from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool import datetime import requests import pytz import yaml from tools.final_answer import FinalAnswerTool from Gradio_UI import GradioUI # Below is an example of a tool that does nothing. Amaze us with your creativity ! @tool def my_custom_tool(arg1:str, arg2:int)-> str: #it's import to specify the return type #Keep this format for the description / args / args description but feel free to modify the tool """A tool that does nothing yet Args: arg1: the first argument arg2: the second argument """ return "What magic will you build ?" @tool def get_current_time_in_timezone(timezone: str) -> str: """A tool that fetches the current local time in a specified timezone. Args: timezone: A string representing a valid timezone (e.g., 'America/New_York'). """ try: # Create timezone object tz = pytz.timezone(timezone) # Get current time in that timezone local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S") return f"The current local time in {timezone} is: {local_time}" except Exception as e: return f"Error fetching time for timezone '{timezone}': {str(e)}" @tool def analyze_stock(ticker: str) -> dict: # type: ignore[type-arg] """ A tool that analyze stock data. Args: ticker: A string representing stock ticker(e.g., 'AMD') """ import os from datetime import datetime, timedelta import numpy as np import pandas as pd import yfinance as yf from pytz import timezone # type: ignore stock = yf.Ticker(ticker) # Get historical data (1 year of data to ensure we have enough for 200-day MA) end_date = datetime.now(timezone("UTC")) start_date = end_date - timedelta(days=365) hist = stock.history(start=start_date, end=end_date) # Ensure we have data if hist.empty: return {"error": "No historical data available for the specified ticker."} # Compute basic statistics and additional metrics current_price = stock.info.get("currentPrice", hist["Close"].iloc[-1]) year_high = stock.info.get("fiftyTwoWeekHigh", hist["High"].max()) year_low = stock.info.get("fiftyTwoWeekLow", hist["Low"].min()) # Calculate 50-day and 200-day moving averages ma_50 = hist["Close"].rolling(window=50).mean().iloc[-1] ma_200 = hist["Close"].rolling(window=200).mean().iloc[-1] # Calculate YTD price change and percent change ytd_start = datetime(end_date.year, 1, 1, tzinfo=timezone("UTC")) ytd_data = hist.loc[ytd_start:] # type: ignore[misc] if not ytd_data.empty: price_change = ytd_data["Close"].iloc[-1] - ytd_data["Close"].iloc[0] percent_change = (price_change / ytd_data["Close"].iloc[0]) * 100 else: price_change = percent_change = np.nan # Determine trend if pd.notna(ma_50) and pd.notna(ma_200): if ma_50 > ma_200: trend = "Upward" elif ma_50 < ma_200: trend = "Downward" else: trend = "Neutral" else: trend = "Insufficient data for trend analysis" # Calculate volatility (standard deviation of daily returns) daily_returns = hist["Close"].pct_change().dropna() volatility = daily_returns.std() * np.sqrt(252) # Annualized volatility # Create result dictionary result = { "ticker": ticker, "current_price": current_price, "52_week_high": year_high, "52_week_low": year_low, "50_day_ma": ma_50, "200_day_ma": ma_200, "ytd_price_change": price_change, "ytd_percent_change": percent_change, "trend": trend, "volatility": volatility, } # Convert numpy types to Python native types for better JSON serialization for key, value in result.items(): if isinstance(value, np.generic): result[key] = value.item() return result final_answer = FinalAnswerTool() print(analyze_stock('AMD')) # If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder: # model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud' model = HfApiModel( max_tokens=2096, temperature=0.5, model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded custom_role_conversions=None, ) # Import tool from Hub image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True) with open("prompts.yaml", 'r') as stream: prompt_templates = yaml.safe_load(stream) agent = CodeAgent( model=model, tools=[final_answer], ## add your tools here (don't remove final answer) max_steps=6, verbosity_level=1, grammar=None, planning_interval=None, name=None, description=None, prompt_templates=prompt_templates ) GradioUI(agent).launch()