# coding=utf-8 # Implements several parameter-efficient supervised fine-tuning method for ChatGLM. # This code is inspired by https://github.com/THUDM/ChatGLM-6B/blob/main/ptuning/main.py from utils import ( load_pretrained, prepare_args, prepare_data, preprocess_data, plot_loss, Seq2SeqDataCollatorForChatGLM, ComputeMetrics, Seq2SeqTrainerForChatGLM ) def main(): # Prepare pretrained model and dataset model_args, data_args, training_args, finetuning_args = prepare_args() dataset = prepare_data(model_args, data_args) model, tokenizer = load_pretrained(model_args, training_args, finetuning_args, training_args.do_train, stage="sft") dataset = preprocess_data(dataset, tokenizer, data_args, training_args, stage="sft") data_collator = Seq2SeqDataCollatorForChatGLM( tokenizer=tokenizer, model=model, ignore_pad_token_for_loss=data_args.ignore_pad_token_for_loss, inference_mode=(not training_args.do_train) ) # Override the decoding parameters of Seq2SeqTrainer training_args.generation_max_length = training_args.generation_max_length if \ training_args.generation_max_length is not None else data_args.max_target_length training_args.generation_num_beams = data_args.num_beams if \ data_args.num_beams is not None else training_args.generation_num_beams # Initialize our Trainer trainer = Seq2SeqTrainerForChatGLM( finetuning_args=finetuning_args, model=model, args=training_args, train_dataset=dataset if training_args.do_train else None, eval_dataset=dataset if training_args.do_eval else None, tokenizer=tokenizer, data_collator=data_collator, compute_metrics=ComputeMetrics(tokenizer) if training_args.predict_with_generate else None ) # Keyword arguments for `model.generate` gen_kwargs = { "do_sample": True, "top_p": 0.7, "max_length": 768, "temperature": 0.95 } # Training if training_args.do_train: train_result = trainer.train() trainer.log_metrics("train", train_result.metrics) trainer.save_metrics("train", train_result.metrics) trainer.save_state() trainer.save_model() if trainer.is_world_process_zero() and finetuning_args.plot_loss: plot_loss(training_args) # Evaluation if training_args.do_eval: metrics = trainer.evaluate(metric_key_prefix="eval", **gen_kwargs) trainer.log_metrics("eval", metrics) trainer.save_metrics("eval", metrics) # Predict if training_args.do_predict: predict_results = trainer.predict(dataset, metric_key_prefix="predict", **gen_kwargs) trainer.log_metrics("predict", predict_results.metrics) trainer.save_metrics("predict", predict_results.metrics) trainer.save_predictions(predict_results, tokenizer) def _mp_fn(index): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()