import gradio as gr import plotly.graph_objects as go import numpy as np from src.dataloading import get_leaderboard_models_cached, get_leaderboard_datasets # Optionally, force a renderer (may or may not help) import plotly.io as pio pio.renderers.default = "iframe" def create_heatmap(selected_models, selected_dataset): if not selected_models or not selected_dataset: return "" # Return empty HTML if no input size = len(selected_models) similarities = np.random.rand(size, size) similarities = (similarities + similarities.T) / 2 similarities = np.round(similarities, 2) fig = go.Figure(data=go.Heatmap( z=similarities, x=selected_models, y=selected_models, colorscale="Viridis", zmin=0, zmax=1, text=similarities, hoverinfo="text" )) fig.update_layout( title=f"Similarity Matrix for {selected_dataset}", xaxis_title="Models", yaxis_title="Models", width=800, height=800, margin=dict(l=100, r=100, t=100, b=100) ) # Force categorical ordering with explicit tick settings. fig.update_xaxes( type="category", categoryorder="array", categoryarray=selected_models, tickangle=45, automargin=True ) fig.update_yaxes( type="category", categoryorder="array", categoryarray=selected_models, automargin=True ) # Convert the figure to an HTML string that includes Plotly.js via CDN. return fig.to_html(full_html=False, include_plotlyjs="cdn") def validate_inputs(selected_models, selected_dataset): if not selected_models: raise gr.Error("Please select at least one model!") if not selected_dataset: raise gr.Error("Please select a dataset!") with gr.Blocks(title="LLM Similarity Analyzer") as demo: gr.Markdown("## Model Similarity Comparison Tool") with gr.Row(): dataset_dropdown = gr.Dropdown( choices=get_leaderboard_datasets(), label="Select Dataset", filterable=True, interactive=True, info="Leaderboard benchmark datasets" ) model_dropdown = gr.Dropdown( choices=get_leaderboard_models_cached(), label="Select Models", multiselect=True, filterable=True, allow_custom_value=False, info="Search and select multiple models" ) generate_btn = gr.Button("Generate Heatmap", variant="primary") # Use an HTML component instead of gr.Plot. heatmap = gr.HTML(label="Similarity Heatmap", visible=True) generate_btn.click( fn=validate_inputs, inputs=[model_dropdown, dataset_dropdown], queue=False ).then( fn=create_heatmap, inputs=[model_dropdown, dataset_dropdown], outputs=heatmap ) clear_btn = gr.Button("Clear Selection") clear_btn.click( lambda: [None, None, ""], outputs=[model_dropdown, dataset_dropdown, heatmap] ) if __name__ == "__main__": # On Spaces, disable server-side rendering. demo.launch(ssr_mode=False)