""" Credit to https://github.com/XingangPan/IBN-Net. """ from __future__ import division, absolute_import import math import torch.nn as nn import torch.utils.model_zoo as model_zoo __all__ = ['resnet50_ibn_b'] model_urls = { 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', } def conv3x3(in_planes, out_planes, stride=1): "3x3 convolution with padding" return nn.Conv2d( in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False ) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None, IN=False): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d( planes, planes, kernel_size=3, stride=stride, padding=1, bias=False ) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d( planes, planes * self.expansion, kernel_size=1, bias=False ) self.bn3 = nn.BatchNorm2d(planes * self.expansion) self.IN = None if IN: self.IN = nn.InstanceNorm2d(planes * 4, affine=True) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual if self.IN is not None: out = self.IN(out) out = self.relu(out) return out class ResNet(nn.Module): """Residual network + IBN layer. Reference: - He et al. Deep Residual Learning for Image Recognition. CVPR 2016. - Pan et al. Two at Once: Enhancing Learning and Generalization Capacities via IBN-Net. ECCV 2018. """ def __init__( self, block, layers, num_classes=1000, loss='softmax', fc_dims=None, dropout_p=None, **kwargs ): scale = 64 self.inplanes = scale super(ResNet, self).__init__() self.loss = loss self.feature_dim = scale * 8 * block.expansion self.conv1 = nn.Conv2d( 3, scale, kernel_size=7, stride=2, padding=3, bias=False ) self.bn1 = nn.InstanceNorm2d(scale, affine=True) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer( block, scale, layers[0], stride=1, IN=True ) self.layer2 = self._make_layer( block, scale * 2, layers[1], stride=2, IN=True ) self.layer3 = self._make_layer(block, scale * 4, layers[2], stride=2) self.layer4 = self._make_layer(block, scale * 8, layers[3], stride=2) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = self._construct_fc_layer( fc_dims, scale * 8 * block.expansion, dropout_p ) self.classifier = nn.Linear(self.feature_dim, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() elif isinstance(m, nn.InstanceNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def _make_layer(self, block, planes, blocks, stride=1, IN=False): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d( self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False ), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks - 1): layers.append(block(self.inplanes, planes)) layers.append(block(self.inplanes, planes, IN=IN)) return nn.Sequential(*layers) def _construct_fc_layer(self, fc_dims, input_dim, dropout_p=None): """Constructs fully connected layer Args: fc_dims (list or tuple): dimensions of fc layers, if None, no fc layers are constructed input_dim (int): input dimension dropout_p (float): dropout probability, if None, dropout is unused """ if fc_dims is None: self.feature_dim = input_dim return None assert isinstance( fc_dims, (list, tuple) ), 'fc_dims must be either list or tuple, but got {}'.format( type(fc_dims) ) layers = [] for dim in fc_dims: layers.append(nn.Linear(input_dim, dim)) layers.append(nn.BatchNorm1d(dim)) layers.append(nn.ReLU(inplace=True)) if dropout_p is not None: layers.append(nn.Dropout(p=dropout_p)) input_dim = dim self.feature_dim = fc_dims[-1] return nn.Sequential(*layers) def featuremaps(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) return x def forward(self, x): f = self.featuremaps(x) v = self.avgpool(f) v = v.view(v.size(0), -1) if self.fc is not None: v = self.fc(v) if not self.training: return v y = self.classifier(v) if self.loss == 'softmax': return y elif self.loss == 'triplet': return y, v else: raise KeyError("Unsupported loss: {}".format(self.loss)) def init_pretrained_weights(model, model_url): """Initializes model with pretrained weights. Layers that don't match with pretrained layers in name or size are kept unchanged. """ pretrain_dict = model_zoo.load_url(model_url) model_dict = model.state_dict() pretrain_dict = { k: v for k, v in pretrain_dict.items() if k in model_dict and model_dict[k].size() == v.size() } model_dict.update(pretrain_dict) model.load_state_dict(model_dict) def resnet50_ibn_b(num_classes, loss='softmax', pretrained=False, **kwargs): model = ResNet( Bottleneck, [3, 4, 6, 3], num_classes=num_classes, loss=loss, **kwargs ) if pretrained: init_pretrained_weights(model, model_urls['resnet50']) return model