import os import logging import time import schedule import datetime import gradio as gr from threading import Thread import datasets from huggingface_hub import snapshot_download, WebhooksServer, WebhookPayload, RepoCard from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns from apscheduler.schedulers.background import BackgroundScheduler # Start ephemeral Spaces on PRs (see config in README.md) from gradio_space_ci.webhook import IS_EPHEMERAL_SPACE, SPACE_ID, configure_space_ci from src.display.about import ( CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, # INTRODUCTION_TEXT, TITLE, ABOUT_TEXT, SUBMISSION_TEXT_3, ) from src.display.css_html_js import custom_css from src.display.utils import ( COLS, EVAL_COLS, EVAL_TYPES, AutoEvalColumn, fields, EvalQueueColumn ) from src.envs import ( API, EVAL_REQUESTS_PATH, RESULT_REPO, DATA_VERSION, DATA_REPO, HARD_RESULT_REPO, ELO_REPO, HARD_ELO_REPO, SOLVE_REPO, HARD_SOLVE_REPO, HF_TOKEN, QUEUE_REPO, REPO_ID, VOTES_REPO, VOTES_PATH, HF_HOME, ) from src.populate import get_evaluation_queue_df, get_leaderboard_df from src.tools.plots import plot_elo_mle, plot_solve_rate # from src.voting.vote_system import VoteManager, run_scheduler # Configure logging logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") # Start ephemeral Spaces on PRs (see config in README.md) from gradio_space_ci.webhook import IS_EPHEMERAL_SPACE, SPACE_ID, configure_space_ci # Convert the environment variable "LEADERBOARD_FULL_INIT" to a boolean value, defaulting to True if the variable is not set. # This controls whether a full initialization should be performed. DO_FULL_INIT = True # os.getenv("LEADERBOARD_FULL_INIT", "True") == "True" NEW_DATA_ON_LEADERBOARD = True LEADERBOARD_DF = None HARD_LEADERBOARD_DF = None ELO_TASK_DF = None ELO_BENCH_DF = None HARD_ELO_TASK_DF = None HARD_ELO_BENCH_DF = None COMPLETE_SOLVE_DF = None INSTRUCT_SOLVE_DF = None HARD_COMPLETE_SOLVE_DF = None HARD_INSTRUCT_SOLVE_DF = None DATA = datasets.load_dataset(DATA_REPO, "default", cache_dir=HF_HOME, split=DATA_VERSION, verification_mode="no_checks") def filter_data(data, keyword): if not keyword: return data filtered_data = [item for item in data if keyword.lower() in item['complete_prompt'].lower()] return filtered_data def update_display(search_keyword, index, show_solution, show_test): filtered_data = filter_data(DATA, search_keyword) if not filtered_data: return ["No data available. Check the search criteria."] + [""] * 4 + [0, gr.update(maximum=0, value=0)] max_index = len(filtered_data) - 1 index = min(max(0, index), max_index) task_id = filtered_data[index]['task_id'] snippet1 = filtered_data[index]['complete_prompt'] snippet2 = filtered_data[index]['instruct_prompt'] snippet3 = filtered_data[index]['canonical_solution'] if show_solution else "" snippet4 = filtered_data[index]['test'] if show_test else "" return [ task_id, snippet1, snippet2, snippet3, snippet4, len(filtered_data), gr.update(maximum=max_index, value=index) ] def restart_space(): API.restart_space(repo_id=REPO_ID, token=HF_TOKEN) def time_diff_wrapper(func): def wrapper(*args, **kwargs): start_time = time.time() result = func(*args, **kwargs) end_time = time.time() diff = end_time - start_time logging.info(f"Time taken for {func.__name__}: {diff} seconds") return result return wrapper @time_diff_wrapper def download_dataset(repo_id, local_dir, repo_type="dataset", max_attempts=3, backoff_factor=1.5): """Download dataset with exponential backoff retries.""" attempt = 0 while attempt < max_attempts: try: logging.info(f"Downloading {repo_id} to {local_dir}") snapshot_download( repo_id=repo_id, local_dir=local_dir, repo_type=repo_type, tqdm_class=None, etag_timeout=30, max_workers=8, ) logging.info("Download successful") return except Exception as e: wait_time = backoff_factor**attempt logging.error(f"Error downloading {repo_id}: {e}, retrying in {wait_time}s") time.sleep(wait_time) attempt += 1 raise Exception(f"Failed to download {repo_id} after {max_attempts} attempts") def get_latest_data_leaderboard( leaderboard_initial_df = None, hard_leaderboard_initial_df = None, elo_task_df = None, elo_bench_df = None, hard_elo_task_df = None, hard_elo_bench_df = None, complete_solve_df = None, instruct_solve_df = None, hard_complete_solve_df = None, hard_instruct_solve_df = None ): global NEW_DATA_ON_LEADERBOARD global LEADERBOARD_DF global HARD_LEADERBOARD_DF global ELO_TASK_DF global ELO_BENCH_DF global HARD_ELO_TASK_DF global HARD_ELO_BENCH_DF global COMPLETE_SOLVE_DF global INSTRUCT_SOLVE_DF global HARD_COMPLETE_SOLVE_DF global HARD_INSTRUCT_SOLVE_DF if NEW_DATA_ON_LEADERBOARD: print("Leaderboard updated at reload!") leaderboard_dataset = datasets.load_dataset( RESULT_REPO, "default", split="train", cache_dir=HF_HOME, download_mode=datasets.DownloadMode.REUSE_DATASET_IF_EXISTS, # Uses the cached dataset verification_mode="no_checks" ) LEADERBOARD_DF = get_leaderboard_df( leaderboard_dataset=leaderboard_dataset, cols=COLS, ) hard_leaderboard_dataset = datasets.load_dataset( HARD_RESULT_REPO, "default", split="train", cache_dir=HF_HOME, download_mode=datasets.DownloadMode.REUSE_DATASET_IF_EXISTS, # Uses the cached dataset verification_mode="no_checks" ) hard_leaderboard_df = get_leaderboard_df( leaderboard_dataset=hard_leaderboard_dataset, cols=COLS, ) HARD_LEADERBOARD_DF = hard_leaderboard_df elo_task_df = datasets.load_dataset( ELO_REPO, "default", split="task_no_tie", cache_dir=HF_HOME, download_mode=datasets.DownloadMode.REUSE_DATASET_IF_EXISTS, # Uses the cached dataset verification_mode="no_checks" ).to_pandas() elo_bench_df = datasets.load_dataset( ELO_REPO, "default", split="benchmark_tie", cache_dir=HF_HOME, download_mode=datasets.DownloadMode.REUSE_DATASET_IF_EXISTS, # Uses the cached dataset verification_mode="no_checks" ).to_pandas() ELO_TASK_DF = elo_task_df ELO_BENCH_DF = elo_bench_df hard_elo_task_df = datasets.load_dataset( HARD_ELO_REPO, "default", split="task_no_tie", cache_dir=HF_HOME, download_mode=datasets.DownloadMode.REUSE_DATASET_IF_EXISTS, # Uses the cached dataset verification_mode="no_checks" ).to_pandas() hard_elo_bench_df = datasets.load_dataset( HARD_ELO_REPO, "default", split="benchmark_tie", cache_dir=HF_HOME, download_mode=datasets.DownloadMode.REUSE_DATASET_IF_EXISTS, # Uses the cached dataset verification_mode="no_checks" ).to_pandas() HARD_ELO_TASK_DF = hard_elo_task_df HARD_ELO_BENCH_DF = hard_elo_bench_df complete_solve_df = datasets.load_dataset( SOLVE_REPO, "default", split="complete", cache_dir=HF_HOME, download_mode=datasets.DownloadMode.REUSE_DATASET_IF_EXISTS, # Uses the cached dataset verification_mode="no_checks" ).to_pandas() instruct_solve_df = datasets.load_dataset( SOLVE_REPO, "default", split="instruct", cache_dir=HF_HOME, download_mode=datasets.DownloadMode.REUSE_DATASET_IF_EXISTS, # Uses the cached dataset verification_mode="no_checks" ).to_pandas() COMPLETE_SOLVE_DF = complete_solve_df INSTRUCT_SOLVE_DF = instruct_solve_df hard_complete_solve_df = datasets.load_dataset( HARD_SOLVE_REPO, "default", split="complete", cache_dir=HF_HOME, download_mode=datasets.DownloadMode.REUSE_DATASET_IF_EXISTS, # Uses the cached dataset verification_mode="no_checks" ).to_pandas() hard_instruct_solve_df = datasets.load_dataset( HARD_SOLVE_REPO, "default", split="instruct", cache_dir=HF_HOME, download_mode=datasets.DownloadMode.REUSE_DATASET_IF_EXISTS, # Uses the cached dataset verification_mode="no_checks" ).to_pandas() HARD_COMPLETE_SOLVE_DF = hard_complete_solve_df HARD_INSTRUCT_SOLVE_DF = hard_instruct_solve_df NEW_DATA_ON_LEADERBOARD = False else: LEADERBOARD_DF = leaderboard_initial_df HARD_LEADERBOARD_DF = hard_leaderboard_initial_df ELO_TASK_DF = elo_task_df ELO_BENCH_DF = elo_bench_df HARD_ELO_TASK_DF = hard_elo_task_df HARD_ELO_BENCH_DF = hard_elo_bench_df COMPLETE_SOLVE_DF = complete_solve_df INSTRUCT_SOLVE_DF = instruct_solve_df HARD_COMPLETE_SOLVE_DF = hard_complete_solve_df HARD_INSTRUCT_SOLVE_DF = hard_instruct_solve_df return (LEADERBOARD_DF, HARD_LEADERBOARD_DF, ELO_TASK_DF, ELO_BENCH_DF, HARD_ELO_TASK_DF, HARD_ELO_BENCH_DF, COMPLETE_SOLVE_DF, INSTRUCT_SOLVE_DF, HARD_COMPLETE_SOLVE_DF, HARD_INSTRUCT_SOLVE_DF) def init_space(): """Initializes the application space, loading only necessary data.""" # Always redownload the leaderboard DataFrame global LEADERBOARD_DF global HARD_LEADERBOARD_DF global ELO_TASK_DF global ELO_BENCH_DF global HARD_ELO_TASK_DF global HARD_ELO_BENCH_DF global COMPLETE_SOLVE_DF global INSTRUCT_SOLVE_DF global HARD_COMPLETE_SOLVE_DF global HARD_INSTRUCT_SOLVE_DF LEADERBOARD_DF, HARD_LEADERBOARD_DF, ELO_TASK_DF, ELO_BENCH_DF, HARD_ELO_TASK_DF, HARD_ELO_BENCH_DF, COMPLETE_SOLVE_DF, INSTRUCT_SOLVE_DF, HARD_COMPLETE_SOLVE_DF, HARD_INSTRUCT_SOLVE_DF = get_latest_data_leaderboard() # Evaluation queue DataFrame retrieval is independent of initialization detail level # eval_queue_dfs = get_latest_data_queue() return (LEADERBOARD_DF, HARD_LEADERBOARD_DF, ELO_TASK_DF, ELO_BENCH_DF, HARD_ELO_TASK_DF, HARD_ELO_BENCH_DF, COMPLETE_SOLVE_DF, INSTRUCT_SOLVE_DF, HARD_COMPLETE_SOLVE_DF, HARD_INSTRUCT_SOLVE_DF) # Initialize VoteManager # vote_manager = VoteManager(VOTES_PATH, EVAL_REQUESTS_PATH, VOTES_REPO) # Schedule the upload_votes method to run every 15 minutes # schedule.every(15).minutes.do(vote_manager.upload_votes) # Start the scheduler in a separate thread # scheduler_thread = Thread(target=run_scheduler, args=(vote_manager,), daemon=True) # scheduler_thread.start() # Calls the init_space function with the `full_init` parameter determined by the `do_full_init` variable. # This initializes various DataFrames used throughout the application, with the level of initialization detail controlled by the `do_full_init` flag. LEADERBOARD_DF, HARD_LEADERBOARD_DF, ELO_TASK_DF, \ ELO_BENCH_DF, HARD_ELO_TASK_DF, HARD_ELO_BENCH_DF, \ COMPLETE_SOLVE_DF, INSTRUCT_SOLVE_DF, HARD_COMPLETE_SOLVE_DF, \ HARD_INSTRUCT_SOLVE_DF = init_space() # Data processing for plots now only on demand in the respective Gradio tab # def load_and_create_plots(): # plot_df = create_plot_df(create_scores_df(LEADERBOARD_DF)) # return plot_df # Function to check if a user is logged in def check_login(profile: gr.OAuthProfile | None) -> bool: if profile is None: return False return True def init_leaderboard(dataframe): if dataframe is None or dataframe.empty: raise ValueError("Leaderboard DataFrame is empty or None.") return Leaderboard( value=dataframe, datatype=[c.type for c in fields(AutoEvalColumn)], select_columns=SelectColumns( default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default], cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden or c.dummy], label="Select Columns to Display:", ), search_columns=[AutoEvalColumn.model.name], hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden], filter_columns=[ ColumnFilter(AutoEvalColumn.type.name, type="checkboxgroup", label="Model Types"), ColumnFilter(AutoEvalColumn.openness.name, type="checkboxgroup", label="Openness"), ColumnFilter(AutoEvalColumn.size_range.name, type="dropdown", label="Model Size"), ColumnFilter(AutoEvalColumn.moe.name, type="checkboxgroup", label="Model Architecture"), ], bool_checkboxgroup_label="Hide models", interactive=False, ) def init_others(dataframe): if dataframe is None or dataframe.empty: raise ValueError("Gradio DataFrame is empty or None.") return gr.Dataframe(dataframe, visible=False) main_block = gr.Blocks(css=custom_css) with main_block as demo: with gr.Row(elem_id="header-row"): gr.HTML(TITLE) # gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") with gr.Tabs(elem_classes="tab-buttons") as tabs: with gr.Tab("πŸ’Ž Hard Set") as hard_tabs: with gr.TabItem("πŸ… Benchmark", elem_id="llm-benchmark-tab-table", id="hard_bench"): hard_leaderboard = init_leaderboard(HARD_LEADERBOARD_DF) gr.Markdown( """ **Notes:** - _Hard Set_ vs _Full Set_: - Hard Set: A subset of ~150 BigCodeBench tasks which is more user-facing and challenging. - Full Set: The full set of 1140 BigCodeBench tasks. - _Complete_ vs _Instruct_: - Complete: Code Completion based on the (verbose) structured docstring. This split tests if the models are good at coding. - Instruct (πŸ”₯Vibe CheckπŸ”₯): Code Generation based on the (less verbose) NL-oriented instructions. This split tests if the models are really capable enough to understand human intents to code. - `Complete` and `Instruct` represent the calibrated Pass@1 score on the BigCodeBench benchmark splits. - `Average` is the average of `Complete` and `Instruct` when both are available. - `Elo Rating` represents the task-level Bootstrap of Maximum Likelihood Elo rating on the BigCodeBench-Complete split. The rating starts from 1000 and is bootstrapped 500 times. - `#Act Params (B)` is the number of activated model parameters during inference. - Model providers have the responsibility to avoid data contamination. Models trained on close data can be affected by contamination. - For more details check the πŸ“ About section. """, elem_classes="markdown-text", ) with gr.TabItem("πŸ“Š Elo Rating", id="hard_elo"): with gr.Column(): with gr.Group(): gr.Markdown("## (Task-level, No Tie, BigCodeBench-Complete) -- _Recommended_") hard_task_elo_map = gr.Plot() hard_elo_task_gr = init_others(HARD_ELO_TASK_DF) demo.load(plot_elo_mle, [hard_elo_task_gr], hard_task_elo_map) with gr.Group(): gr.Markdown("## (Benchmark-level, BigCodeBench-Complete)") hard_bench_elo_map = gr.Plot() hard_elo_bench_gr = init_others(HARD_ELO_BENCH_DF) demo.load(plot_elo_mle, [hard_elo_bench_gr], hard_bench_elo_map) with gr.TabItem("🧩 Solve Rate", id="hard_solve"): with gr.Column(): hard_complete_map = gr.Plot() hard_complete_solve_gr = init_others(HARD_COMPLETE_SOLVE_DF) demo.load(plot_solve_rate, [hard_complete_solve_gr, gr.Textbox("Complete", visible=False), gr.Number(10, visible=False), gr.Number(16, visible=False), ], hard_complete_map) hard_instruct_map = gr.Plot() hard_instruct_solve_gr = init_others(HARD_INSTRUCT_SOLVE_DF) demo.load(plot_solve_rate, [hard_instruct_solve_gr, gr.Textbox("Instruct", visible=False), gr.Number(10, visible=False), gr.Number(16, visible=False), ], hard_instruct_map) with gr.Tab("🎯 Full Set") as full_tabs: with gr.TabItem("πŸ… Benchmark", elem_id="llm-benchmark-tab-table", id="full_bench"): leaderboard = init_leaderboard(LEADERBOARD_DF) gr.Markdown( """ **Notes:** - _Complete_ vs _Instruct_: - Complete: Code Completion based on the (verbose) structured docstring. This variant tests if the models are good at coding. - Instruct (πŸ”₯Vibe CheckπŸ”₯): Code Generation based on the (less verbose) NL-oriented instructions. This variant tests if the models are really capable enough to understand human intents to code. - `complete` and `instruct` represent the calibrated Pass@1 score on the BigCodeBench benchmark variants. - `elo_mle` represents the task-level Bootstrap of Maximum Likelihood Elo rating on the BigCodeBench-Complete split. The rating starts from 1000 and is bootstrapped 500 times. - `size` is the amount of activated model weight during inference. - Model providers have the responsibility to avoid data contamination. Models trained on close data can be affected by contamination. - For more details check the πŸ“ About section. """, elem_classes="markdown-text", ) with gr.TabItem("πŸ“Š Elo Rating", id="full_elo"): with gr.Column(): with gr.Group(): gr.Markdown("## (Task-level, No Tie, BigCodeBench-Complete) -- _Recommended_") task_elo_map = gr.Plot() elo_task_gr = init_others(ELO_TASK_DF) demo.load(plot_elo_mle, [elo_task_gr], task_elo_map) with gr.Group(): gr.Markdown("## (Benchmark-level, BigCodeBench-Complete)") bench_elo_map = gr.Plot() elo_bench_gr = init_others(ELO_BENCH_DF) demo.load(plot_elo_mle, [elo_bench_gr], bench_elo_map) with gr.TabItem("🧩 Solve Rate", id="full_solve"): with gr.Column(): complete_map = gr.Plot() complete_solve_gr = init_others(COMPLETE_SOLVE_DF) demo.load(plot_solve_rate, [complete_solve_gr, gr.Textbox("Complete", visible=False), ], complete_map) instruct_map = gr.Plot() instruct_solve_gr = init_others(INSTRUCT_SOLVE_DF) demo.load(plot_solve_rate, [instruct_solve_gr, gr.Textbox("Instruct", visible=False), ], instruct_map) with gr.TabItem("πŸ“ About", id=3): gr.Markdown(ABOUT_TEXT, elem_classes="markdown-text") with gr.TabItem("πŸ”Ž Data Viewer", id="viewer"): search_input = gr.Textbox(label="Search by keyword") count_output = gr.Number(label="Number of filtered items") index_slider = gr.Slider(minimum=0, maximum=len(DATA)-1, step=1, label="Select Index") show_solution = gr.Checkbox(label="Show Solution") show_test = gr.Checkbox(label="Show Test Cases") update_button = gr.Button("Update Display") task_id_output = gr.Textbox(label="Task ID") code_completion = gr.Code(language="python", label="Code Completion") nl_instruction = gr.Code(language="python", label="Natural Language Instruction") solution = gr.Code(language="python", label="Solution") test_cases = gr.Code(language="python", label="Test Cases") update_button.click( update_display, inputs=[search_input, index_slider, show_solution, show_test], outputs=[task_id_output, code_completion, nl_instruction, solution, test_cases, count_output, index_slider] ) # Initial load demo.load( update_display, inputs=[search_input, index_slider, show_solution, show_test], outputs=[task_id_output, code_completion, nl_instruction, solution, test_cases, count_output, index_slider] ) with gr.TabItem("πŸš€ Request", id=4): gr.Markdown(SUBMISSION_TEXT_3) with gr.Row(): with gr.Accordion("πŸ“™ Citation", open=False): citation_button = gr.Textbox( value=CITATION_BUTTON_TEXT, label=CITATION_BUTTON_LABEL, lines=20, elem_id="citation-button", show_copy_button=True, ) main_block.load(fn=get_latest_data_leaderboard, inputs=[leaderboard, hard_leaderboard, elo_task_gr, elo_bench_gr, hard_elo_task_gr, hard_elo_bench_gr, complete_solve_gr, instruct_solve_gr, hard_complete_solve_gr, hard_instruct_solve_gr], outputs=[leaderboard, hard_leaderboard, elo_task_gr, elo_bench_gr, hard_elo_task_gr, hard_elo_bench_gr, complete_solve_gr, instruct_solve_gr, hard_complete_solve_gr, hard_instruct_solve_gr]) # leaderboard.change(fn=get_latest_data_queue, inputs=None, outputs=[finished_eval_table, running_eval_table, pending_eval_table]) # pending_eval_table.change(fn=vote_manager.create_request_vote_df, inputs=[pending_eval_table], outputs=[pending_eval_table_votes]) main_block.queue(default_concurrency_limit=40) def enable_space_ci_and_return_server(ui: gr.Blocks) -> WebhooksServer: # Taken from https://huggingface.co/spaces/Wauplin/gradio-space-ci/blob/075119aee75ab5e7150bf0814eec91c83482e790/src/gradio_space_ci/webhook.py#L61 # Compared to original, this one do not monkeypatch Gradio which allows us to define more webhooks. # ht to Lucain! if SPACE_ID is None: print("Not in a Space: Space CI disabled.") return WebhooksServer(ui=main_block) if IS_EPHEMERAL_SPACE: print("In an ephemeral Space: Space CI disabled.") return WebhooksServer(ui=main_block) card = RepoCard.load(repo_id_or_path=SPACE_ID, repo_type="space") config = card.data.get("space_ci", {}) print(f"Enabling Space CI with config from README: {config}") return configure_space_ci( blocks=ui, trusted_authors=config.get("trusted_authors"), private=config.get("private", "auto"), variables=config.get("variables", "auto"), secrets=config.get("secrets"), hardware=config.get("hardware"), storage=config.get("storage"), ) # Create webhooks server (with CI url if in Space and not ephemeral) webhooks_server = enable_space_ci_and_return_server(ui=main_block) # Add webhooks @webhooks_server.add_webhook def update_leaderboard(payload: WebhookPayload) -> None: """Redownloads the leaderboard dataset each time it updates""" if payload.repo.type == "dataset" and payload.event.action == "update": global NEW_DATA_ON_LEADERBOARD if NEW_DATA_ON_LEADERBOARD: return NEW_DATA_ON_LEADERBOARD = True for repo in [RESULT_REPO, HARD_RESULT_REPO, ELO_REPO, HARD_ELO_REPO, SOLVE_REPO, HARD_SOLVE_REPO]: datasets.load_dataset( repo, "default", cache_dir=HF_HOME, download_mode=datasets.DownloadMode.FORCE_REDOWNLOAD, verification_mode="no_checks" ) webhooks_server.launch() scheduler = BackgroundScheduler() scheduler.add_job(restart_space, "interval", hours=3) # restarted every 3h as backup in case automatic updates are not working scheduler.start()