from fastai.vision.all import * import gradio as gr # determines if it's a cat from first letter def is_cat(x): return x[0].isupper() # load the model learn = load_learner('model.pkl') categories = ('Dog', 'Cat') def predict(img): pred,pred_idx,probs = learn.predict(img) return dict(zip(categories, map(float, probs))) # show it in a gradio interface examples = [ 'cat1.png', 'dog1.png', 'python1.png'] gr.Interface(fn=predict, inputs=gr.Image(), outputs=gr.Label(), examples=examples).launch()