard and 🤗 Big Code Models Leaderboard 🏋️, we compare performance of LLMs on BigCodeBench benchmark.

""", elem_classes="markdown-text", ) with gr.Tabs(elem_classes="tab-buttons") as tabs: with gr.Column(): with gr.Tabs(elem_classes="A100-tabs") as A100_tabs: with gr.TabItem("🔍 Evaluation table", id=0): with gr.Column(): with gr.Accordion("➡️ See All Columns", open=False): shown_columns = gr.CheckboxGroup( choices=[ c for c in COLS if c not in [ AutoEvalColumn.dummy.name, AutoEvalColumn.model.name, AutoEvalColumn.model_type_symbol.name, ] ], value=[ c for c in COLS_LITE if c not in [ AutoEvalColumn.dummy.name, AutoEvalColumn.model.name, AutoEvalColumn.model_type_symbol.name, ] ], label="", elem_id="column-select", interactive=True, ) # with gr.Column(min_width=780): with gr.Row(): search_bar = gr.Textbox( placeholder="🔍 Search for your model and press ENTER...", show_label=False, elem_id="search-bar", ) filter_columns = gr.Radio( label="⏚ Filter model types", choices=["all", "🟢 base", "🔶 instruction-tuned", "EXT external-evaluation"], value="all", elem_id="filter-columns", ) leaderboard_df = gr.components.Dataframe( value=df[ [ AutoEvalColumn.model_type_symbol.name, AutoEvalColumn.model.name, ] + shown_columns.value ], headers=[ AutoEvalColumn.model_type_symbol.name, AutoEvalColumn.model.name, ] + shown_columns.value, datatype=TYPES, elem_id="leaderboard-table", interactive=False, ) hidden_leaderboard_df = gr.components.Dataframe( value=df, headers=COLS, datatype=["str" for _ in range(len(COLS))], visible=False, ) search_bar.submit( search_table, [hidden_leaderboard_df, leaderboard_df, search_bar], leaderboard_df, ) filter_columns.change( filter_items, [hidden_leaderboard_df, leaderboard_df, filter_columns], leaderboard_df, ) shown_columns.change( select_columns, [hidden_leaderboard_df, shown_columns], leaderboard_df, ) #
  • # Complete vs Instruct: #
    # Complete: Code Completion based on the (verbose) structured docstring. This variant tests if the models are good at coding. #
    # Instruct (🔥Vibe Check🔥): Code Generation based on the (less verbose) NL-oriented instructions. This variant tests if the models are really capable enough to understand human intents to code. #
  • gr.Markdown( """ **Notes:** - _Complete_ vs _Instruct_: - Complete: Code Completion based on the (verbose) structured docstring. This variant tests if the models are good at coding. - Instruct (🔥Vibe Check🔥): Code Generation based on the (less verbose) NL-oriented instructions. This variant tests if the models are really capable enough to understand human intents to code. - `complete` and `instruct` represent the calibrated Pass@1 score on the BigCodeBench benchmark variants. - `elo_mle` represents the task-level Bootstrap of Maximum Likelihood Elo rating on `BigCodeBench-Complete`. - `size` is the amount of activated model weight during inference. - Model providers have the responsibility to avoid data contamination. Models trained on close data can be affected by contamination. - For more details check the 📝 About section. - Models with a 🔴 symbol represent external evaluation submission, this means that we didn't verify the results, you can find the author's submission under `Submission PR` field from `See All Columns` tab. """, elem_classes="markdown-text", ) with gr.TabItem("📊 Elo Rating", id=1): with gr.Column(): elo_map = gr.Plot() demo.load(plot_elo_mle, [gr.Dataframe(elo_mle_df, visible=False)], elo_map) with gr.TabItem("🧩 Solve Rate", id=2): with gr.Column(): complete_map = gr.Plot() demo.load(plot_solve_rate, [gr.Dataframe(complete_solve_rate, visible=False), gr.Textbox("Complete", visible=False), ], complete_map) instruct_map = gr.Plot() demo.load(plot_solve_rate, [gr.Dataframe(instruct_solve_rate, visible=False), gr.Textbox("Instruction", visible=False), ], instruct_map) with gr.TabItem("📝 About", id=3): gr.Markdown(ABOUT_TEXT, elem_classes="markdown-text") with gr.TabItem("Submit results 🚀", id=4): gr.Markdown(SUBMISSION_TEXT_3) demo.launch()