import gradio as gr from fastai.vision.all import * import ultralytics from ultralytics import YOLO from PIL import Image, ImageDraw, ImageFont # import os # Load a pre-trained image classification model import pathlib plt = platform.system() if plt == 'Windows': pathlib.PosixPath = pathlib.WindowsPath if plt == 'Linux': pathlib.WindowsPath = pathlib.PosixPath root = os.path.dirname(__file__) detect = YOLO('./models/detect.pt') mood = load_learner("./models/mood.pkl") # Function to make predictions from an image def process(imagep): boxes = detect.predict(imagep) image = Image.open(image) image_with_boxes = image.copy() draw = ImageDraw.Draw(image_with_boxes) for i, box in enumerate(boxes[0].boxes.xyxy): # print(box) x1, y1, x2, y2 = int(box[0]), int(box[1]), int(box[2]), int(box[3]) cropped_image = image.crop((x1, y1, x2, y2)) resized_image = cropped_image.resize((48, 48)) grayscale_image = resized_image.convert('L') w = (y2+x2-y1-x1)//50 pil_image = PILImage.create(grayscale_image) prediction = mood.predict(pil_image) # print(prediction) text = prediction[0] text_position = (x1 + w, y1 + w) draw.rectangle([x1, y1, x2, y2], outline="red", width=w) font = ImageFont.truetype("opensans.ttf", 5*w) draw.text(text_position, text, fill="blue",font=font, stroke_width=int(w*0.2)) return image_with_boxes # Sample images for user to choose from sample_images = ["./sample_images/angry.jpg", "./sample_images/office.jpg","./sample_images/friends.jpg"] iface = gr.Interface( fn=process, inputs=gr.Image(label="Select an image", type="filepath"), outputs='image', live=False, title="Car image classifier", description="Upload a car image or select one of the examples below", examples=sample_images ) iface.launch()