import os import requests from tqdm import tqdm from datasets import load_dataset import numpy as np from tensorflow.keras.applications.resnet50 import ResNet50, preprocess_input from tensorflow.keras.preprocessing import image from sklearn.neighbors import NearestNeighbors import joblib from PIL import UnidentifiedImageError, Image import gradio as gr # Load the dataset dataset = load_dataset("thefcraft/civitai-stable-diffusion-337k") # Take a subset of the dataset subset_size = 50 dataset_subset = dataset['train'].shuffle(seed=42).select(range(subset_size)) # Directory to save images image_dir = 'civitai_images' os.makedirs(image_dir, exist_ok=True) # Load the ResNet50 model pretrained on ImageNet model = ResNet50(weights='imagenet', include_top=False, pooling='avg') # Function to extract features def extract_features(img_path, model): img = image.load_img(img_path, target_size=(224, 224)) img_array = image.img_to_array(img) img_array = np.expand_dims(img_array, axis=0) img_array = preprocess_input(img_array) features = model.predict(img_array) return features.flatten() # Extract features for a sample of images features = [] image_paths = [] model_names = [] for sample in tqdm(dataset_subset): img_url = sample['url'] # Adjust based on the correct column name model_name = sample['Model'] # Adjust based on the correct column name img_path = os.path.join(image_dir, os.path.basename(img_url)) # Download the image try: response = requests.get(img_url) response.raise_for_status() # Check if the download was successful if 'image' not in response.headers['Content-Type']: raise ValueError("URL does not contain an image") with open(img_path, 'wb') as f: f.write(response.content) # Extract features try: img_features = extract_features(img_path, model) features.append(img_features) image_paths.append(img_path) model_names.append(model_name) except UnidentifiedImageError: print(f"UnidentifiedImageError: Skipping file {img_path}") os.remove(img_path) except requests.exceptions.RequestException as e: print(f"RequestException: Failed to download {img_url} - {e}") # Convert features to numpy array features = np.array(features) # Build the NearestNeighbors model nbrs = NearestNeighbors(n_neighbors=5, algorithm='ball_tree').fit(features) # Save the model and features joblib.dump(nbrs, 'nearest_neighbors_model.pkl') np.save('image_features.npy', features) np.save('image_paths.npy', image_paths) np.save('model_names.npy', model_names) # Load the NearestNeighbors model and features nbrs = joblib.load('nearest_neighbors_model.pkl') features = np.load('image_features.npy') image_paths = np.load('image_paths.npy', allow_pickle=True) model_names = np.load('model_names.npy', allow_pickle=True) # Function to get recommendations def get_recommendations(img_path, model, nbrs, image_paths, model_names, n_neighbors=5): img_features = extract_features(img_path, model) distances, indices = nbrs.kneighbors([img_features]) recommended_images = [image_paths[idx] for idx in indices.flatten()] recommended_model_names = [model_names[idx] for idx in indices.flatten()] recommended_distances = distances.flatten() return recommended_images, recommended_model_names, recommended_distances def get_recommendations_and_display(img_path): recommended_images, recommended_model_names, recommended_distances = get_recommendations(img_path, model, nbrs, image_paths, model_names) results = [] for i in range(len(recommended_images)): result = { "Image": Image.open(recommended_images[i]), "Model Name": recommended_model_names[i], "Distance": recommended_distances[i] } results.append(result) return results # Define Gradio interface def gradio_interface(input_image): input_image.save("input_image.jpg") # Save the input image recommendations = get_recommendations_and_display("input_image.jpg") outputs = [] for i, rec in enumerate(recommendations): outputs.append((f"Recommendation {i+1}", rec["Image"], rec["Model Name"], rec["Distance"])) return outputs # Gradio interface function def gradio_app(image): results = gradio_interface(image) return results # Create the Gradio app iface = gr.Interface( fn=gradio_app, inputs=gr.inputs.Image(type="pil"), outputs=[gr.outputs.Image(type="pil", label=f"Recommendation {i+1} Image") for i in range(5)] + [gr.outputs.Textbox(label=f"Recommendation {i+1} Model Name") for i in range(5)] + [gr.outputs.Textbox(label=f"Recommendation {i+1} Distance") for i in range(5)], title="Image Recommendation System", description="Upload an image to get recommendations based on the image" ) # Launch the Gradio app if __name__ == "__main__": iface.launch()