import os import json from typing import Optional from dataclasses import dataclass, field CHATGLM_REPO_NAME = "THUDM/chatglm-6b" CHATGLM_LASTEST_HASH = "a8ede826cf1b62bd3c78bdfb3625c7c5d2048fbd" @dataclass class DatasetAttr: load_from: str dataset_name: Optional[str] = None file_name: Optional[str] = None file_sha1: Optional[str] = None def __post_init__(self): self.prompt_column = "instruction" self.query_column = "input" self.response_column = "output" self.history_column = None @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune. """ model_name_or_path: Optional[str] = field( default=CHATGLM_REPO_NAME, metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."} ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name."} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name."} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where to store the pretrained models downloaded from huggingface.co."} ) use_fast_tokenizer: Optional[bool] = field( default=True, metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} ) model_revision: Optional[str] = field( default=CHATGLM_LASTEST_HASH, metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} ) use_auth_token: Optional[bool] = field( default=False, metadata={"help": "Will use the token generated when running `huggingface-cli login`."} ) quantization_bit: Optional[int] = field( default=None, metadata={"help": "The number of bits to quantize the model."} ) checkpoint_dir: Optional[str] = field( default=None, metadata={"help": "Path to the directory containing the model checkpoints as well as the configurations."} ) reward_model: Optional[str] = field( default=None, metadata={"help": "Path to the directory containing the checkpoints of the reward model."} ) def __post_init__(self): if self.checkpoint_dir is not None: # support merging lora weights self.checkpoint_dir = [cd.strip() for cd in self.checkpoint_dir.split(",")] @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and evaluation. """ dataset: Optional[str] = field( default="alpaca_zh", metadata={"help": "The name of provided dataset(s) to use. Use comma to separate multiple datasets."} ) dataset_dir: Optional[str] = field( default="data", metadata={"help": "The name of the folder containing datasets."} ) split: Optional[str] = field( default="train", metadata={"help": "Which dataset split to use for training and evaluation."} ) overwrite_cache: Optional[bool] = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets."} ) preprocessing_num_workers: Optional[int] = field( default=None, metadata={"help": "The number of processes to use for the preprocessing."} ) max_source_length: Optional[int] = field( default=512, metadata={"help": "The maximum total input sequence length after tokenization."} ) max_target_length: Optional[int] = field( default=512, metadata={"help": "The maximum total output sequence length after tokenization."} ) max_samples: Optional[int] = field( default=None, metadata={"help": "For debugging purposes, truncate the number of examples for each dataset."} ) num_beams: Optional[int] = field( default=None, metadata={"help": "Number of beams to use for evaluation. This argument will be passed to `model.generate`"} ) ignore_pad_token_for_loss: Optional[bool] = field( default=True, metadata={"help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not."} ) source_prefix: Optional[str] = field( default=None, metadata={"help": "A prefix to add before every source text (useful for T5 models)."} ) def __post_init__(self): # support mixing multiple datasets dataset_names = [ds.strip() for ds in self.dataset.split(",")] dataset_info = json.load(open(os.path.join(self.dataset_dir, "dataset_info.json"), "r")) self.dataset_list = [] for name in dataset_names: if name not in dataset_info: raise ValueError("Undefined dataset {} in dataset_info.json.".format(name)) if "hf_hub_url" in dataset_info[name]: dataset_attr = DatasetAttr("hf_hub", dataset_name=dataset_info[name]["hf_hub_url"]) elif "script_url" in dataset_info[name]: dataset_attr = DatasetAttr("script", dataset_name=dataset_info[name]["script_url"]) else: dataset_attr = DatasetAttr( "file", file_name=dataset_info[name]["file_name"], file_sha1=dataset_info[name]["file_sha1"] if "file_sha1" in dataset_info[name] else None ) if "columns" in dataset_info[name]: dataset_attr.prompt_column = dataset_info[name]["columns"].get("prompt", None) dataset_attr.query_column = dataset_info[name]["columns"].get("query", None) dataset_attr.response_column = dataset_info[name]["columns"].get("response", None) dataset_attr.history_column = dataset_info[name]["columns"].get("history", None) self.dataset_list.append(dataset_attr) @dataclass class FinetuningArguments: """ Arguments pertaining to which techniques we are going to fine-tuning with. """ finetuning_type: Optional[str] = field( default="lora", metadata={"help": "Which fine-tuning method to use."} ) num_layer_trainable: Optional[int] = field( default=3, metadata={"help": "Number of trainable layers for Freeze fine-tuning."} ) name_module_trainable: Optional[str] = field( default="mlp", metadata={"help": "Name of trainable modules for Freeze fine-tuning."} ) pre_seq_len: Optional[int] = field( default=16, metadata={"help": "Number of prefix tokens to use for P-tuning V2."} ) prefix_projection: Optional[bool] = field( default=False, metadata={"help": "Whether to add a project layer for the prefix in P-tuning V2 or not."} ) lora_rank: Optional[int] = field( default=8, metadata={"help": "The intrinsic dimension for LoRA fine-tuning."} ) lora_alpha: Optional[float] = field( default=32.0, metadata={"help": "The scale factor for LoRA fine-tuning. (similar with the learning rate)"} ) lora_dropout: Optional[float] = field( default=0.1, metadata={"help": "Dropout rate for the LoRA fine-tuning."} ) lora_target: Optional[str] = field( default="query_key_value", metadata={"help": "Name(s) of target modules to apply LoRA. Use comma to separate multiple modules."} ) resume_lora_training: Optional[bool] = field( default=True, metadata={"help": "Whether to resume training from the last LoRA weights or create new weights after merging them."} ) plot_loss: Optional[bool] = field( default=False, metadata={"help": "Whether to plot the training loss after fine-tuning or not."} ) def __post_init__(self): self.lora_target = [target.strip() for target in self.lora_target.split(",")] # support custom target modules of LoRA if self.num_layer_trainable > 0: # fine-tuning the last n layers if num_layer_trainable > 0 trainable_layer_ids = [27-k for k in range(self.num_layer_trainable)] else: # fine-tuning the first n layers if num_layer_trainable < 0 trainable_layer_ids = [k for k in range(-self.num_layer_trainable)] if self.name_module_trainable == "mlp": self.trainable_layers = ["layers.{:d}.mlp".format(idx) for idx in trainable_layer_ids] elif self.name_module_trainable == "qkv": self.trainable_layers = ["layers.{:d}.attention.query_key_value".format(idx) for idx in trainable_layer_ids] if self.finetuning_type not in ["none", "freeze", "p_tuning", "lora", "full"]: raise NotImplementedError("Invalid fine-tuning method.")